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Figure 1: Locality and continuity-preserving vertex sequences at different resolutions: (a) n=2,048 vertices. (b) After 1,024 edge collapses, 
n=1,024 vertices. (c) After another 512 edge collapses, n=512 vertices.

Abstract 
We present a method to code the multiresolution structure of a 

3D triangle mesh in a manner that allows progressive decoding 
and efficient rendering at a client machine. The code is based on a 
special ordering of the mesh vertices which has good locality and 
continuity properties, inducing a natural multiresolution structure. 
This ordering also incorporates information allowing efficient 
rendering of the mesh at all resolutions using the contemporary 
vertex buffer mechanism. The performance of our code is shown 
to be competitive with existing progressive mesh compression 
methods, while achieving superior rendering speed. 
Keywords: progressive compression, wavelets, geometry coding, 
rendering. 

1 INTRODUCTION 
In a typical Internet-based client-server 3D application, the two 

most important requirements are to transmit a geometric model 
quickly from the server to the client, and to render the model at 
interactive frame rates at the client. One way of achieving fast 
transmission is to employ a compact progressive representation of 
the mesh, meaning that a rough version of the mesh is recon-
structed after a small number of bits have been received at the 
client, and this gradually improved as more bits arrive. The objec-
tive is to achieve the best fidelity possible with the smallest num-
ber of bits. 
3D meshes consist of two main components: geometry and con-
nectivity. Geometry describes the coordinates in 3D space of the 
mesh vertices, and connectivity describes the manner in which 
these vertices are connected in faces to form the mesh surface. In 
a progressive model, a rough version of the mesh will typically-
contain a smaller number of vertices and faces than the original 
mesh, so both the geometry and connectivity components will be 
smaller than those of the full resolution version. This reduction in 
polygon count alleviates the rendering load on the client at the 

beginning of the transmission, but an increase in rendering load is 
inevitable as the mesh evolves. 
To provide better frame rates, manufacturers of modern graphics 
hardware have introduced vertex buffers into the graphics pipe-
line, which allow reuse of the mesh vertex data using a FIFO 
cache. The reuse saves geometric projection and vertex shading 
operations. Smart use of the vertex buffer (through extensions to 
OpenGL and Direct3D) can potentially accelerate rendering rates 
by a factor of six. This is achieved by rendering the mesh faces in 
a special order which maximizes the cache hits. Finding this opti-
mal rendering sequence is not easy, and has been the subject of 
recent research. In any case, it is time-consuming and must be 
done at the server in a preprocessing stage. This means, however, 
that the rendering sequence information must be integrated into 
the transmitted mesh code, possibly lengthening it. This is the 
price paid for efficient rendering at the client. Furthermore, since 
the mesh evolves at the client decoder, with concomitant increase 
in face count, the rendering sequence should also evolve with it, 
facilitating efficient rendering at any resolution. All progressive 
coding methods for 3D meshes reported to date do not provide 
any support for efficient rendering. 
The objective of this work is a method to code a 3D mesh in a 
manner that incorporates in a single bit stream both information 
on the multiresolution structure of the mesh and its rendering 
sequence at all resolutions. We will show that the efficiency of 
this bit stream is comparable to those of existing methods for pro-
gressive mesh compression, and at the same time provides a 
significant benefit in rendering, and is easy to implement. There is 
an intimate connection between our method and one-dimensional 
Haar wavelet coding. Furthermore, apart from a preliminary quan-
tization of the mesh geometry, the decoding is completely without 
loss, namely the mesh reconstructed at highest resolution at the 
decoder is identical in connectivity and geometry to the original at 
the encoder. 
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2.1 Progressive Coding of Meshes 
Progressive meshes were first introduced by Hoppe  [15], whose 

main objective was to accelerate the rendering process by using 
low-resolution versions of the mesh when full resolution was not 
justified, e.g. when the viewer was distant from the object. The 
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refinement of the mesh was achieved through a series of so-called 
vertex splits, each split adding one vertex, two faces and three 
edges to the mesh. Each split in the sequence was carefully chosen 
using a geometric criterion in order to maximize the gain in the 
geometric approximation to the full-resolution mesh. 
Realizing that progressive meshes were also useful for efficient 
transmission, Taubin et al.  [25] showed how to code them in a 
compact manner. They concentrated mostly on coding the connec-
tivity, using a technique called forest-splits. The commercial Me-
tastream format  [1] allowed mesh refinement through the more 
general mechanism of vertex-insertion. Pajarola and Rossignac 
 [23] used vertex splits, and Cohen-Or et al.  [8] also used vertex 
insertion. In the latter two methods, the geometry was coded by 
predicting vertex coordinates based on its neighbors. Bajaj et al. 
 [3] use the more general triangle-split operator. 
A rich area of research is the coding of single-resolution meshes. 
The main emphasis has been placed on coding the connectivity 
component, although it is obvious that the code is dominated by 
the geometric component. For coding connectivity, a wealth of 
algorithms exist, all of which code the edge structure by “conquer-
ing” the mesh, one element at a time. Depending on the type of 
element, the algorithms may be loosely classified into three main 
categories: face (e.g.  [24]), edge (e.g.  [18]) and vertex-based (e.g. 
 [26]). The vertex-based strategies seem to be the most efficient. 
Alliez and Desbrun  [2] show how to code progressive meshes 
using a somewhat complicated extension of the single-resolution 
vertex-based connectivity-coding method of Touma and Gotsman 
 [26]. Here, as in the method of Cohen-Or et al.  [8], the refinement 
procedure is by connectivity-based vertex insertion, meaning that 
the next vertex to be inserted in the refinement process is chosen 
based on its connectivity properties, rather than its geometric 
properties. This allows optimization of the connectivity portion of 
the code at the possible expense of geometric fidelity. 
Khodakovsky et al.  [21] postulated that the precise connectivity 
structure of a mesh is unimportant as long as the geometric shape 
of the mesh is preserved. Based on that, they remesh a model to 
have subdivision connectivity, so that wavelet-style decomposi-
tion may be applied to the new mesh. This gives a natural mul-
tiresolution mesh decomposition, but at the price of a totally dif-
ferent connectivity. 
Devillers and Gandoin  [11] build a simple multiresolution struc-
ture on the geometry of the mesh using a three-dimensional k-D 
tree. Given a set of points in 3D space, this set may be recursively 
partitioned into two halves (alternating between the x,y,z dimen-
sions), represented by two sons in a binary tree, and each subset of 
points in the tree nodes represented by the centroid of the 3D cell 
corresponding to that node. The mesh at that intermediate resolu-
tion is constructed on these centroids. Interestingly enough, it 
turns out that each recursive partition of a cell into two smaller 
cells is equivalent to a vertex split in the connectivity structure. 
The spectral compression method of Karni and Gotsman  [19] 
compresses the mesh geometry by projecting it on orthogonal 
basis functions which are the eigenvectors of the mesh connec-
tivity Laplacian matrix. Ordering the eigenvectors by their eigen-
values ranks them by importance (analogous to frequency of Fou-
rier basis functions), and for many meshes, in particular smooth 
ones, the projection coefficients decay rapidly in this order. Thus 
it is possible to progressively build up an approximation of the 
mesh geometry by incrementally adding more and more basis 
vectors to the sum. However, the connectivity remains at full reso-
lution during the entire process, hence the number of triangles is 
maximal, even though the mesh is “low-resolution” in terms of the 
basis expansion. Another major drawback of the spectral approach 
is that it is impractical to compute the eigenvectors of large mesh 

connectivities, especially at the decoder. Although this may be 
alleviated somewhat by partitioning the mesh into a number of 
submeshes, that solution introduces artifacts along the boundaries 
of the submeshes. An attempt to circumvent the computational 
complexity problem was made by Karni and Gotsman  [20] by 
using a fixed (regular) connectivity structure to construct the basis 
functions, and map the true connectivity to the fixed one such that 
the neighborhood relationships are preserved as much as possible. 
Since the mesh is fixed, the basis vectors may be precomputed. 
This method was shown to achieve reasonable results, but did not 
eliminate the use of full connectivity, so the spectral method is not 
truly progressive. 
Comparison of different progressive compression methods is not 
easy. The main difficulty lies in objectively quantifying the loss in 
mesh quality at low resolutions – the so-called distortion – as a 
function of the code length – the so-called rate. Many of the 
works to date have not published any rate-distortion curves, 
probably for lack of an objective distortion measure. In the mesh 
simplification literature, the Metro tool  [7] for measuring the 
Hausdorff distance between two meshes has been used to measure 
distortion, and we have adopted this in our work, as have some 
others. 
In terms of rates, it is obvious that the number of bits that will 
have to be transmitted before the mesh can be progressively re-
stored to its original form will be greater than the number of bits 
required to code the mesh as a single-resolution model. However, 
a good progressive code should give a very good approximation 
very rapidly at the beginning of the transmission, so in many ap-
plications the transmission may be stopped long before it is com-
plete. 

2.2 Mesh Rendering Sequences 
Triangles strips are a well-known method of accelerating low-

level rendering of triangle meshes by reusing the last two vertices 
in the pipeline in order to form the next triangle to be rendered. 
Modern graphics hardware (e.g. the GeForce family of graphics 
cards for PCs and the Elite3D family of Sun workstations) has 
taken this one step further by providing a large vertex buffer in the 
form of a vertex cache, first proposed by Deering  [9]. This buffer 
allows a larger (typically 16) number of vertices to be reused, but 
to maximize benefit from this means that the triangles must be 
rendered in a very special order. This special order is called a 
rendering sequence for the mesh. The performance of a given 
rendering sequence is measured by its ACMR (Average Cache 
Miss Ratio), which is the average number of cache misses in-
curred per triangle while rendering the mesh in the order pre-
scribed by the rendering sequence. It can be anywhere between 
0.5 and 3. From a theoretical point of view, Bar-Yehuda and 
Gotsman  [5] have shown that a cache of size )( nΩ  is necessary to 
render any n-vertex mesh with maximal vertex reuse, i.e. ACMR 
= 0.5. They further showed that an ACMR of 0.5+O(1/k) is 
achievable for a cache of size k. Hoppe  [16] showed how to con-
struct good rendering sequences when the cache behavior is FIFO 
(as in the GeForce cards) and the cache size is known. Bogomja-
kov and Gotsman  [6] showed how to construct so-called universal 
rendering sequences for FIFO caches, which are suitable for any 
cache size, and once generated for a mesh at maximal resolution, 
may be easily updated on-the-fly to render any lower resolution 
version of the mesh obtained by a sequence of vertex removals 
from the original. The key idea of their construction is that the 
rendering sequence be a locality-preserving ordering of the mesh 
faces, which is built recursively and traverses the mesh faces in a 
“winding” order at all scales. 



 

   

   
Figure 2: The recursive partitioning algorithm: (a) The mesh is partitioned into two balanced submeshes. The red submesh is recursively processed, 
and then the blue. (b) The red submesh of (a) is recursively processed by partitioning into red and pink submeshes. (c) The blue submesh of (b) is 
recursively processed by partitioning into blue and cyan submeshes. (d) Cyan vertex sequence and corresponding measures of locality and continu-
ity generated by our recursive partitioning algorithm on the horse mesh of 2,048 vertices. (e) Vertex sequence generated by MLA algorithm. (f) 
Vertex sequence generated by GPS algorithm. 
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2.3 Combining Compression with Effi-
cient Rendering 

Progressive meshes are useful both for rapid transmission and 
for efficient rendering. A low resolution version of the mesh can 
be a good approximation of the original, and at the same time 
require fewer bits to represent it and ease the rendering load on 
the graphics hardware since its polygon count is relatively low. 
Combining this with optimized rendering of the mesh using a 
vertex cache is an all-round win.  
All relevant work to date addresses only the problem of efficiently 
coding a progressive representation of a triangle mesh generated 
using some connectivity-based or geometry-based simplification 
algorithms, and does not support vertex cache rendering. Hence 
they cannot benefit from this potential rendering speedup. Never-
theless, if the simplification algorithm used to generate the pro-
gressive mesh is superior (for example, geometry-based), for a 
given bit rate and distortion error – the algorithm might be able to 
supply an approximation with a very low polygon count. So while 
the code does not support the efficient use of a vertex cache, this 
may be somewhat compensated for by the lower polygon count. 
Thus, in progressive compression schemes there is a multi-
dimensional tradeoff between distortion, bit rate and rendering 
speed. The rendering speed manifests in the number of vertex 
cache misses incurred while rendering, which is a function of both 
the polygon count of the mesh and the ACMR of the rendering 
sequence used. The essence of our method is to provide a rate-
distortion tradeoff which is comparable to others, but with a large 
benefit in rendering speed, due to the much superior rendering 
sequence implicit in the code. 
A conventional progressive mesh method might attempt to run a 
simple rendering sequence generator in real-time at the decoder as 
postprocessing after the mesh is decoded, and in this way gain 
some rendering performance independent of the compression. 
While this is theoretically possible, in practice even the simplest 

rendering sequence generator cannot achieve real-time perform-
ance. Also, since the mesh is rapidly being refined as bits are re-
ceived, this rendering sequence must be constantly regenerated or 
at least updated on-the-fly, to adapt to the new resolution. The 
method of Bogomjakov and Gotsman  [6] to generate a universal 
rendering sequence suitable for all resolutions is not applicable 
here, since that method runs with the highest resolution connec-
tivity as input. This is not available at the decoder until the entire 
bit sequence has been received. 
A work which is somewhat relevant is that of Isenburg  [17]. This 
describes a method to encode traditional triangle strip information 
into a single-resolution compressed mesh bit sequence, so that it is 
available at the decoder for efficient rendering. Again, the reason 
to incorporate this information into the bitstream, as opposed to 
generating it independently at the decoder, is that hi-quality trian-
gle strips cannot be generated at interactive rates. 

3 LOCALITY AND CONTINUITY-
PRESERVING VERTEX SEQUENCES 

A 3D surface mesh has an inherent 2D structure, especially if it 
is manifold. However, the connectivity is usually irregular, so no 
regular 2D operations (e.g. Fourier, wavelet decomposition) can 
be applied. If it were possible to embed the connectivity structure 
in a lower dimensional space, it might be possible to manipulate it 
more easily. One way to do this is to embed the mesh on the one-
dimensional grid (i.e. the integers), such that the 2D neighborhood 
relationships are preserved as much as possible. This means find-
ing a vertex sequence, an ordering of the mesh vertices 
π:V→{1,..,n} in the mesh <V,E>, which minimizes the following 
measure of average locality : 
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meaning that there are not too many long edges between the con-
nected grid points. Variants of this problem are well known in a 



 

number of contexts. In graph theory, this problem is called mini-
mal linear arrangement (MLA), and is known to be NP-hard. 
Various approximation strategies  [4] exist, and the recursive-
partitioning technique we use is similar in spirit to those em-
ployed in graph algorithms, inspired by the classical recursive 
space-filling-curve constructions on a regular grid (e.g. the Hilbert 
and Peano curves) which have been shown to preserve locality 
 [13].  
To construct a vertex sequence with good locality properties, 
process the mesh as follows: At the beginning, all vertices are 
unmarked. Partition the mesh into two balanced connected sub-
meshes with a minimal edge-cut, meaning that each submesh con-
tains approximately half of the vertices of the original mesh, and 
the number of edges straddling the partition is small. Select a 
transition from an unmarked vertex in the first submesh to an 
unmarked vertex in the second, preferably along an edge, and 
mark these two vertices. This pair of vertices will be adjacent in 
the final vertex sequence. Recursively process the first submesh to 
generate the vertex subsequence preceding this pair of vertices, 
and then recursively process the second submesh to generate the 
vertex subsequence succeeding this pair. Terminate when the 
submeshes are very small. The resulting vertex sequence can be 
shown to have good locality properties. For a mesh with irregular 
connectivity, partitioning the mesh into two balanced submeshes 
with a small edge-cut can be done using the MeTiS graph parti-
tioning package  [21]. MeTiS runs in time linear in the mesh size.  
Unfortunately, MeTiS does not guarantee that the submeshes will 
be connected, which is important for our application. Hence, in 
the cases where MeTiS generated an unconnected submesh, we 
ran a simple partitioner of our own (based on BFS) that does not 
produce as good balance and edge-cut, but does guarantee con-
nectedness. See a-c for an illustration of the recursive 
partitioning process. 

Figure 2

In numerical matrix theory, the related measure: 

)()(max)(
),(

jiL
Eji

πππ −=′
∈

 
is known as the bandwidth of the graph adjacency matrix after 
reordering. This means that the non-zero entries of the matrix are 
not too far away from the matrix diagonal. The well known heu-
ristic Gibbs-Poole-Stockmeyer (GPS) algorithm  [12] for minimiz-
ing bandwidth is implemented in many numerical packages, and 
may be used as a crude approximation for minimizing L. 
The vertex sequences generated by our algorithm are not necessar-
ily continuous, in the sense that every two adjacent vertices in the 

sequence will not necessarily be connected by an edge of the mesh 
(otherwise the sequence would be a Hamiltonian path). As we will 
see later, it is advantageous for the sequence to contain a minimal 
number of jumps – adjacent vertices in the sequence not con-
nected in the mesh by an edge. Thus, not only do we want to 
minimize L(π), but also the following measure of average conti-
nuity: 
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where d(u,v) is the topological distance between vertices u and v 
in the mesh connectivity graph (the size of the jump). Standard 
MLA and GPS implementations do not attempt to minimize the 
sequence continuity. Our vertex sequence generator optimizes C 
in a separate phase, after generating the sequence with good local-
ity properties. First, we observe that a jump may occur (only) if 
for every edge straddling the cut at some recursion level, at least 
one of the vertices incident on the edge has already been marked 
at previous levels. However, since no more than two vertices can 
already be marked per submesh (the transition vertices to other 
submeshes), because of their connectedness, this can happen only 
if there was just one edge straddling the partition, and at least one 
of its vertices is marked. In this case it is easy to guarantee that the 
size of the jump will never be larger than three by selecting a 
neighbor of the marked vertices as the transition vertex. In typical 
meshes, jumps of size two occur in about 10% of the vertex se-
quence but jumps of size three are very rare. 
The second phase of our vertex sequence generation algorithm 
attempts to fix these jumps by performing local changes in the 
vertex ordering. There are only two types of size three jumps, 
depending on whether the jump “crosses” the rest of the sequence 
or not. Both of the two types of length three jumps can always be 
reduced to several jumps of length two; see a-b. Figure 3

Figure 3

(a)  (b)  (c)  (d)  

(e)  (f)  (g)  (h)  
Figure 3: Local reduction of jumps in a vertex sequence. Left in pair is before reduction. Right in pair is after reduction. Yellow line is vertex se-
quence. Dashed portion is an arbitrary vertex subsequence connecting the two vertices (with other vertices possibly inbetween). Dashed black line 
means that other vertices (and other edges) may be present.  (a) Jump of size three reduced to two jumps of size two. (b) Jump of size three reduced 
to three jumps of size two. (c)-(d) Jumps of size two which are completely eliminated. (e)-(h) Jumps of size two whose cut is reduced. 

Define the cut of a size two jump to be the minimal number of 
mesh edges cut by the jump. The minimal cut of a jump is one, 
and if d is the degree of the vertex that is being “jumped over”, the 
cut is no larger than (d-2)/2 for an internal vertex. There are 
several cases of jumps of size two, some which may be reduced 
immediately, as illustrated in c-d. Others can be reduced 
to jumps of size two, but with smaller cuts, which in turn may be 
further reduced, as illustrated in Figure 3e-h. If the jump does not 
match any of these cases, it cannot be reduced by a local proce-
dure. After this optimization procedure, the number of jumps of 
size two is typically less than 1% of the number of vertices. 



 

Figure 2d-f shows the vertex sequence generated by our recursive 
partitioning algorithm on the horse mesh of 2,048 vertices, as 
compared to those generated by the MLA or GPS algorithms, with 
their corresponding values of the measures L and C. As is to be 
expected, the MLA algorithm achieves the best value of L, at the 
expense of the value of C. The GPS algorithm does not do well on 
either of the measures. Our recursive partitioning algorithm 
achieves a good balance between the two. In terms of run time, 
our unoptimized software for the vertex sequence generator runs 
for a few seconds on a mesh of 10,000 vertices using a contempo-
rary PC (700 MHz Pentium III with 128MB RAM). 

4 MESH CODING 
4.1 Multiresolution Geometry Coding 

The mesh geometry is quantized once before any coding is ap-
plied, typically to 10-12 bits per coordinate. Thereafter the vertex 
coordinates may be considered integers in a finite range. Our ob-
jective is to code this information in a lossless manner, meaning 
that when the full resolution mesh is reconstructed at the decoder, 
its vertices will have coordinate values identical to those immedi-
ately after the quantization at the encoder. The connectivity infor-
mation will also be perfectly reconstructed. 
The coding proceeds by first generating a vertex sequence with 
good locality and continuity properties, as described in Section  

c

3. 
Once the mesh vertices have been ordered in this sequence, it is 
possible to apply a variety of one-dimensional methods to code 
the three one-dimensional geometric signals – x,y,z. The locality 
and continuity properties of the ordering guarantee that much of 

the correlation in the geometry of vertices adjacent in the connec-
tivity graph is retained in the one-dimensional signals. Edge col-
lapses are induced by sequentially collapsing two adjacent verti-
ces in the sequence to their centroid (see a). If n is a 
power of 2, each scan of the sequence reduces the number of ver-
tices by a factor of two, so by scanning the vertex sequence 
log2n times, where n is the number of vertices, all vertices in the 
end collapse to one point. This procedure may also be described 
by a binary tree, whose leaves are the mesh vertices, in which 
each two collapsed vertices create a father node. Each collapse 
“short-cuts” the (almost) edge path described by the vertex se-
quence by one edge. 
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Figure 4: Vertex geometry prediction. (a) Edge (w,u) along yellow
vertex sequence collapsed at encoder to vertex v. (b) u and w predicted 
to be at centroids of neighbors. 

At the decoder, each packet of bits received indicates how some 
vertex (in the predefined sequence) is to be split to refine the mesh 
by replacing the vertex with two new ones, increasing the length 
of the vertex sequence by one. Thanks to the construction of the 
sequence, the updated vertex sequence maintains the properties of 
locality and continuity at all scales; see Figure 1. 
To code the precise location of the two vertices introduced by a 
split at the decoder, we use a prediction method similar to that of 
Pajarola and Rossignac  [23]. In a nutshell, if a vertex v splits into 
verti es u and w, we may write the following two linear equations 
for wu ~and~ , the predicted locations of u and w at the encoder: 
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Here ui is the neighbor of u, wi the neighbors of w, du the degree 
of u and dw the degree of w (see Figure 4b). This is based on the 
belief that a vertex is located approximately at the center of its 
neighbors in the mesh. The (3D vector) prediction error that is 
coded is 

)()~~( uwuwe −−−=  
~after rounding off u vand~ to the nearest integers. Note that this 

implies that e is an integer. Hence the geometry code is just a se-
quence of these e’s, one per edge collapse (i.e. one per vertex). 
This sequence of values is entropy coded, using an adaptive 
Huffman coder.  
At the decoder, the same two equations for vu ~and~ are solved and 
results rounded off, e is retrieved from the bit stream, and the 
following two additional linear equations solved for the true u and 
w, based on the existing vertex v: 
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4.2 Connectivity Coding 
First observe that the vertex sequence used to code the geome-

try already encodes approximately one third of the connectivity 
information (since |E|=3|V| for a typical manifold triangle mesh), 
so the identity of the edge introduced at the decoder by the vertex 
split is known. This means that we already gain some savings 
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Figure 5: Connectivity coding. (a) Predicting and coding the positions l and r of the two edges affected by the split operation as two integer 
offsets. (b) Coding a non-continuous split as a sequence of edge flips. (c) Collapsing edge e is illegal, as then all the triangles interior to the 
top outer triangle will collapse. 



 

relative to other progressive coding methods (e.g. that of Pajarola 
and Rossignac  [23]), who code this information explicitly. But we 
still have to code the identity of the other edges affected by the 
vertex split. This may be done using two integer values, denoting 
the indices of the two affected edges in the “star” of the vertex, i.e. 
the set of edges incident on the split vertex. It is even possible to 
predict these values effectively, and thereby reduce the entropy of 
their distribution. We do this by observing that the two edges ad-
jacent on the vertex which expand to triangles when the vertex is 
split are usually opposite in the vertex star. Hence the identity of 
these edges in the star may be coded by the (counter-clockwise) 
offset of the first edge relative to the sequence edge in the star (l), 
predicting the second edge to be its opposite (at offset d/2 from 
the first), and then the offset of the true edge relative to this pre-
dicted position (r); see Figure 5a. 

Figure 6: Rate-distortion curves comparing coding efficiency of 
various progressive mesh compression algorithms.  

However, the vertex sequence might not be continuous along a 
mesh edge, and the corresponding split at the decoder would cre-
ate a redundant edge unless this fact is recorded in the code. In 
this case we code a series of edge flip operations that transform 
the illegal split to a legal one (see Figure 5b) and are performed in 
reverse at the decoder. 
Other cases where an edge collapse is illegal occur; see Figure 5c. 
These pathological collapses are not allowed, as they would create 
degenerate triangles, and this fact is also recorded in the code. The 
edges accumulated in this manner are left in a “base mesh” which 
is coded separately as part of the bit stream header, using the 
Touma-Gotsman  [26] mesh coder. 
Adaptive Huffman entropy coding of all the relevant symbols 
results in an average of 4.5 bits/split, which means that connec-
tivity coding costs 4.5 bits/vertex. With better (arithmetic) low-
level coding, this can probably be reduced to the true entropy of 
the symbol distribution, which was measured to be less than 4 
bits/vertex. This contrasts with the 7 bits/vertex (3.5 bits/triangle) 
reported for the CPM method of Pajarola and Rossignac  [23]. 

5 GENERATING THE RENDERING SE-
QUENCE 

When the mesh is partially decoded to some resolution at the 
decoder, the mesh vertices are available, ordered in a sequence 
corresponding to that resolution with good locality and continuity 
properties. This is thanks to the vertex sequence (as in Figure 1a-
c). To render the mesh efficiently, this ordering of the mesh verti-
ces must be converted into a rendering sequence for the mesh 
faces, as described in Section  2.2. The following simple method 
gives very good results: Scan the mesh along the vertex sequence, 
and at each vertex, in turn, render all faces incident on this vertex, 
starting at the faces incident on the edge from which the vertex 
was approached (along the vertex sequence). By marking the 
faces, avoid rendering those which were already rendered when 
previous vertices were visited. It is important to notice that both 
the decoding and rendering may be done in one pass, as all trian-
gles of the rendering sequence generated as described above will 
be available when they are needed. Since the vertex sequence has 
good locality and continuity properties at all resolutions, it stands 
to reason that the rendering sequence will also have a good 
ACMR at all resolutions; see Section 6 for experimental results. 

6 EXPERIMENTAL RESULTS 
Our encoder is relatively simple to implement and our (non-

optimized) software encodes a 10,000 vertex mesh in a few sec-
onds on a contemporary PC (700MHz Pentium III with 128MB 
RAM). The decoder is also very simple, and runs in real-time. 
Since the rationale behind working with multi-resolution models 
is that lower resolution is good for both coding and rendering, 



 

especially if it is only at a minor cost in quality, the ultimate com-
parison of our methods with others is through the behavior of 
various performance measures as a function of the mesh distor-
tion. Hence we measured, as a function of the distortion, the bit 
rate, the number of triangles, and the number of cache misses at a 
variety of points along the resolution scale. The first measures 
compression efficiency, the second measures simplification effi-
ciency, and the third measures rendering efficiency. We measured 
these for ours and others algorithms for which we were able to 
obtain results or working sofware. Unfortunately, these included 
only those of Alliez and Desbrun  [2] and of Cohen-Or et al  [8]. 
The latter is available through a commercial version of their algo-
rithm implemented in the products of Enbaya Ltd.  
Distortion was measured as the Hausdorff distance between the 
reconstruction at a given bitrate and the original model, as given 
by the Metro software  

Figure 8

[7], and the bitrate as the size of the file 
generated by our software. Figure 6 shows rate-distortion curves 
of our algorithm and various other algorithms on a few well-
known 3D models where the geometry has been pre-quantized to 
10 or 12 bits per coordinate. Our belief that the (not-so-practical) 
spectral method of Karni and Gotsman  [19] should give the best 
rate-distortion curves is verified (using 16 bit quantization of the 
spectral coefficients). Our method exhibits performance compara-
ble to that of Cohen-Or et al. on the horse and Venus head meshes, 
but the Allliez and Desbrun method performs slightly better than 
ours on the Venus body mesh. This is probably due to the high 
degree of regularity of this mesh, of which that algorithm takes 
advantage. In comparison, single-resolution coding algorithm of 
Touma and Gotsman  [26] requires 183,912 bits for the horse mesh 
of 8,192 vertices (geometry quantized to 12 bits/coord) and 
194,208 bits for the Venus head mesh of 8,192 vertices (quantized 
to 12 bits/coord). This is just 10% less than our (and Cohen-Or et. 
al.'s) progressive code size. On the other hand, that algorithm 
required 78,464 bits for the Venus body mesh of 11,362 vertices 
(quantized to 10 bits/coord), which is 60% less than our (and Al-
liez and Desbrun's) progressive code size. Again, this is probably 
due to the significant regularity in both the connectivity and ge-
ometry of the mesh, which is exploited by the Touma and Gots-
man algorithm. 
The number of triangles vs. the distortion for the various algo-
rithms is shown in . It is evident that the performance is 
comparable, so our (connectivity-based) simplification algorithm 
is not much worse than those of Cohen-Or et al. and Alliez-
Desbrun.  
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Figure 7: Comparison of simplifica-
tion efficiency of various progres-
sive mesh algorithms used for cod-
ing. 

The number of cache misses for a 16-entry cache vs. the distortion 
is shown in , for our method and that of Alliez and Des-
brun (it was not possible to generate these for the algorithm of 
Cohen-Or et al.). This is a measure of rendering efficiency and is 
where we have a significant advantage over the other schemes. 
Since there is no rendering sequence information explicitly pre-
sent in any of the codes except ours, we assumed that the coding 
algorithm of Alliez and Desbrun was given, as input, meshes 
whose triangles had been ordered in a rendering sequence gener-
ated by our algorithm at full resolution. We then measured the 
number of cache misses incurred by the renderer after the meshes 
were decoded at various resolutions, and the triangles rendered in 
the order that the decoder generated. As can be seen from the ta-
ble, despite our method generating a larger number of triangles for 
a given distortion level, the total number of cache misses incurred 
while rendering our model is nonetheless smaller by a factor of 
anywhere between 1.4 and 1.9. This is translated immediately into 
a comparable gain in rendering speed. 

Table 1

Ours Alliez & Desbrun
Distortion

Triangles Cache 
Misses 

Triangles Cache 
Misses

0.744 950 690 631 1290
0.433 1620 1173 934 1656
0.230 2510 1832 1885 3061
0.166 3878 2801 2372 3916
0.079 8096 5828 4810 11058
0.039 12368 8920 7605 14744
0.018 16002 11531 9062 16664

Table 1: Comparison of rendering efficiency of various pro-
gressive mesh algorithms used for coding the Venus body 
model. 

 illustrates the distribution of the cache misses on a model 
when decoded and rendered using our algorithm. The resulting 
ACMR was typically 0.7 for most models at all resolutions. This 

is an excellent result, as the algorithm of Bogomjakov and Gots-
man  [6], which is optimized to produce good rendering sequences 
(independent of coding considerations), usually did not do much 
better than this even when run separately at each resolution. Using 
these rendering sequences in practice accelerated the frame rate 
(relative to unordered face rendering) by a factor of up to 3. 

7 SUMMARY AND DISCUSSION 
We have presented a method to code a multiresolution structure 

of a 3D mesh which allows progressive decoding and also effi-
cient rendering of the mesh at all resolutions. Ordering the verti-
ces in a special manner, and then collapsing every two adjacent 
vertices to their centroid according to this sequence may be con-
sidered one-dimensional wavelet transform coding of the mesh 
geometry using the Haar wavelet as basis functions. These basis 
functions give this effect because of their piecewise-constant 
character, which recursively force every two mesh vertices adja-
cent in the ordering to collapse to one location, inducing a binary 
tree structure on the coded prediction errors. However, strictly 
using the wavelet interpretation would mean coding the “predic-
tion error” e’=(u+w)/2-v, using the terminology of Section  4.1, 
whereas, in practice, we use a more sophisticated prediction 
scheme, taking into account not just the vertices u and w adjacent 
to v on the vertex sequence, but other vertices adjacent on the 
mesh. These are identified thanks to the connectivity code. The 
Haar wavelets are the most primitive possible, and it would be 
interesting to examine the meaning and effect of using higher-
order wavelet bases. 
There is an interesting connection between graph partitioning, 
graph embedding and spectral graph theory. It is well known  [14] 
that a good graph partition may be obtained by computing the 
eigenvector of the graph Laplacian with the smallest non-zero 
eigenvalue, and computing the median of its coordinates. Those 
vertices represented by entries of the eigenvector below the me-



 

Figure 8: Visualization (by Gouraud shading) of performance of a 
16-vertex cache using the rendering sequence derived from the 
vertex ordering at resolution n=2,048. Each vertex in each trian-
gle is colored according to whether it incurs a cache hit or miss. 
Each vertex must have at least one incident triangle in which it is 
colored green (the first time the vertex is rendered), so green and 
a lot of gray is a good sign. The resulting ACMR is 0.7.

Cache hit 
1st cache miss 
2nd cache miss 
3rd or more cache miss 
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