Graphical Models 63, 263-275 (2001)

@
doi:10.1006/gmod.2001.0555, available online at http://www.idealibrary.com on IDE %I.

Efficient Coding of Nontriangular
Mesh Connectivity

Boris Kronrod and Craig Gotsman

Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
E-mail: kronrod @cs.technion.ac.il, gotsman@cs.technion.ac.il

Received September 9, 2001

We describe an efficient algorithm for coding the connectivity information of
general polygon meshes. In contrast to most existing algorithms which are suitable
only for triangular meshes, and pay a penalty for treatment of nontriangular faces,
this algorithm codes the connectivity information in a direct manner. Our treatment
of the special case of triangular meshes is shown to be equivalent to the Edgebreaker
algorithm. Using our methods, any triangle mesh may be coded in no more than
2 bits/triangle (approximately 4 bits/vertex), a quadrilateral mesh in no more than
3.5 bits/quad (approximately 3.5 bits/vertex), and the most common case of a quad
mesh with few triangles in no more than 4 bits/polygon. @ 2001 Elsevier Science (USA)

Key Words: mesh compression; coding.

1. INTRODUCTION

The subject of efficient coding of polyhedral meshes has attracted much interest during
recent years, mainly due to the increasing popularity of 3D content on the Web. Without
efficient coding methods, it is difficult to transmit these data in reasonable time frames.

Typical 3D meshes consist of connectivity information and geometric information. Many
algorithms have been designed to code the connectivity information, e.g., the Topological
Surgery algorithm of Taubin and Rossignac [11], the algorithm of Touma and Gotsman
[12], the Edgebreaker algorithm of Rossignac [9], its refinement by King and Rossignac
[6], and others by Gumhold and Strasser [2] and Bajaj et al. [1]. The common denominator
of these algorithms is that they all deal strictly with inputs which are triangulated meshes,
i.e., all mesh faces are triangles. This is crucial for the correctness of the algorithms, and
their extension to handle nontriangulated meshes without explicitly triangulating them is
not obvious. Hence, in practice, nontriangular meshes are coded by triangulating them,
coding the result using one of the methods mentioned above, and storing additional infor-
mation describing the extra edges introduced during the triangulation stage. These edges

263

1524-0703/01 $35.00
(© 2001 Elsevier Science (USA)
All rights reserved.

264 KRONROD AND GOTSMAN

are discarded after decoding. Ironically, this means that the code of a nontriangular mesh
might be larger than that of the triangulated version, instead of being shorter, as less con-
nectivity information is present. An exception is the algorithm of King et al. [7] for coding
quadrilateral meshes, which is based on the Edgebreaker algorithm [9] for triangle meshes.
This method implicitly triangulates each quadrilateral to two triangles and uses sequences
of the five basic Edgebreaker symbols (CLERS) to code the different possibilities which
then arise. The only algorithm which extends naturally to nontriangular meshes containing
polygons with more than four edges is that of Li and Kuo [8], using dual-graph methods,
but this yields codes whose length could be unbounded.

This paper describes a general and direct method for coding the connectivity of any
nontriangular mesh with an upper bound on the resulting code length. For the special case
of a triangular mesh, it reduces to the Edgebreaker algorithm [9] and its improvement [6],
which bound the code length from above by 4 and 3.67 bits/vertex, respectively. For the
special case of a quadrilateral mesh, it bears some similarity to that of King et al. [7].

Our algorithm works, similarly to other mesh connectivity coding algorithms, by main-
taining a cut-border of edges, which is extended by removing one polygon at a time from
the mesh until the mesh is empty. The resulting code consists of information identifying
the manner in which the removed polygon lies with respect to the cut-border and the num-
ber of edges (the degree) of the polygon. As we shall see, this information is sufficient to
reconstruct the mesh by generating one polygon at a time. A key to the correctness of our
algorithm is the observation that the number of ways that a k-gon can interact with the
cut-border is finite and depends only on k, and not on the size of the cut-border, and there
exists a simple algorithm to translate the interaction type into a unique index. We show that
another important piece of information, namely the offset (location) of the polygon along
the cut-border, is implicit in the other information, and so does not need to be part of the
code.

While this work was in progress, Isenburg [3] proposed an algorithm for coding triangular
mesh connectivity and later extended it with Snoeyink [4] to direct coding of nontriangular
mesh connectivity. Their Face-Fixer algorithm is an edge-based approach, generating a
symbol for each mesh edge, in contrast to ours, which is a face-based approach, generating
a symbol only for each mesh face. This means that the main entity coded in their scheme
is the edge and its relation to the rest of the mesh, whereas we deal with the mesh faces
(polygons). For a mesh consisting of k-gons containing v vertices, it is possible to show
that our algorithm generates in the worst case 2 [log, P|/(k — 2) bits per vertex, and
theirs generates in the worst case (3k — 4)/(k — 2) bits per vertex for large meshes. Py is
O[((1 4+ +/5)/2)*1, as will be shown in Section 2.2. For small values of k (e.g,k=3,4,
5), our algorithm is more efficient in the worst case. For large, but less common values of £,
our algorithm still has a slight advantage, generating 2.77 bits per vertex in the worst case,
while Face-Fixer generates 3 bits per vertex in the worst case.

We present a one-pass decoding algorithm inspired by the linear-time Spirale Reversi
decoding algorithm [5] for the Edgebreaker coder [9]. Our coder is also able to handle
meshes with topological iregularities, such as holes and handles.

This paper is organized as follows: Section 2 introduces some basic terminology and
observations. Section 3 describes the encoding procedure and Section 4 the decoding pro-
cedure. Section 5 details how to encode and decode the relationship between a mesh polygon
and the cut-border. We show how to bound the length of the codes generated by this al-
gorithm using carefully designed codebooks in Section 6. We extend the basic algorithm

NONTRIANGULAR MESH CONNECTIVITY 265

to handle more topologically complex meshes in Section 7. Experimental results from an
implementation of our algorithm are presented in Section 8, and we conclude in Section 9.

2. BASICS

2.1. Definitions

Before we proceed, a number of terms used by our algorithms must be defined. See Fig. 1
for an illustration.

Cut-border: A cycle of manifold edges (edges with exactly two neighboring faces)
in a mesh. For the encoder, unprocessed faces are inside the cut-border. For the decoder,
unprocessed faces are outside.

Gate: The edge on the cut-border incident on the next polygon to be processed.

Touching edge: An edge of the processed face which coincides with some edge on the
cut-border.

Free edge: The opposite of a touching edge.

Touching vertex: A vertex of the processed face which coincides with some vertex on
the cut-border.

Free vertex: The opposite of a touching vertex.

Polygon interaction type: Label sequence for a polygon, indicating whether each vertex
and edge (of the polygon) is free or touching a given cut-border.

Gap: The sequence of free edges between two adjacent touching vertices of a polygon.

2.2. Some Topological Observations

A key component of our coding algorithms is the observation that a k-gon may interact (in
terms of its vertex—edge free—touching label sequence) with a cut-border in a finite number
of ways and these may be enumerated. We will call this number P;. By enumeration, it
turns out that P3 = 5 and P, = 13. Figure 2 illustrates these different possibilities (for a
triangle or quadrilateral mesh). Note that P, depends only on k.

The precise number of interaction types— Py—is important for our coding and may be
calculated using the following theorem:

touching vertex

polygon

~
P4 o
"1' ‘s‘.
\ : (]
\ gar ‘°:§;:‘9 '
\\ edge —>|| € 9ap :
)]
o s
-
~~~~~- -~
cut-border

gate

FIG.1. Terminology of a polygonal face interacting with a mesh cut-border.



266 KRONROD AND GOTSMAN
v, [

i ez; :
Vi & Y 1 0

T2 (L) T3 (S) T4 (R)
(a)

v e

1

FIG. 2. (a) All possible interactions between a triangle and a cut border. The thick edge is the gate. Case T3
(having 2 gaps) generates a new cut-border during coding. Marked in parentheses are the analogous symbols of
the Edgebreaker code. (b) All possible interactions between a quad and a cut-border. The thick edge is the gate.
Cases Q3, Q7, Q9, Q10, and Q11 (having two gaps) generate a new cut-border, and case Q8 (having three gaps)
generates two new cut-borders.

THEOREM. Fork > 4, P, =3P — Pis.

Proof. Consider a k-gon interacting with a cut-border such that e;—the gate—is a
touching edge. There are exactly three distinct possibilities to relate Py to Py (see Fig. 3):

1. The edge e, is touching (Fig. 3a), and hence also v, but e3 may or may not be
touching. In any case, we may chop off the “ear” consisting of the triangle vo—v;—v, and
remain with a polygon of k — 1 edges. Doing this, we find that the original k-gon interacts
with the original cut-border in precisely the same number of ways that the new (chopped)
(k — 1)-gon interacts with the new (chopped) cut-border. Note that the sizes of the cut-
borders are not important. Thus the contribution of this case to P is P;_; possibilities.

2. The edge e; is free, but the vertex v, is touching (Fig. 3b) and again e; may or
may not be touching. The same argument as in the previous case shows that here too the
contribution of this case to Py is P;_; possibilities.



NONTRIANGULAR MESH CONNECTIVITY 267

(b) (©)

(a)

FIG. 3. Three cases reducing P; to P,_;. Left is the k-gon, and right is the reduction to a (k — 1)-gon. (a) e,

is a touching edge. (b) e, is a free edge and v, a touching vertex. (c) e, is a free edge and v, a free vertex.

3. The edge e is free, and so is the vertex v, (Fig. 3¢). This implies that the edge e;3
is free (otherwise v, would not be free), as opposed to the previous two cases. v3 may or
may not be touching. Thus the number of interaction types between the rest of the polygon
edges and the cut-border is P;_; less those for a polygon of degree kK — 1 with a touching
edge (as enumerated in case 1), because of the constraint on e3. So the contribution of this
case to Py is P — Pr— possibilities.

Hence P = P+ P+ Py — Pa =3P — Pip. W

Similar observations were independently made by King et al. [7] in the context of their
method of coding quadrilateral meshes by triangulation. They further showed that P, =
F(2k — 1), where F is the Fibonacci sequence.

The well-known relation between the Fibonacci sequence and the golden ratio

F(n)~% 5

1 (1 +4/5 ) "
implies that the number of bits required to code these possibilities for large & is 2 log,((1 +
32k =2.77k.

Our observations indicate that every type of interaction between a k-gon and a cut-border
can be associated with an index in the range [1.. P ]. In Section 5 we describe a deterministic
algorithm which finds this association and can index any interaction type in an invertible
manner. The algorithm uses the inductive nature of the calculation of Py

3. ENCODING

Assume the mesh has a boundary. If it does not (i.e., it is a closed mesh), it is possible
to artificially create a boundary by removing one polygon. This boundary will function
as the initial cut-border from which polygons will be removed one by one. Removing
polygons will extend the cut-border. Encoding the mesh is a simple matter of traversing
the polygons of the mesh around the cut-border and recording a code of the interaction
type of the current polygon with the cut-border and also the polygon’s degree (number
of edges). The polygon is then removed from the cut-border, the cut-border updated, and
the procedure repeated. If the interaction type of the removed polygon contains gaps (i.e.,
the polygon has at least one touching vertex), the cut-border will split into two or more
cut-borders.

An important feature of the algorithm implementation is that a cut-border is not stored in
an explicit manner, since at any particular moment only the gate of the cut-border is relevant.
The cut-borders are maintained implicitly as a stack of gate edges. Every traversed polygon



268 KRONROD AND GOTSMAN

creates one or more cut-borders (including the one it participated in) and pushes on the
stack exactly one gate for each cut-border generated. This way the current gate of the active
cut-border is always at the top of the stack, until that cut-border shrinks to nothing. The
procedure terminates when the entire mesh is reduced to nothing. The following summarizes
the encoding algorithm:

1. Create a cut-border by identifying the mesh boundary or by removing one mesh

polygon.

2. Initialize an empty stack SG of gates, and push onto it some edge of the initial cut-

border.

3. While SG is not empty:

4. Pop an edge AG from SG. AG is now the active gate. The cut-border to which AG
belongs is called the active cut-border (ACB). The single face P connected to AG
(and not yet coded) will be the currently processed polygon.

5. Write the degree (number of edges) of P and its interaction type with ACB onto
the encoder output stream (see Section 5).

6. For every gap G on P (as defined in Section 2.1) in counterclockwise order from
AG, push the edge of G furthest from AG onto SG. If there is more than one gap (i.e.,
there is atleast one touching vertex), this effectively splits the ACB into a number of
smaller cut-borders,

7. Remove P from the mesh and modify ACB accordingly.

8. Endwhile

A sample run of the encoding procedure appears in Fig. 4.

As we will see in the next section, the output of the encoder is sufficient to reconstruct
the connectivity data of the mesh. The time complexity of each coding iteration is O (degree
of P); hence the complexity of the entire runtime is linear in the size of the mesh.

4. DECODING

It is possible to decode the compressed connectivity information in a two-pass manner,
similar to the original Edgebreaker decoder [9]. This, however, has superlinear complexity.
Instead, we use another method, modeled after the Spirale Reversi decoder [5], which is
both simpler and has linear-time complexity. This process is the reverse of the encoding
process; i.e., mesh polygons will be reconstructed in an order opposite to which they were
encoded. This contrasts with the Wrap and Zip decoder [10], which also has linear runtime,
but operates in the same order as the encoder.

In the encoding process, every traversed face created one or more cut-borders (including
the one it participated in) and pushed on the stack exactly one gate for each cut-border gene-
rated. The interaction type defines exactly how this polygon is connected to all generated
cut-borders. Hence, if the decoder knows the connectivity in the interior of the cut-borders
after the encoding step and the nature of the interaction between the encoded polygon and
the active cut-border, it is easy to reconstruct the connectivity of the interior of the active
cut-border as it was before this encoding step.

Another way of saying this is: it is possible to decode a polygon after all its gates to cut-
borders used during encoding (and polygons based on them) are decoded. This is ideal for
postfix recursive implementation. The recursion terminates when the interaction between
the coded polygon and the cut-border is such that all polygon edges are touching; i.e., no
new cut-border gates are generated (the T1, Q1, etc. symbols).



NONTRIANGULAR MESH CONNECTIVITY

269

Q5 Q3 T5
(a) (d)
Q2 Q2 Q1 Q2
(e) (0 (2 (h)
Q2 T1
(1 ()]

FIG.4. Code of mesh containing both triangles and quadrilaterals. Dashed edges are active cut-borders. Solid
edges are gates in stack. Gray polygon is that being coded. (a) Input mesh. (b) An arbitrary edge of the cut-border
is selected as a gate, and the quad it defines has interaction type Q5 with the cut-border; hence QS5 is written to the
code output. (c) Two free edges and no free vertices in a quad define two gaps, which results in a split into two
cut-borders. The gate of the second (nonactive) one is pushed first onto the stack. (d), (e), (f) Similar to (b) with
interaction types T5, Q2, and Q2. (g) No free edges to push onto stack—active cut-border exhausted. (h) Gate
pushed in (c) popped from stack and new active cut-border initiated. (i) Similar to (b) with interaction type Q2.
(j) No free edges and stack is empty—terminate. Final code is Q5Q3T5Q2Q2Q1Q2Q2T1.

The complexity of each step is O(degree of decoded polygon); thus the overall time
complexity is linear in the mesh size. Figure 5 shows how to decode the mesh of Fig. 4 in
this manner.

5. CODING INTERACTION TYPES

In our coding algorithm we assumed it is possible to index the interaction between a
polygon and a cut-border. This implies that the interactions have some orderly structure
that is easy to capture. In Section 2.2 we showed that this is indeed the case and here we
show how to exploit this structure in order to code. We now describe an invertible mapping of
an interaction type onto the range {1.. P}, where P; is the number of all possible interactions
between a k-gon and a cut-border, as defined in Section 2.2.

5.1. Mapping Interaction Type to Index

Assume we have a k-gon and its interaction type, i.e., a labeling of all £ vertices and
edges in the polygon relative to the cut-border: “free” or “touching” in the VertexLabel
(1..k) and EdgeLabel (1..k) arrays, respectively.

The following pseudo-code computes the interaction index associated with the interaction
type, assuming the integer function (table) P (k) is known (where P(1) = 1 and P(2) = 2):



270 KRONROD AND GOTSMAN

Q1 Q2 Q2

b
@ (b) © «

(& (h)

® G) &) @

FIG.5. Decoding the mesh of Fig. 4 using the one-pass decoder. White polygons have already been decoded.
The gray light polygon is the one being decoded. Dark polygons are those whose decoding has started because of
the postfix recursion, but not yet completed. The dashed edges are cut border(s). The thick edge is the gate. Codes
in boldface are those read from input into stack. Codes in regular font are those popped from the stack. (a) Codes
read from input into stack, resulting in strip of polygon templates. (b) Q1 read from input, adding another quad
to strip. No free edges means that codes will now be popped from stack, and polygons (including this) generated.
Note that the final connectivity of this polygon has not yet been resolved (it is not yet connected to the triangle).
(c), (d) Q2 popped from stack, and one polygon generated per code. (e) TS popped from stack. Two free edges mean
that this is a cut-border split, so more codes must be read from the input. Triangle is now connected to neighboring
quad. (f) Q2, Q2 read from input, and two polygon templates generated, continuing first template strip. (g) T1 read
from input. No free edges means that codes will now be popped from stack and polygons generated. (h), (i) Q2,
Q2 popped from stack and two polygons formed. (j) Q3 popped from stack. Two free edges means that it connects
this cut-border to previous one. (k) Q5 popped from stack. Free vertex means it is connected to both neighboring
quads. (1) Stack empty. Final mesh.

function index(k,VertexLabel EdgeLabel)

if EdgeLabel(k)=—"free” then index :=2
else index :=1;
for (i=k—1;i>1;i--)
if EdgeLabel(i)="free” & VertexLabel(i) ="touching”
then index += P (k—i+1);
if EdgeLabel(i)="free” and VertexLabel(i )="free”

then index +=2*P(k—i+1) — P(k—i);

end for

return index;

5.2. Mapping Index to Interaction Type

The inverse of the algorithm given above proceeds as follows. Assume we know the
interaction index and the degree k of the k-gon. The procedure should label each edge and
each vertex of the k-gon with “free” or “touching.”



NONTRIANGULAR MESH CONNECTIVITY 271

By definition, the edge e; is touching, as well as vertices vy and v;. The following pseudo-
code labels all remaining edges and vertices (i.e., generates the VertexLabel and EdgeLabel
arrays):

function Label(k,index, VertexLabel , EdgeLabel)

EdgeLabel(1) :=“touching”;
VertexLabel(1) :=“touching”;
VertexLabel(2) :=“touching”;
for (i=1;i<k—1;i++)
if index <= P (k—1i) then
EdgeLabel(i+1) :=“touching”;
VertexLabel(i+1) := “touching”;
endif
if index > P(k—i) and index <=2* P (k—i) then
EdgeLabel(i+1) :=“free”;
VertexLabel(i+1) :=“touching”;
index —= P (k—1);
endif
if index >2* P (k—i) then
EdgeLabel(i+1) :=“free”;
VertexLabel(i+1) :=“free”;
index —=2*P (k—i)+P(k—i—1);
endif
endfor
if index ==1 then
EdgeLabel(k) :=“touching”
else
EdgeLabel(k) :=“free”;

6. CODEBOOKS AND BOUNDS

Although it is possible to code polygon meshes using our methods, and then apply
entropy coding to take advantage of the different frequencies of the resulting symbols, it is
also possible to use a predefined codebook and, due to the topological properties of manifold
meshes, achieve an upper bound on the total length of the mesh code. This optimization
for a triangle mesh is similar to that described in [6], so we will elaborate on quad meshes,
and a quad mesh with a minority of triangles, which is a case frequently encountered in
real-world models.

6.1. Quad Meshes

A mesh containing only quads admits 13 different interaction types, which, when coded
naively using a fixed-length code, require [log, 13] =4 bits/quad. Fortunately, not all the
interactions occur with equal frequencies, so a more efficient variable-length prefix code
may be used, reducing the total code length to less than 3.5 bits/quad. We propose that
summarized in Table 1, with code lengths of 2, 3, and 5 bits. To see why the total code
length is as claimed, note that any quad from group C—those which do not introduce a new



272 KRONROD AND GOTSMAN

TABLE 1
Codes for Quad Mesh

Code group Description Interaction Code
A Quad with two free vertices Q13 00
B Quad with one free vertex Q5 010
Q10 011

Q11 100

Ql12 101

C Quad with no free vertices Q1 11000
Q2 11001

Q3 11010

Q4 11011

Q6 11100

Q7 11101

Q8 11110

Q9 11111

vertex into the mesh—is present in the mesh iff a quad from group A—those introducing
two new vertices into the mesh—is present; thus the total code length for that pair of quads
is 7 bits, or 3.5 bits/quad. When a quad from group B is present, it introduces one new
vertex and requires only 3 bits/quad.

6.2. Quad Meshes with Few Triangles

A mesh containing both quads and triangles admits 5 4+ 13 = 18 different interaction
types; hence naive coding will require [log, 18] =35 bits/poly. Similarly to the case of a
pure quad mesh, a more efficient variable-length code may be used, reducing the total code
length to less than 4 bits/poly. We propose that summarized in Table 2, with code lengths
of 3, 4, or 5 bits. To see why the total code length is as claimed, note that a quad from group
A is present only if a quad from group C is also present or two triangles from group E are
present. Hence the average code length per polygon is (3 + 5)/2 = 4 bits in the first case and
(3+2 x 4)/3=3.667 bits in the second case. Similarly, a triangle from group D is present
only if there is also a quad from group C or a triangle from group E. Here the average code
length per polygon is (2 x 3 +5)/3 =3.667 bits in the first case and (3 4+ 4)/2=3.5 bits
in the second case.

7. TOPOLOGICAL IRREGULARITIES

Our coding algorithm, as described in the previous sections, is capable of handling only
closed manifold meshes of zero genus, i.e., those topologically equivalent to a sphere. This
section describes simple extensions of our basic algorithms in order to handle more complex
topologies.

7.1. Holes

Holes occur in a mesh with boundaries. For example, a manifold mesh with one boundary
is topologically equivalent to a disk. A simple way to encode this information is to treat



NONTRIANGULAR MESH CONNECTIVITY 273

TABLE 2
Codes for Mixed Tri/Quad Mesh

Code group Description Interaction Code
A Quad with two free vertices Q13 000
B Quad with one free vertex Q5 0100

Q10 0110
Ql1 1000
QI2 1010
C Quad with no free vertices Q1 11000
Q2 11001
Q3 11010
Q4 11011
Q6 11100
Q7 11101
Q8 11110
Q9 11111
D Tri with one free vertex TS 001
E Tri with no free vertices Tl 0101
T2 0111
T3 1001
T4 1011

the hole as a missing mesh polygon with a relatively large number of edges. The index of
this missing polygon in the mesh must also be coded in order to remove it from the mesh
during decoding.

A more compact, but elaborate, scheme to encode boundary information is to maintain a
separate binary code stream—the BoundaryStream. When a polygon containing a boundary
edge is firstencountered during encoding, the following information is written to that stream:

1. The index of the coding step at which this event occurred.

2. The number of edges in the boundary.

3. For each free vertex and free edge on the polygon (relative to the active cut-border),
the index of the vertex or edge on the boundary, if they coincide, or —1 if they are
not incident on the boundary.

After this, the hole boundary is considered a regular mesh polygon and all its free edges are
pushed in clockwise order onto the stack. There is no need to check whether the boundary
touches any other cut-border edges.

Cessna Shark Al Triceratops

FIG. 6. Some of the 3D models used in our experiments. Models and images copyright Viewpoint Inc.



274 KRONROD AND GOTSMAN

TABLE 3
Experimental Comparison of Coding Algorithms

Number of Number of
Model vertices faces KG (bpv) IS (bpv)
Triceratops 2,832 2,834 2.48 2.12
Cessna 3,745 3,927 2.71 2.84
Beethoven 2,655 2,812 2.95 2.89
Sandal 2,636 2,953 3.42 2.60
Shark 2,560 2,562 2.35 1.67
Al 3,618 4,175 3.19 2.93
Tommygun 4,171 3,980 2.98 2.61
Cow 2,904 5,804 2.15 2.21

Note. The cow model contains only triangles and the remainder contain a mix
of triangles, quads, and higher degree faces.

During decoding, when the decoding step whose index was stored in the BoundaryStream
is reached, the active cut-border is expanded as usual. The newly created boundary is then
considered a regular mesh polygon and the algorithm proceeds as usual.

The number of holes in a typical mesh is small and the polygon degrees bounded; hence
the code on the BoundaryStream is expected to be very short compared to the rest of the
connectivity code.

7.2. Handles

A mesh of nonzero genus contains handles, which cannot be coded by our algorithm
as described above. However, the case of handles may be reduced to the case of holes by
cutting the mesh along each handle, resulting in the end in two holes per handle.

In order to perform this reduction, the encoder should be capable of detecting handles
and the edge cycles which sever them from the rest of the mesh. This is possible when the
current polygon touches a boundary which does not contain the active gate.

8. EXPERIMENTAL RESULTS

We have implemented the algorithms described in this paper and run them on some
real-world models, mostly from Viewpoint Inc. See Fig. 6 for some examples. Table 3
summarizes some of our results (denoted by KG) and compares them to those of Isenburg
and Snoeyink [4] (denoted by IS). The results include Huffman entropy coding of the basic
code sequences.

While, on the average, our codes seem to be slightly longer than those of Isenburg and
Snoeyink, our algorithm, in our opinion, is potentially simpler to describe and implement.

9. CONCLUSION

This paper has described a direct mesh connectivity coding algorithm for general non-
triangular meshes and provided explicit codes for the cases of a pure quad mesh, or a quad



NONTRIANGULAR MESH CONNECTIVITY 275

mesh with a minority of triangles. The case of a triangle mesh with a minority of quads may
be treated similarly. As with Edgebreaker, the code lengths are bound from above, resulting

in

efficient codes which are probably quite close to the theoretical lower bound. In the case

of meshes containing faces with a variety of degrees, much of the code will be dedicated

to

specifying the face degrees. It seems that it may be possible to reduce the size of this

portion of the code. This is a topic for future work.

10.

11.

12.

ACKNOWLEDGMENTS

Thanks to Martin Isenburg and the reviewers for helpful comments related to this work.

REFERENCES

. C. Bajaj, V. Pascucci, and G. Zhuang, Single resolution compression of arbitrary triangular meshes with
properties, Comput. Geom. 14, 1999, 167-186.

. S. Gumbhold and W. Strasser, Real time compression of triangle mesh connectivity, in Proceedings of SIG-
GRAPH "98, 1998, pp. 133-140.

. M. Isenburg, Triangle strip compression, in Proceedings of Graphics Interface, 2000, pp. 197-204.

. M. Isenburg and J. Snoeyink, Face fixer: Compressing polygon meshes with properties, in Proceedings of
SIGGRAPH 2000, pp. 263-270.

. M. Isenburg and J. Snoeyink, Spirale Reversi: Reverse decoding of the Edgebreaker encoding, in Proceedings
of the 12th Canadian Conference on Computational Geometry, 2000, pp. 247-256.

. D. King and J. Rossignac, Guaranteed 3.67v bit encoding of planar triangle graphs, in Proceedings of 11th
Canadian Conference on Computation Geometry, 1999, pp. 146-149.

. D. King, J. Rossignac, and A. Szymczak, Connectivity Compression for Irregular Quadrilateral Meshes,
Technical Report GIT-GVU-99-36, GVU, Georgia Inst. of Tech., 1999.

. J.Liand C.-C. Kuo, A dual graph approach to 3D triangular mesh compression, in Proceedings of the IEEE
International Conference on Image Processing, Chicago, 1998.

. J. Rossignac, Edgebreaker: Connectivity compression for triangle meshes, IEEE Trans. Visual. Comput.

Graphics 5(1), 1999, 47-61.

J. Rossignac and A. Szymczak, Wrap and zip: Linear decoding of planar triangle graphs, Comput. Geom. 14,

1999, 119-135.

G. Taubin and J. Rossignac, Geometric compression through topological surgery, ACM Trans. Graphics 17,

1998, 84-115.

C. Touma and C. Gotsman, Triangle mesh compression, in Proceedings of Graphics Interface *98, 1998,

pp. 26-34.



	1. INTRODUCTION
	2. BASICS
	FIG. 1.
	FIG. 2.
	FIG. 3.

	3. ENCODING
	FIG. 4.

	4. DECODING
	FIG. 5.

	5. CODING INTERACTION TYPES
	6. CODEBOOKS AND BOUNDS
	TABLE 1
	TABLE 2

	7. TOPOLOGICAL IRREGULARITIES
	8. EXPERIMENTAL RESULTS
	FIG. 6.
	TABLE 3

	9. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

