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Abstract 
 
 Almost all triangle mesh compression algorithms to 
date are driven by the mesh connectivity code. The ge-
ometry code usually employs a straightforward predic-
tion method applied to the vertex sequence as dictated by 
the connectivity code. This generates a suboptimal ge-
ometry code, which results in significant loss in code 
efficiency, since the geometry dominates the mesh infor-
mation content. This paper proposes a manifold mesh 
code which optimizes the geometric component, at the 
slight expense of the connectivity code. This mesh geome-
try code is shown to be up to 50% more compact than the 
state-of-the-art geometry code of Touma and Gotsman, 
especially for models with non-smooth geometry, such as 
CAD models. 
 
 
1. Introduction 
 
 A 3D triangle mesh consists of the following two 
components: geometry – the 3D coordinates of the mesh 
vertices, and connectivity - defining the edges and faces 
between the mesh vertices. Recently, a wealth of algo-
rithms for the efficient coding of this type of data have 
been published (e.g. [1,2,4,6,7,11,13,14]). All these focus 
on achieving the most compact code for the connectivity 
data, resulting in between 1.5 and 4 bits per vertex on the 
average. The main disadvantage of these coding tech-
niques is that they ignore the geometry of the model. The 
vertex coordinates are then coded in an order induced by 
the connectivity code, which is usually not optimal. 
 The geometric data, being floating point, is commonly 
quantized to a fixed number of bits per vertex before cod-
ing. Ten bits/vertex is typical, so the raw information 
content of a vertex is 30 bits before coding. The few pub-
lished compression techniques which deal with mesh 
geometry (e.g. [4,8,14]) generate codes whose size is 40-
50% of this. It is well known that the geometric portion 
of the content dominates the code, so that is the place to 
achieve a significant improvement in the code as a whole. 

However, care must still be taken to code the connectivity 
in a sophisticated way, as the most straightforward con-
nectivity code may require more than 30 bits/vertex. 
 After having quantized the geometry, spatial geometry 
coding techniques then code the data in a lossless man-
ner, meaning that this data will be recovered exactly by 
the decoder. In contrast, spectral techniques [8] quantize 
other (transform) coefficients which represent the data, so 
the resulting loss is less predictable. Metrics which meas-
ure the distance between two similar models must then be 
employed in order to quantify the distortion of the data. 
 We propose a way to significantly optimize the spatial 
geometry code without sacrificing too much in the con-
nectivity code. In our approach we achieve exactly 4 
bits/vertex for the connectivity before entropy coding, 
which is not as good as other published algorithms, but 
certainly not significantly worse. 
 Our approach is based on the “parallelogram” predic-
tion method for mesh geometry, first introduced by 
Touma and Gotsman [14]. This method is based on the 
observation that two adjacent triangles in a typical mesh 
tend to form an almost planar shape similar to a paral-
lelogram. Thus, if a triangle A is given, the missing ver-
tex of the adjacent triangle B may be predicted quite re-
liably (see Fig. 1). Note that the prediction error is sym-
metric, namely that the error resulting from predicting the 
missing vertex of A based on B is identical to the error 
resulting from predicting the missing vertex of B based 
on A. Experimental results seem to indicate that the paral-
lelogram rule proves itself in practice, and it has been 
adopted for the emerging MPEG-4 standard for mesh 
geometry coding [10]. Other geometric patterns will cer-
tainly be present in 3D mesh data sets, as Lee and Ko [9] 
have found, but the parallelogram pattern seems to be 
dominant, especially when the mesh data is generated by 
sampling free-form surfaces such as NURBS, along iso-
parametric curves. 
 Despite the dominance of parallelogram structures, 
there are obvious cases where it fails dismally. An easy 
example is a so-called CAD model. These models are 
characterized by significant flat areas, corners and folds, 
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and are far from being smooth. This means that adjacent 
triangles are either (close to) planar, or have a significant  

  
 

Figure 1: Two adjacent triangles in a mesh (123 and 
234), the parallelogram predictions 1’ and 4’ of vertices 
1 and 4, and the resulting (thick black) symmetric pre-
diction error vectors. 
 
fold between them. In the latter case, parallelogram pre-
diction will be completely off mark, resulting in a large 
prediction error. See Fig. 2 for an example. This means 
that for these types of models, it is best to predict trian-
gles within the almost planar regions, definitely not be-
tween creases. Unfortunately, a coder driven by connec-
tivity information alone cannot tell the difference be-
tween the two cases. 
  If an algorithm uses a parallelogram prediction 
method, then it should build a traversal structure of trian-
gles covering all vertices. By “covering”, we mean that 
all mesh vertices are contained in the set of vertices of 
the traversed triangles. The vertex coordinates are then 
predicted based on the previous triangle in the traversal. 
The cost of this code is then the entropy of the distribu-
tion of the vertex prediction errors. Since this entropy is 
hard to manipulate, the accepted practice is to measure 
the code effectiveness in the approximation sense, i.e. as 
the sum of the lengths of the vertex prediction error vec-
tors. The smaller the better. This paper proposes a trian-
gle traversal structure to which the geometric prediction 
is applied, which attempts to minimize this measure, 
which we call the spread of the distribution (assuming 
implicitly that the distribution is concentrated around the 
origin). 
 The only previous work which attempts something 
similar is that of Bossen [3], who tries to optimize the 
“Topological Surgery” coding method of Taubin and 
Rossignac [13]. His method, however, is applied to a tree 
spanning all the mesh triangles, which is significantly 
different from the tree we construct.  
 The rest of this paper is organized as follows: Section 
2 analyzes the best we can hope for in terms of minimal 

prediction error. Section 3 describes our approach and 
experimental results are presented in Section 4. We con-
clude in Section 5. 
 

 
(a) 

 
(b) 

Figure 2: Possible parallelogram predictions based on 
the white triangle: The gray is good, and the black bad. 
(a) Bolt. (b) Cow. 
 
 
2. A lower bound  
 
 When the code is based on parallelogram predictors, a 
simple lower bound on the geometry prediction error 
spread may be established as follows. Since any mesh 
vertex with degree d may be predicted based on any of 
the d different triangles incident on the vertex, the best 
that can be achieved is the minimal approximation error 
resulting from one of these triangles. See Fig. 3. 
 Denoting this minimal approximation error for vertex 
v by err(v), the sum of err(v) over all vertices in a given 
mesh is a lower bound on the spread for that mesh. Note 
that this bound is quite loose, as it is probably impossible 
to build a coherent triangle structure which will achieve 
the best possible prediction advocated by the lower bound 
among all adjacent triangles for all vertices. For example, 
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the lower bound for the spread of the bolt model of Fig. 
2a is 7.5, yet our method, as will be described in the se-
quel, will achieve only 136. 
 

 
Figure 3: Possible vertex predictors and prediction 
errors for a vertex v. The best prediction for v in this 
example is from the adjacent triangle with vertex w. 
Note, however, that this does not imply that the best 
predictor for w is v.  

 
3. Our approach 
 
 Any coding scheme for a class of objects may be 
viewed as the compact representation of members of that 
class. In the case of 3D triangle meshes, we need to de-
vise representations for both the mesh connectivity and 
geometry. Coding the geometry will require an orderly 
traversal of the mesh triangles in some order which facili-
tates accurate causal prediction of vertex coordinates. 
This same (tree) structure will also represent a subset of 
the connectivity information, since it indicates how some 
of the triangles are joined together to form the mesh. 
Hence, we first build a “cover tree” which traverses a 
subset of the triangles in the mesh, such that tree edges 
straddle only adjacent triangles, and all mesh vertices are 
contained in these triangles at least once. Note that this 
cover tree covers only a subset of the mesh triangles, as 
opposed to the triangle cover trees used by the Topologi-
cal Surgery method [13], which cover all the mesh trian-
gles (vertices of the dual graph). 
 Unfortunately, the constraint that every vertex be cov-
ered exactly once is quite strong, and does not leave 
much freedom to optimize the tree by other measures. 
Hence in practice we must relax this constraint, and typi-
cally a few vertices will be covered more than once. To 
determine at the decoder which vertices are actually du-
plicates of vertices decoded before, we identify vertices 
with the same geometry. The cost of a repeated vertex to 
the geometry code is not small, but in practice it occurs 
very infrequently, so is quite negligible. By using a care-
fully designed cover tree, of which there are many, we 
are able to optimize it to minimize the spread of the ver-

tex geometry prediction errors. 
 Since the cover tree covers only some of the mesh 
triangles, it represents only part of the edge information 
in the mesh. The remainder of the edge information is 
represented by coding the triangulation of the polygons 
whose boundaries are the cover tree boundaries. See Fig. 
4. Each of these steps will be described now. 
 
3.1 Building the cover tree 
 
 The objective is to build an optimal cover tree with 
minimum spread.  Since each vertex’s coordinates are 
predicted from the preceding triangle in the tree, the 
weight associated with a tree edge is the prediction error 
between the two appropriate mesh triangles. The fact that 
the prediction error between two adjacent triangles is 
symmetric implies that the total weight of the tree does 
not depend on which triangle is the root of the tree. 
Hence the total weight of a mesh cover tree T, which we 
aim to minimize, is the sum of prediction errors associ-
ated with all edges of T. 
  We cast the problem of finding an optimal cover tree 
as a graph-theoretic problem. Build a graph G=<V,E>, 
such that the node set V is the set of all mesh triangles 
and vertices, and E contains a bi-directional edge be-
tween two mesh triangles iff they are adjacent. The 
weight of this edge is the symmetric prediction error of 
the two triangles. E also contains a directed edge from a 
triangle to all three of its vertices. The weight of this edge 
is zero. G is an augmented version of the dual of the tri-
angle mesh. The objective is to construct a tree on G 
which covers all nodes of G which are mesh vertices, and 
has minimal weight. This tree will cover all mesh vertices 
via a subset of the mesh triangles. See an example in Fig. 
5. 
 Unfortunately, finding this optimal cover tree is a spe-
cial case of the well-known Minimal Steiner Tree prob-
lem for weighted directed graphs, which is NP-Hard [5], 
so the best that can be hoped for in a polynomial-time 
algorithm is a tree whose total weight approximates the 
optimum, in the sense that its weight is not more than a 
constant factor times the minimum. 
 We approximate the optimum with a greedy algorithm 
employing the simple approximation heuristic used in the 
undirected Minimal Steiner Tree problem: Starting from 
an arbitrary mesh vertex, the tree is extended by the ver-
tex which is closest to the tree (the distance is measured 
as the total edge weight of a path in the graph). This ap-
proximates the optimum by a factor of two. The complex-
ity of this (encoding) algorithm is known to be O(n2), but 
has been found to be significantly less in practice. The 
complexity of the decoding algorithm is linear.  
 

vw

err(v)
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Figure 4: Coding mesh connectivity and geome-
try. The white triangles and all mesh vertices are 
covered by the (thick black) cover tree, starting from 
the root edge and the three initial geometries of 
vertices 1, 2 and 3. The geometries of vertices 4 
and 6 may then be predicted, then those of vertices 
5 and 7, and so on. All vertices are covered once, 
except for the “fat” vertex 7, which is covered twice. 
The gray triangles represent the remainder of the 
mesh connectivity, which form a set of triangulated 
polygons, also encoded as a set of (thin black) 
trees. 

 
3.2 Coding the remainder of the connectivity 
 
 The cover tree represents only part of the connectivity 
of the mesh. Thus more information is required to com-
plete the rest of the connectivity information.  
 The boundaries of the cover tree form a set of triangu-
lated simple polygons, since they cannot contain interior 
vertices. See Fig. 4. The connectivity of a triangulated 
simple polygon may be represented with no more than 
two bits per triangle, using a binary spanning tree on the 
triangles, as has been described before [12]. Hence 4 
bits/vertex suffice to code the connectivity. This is not as 
good as other algorithms reported in the literature, which 
achieve as little as 1.5 bits/vertex, but it is not very bad 
either, and the sum of the connectivity and geometry code 
still yields a profit. Since the decoder reconstructs these 
simple polygons in the same order as the encoder, it is 
able to “zip” them into the cover tree by tracing (and 
identifying) the boundary edges of both in the same or-
der. A boundary edge is an edge of the triangulated poly-
gon which is incident on only one triangle. 
 

 

(a) 

 

(b) 
Figure 5: Building the graph from a mesh. (a) A 
mesh. Faces are labeled with letters and vertices 
with numbers.  (b) The corresponding graph upon 
which the optimization procedure is run. Edges 
between mesh faces are undirected and weighted 
with prediction errors associated with edges 
incident on both faces. Directed edges between 
mesh faces and mesh vertices have zero weight. 

 
 This method works for a closed manifold mesh. If the 
mesh has boundaries (“holes”), we use the method pro-
posed by Touma and Gotsman [14], in which the mesh is 
closed by adding one “dummy” vertex to each such 
boundary. The dummy vertex is connected to all vertices 
in the boundary, and assigned coordinates which are the 
average of the boundary vertex coordinates. The resulting 
closed mesh is then coded as above, and the dummy ver-
tices marked. At the decoder, these dummy vertices are 
removed along with all edges incident on them. In the 
typical case where the mesh has but a few boundaries, the 
coding overhead is minimal. 
 
4. Experimental results 

 
We have implemented the algorithms outlined here, and 
compared the results with those obtained by the algorithm 
of Touma and Gotsman [14] (the so-called “TG” algo-
rithm), which is widely considered to be state-of-the-art. 
Some of the models we experimented with are shown in 
Fig. 6, a mix of smooth and non-smooth meshes. For 
each algorithm we measured the spread of the prediction 
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the number of different prediction error values, and pi the 
relative frequency of that value. We also compared the 
results of coding using the optimal cover tree generated 
by our algorithm with that obtained using other simple 
cover trees, such as that generated by Breadth-First-
Search (BFS) or Depth-First-Search (DFS). Fig. 7 shows 
some of these trees and their performance on a sample 
model. 
 

   
Funnel Electro Bolt 

   
Triceratops Cow Face 

 
Figure 6: Sample triangle meshes 

 
 The performance of the TG algorithm on the geomet-
ric component of the mesh seems to be quite average, 
since our algorithm, when run using a simple BFS or 
DFS cover tree results in comparable, or even better, sta-
tistics for both the spread and entropy. 
 Our algorithm with its optimized cover tree attempts 
to minimize the spread of the prediction error lengths, 
producing a distribution of the prediction error population 
narrower than that produced by the TG algorithm. While 
a smaller spread usually results in a smaller entropy of 
the distribution, it is not always the case. For example, a 
decrease of 5% in the distribution spread will usually not 
result in any reduction of the entropy. In the models we 
experimented with (see Tables 1 and 2), applying our 
algorithm to smooth models resulted in an average gain 
in the spread of 25% relative to that generated by the TG 
algorithm, but only in an average gain of only 10% in 
entropy. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 7: Comparison between different trees 
used to code the geometry of the bolt model (quan-
tized to 8 bits/coordinate), containing 328 vertices. 
Cover tree is drawn in black, and faces that it cov-
ers colored light (cyan). Other polygons to complete 
the connectivity code are colored dark (blue). (a)  
BFS cover tree. No vertices are covered more than 
once and only one extra polygon is needed to com-
plete the connectivity. Geometric prediction error 
entropy = 13.3 bpv. (b) DFS cover tree. No vertices 
are covered more than once and only one extra 
polygon is needed to complete the connectivity. 
Geometric prediction error entropy = 13.0 bpv. (c) 
Optimal cover tree. Note how it does not cut thru 
creases unless absolutely necessary. Only one 
vertex is covered twice and two extra polygons are 
needed to complete the connectivity. Geometric 
prediction error entropy = 9.9 bpv. 
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 A parallelogram predictor will not predict well if the 
two adjacent triangles are not parallel, or if there is a 
significant crease between them, since the parallelogram 
rule assumes planarity. The latter is not a serious problem 
in smooth models, but is for models containing sharp 
corners and creases, such as CAD models. It is on this 
class of models that we expected our algorithm to per-
form the best, and, indeed, for these we obtained an aver-
age gain of 75% in the spread relative to that generated 
by the TG algorithm, and an average gain of 45% in the 
entropy.  

 Increasing the number of quantization bits per coordi-
nate from 10 to 12 (adding 6 bits to the raw vertex data) 
seems to add almost 6 bits per vertex to the resulting en-
tropies of all the codes, and a factor of almost 4 to the 
spreads, indicating that these extra bits are probably just 
noise, hence uncompressible, and redundant in a sense.  
 The Bolt model is small (328 vertices) compared to 
the others, so even quantization of 8 bits per coordinate is 
sufficient to preserve its fidelity. It this case the gain in 
the spread was 54%, corresponding to 30% in the en-
tropy. 
 

 
Spreads Entropy (bits/vertex) Model Vertices 

TG KG  
(optimal) 

KG 
(BFS) 

Gain 
% 

TG KG  
(optimal) 

KG 
(BFS) 

Gain 
% 

Funnel 4,193 37.6 8.8 38.7 77 16.9 9.5 14.5 41 
Electro 6,556 48.0 14.2 49.8 70 12.5 6.3 10.2 50 

Non 
smooth 

Bolt 328 100.0 43.0 106.0 57 16.0 13.6 18.1 15 
Triceratops 2,832 8.9 6.2 10.3 30 13.6 12.0 14.1 12 
Cow 2,604 9.4 7.4 11.6 21 13.9 12.9 14.6 7 

Smooth 

Face 12,530 5.5 4.6 6.8 16 11.6 10.7 12.4 8 

Table 1. Experimental results. TG – Touma and Gotsman algorithm. KG (optimal) – our algorithm. KG (BFS) is our 
method using a simple BFS cover tree. Gain is the relative savings when using between KG (optimal) vs. TG. All model 
geometries were quantized to 10 bits/coordinate before coding. 
 

 
 

Spreads Entropy (bits/vertex) Model Vertices 
TG KG  

(optimal) 
KG 

(BFS) 
Gain 

% 
TG KG  

(optimal) 
KG 

(BFS) 
Gain 

% 
Funnel 4,193 150 36.5 154 76 21.3 14.2 19.3 34 
Electro 6,556 191 54.3 198 72 15.7 7.7 12.5 50 

Non 
smooth 

Bolt 328 387 158.0 402 65 21.6 18.9 23.4 12 
Triceratops 2,832 35.2 23.9 40.7 32 19.4 17.3 19.5 11 
Cow 2,604 37.4 29.6 44.8 21 19.8 18.8 19.8 5 

Smooth 

Face 12,530 21.5 17.7 26.9 18 17.4 16.1 18.1 7 
 

Table 2: Experimental results. TG – Touma and Gotsman algorithm. KG – Our algorithm. All model geometries were 
quantized to 12 bits/coordinate before coding 
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5. Discussion and future work 

 
 This paper has shown how to optimize triangle mesh 
codes by exploiting a major source of savings, largely 
ignored in previous works – the mesh geometry.  Rather 
than the connectivity code drive the geometry code, here 
we do the opposite. Optimizing the geometry code has 
led to significant savings in the overall code size. Casting 
the problem in an optimization setting will allow similar 
results to be obtained for more elaborate prediction 
schemes. 
 The main drawback of our method is the complexity 
of the encoder. Due to the need to run an optimization 
procedure at the encoder, it is up to one order of magni-
tude slower than, e.g. the TG encoder. Our decoder, how-
ever, is very fast, so for the many applications where the 
encoding is done offline, the encoder speed is not an 
impediment. 
 Future work will address the question of how to di-
rectly optimize the prediction error entropy, as opposed 
to its spread, leading to a more compact code. We will 
also deal with non-manifolds and non-triangular meshes. 
The most interesting questions, in our opinion, relate to  
lower bounds on the number of bits needed to code a 
typical triangle mesh. This implies, of course, the need to 
impose a (subjective) probability distribution on the class 
of triangle meshes, in order to compute the entropy. 
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