
 1

Optimized Compression of Triangle Mesh Geometry
Using Prediction Trees

Boris Kronrod Craig Gotsman
Computer Science Department

Technion - Israel Institute of Technology
Haifa 32000, Israel

kronrod@cs.techion.ac.il gotsman@cs.technion.ac.il

Abstract

 Almost all triangle mesh compression algorithms to
date are driven by the mesh connectivity code. The ge-
ometry code usually employs a straightforward predic-
tion method applied to the vertex sequence as dictated by
the connectivity code. This generates a suboptimal ge-
ometry code, which results in significant loss in code
efficiency, since the geometry dominates the mesh infor-
mation content. This paper proposes a manifold mesh
code which optimizes the geometric component, at the
slight expense of the connectivity code. This mesh geome-
try code is shown to be up to 50% more compact than the
state-of-the-art geometry code of Touma and Gotsman,
especially for models with non-smooth geometry, such as
CAD models.

1. Introduction

 A 3D triangle mesh consists of the following two
components: geometry – the 3D coordinates of the mesh
vertices, and connectivity - defining the edges and faces
between the mesh vertices. Recently, a wealth of algo-
rithms for the efficient coding of this type of data have
been published (e.g. [1,2,4,6,7,11,13,14]). All these focus
on achieving the most compact code for the connectivity
data, resulting in between 1.5 and 4 bits per vertex on the
average. The main disadvantage of these coding tech-
niques is that they ignore the geometry of the model. The
vertex coordinates are then coded in an order induced by
the connectivity code, which is usually not optimal.
 The geometric data, being floating point, is commonly
quantized to a fixed number of bits per vertex before cod-
ing. Ten bits/vertex is typical, so the raw information
content of a vertex is 30 bits before coding. The few pub-
lished compression techniques which deal with mesh
geometry (e.g. [4,8,14]) generate codes whose size is 40-
50% of this. It is well known that the geometric portion
of the content dominates the code, so that is the place to
achieve a significant improvement in the code as a whole.

However, care must still be taken to code the connectivity
in a sophisticated way, as the most straightforward con-
nectivity code may require more than 30 bits/vertex.
 After having quantized the geometry, spatial geometry
coding techniques then code the data in a lossless man-
ner, meaning that this data will be recovered exactly by
the decoder. In contrast, spectral techniques [8] quantize
other (transform) coefficients which represent the data, so
the resulting loss is less predictable. Metrics which meas-
ure the distance between two similar models must then be
employed in order to quantify the distortion of the data.
 We propose a way to significantly optimize the spatial
geometry code without sacrificing too much in the con-
nectivity code. In our approach we achieve exactly 4
bits/vertex for the connectivity before entropy coding,
which is not as good as other published algorithms, but
certainly not significantly worse.
 Our approach is based on the “parallelogram” predic-
tion method for mesh geometry, first introduced by
Touma and Gotsman [14]. This method is based on the
observation that two adjacent triangles in a typical mesh
tend to form an almost planar shape similar to a paral-
lelogram. Thus, if a triangle A is given, the missing ver-
tex of the adjacent triangle B may be predicted quite re-
liably (see Fig. 1). Note that the prediction error is sym-
metric, namely that the error resulting from predicting the
missing vertex of A based on B is identical to the error
resulting from predicting the missing vertex of B based
on A. Experimental results seem to indicate that the paral-
lelogram rule proves itself in practice, and it has been
adopted for the emerging MPEG-4 standard for mesh
geometry coding [10]. Other geometric patterns will cer-
tainly be present in 3D mesh data sets, as Lee and Ko [9]
have found, but the parallelogram pattern seems to be
dominant, especially when the mesh data is generated by
sampling free-form surfaces such as NURBS, along iso-
parametric curves.
 Despite the dominance of parallelogram structures,
there are obvious cases where it fails dismally. An easy
example is a so-called CAD model. These models are
characterized by significant flat areas, corners and folds,

 2

4’

2
1

1’
3

4

and are far from being smooth. This means that adjacent
triangles are either (close to) planar, or have a significant

Figure 1: Two adjacent triangles in a mesh (123 and
234), the parallelogram predictions 1’ and 4’ of vertices
1 and 4, and the resulting (thick black) symmetric pre-
diction error vectors.

fold between them. In the latter case, parallelogram pre-
diction will be completely off mark, resulting in a large
prediction error. See Fig. 2 for an example. This means
that for these types of models, it is best to predict trian-
gles within the almost planar regions, definitely not be-
tween creases. Unfortunately, a coder driven by connec-
tivity information alone cannot tell the difference be-
tween the two cases.
 If an algorithm uses a parallelogram prediction
method, then it should build a traversal structure of trian-
gles covering all vertices. By “covering”, we mean that
all mesh vertices are contained in the set of vertices of
the traversed triangles. The vertex coordinates are then
predicted based on the previous triangle in the traversal.
The cost of this code is then the entropy of the distribu-
tion of the vertex prediction errors. Since this entropy is
hard to manipulate, the accepted practice is to measure
the code effectiveness in the approximation sense, i.e. as
the sum of the lengths of the vertex prediction error vec-
tors. The smaller the better. This paper proposes a trian-
gle traversal structure to which the geometric prediction
is applied, which attempts to minimize this measure,
which we call the spread of the distribution (assuming
implicitly that the distribution is concentrated around the
origin).
 The only previous work which attempts something
similar is that of Bossen [3], who tries to optimize the
“Topological Surgery” coding method of Taubin and
Rossignac [13]. His method, however, is applied to a tree
spanning all the mesh triangles, which is significantly
different from the tree we construct.
 The rest of this paper is organized as follows: Section
2 analyzes the best we can hope for in terms of minimal

prediction error. Section 3 describes our approach and
experimental results are presented in Section 4. We con-
clude in Section 5.

(a)

(b)

Figure 2: Possible parallelogram predictions based on
the white triangle: The gray is good, and the black bad.
(a) Bolt. (b) Cow.

2. A lower bound

 When the code is based on parallelogram predictors, a
simple lower bound on the geometry prediction error
spread may be established as follows. Since any mesh
vertex with degree d may be predicted based on any of
the d different triangles incident on the vertex, the best
that can be achieved is the minimal approximation error
resulting from one of these triangles. See Fig. 3.
 Denoting this minimal approximation error for vertex
v by err(v), the sum of err(v) over all vertices in a given
mesh is a lower bound on the spread for that mesh. Note
that this bound is quite loose, as it is probably impossible
to build a coherent triangle structure which will achieve
the best possible prediction advocated by the lower bound
among all adjacent triangles for all vertices. For example,

 3

the lower bound for the spread of the bolt model of Fig.
2a is 7.5, yet our method, as will be described in the se-
quel, will achieve only 136.

Figure 3: Possible vertex predictors and prediction
errors for a vertex v. The best prediction for v in this
example is from the adjacent triangle with vertex w.
Note, however, that this does not imply that the best
predictor for w is v.

3. Our approach

 Any coding scheme for a class of objects may be
viewed as the compact representation of members of that
class. In the case of 3D triangle meshes, we need to de-
vise representations for both the mesh connectivity and
geometry. Coding the geometry will require an orderly
traversal of the mesh triangles in some order which facili-
tates accurate causal prediction of vertex coordinates.
This same (tree) structure will also represent a subset of
the connectivity information, since it indicates how some
of the triangles are joined together to form the mesh.
Hence, we first build a “cover tree” which traverses a
subset of the triangles in the mesh, such that tree edges
straddle only adjacent triangles, and all mesh vertices are
contained in these triangles at least once. Note that this
cover tree covers only a subset of the mesh triangles, as
opposed to the triangle cover trees used by the Topologi-
cal Surgery method [13], which cover all the mesh trian-
gles (vertices of the dual graph).
 Unfortunately, the constraint that every vertex be cov-
ered exactly once is quite strong, and does not leave
much freedom to optimize the tree by other measures.
Hence in practice we must relax this constraint, and typi-
cally a few vertices will be covered more than once. To
determine at the decoder which vertices are actually du-
plicates of vertices decoded before, we identify vertices
with the same geometry. The cost of a repeated vertex to
the geometry code is not small, but in practice it occurs
very infrequently, so is quite negligible. By using a care-
fully designed cover tree, of which there are many, we
are able to optimize it to minimize the spread of the ver-

tex geometry prediction errors.
 Since the cover tree covers only some of the mesh
triangles, it represents only part of the edge information
in the mesh. The remainder of the edge information is
represented by coding the triangulation of the polygons
whose boundaries are the cover tree boundaries. See Fig.
4. Each of these steps will be described now.

3.1 Building the cover tree

 The objective is to build an optimal cover tree with
minimum spread. Since each vertex’s coordinates are
predicted from the preceding triangle in the tree, the
weight associated with a tree edge is the prediction error
between the two appropriate mesh triangles. The fact that
the prediction error between two adjacent triangles is
symmetric implies that the total weight of the tree does
not depend on which triangle is the root of the tree.
Hence the total weight of a mesh cover tree T, which we
aim to minimize, is the sum of prediction errors associ-
ated with all edges of T.
 We cast the problem of finding an optimal cover tree
as a graph-theoretic problem. Build a graph G=<V,E>,
such that the node set V is the set of all mesh triangles
and vertices, and E contains a bi-directional edge be-
tween two mesh triangles iff they are adjacent. The
weight of this edge is the symmetric prediction error of
the two triangles. E also contains a directed edge from a
triangle to all three of its vertices. The weight of this edge
is zero. G is an augmented version of the dual of the tri-
angle mesh. The objective is to construct a tree on G
which covers all nodes of G which are mesh vertices, and
has minimal weight. This tree will cover all mesh vertices
via a subset of the mesh triangles. See an example in Fig.
5.
 Unfortunately, finding this optimal cover tree is a spe-
cial case of the well-known Minimal Steiner Tree prob-
lem for weighted directed graphs, which is NP-Hard [5],
so the best that can be hoped for in a polynomial-time
algorithm is a tree whose total weight approximates the
optimum, in the sense that its weight is not more than a
constant factor times the minimum.
 We approximate the optimum with a greedy algorithm
employing the simple approximation heuristic used in the
undirected Minimal Steiner Tree problem: Starting from
an arbitrary mesh vertex, the tree is extended by the ver-
tex which is closest to the tree (the distance is measured
as the total edge weight of a path in the graph). This ap-
proximates the optimum by a factor of two. The complex-
ity of this (encoding) algorithm is known to be O(n2), but
has been found to be significantly less in practice. The
complexity of the decoding algorithm is linear.

vw

err(v)

 4

Figure 4: Coding mesh connectivity and geome-
try. The white triangles and all mesh vertices are
covered by the (thick black) cover tree, starting from
the root edge and the three initial geometries of
vertices 1, 2 and 3. The geometries of vertices 4
and 6 may then be predicted, then those of vertices
5 and 7, and so on. All vertices are covered once,
except for the “fat” vertex 7, which is covered twice.
The gray triangles represent the remainder of the
mesh connectivity, which form a set of triangulated
polygons, also encoded as a set of (thin black)
trees.

3.2 Coding the remainder of the connectivity

 The cover tree represents only part of the connectivity
of the mesh. Thus more information is required to com-
plete the rest of the connectivity information.
 The boundaries of the cover tree form a set of triangu-
lated simple polygons, since they cannot contain interior
vertices. See Fig. 4. The connectivity of a triangulated
simple polygon may be represented with no more than
two bits per triangle, using a binary spanning tree on the
triangles, as has been described before [12]. Hence 4
bits/vertex suffice to code the connectivity. This is not as
good as other algorithms reported in the literature, which
achieve as little as 1.5 bits/vertex, but it is not very bad
either, and the sum of the connectivity and geometry code
still yields a profit. Since the decoder reconstructs these
simple polygons in the same order as the encoder, it is
able to “zip” them into the cover tree by tracing (and
identifying) the boundary edges of both in the same or-
der. A boundary edge is an edge of the triangulated poly-
gon which is incident on only one triangle.

(a)

(b)
Figure 5: Building the graph from a mesh. (a) A
mesh. Faces are labeled with letters and vertices
with numbers. (b) The corresponding graph upon
which the optimization procedure is run. Edges
between mesh faces are undirected and weighted
with prediction errors associated with edges
incident on both faces. Directed edges between
mesh faces and mesh vertices have zero weight.

 This method works for a closed manifold mesh. If the
mesh has boundaries (“holes”), we use the method pro-
posed by Touma and Gotsman [14], in which the mesh is
closed by adding one “dummy” vertex to each such
boundary. The dummy vertex is connected to all vertices
in the boundary, and assigned coordinates which are the
average of the boundary vertex coordinates. The resulting
closed mesh is then coded as above, and the dummy ver-
tices marked. At the decoder, these dummy vertices are
removed along with all edges incident on them. In the
typical case where the mesh has but a few boundaries, the
coding overhead is minimal.

4. Experimental results

We have implemented the algorithms outlined here, and
compared the results with those obtained by the algorithm
of Touma and Gotsman [14] (the so-called “TG” algo-
rithm), which is widely considered to be state-of-the-art.
Some of the models we experimented with are shown in
Fig. 6, a mix of smooth and non-smooth meshes. For
each algorithm we measured the spread of the prediction

21

34

5
6

7

root

1 2 3 4 5 6 7

A B C D E F G K

K

A B C

D E
F

G

1

2 3
4

5

6

7

 5

error distribution: ∑
=

n

i
in verr

1

1)(and its entropy

∑
=

−
m

i
ii pp

1
2)(log , where n is the number of mesh vertices, m

the number of different prediction error values, and pi the
relative frequency of that value. We also compared the
results of coding using the optimal cover tree generated
by our algorithm with that obtained using other simple
cover trees, such as that generated by Breadth-First-
Search (BFS) or Depth-First-Search (DFS). Fig. 7 shows
some of these trees and their performance on a sample
model.

Funnel Electro Bolt

Triceratops Cow Face

Figure 6: Sample triangle meshes

 The performance of the TG algorithm on the geomet-
ric component of the mesh seems to be quite average,
since our algorithm, when run using a simple BFS or
DFS cover tree results in comparable, or even better, sta-
tistics for both the spread and entropy.
 Our algorithm with its optimized cover tree attempts
to minimize the spread of the prediction error lengths,
producing a distribution of the prediction error population
narrower than that produced by the TG algorithm. While
a smaller spread usually results in a smaller entropy of
the distribution, it is not always the case. For example, a
decrease of 5% in the distribution spread will usually not
result in any reduction of the entropy. In the models we
experimented with (see Tables 1 and 2), applying our
algorithm to smooth models resulted in an average gain
in the spread of 25% relative to that generated by the TG
algorithm, but only in an average gain of only 10% in
entropy.

(a)

(b)

(c)

Figure 7: Comparison between different trees
used to code the geometry of the bolt model (quan-
tized to 8 bits/coordinate), containing 328 vertices.
Cover tree is drawn in black, and faces that it cov-
ers colored light (cyan). Other polygons to complete
the connectivity code are colored dark (blue). (a)
BFS cover tree. No vertices are covered more than
once and only one extra polygon is needed to com-
plete the connectivity. Geometric prediction error
entropy = 13.3 bpv. (b) DFS cover tree. No vertices
are covered more than once and only one extra
polygon is needed to complete the connectivity.
Geometric prediction error entropy = 13.0 bpv. (c)
Optimal cover tree. Note how it does not cut thru
creases unless absolutely necessary. Only one
vertex is covered twice and two extra polygons are
needed to complete the connectivity. Geometric
prediction error entropy = 9.9 bpv.

 6

 A parallelogram predictor will not predict well if the
two adjacent triangles are not parallel, or if there is a
significant crease between them, since the parallelogram
rule assumes planarity. The latter is not a serious problem
in smooth models, but is for models containing sharp
corners and creases, such as CAD models. It is on this
class of models that we expected our algorithm to per-
form the best, and, indeed, for these we obtained an aver-
age gain of 75% in the spread relative to that generated
by the TG algorithm, and an average gain of 45% in the
entropy.

 Increasing the number of quantization bits per coordi-
nate from 10 to 12 (adding 6 bits to the raw vertex data)
seems to add almost 6 bits per vertex to the resulting en-
tropies of all the codes, and a factor of almost 4 to the
spreads, indicating that these extra bits are probably just
noise, hence uncompressible, and redundant in a sense.
 The Bolt model is small (328 vertices) compared to
the others, so even quantization of 8 bits per coordinate is
sufficient to preserve its fidelity. It this case the gain in
the spread was 54%, corresponding to 30% in the en-
tropy.

Spreads Entropy (bits/vertex) Model Vertices

TG KG
(optimal)

KG
(BFS)

Gain
%

TG KG
(optimal)

KG
(BFS)

Gain
%

Funnel 4,193 37.6 8.8 38.7 77 16.9 9.5 14.5 41
Electro 6,556 48.0 14.2 49.8 70 12.5 6.3 10.2 50

Non
smooth

Bolt 328 100.0 43.0 106.0 57 16.0 13.6 18.1 15
Triceratops 2,832 8.9 6.2 10.3 30 13.6 12.0 14.1 12
Cow 2,604 9.4 7.4 11.6 21 13.9 12.9 14.6 7

Smooth

Face 12,530 5.5 4.6 6.8 16 11.6 10.7 12.4 8

Table 1. Experimental results. TG – Touma and Gotsman algorithm. KG (optimal) – our algorithm. KG (BFS) is our
method using a simple BFS cover tree. Gain is the relative savings when using between KG (optimal) vs. TG. All model
geometries were quantized to 10 bits/coordinate before coding.

Spreads Entropy (bits/vertex) Model Vertices
TG KG

(optimal)
KG

(BFS)
Gain

%
TG KG

(optimal)
KG

(BFS)
Gain

%
Funnel 4,193 150 36.5 154 76 21.3 14.2 19.3 34
Electro 6,556 191 54.3 198 72 15.7 7.7 12.5 50

Non
smooth

Bolt 328 387 158.0 402 65 21.6 18.9 23.4 12
Triceratops 2,832 35.2 23.9 40.7 32 19.4 17.3 19.5 11
Cow 2,604 37.4 29.6 44.8 21 19.8 18.8 19.8 5

Smooth

Face 12,530 21.5 17.7 26.9 18 17.4 16.1 18.1 7

Table 2: Experimental results. TG – Touma and Gotsman algorithm. KG – Our algorithm. All model geometries were
quantized to 12 bits/coordinate before coding

 7

5. Discussion and future work

 This paper has shown how to optimize triangle mesh
codes by exploiting a major source of savings, largely
ignored in previous works – the mesh geometry. Rather
than the connectivity code drive the geometry code, here
we do the opposite. Optimizing the geometry code has
led to significant savings in the overall code size. Casting
the problem in an optimization setting will allow similar
results to be obtained for more elaborate prediction
schemes.
 The main drawback of our method is the complexity
of the encoder. Due to the need to run an optimization
procedure at the encoder, it is up to one order of magni-
tude slower than, e.g. the TG encoder. Our decoder, how-
ever, is very fast, so for the many applications where the
encoding is done offline, the encoder speed is not an
impediment.
 Future work will address the question of how to di-
rectly optimize the prediction error entropy, as opposed
to its spread, leading to a more compact code. We will
also deal with non-manifolds and non-triangular meshes.
The most interesting questions, in our opinion, relate to
lower bounds on the number of bits needed to code a
typical triangle mesh. This implies, of course, the need to
impose a (subjective) probability distribution on the class
of triangle meshes, in order to compute the entropy.

Acknowledgements

 Thanks to Roni Raab for implementing the algorithm
described in this paper and performing the experiments.
 This work was supported by German-Israel Fund
(GIF) grant no. I-627-45.6/1999.

References

[1] P. Alliez and M. Desbrun. Valence-driven connectivity
encoding for 3D meshes. Proceedings of Eurographics, pp. 480-
489, 2001.

[2] V. Bajaj, V. Pascucci and G. Zhuang. Single resolution
compression of arbitrary triangular meshes with properties.
Computational Geometry: Theory and Applications 14, pp. 167-
186, 1999.

[3] F. J. Bossen. On the art of compressing three-dimensional
polygonal meshes and their associated properties. Ph.D. Thesis.
Ecole Polytechnique Federale de Lausanne, 1999.

[4] M. Deering, Geometry compression, Computer Graphics,
Proceedings of SIGGRAPH‘95, pp. 13-20, ACM, 1995.

[5] M. Garey and D. Johnson, Computers and Intractability: A
guide to the theory of NP-completeness, pp. 208-209, 1978.

[6] S. Gumhold and W. Strasser. Real time compression of
triangle mesh connectivity. Proceedings of SIGGRAPH '98, pp.
133-140, ACM, 1998.

[7] M. Isenberg and J. Snoeyink. Face Fixer: Compressing
polygon meshes with properties. Proceedings of
SIGGRAPH’00, pp. 263-270, ACM, 2000.

[8] Z. Karni and C. Gotsman. Spectral compression of mesh
geometry. Proceedings of SIGGRAPH’00, pp. 279-286, ACM,
2000.

[9] E. Lee and H. Ko, Vertex data compression for triangular
meshes, Proceedings of Pacific Graphics’00, pp. 225-234,
ACM, 2000.

[10] MPEG-4 Standard. http://www.mpeg-4.com

[11] J. Rossignac. Edgebreaker: Connectivity compression for
triangle meshes. IEEE Transactions on Visualization and Com-
puter Graphics, 5(1), 1999.

[12] G. Taubin, A. Gueziec, W.Horn and F. Lazarus. Progres-
sive forest split compression. Proceedings of SIGGRAPH’98,
pp. 123-132, ACM, 1998.

[13] G. Taubin and J. Rossignac, Geometric compression
through topological surgery, ACM Transactions on Graphics,
17(2): 84-115, April 1998.

[14] C. Touma and C. Gotsman, Triangle mesh compression,
Proceedings of Graphics Interface ‘98, pp. 26-34, 1998.

