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approach should be combined with precise designing tools. Adding the ability to merge curves

using Boolean operations will allow one to merge a circle with the tip of the wing, making it

feasible to precisely design the cross-section of the missile. The techniques presented herein

with the aid of the NUBS representation can be easily enhanced to support these features.

The method presented here is incapable of providing a continuous resolution control. The

use of linear interpolation between two adjacent levels alleviates this somewhat, but does not

solve it. A complete continuous control would require introducing new knot sequences into

the modi�ed curve, knot sequences that would change dynamically as the user employs the

continuous resolution control. This issue deserves separate investigation.

The development of an e�cient multiresolution decomposition for rational NURBs curves

is an intriguing question, considering the complexity that will be introduced into the alge-

braic summation, so easily computable for polynomials. Providing such a decomposition will

make multiresolution methods applicable to the vast majority of curve representations used by

contemporary solid modeling systems.
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Figure 5: Three curves all derived from the same airplane cross-section, freely editing the fuselage while
not crossing the C1 discontinuity to the wings.

curve to the original curve directly. The multiresolution decomposition need not be computed

explicitly and only the subspaces of the decomposition, induced by the decimated knot se-

quences, need be de�ned. Such an approach does not allow the display of the multiresolution

decomposition of the edited curve and, as such, its usefulness should be investigated.

5 The Videotape

The VHS/NTSC videotape accompanying this paper [5] demonstrates the methods proposed

here, which we implemented in an interactive X/Motif-based curve editing system.

The videotape shows multiresolution manipulation of four curves, three of which appear in

Figures 1 (star shaped curve), 2 (signature curve), and 3 (cross-section of an airplane). For the

star shaped curve and the signature curve, we show the di�erent low-resolution curves obtained

on a continuous resolution scale, and the e�ect obtained by editing at various resolutions. In

the airplane curve as well as the fourth curve (a cross-section of a face), we also show adaptive

re�nement and local control capabilities.

6 Conclusion

We have presented a scheme for computing multiresolution decompositions, and their use for the

editing of NUBS. Extending the approach of [6] from uniform to nonuniform B-spline curves not

only makes it more practical for existing CAD systems to use, but also provides the mechanism

for local re�nement and adaptive local curve manipulation.

Editing the cross-section and adding the missiles in Figure 5, it is quite clear that this
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Figure 4: Three levels of a multiresolution decomposition of the closed curve as in Figure 1, with open
end conditions. The multiresolution decomposition introduces open curves. The original curve is shown
in thin lines throughout while the low resolution versions are shown in thick lines.

Unlike the open or oating end condition, the knots are not independent any more. Equa-

tion (5) is not satis�ed when we arbitrarily remove interior knots because the end condition

knots, tj ; 0 � j � n � 1 or li � j � li + n � 1, were previously unmodi�ed. When in-

terior knots are removed by Algorithm 1, one must translate knots tj ; 0 � j � n � 2 or

li+ 1 � j � li + n� 1, so that Equation (5) holds. Knots tn�1 and tli must remain unmodi�ed

to preserve the parametric domain of the curve.

4.2 Maintaining Discontinuities

Dealing with NUBS, one can easily handle multiple knots and represent and preserve discon-

tinuities in the edited curve for all the resolutions of the decomposition, by coercing all knot

vectors, �i, to preserve the discontinuity. Figure 5 shows the same airplane cross-section as

Figure 3(a), in which the fuselage and the wings are only C0 continuous. In Figure 5, the C1

discontinuities are preserved and the user is provided with optional control that does not cross

C1 discontinuities, as the �gure demonstrates.

4.3 Optimization

Once a multiresolution curve is modi�ed at a certain resolution, the B-spline curve is computed

as an algebraic summation, as in Equation (1). This process involves the re�nement of the low

resolution curves, Ci(t); 0 � i < k, so they are all in the same space Vk. Then, vector addition

can take place in Vk. This process was found to be su�ciently fast to be exploited in interactive

design. However, one can optimize this computation [9] by adding the modi�ed low-resolution
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Figure 2: Editing the same curve location, the center of the s in the signature, at di�erent resolution
levels, from the lowest (top left) to the highest resolution (right bottom). The original curve is shown
in thin lines and the low resolution curves are displayed in thick lines.

(a) (b)

Figure 3: (a) Low resolution quadratic B-spline curve with 22 control points, representing a cross-
section of a airplane. (b) The curve of (a) is locally re�ned to create the degrees of freedom that are
necessary to interactively model the missiles at the wing tips, the elevators and the steering wings, as
well as the cockpit.

4 Extensions

4.1 Periodic Closed Curves

Figure 1 shows some levels of the multiresolution decomposition of a closed curve. Closed

curves are common in modeling. For example, cross-sectional curves are frequently employed

in surface constructions. It is essential that low-resolution versions of a given closed curve also

be closed. When using B-spline curves with open or oating end conditions, the curves, Ci(t),

of the multiresolution decomposition are not guaranteed to be closed and, in general, are not.

Figure 4 shows some curves from a decomposition similar to the one of Figure 1 but with open

end conditions. Editing one end of the curve at any resolution that a�ects the end points

will almost certainly break the curve open. Using periodic B-spline curves one can solve this

problem.

Consider a periodic curve Ck(t) of order n and lk control points. The knot removal proce-

dure, when �i is constructed from �i+1, must satisfy the following, for all �i:

tj+1 � tj = tli+j+2�n � tli+j+1�n; tli+j+1 � tli+j = tn+j � tn+j�1; 0 � j � n� 2: (5)
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device and dragged in the preferred direction, M0. P0 combined with M0S are applied to the

lower-resolution curve Cj(t) at the preselected resolution level j.

Assume S � 1, i.e. no sensitivity control. By adding M0 to all the control points of Cj(t),

we form a translated curve Ĉj(t),

Ĉj(t) = Cj(t) +M0 =

lj�1X

i=0

PiBi(t) +M0 =

lj�1X

i=0

(Pi +M0)Bi(t) (4)

and, in particular for some t = t0, Ĉj(t0) = Cj(t0) +M0.

Given a user-selected location on the curve P0, the parameter value t0 minimizing kCk(t0)�

P0k2 is identi�ed. The basis functions contributing to Ck(t0) are then isolated and their con-

tribution computed. At most n basis function are nonzero at t0. Each control point is then

translated in the direction of M0S by an amount proportional to its contribution to Ck(t0).

Clearly, because we do not translate all points by M0, the new curve will not be equal to

Ck(t0) +M0 at t0. However, by weighing the contribution of each control point to Ck(t0), we

more fairly distribute the modi�cation the user introduces to the curve at t0. While we lose

the interpolation ability, we found that the use of a sensitivity control, S, to scale M0 and the

level of interaction involved more than compensates for this loss.

Figure 2 shows a signature curve modi�ed at di�erent resolution levels. Editing was per-

formed at the same location, P0, the center of the s character, with the same translation amount

M0. As in [6], we linearly interpolate between two neighboring resolutions to provide a notion

of continuous resolution control. Clearly, a linear combination of a curve Ci(t) 2 Vi and a curve

Ci+1(t) 2 Vi+1 results in a new curve still in Vi+1. However, this simple emulation gives the

practical look and feel of continuous behavior and was found to be more than satisfactory.

The ability to handle multiresolution NUBS curves allows one to not only edit and manip-

ulate them at di�erent resolutions, but also to provide local re�nement control, inserting new

knots into the curve in the neighborhood of the domain to be manipulated. A �xed number

of knots are heuristically inserted in the neighborhood of the re�ned location while preserving

continuity as much as possible by prohibiting knot multiplicities. Figure 3(a) shows a low res-

olution cross-section of a airplane, edited and re�ned to form missiles at its wing tips as well

as its elevators, steering wings, and cockpit in Figure 3(b).
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C0(t) C1(t) C2(t)

C3(t) C4(t) C5(t)

Figure 1: Six levels, Ci(t); 0 � i � 5, of the multiresolution decomposition of a B-spline star curve
C5(t) of order 3 de�ned using 100 control points. The original curve is shown in thin lines throughout
while Ci(t)'s are shown in thick lines.

interactive speeds. Figure 1 shows the multiresolution decomposition for a star shaped curve,

six levels in all. The original quadratic B-spline curve had 100 control points.

Unlike the wavelet basis function used for uniform B-splines, the number of coe�cients ob-

tained by our multiresolution decomposition of NUBS is greater than the number of coe�cients

representing the original curve Ck(t), which is precisely lk. However, this number is bounded

by 2lk, since,

lk +
lk

2
+
lk

4
+ � � �+

lk

2k
< 2lk; (3)

where, in fact, lk
2k

cannot be less than n. Hence, we at most double the number of coe�cients.

3 Manipulation of Multiresolution Decompositions

A major reason for applying a multiresolution decomposition to B-spline curves is to obtain

the ability to manipulate and edit the curve at di�erent resolutions. In our implementation, we

waive the exact interpolation or constraint based design paradigm [1, 12] in favor of a direct

freeform editing style.

The user preselects the resolution j, 0 � j � k, he/she would like to edit the curve at, and

the sensitivity, S, of the editing process. A point P0 on the curve is then picked using the input
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Algorithm 1 Multiresolution decomposition of a B-spline curve.

Input:

Ck(t), a NUBS curve.

Output:

C0(t); Di(t); 0 � i � k � 1, the multiresolution decomposition of Ck(t).

Algorithm:

�k ( Knot sequence of Ck(t);

for i = k � 1 to 0 step -1 do

�k�1 ( half the knots of �k, preserving end conditions;

C0(t) ( Least squares approximation of Ck(t) in Vo, defined over �o;

for i = 1 to k do

begin

Ck(t) ( Ck(t)� Ci�1(t);

Ci(t) ( Least squares approximation of Ck(t) in Vi, defined over �i;

Di�1(t) ( Ci(t)� Ci�1(t);

end;

solved using least-squares methods. Algorithm 1 summarizes the multiresolution decomposition

process.

While the Ci(t) are regular Euclidean curves, the Di(t) are vector �elds curves that can be

used to reconstruct Cj(t),

Cj(t) = C0(t) +

j�1X

i=0

Di(t); (2)

In [4], the problem of knot sequence decimation was considered for data reduction purposes.

Knots are selected for removal by weighing their possible e�ect on the curve. However, herein,

one would like to minimize the local e�ect on the curve due to knot removals from level i to level

i+ 1. Hence, consecutive knots should not be removed in one step. Removing every n'th knot,

where n is the curve order, will cause the least change from one level to the next, yet a�ect the

entire curve. As the degree of a B�ezier or B-spline curve is increased, the curve is becoming

smoother and smoother due to the low pass property of the basis functions of the representation.

Therefore, as n increases, by selecting every n'th knot for removal, we remove knots at larger

intervals yet the curve becomes smoother. In practice, we found that removing every second

knot still retains a su�cient number of resolution levels to enable an e�ective multiresolution

control. Moreover, the computational overhead required for the algebraic summation is kept at
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handle periodic NUBS curves and maintain discontinuities. Finally, we conclude and discuss

other possible extensions in Section 6.

2 Least Squares Multiresolution Decomposition

Let Ck(t) be a B-spline curve of order n and lk control points, de�ned over the knot vector �k,

where k 2 Z+ will be de�ned more precisely shortly. Denote by Vk the (linear) space induced

by �k. Let �k�1�n �k. Clearly, the new space induced by �k�1, denoted Vk�1, is a strict subspace

of Vk. Let Ck�1(t) 2 Vk�1 be the least squares approximation in Vk�1, of Ck(t), and their

di�erence be the detail Dk�1(t) = Ck(t)� Ck�1(t), Dk�1(t) 2 Vk.

This process of decomposing a curve into two parts, one low resolution approximation and

one high resolution detail, can be applied recursively. Ck(t) could then be expressed as

Ck(t) = C0(t) +
k�1X

i=0

Di(t); (1)

where C0(t) 2 V0 and Di(t) 2 Vi+1.

In order to construct a multiresolution decomposition of a NUBS curve as in Equation (1),

the knot sequences �i, inducing the subspaces Vi, must �rst be de�ned. Given �k, construct a

set of knot vectors �i; 0 � i < k, such that �i�n �i+1 and 2j�ij � j�i+1j, where j � j denotes the size

of the knot vector. The end conditions of the original curve must be preserved, hence the knots

tj 2 �i; 0 � j < n or li � j < li+ n; 80 � i < k are unmodi�ed, where li denotes the number

of control points de�ning Ci(t) over �i. In general, li = j�ij � n. This knot decimation process

de�nes the function space hierarchy and is independent of the speci�c curve being decomposed.

For a B-spline curve Ck(t) with knot vector �k of size 2k, k subspaces will be constructed,

each induced by approximately half the knots of the previous level. The lowest resolution

approximation C0(t) is a single polynomial curve, i.e. �0 has no interior knots (j�0j = 2n).

Least squares techniques [11] are employed to �nd the curve Ci(t) 2 Vi, de�ned over �i, best

approximating Ck(t). Indeed, Ck(t) is uniquely determined using lk constraints de�ned at

its lk node parameter values. Thus, the approximation problem may be reduced to a set of lk

linear equations in li unknowns by sampling Ck(t) at its lk node parameter values, which can be
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reasoning recursively k stages, we arrive at a space Vk of dimension 2kn, such that,

V0 � V1 � � � �Vk ;

and

Vk = V0 �W0 �W1 � � � � �Wk�1 :

Given a vector (B-spline curve) Ck(t) 2 Vk, its low-resolution versions C0(t); ::; Ck�1(t) are

projections of Ck(t) onto the lower dimensional spaces V0; ::; Vk�1. Ck(t) can be expanded:

Ck(t) = C0(t) +
k�1X

i=0

Di(t);

where Di(t) is Ck(t)'s projection on Wi. Multiresolution B-spline manipulation follows by

decomposing a B-spline curve Ck(t) to a low-resolution version Cj(t) for some 0 � j � k, and

details Di(t); j � i � k� 1, performing some operation on Cj(t), and adding all Di(t); j � i �

k � 1 back in.

While uniform B-spline basis functions are a powerful mathematical representation, they

cannot model many important geometric features, of which the most important are, undoubt-

edly, C1 discontinuities. To solve this, we extend the work of [6] to nonuniform B-spline curves

(NUBS). Retaining the avor of that work, we decompose NUBS curves by a least squares

approximation process to NUBS de�ned over the subspaces Vi, and their successive algebraic

di�erences, as suggested in [4] for data reduction purposes. Decimation of nonuniform knot

sequences is done in a manner similar to that of [4]. Manipulation is done at a lower resolution

selected by the user, and then the extraneous detail is algebraically added back in.

The support of multiresolution NUBS allows us to handle general B-spline curves. This

added exibility is crucial not only because the nonuniform B-spline representation is common

in contemporary geometric modeling systems, but also because we are now able to add details

using an adaptive re�nement process as well as properly maintain discontinuities.

This paper is organized as follows. Section 2 describes the computation of the least squares

approximation in the multiresolution decomposition of a NUBS curve. In Section 3, we discuss

editing and manipulating multiresolution NUBS and in Section 4 we extend the support to
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were used as weights to a�ect the control points. This approach has a fundamental di�culty

when two separate portions of the curve are close. Constraint based approaches were proposed

recently [1, 12] to alleviate the di�culty in editing freeform shapes while matching engineering

speci�cations. Direct and interactive manipulation tools of freeform curves and surfaces have

also been investigated [3].

The piecewise polynomial B-spline representation is common in many contemporary ge-

ometric modeling systems. While this is a powerful mathematical tool with many desirable

properties, these same properties impose undesirable constraints on the user. For example, the

B-spline representation's most attractive property, namely, locality, does not allow the user to

easily perform global operations on the object being modeled. An operation a�ecting the entire

curve must be translated (usually manually, by the user) into a series of local operations, each

a�ecting only a small portion of the curve. The ability to simultaneously perform both local

and global operations at will would add signi�cant functionality to any modeling system. It

is common to call operations a�ecting the entire object low-resolution operations, and those

a�ecting just a small portion of it high-resolution operations. It would be desirable to perform

manipulation at any resolution level, on a continuous scale. Multiresolution decomposition of

curves has been proposed as a tool that can provide simultaneous global and local curve control.

Multiresolution methods have been used in a variety of systems in one way or another [6, 7,

8, 10, 12]. The approach we present herein generalizes [6], where an extension of the standard

uniform B-spline basis to a multiresolution uniform B-spline wavelet basis is introduced. For

completeness' sake, we describe the underlying theory of that extension here.

Any B-spline curve on a unit interval knot sequence of length n can obviously be represented

as a B-spline curve on a half-unit interval knot sequence, but not the opposite. This manifests

in the latter linear space, denoted V1, having dimension 2n, while the former, denoted V0, has

dimension n. Geometrically, piecewise polynomials in V0 are able to represent discontinuities

at the unit knots whereas piecewise polynomials in V1 are able to represent discontinuities at

the half-unit knots as well as at the unit knots. The extra power of a half-unit knot sequence

is conveyed by the complement space W0, such that V0 � W0 = V1. Continuing this line of
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Abstract

The piecewise polynomial B-spline representation is widely used throughout the CAGD
community as the representation of choice. However, the locality of B-spline curves, while
important in many respects, disables global control of the curve, preventing e�cient and
easy manipulation. Multiresolution representations for uniform B-spline curves have been
recently proposed to alleviate this problem.

Herein, we extend the use of multiresolution representations to nonuniform B-spline
(NUBS) curves, including periodic curves. Our method supports local nonuniform re�ne-
ment and (dis)continuity preservation. The multiresolution decomposition of the freeform
NUBS curve is computed using least-squares approximation, based on existing data reduc-
tion techniques.

The least-squares decomposition allows us to support NUBS curves, but it also imposes
some preprocessing penalties in both time and space compared to techniques for multires-
olution uniform B-spline curves. Nonetheless, the entire process is fast enough to enable
interactive editing of complex NUBS curves, as is demonstrated by an interactive editor
implemented to test our methods.

1 Introduction

It is widely agreed that the construction of e�cient, intuitive, and interactive editors for ge-

ometric objects is a fundamental objective, yet di�cult challenge, in the �eld of geometric

modeling. Most freeform geometric modeling systems allow the user to work in the frame-

work of a speci�c data model, e.g. Bezier, or nonuniform rational B-splines (NURBS) forms.

This tightly constrains the set of geometric manipulation operations allowed, the man-machine

interface, and the type of objects which can be modeled.

Di�erent curve manipulation techniques have been proposed on many occasions. In [2], the

Euclidean distances between the point of modi�cation and the control points of a B-spline curve
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