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Figure 5: Speed/resolution tradeoff in our prototype visualization client while rendering 300x400 pixel images on a R5000 SGI O-, accessing
the scene database server over a 3 KByte/sec network. (a) Varying only geometric resolution. The texture resolution is fixed to 0.5 compressed
texture bytes per pixel. (b) Varying only texture resolution. The geometric resolution is fixed to 0.06 triangles/pixel. The individual curves
correspond to different flight velocities, which influence the turnover of data in system caches and bandwidth overhead.
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Figure 3: Determining the DTM points of the rendered Delaunay triangulation for a given view at different geometric resolutions. The
narrow cone represents a low-resolution view, and the wide one a high resolution. The “elevations” of the DTM points are their precalculated
grades. All points within the footprint with grade above the relevant cone are included in the triangulation. This range-reporting operation is
performed efficiently using an octree structure on the points in each tile. Note that more points are admitted in the view foreground than in
its background.
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Figure 4: The contribution of individual tiles in the texture buffer to the rendered image corresponding to the marked footprint. Those tiles
not contributing need not reside in the texture buffer at all, and are not streamed and decoded from the server.
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Figure 2: Terrain meshes (Delaunay triangulated) and views rendered at different data resolutions. (a) High resolution: 0.08 triangles/pixel
and 1 texels/pixel. (b) Equivalent quality at lower resolution: 0.02 triangles and 0.8 texels/pixels. Note how more DTM points are used in
foreground areas or areas of high curvature.
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1. Calculate view frustum and bound terrain footprint by rectangle.
2. Scan-convert the rectangle and for each geometry tile in it:
(a) If the tile is not in the footprint, but was in it in the previous
frame, then:
e Remove all its points from the Delaunay triangulation.

(b) If the tile is in the footprint, but was not in the previous frame,
then:
e Request tile from server at appropriate resolution.
e Searchin tile octree for appropriate voxels.
e Insert the points from these voxels in Delaunay triangu-
lation.

(c) If tile is in the footprint and was also in the previous frame,
then:
e Search in tile octree for appropriate voxels.
e Find difference from previous frame.

o Insert (Delete) difference points in (from) Delaunay tri-
angulation.

3. For each texture tile in the bounding rectangle:

(a) If the texture tile is in the footprint, but was not in the previous
frame, then:
e Calculate required resolution.
e Request the appropriate bit stream prefix from the server.

(b) If texture tile is in the footprint, and was also in the previous
frame, then:

o Calculate its resolution.
e [fthis resolution is higher than that of the previous frame,
then request more of the bit stream from the server.

4. For every tenth frame check the actual performance (frames/sec)
against the required performance and adjust the geometric and/or tex-
ture resolution parameters to achieve that performance.

5. Render image.

Figure 1: Pseudo-code of the client algorithm.



olution (the lower the required resolution, the less bits required). In
any case, we use any bits available at rendering time, even though
there might be less than required (if the network temporarily slows
down). Which tiles are relevant can be easily determined from the
geometry of the footprint. Occasionally, it is neccesary to shift the
contents of the texture buffer, due to the movement of the view-
point.

5 Experimental Results

We have implemented the procedures described in Sections 2 - 4
as a prototype client/server system, the client running on a R5000
SGI O3, at 180MHz with 64MB RAM, based on the OpenGL API,
and an X/Motif GUI. This client accesses the scene database server
over a 3 KByte/sec network. The main parameters influencing the
overall performance of the system are the size of the visualization
window, i.e. the number of rendered image pixels, and the flight
velocity. This performance is measured in the client frame rate, and
the quality of the imagery delivered at that frame rate. There is an
obvious tradeoff between the two, which is controlled by two inde-
pendent “resolution” parameters, one for geometry, and one for tex-
ture. Increasing these parameters increases the number of triangles
and/or texture bytes used for the rendering process, thus increasing
the image quality, but decreasing the frame rate, due to higher ren-
dering and bandwidth overhead. There is, however, a point beyond
which the resolution parameter saturates, i.e. the marginal increase
in image quality is insignificant.

The geometric resolution parameter, namely, the average number
of triangles rendered per image pixel, is controlled by the angle
of the cone used for culling DTM points, as described in Section
3.3. The smaller the angle, the narrower the cone, admitting less
DTM points into the Delaunay triangulation, in turn implying less
triangles for the same number of image pixels (see also Fig. 3).
The texture resolution is controlled by specifying the fraction of
the texture tile bit stream imported and decoded to texels for the
foreground image pixels. The resolution of the background image
pixels is derived from this.

Keeping the resolution parameters and velocity fixed causes the
system to maintain a fixed frame rate. Increasing the velocity would
slow down the system, as the turnover of points in the Delaunay
triangulation and turnover of texture tiles in the texture buffer in-
creases, incurring more CPU and bandwidth overhead. By trial and
error, it seems that reasonable image quality is obtained at a geo-
metric resolution of 0.06 triangles and 0.5 texture bytes per output
image pixel. Any more than that imposes an unneccesary load on
the system, slowing it down, and any less than that results in poor
quality images (see Fig. 2). A telltale sign of insufficient geometric
resolution (triangles per image pixel) is if there are “jumps” (also
known as “popping”) in the terrain surface during animation, due to
the triangles being too large and crude. A telltale sign of insufficient
texture resolution (texels per image pixel) are blurred images.

Fig. 5 shows the speed/quality tradeoffs we are able to achieve
with our system at different “flight” velocity parameters, when
one of the geometric/texture resolution parameters is fixed, and
the other varied. Velocity is measured as the percentage of non-

overlapping area between footprints corresponding to successive
frames. The figure shows that approximately 3 frames/sec are
achievable with reasonable quality, when the image size is fixed at
300x400 pixels, and flying at an average (3%) velocity. Higher ve-
locities result in a larger turnover of geometry and texture, slowing
down the system frame rate. Our system accesses a scene database
server covering the northern part of Israel, containing a total of 107
DTM points and 10® texels. The client uses a geometry cache of
size 2MB RAM, and texture buffer of 1024x1024 texels.

6 Conclusion

In the long-term, our techniques will support client/server terrain
visualization applications over the Internet. A large scene database
resides at a central server site, and is accessed (perhaps simultane-
ously) by a number of low-end clients over the Internet for visual-
ization purposes. This application requires tight optimization of the
available network bandwidth and client rendering power.

The ever-increasing user appetite for larger and richer geomet-
ric scenes has forced computer graphics practitioners to develop
output-sensitive rendering algorithms whose computational com-
plexity is not sensitive to the complexity of the input scene, rather
to the complexity of the output image. We have implemented this
for the terrain visualization application by rendering at geometric
and texture level-of-detail which changes continuously along the
spatial and temporal dimensions. Our algorithm satisfies almost all
of the five requirements from such an algorithm, as formulated in
[12].

Use of other sophisticated data optimization techniques, such as
occlusion culling [14], in which large portions of the geometry in-
side the view frustrum are efficiently culled because they are invis-
ible, can further reduce the rendering load.

Temporal aliasing sometimes occurs in our implementation. The
use of morphing techniques to alleviate this, such as that of Cohen-
Or and Levanoni [5], are not directly applicable, again due to the
dynamic nature of our Delaunay triangulation. Alternatives are be-
ing investigated.
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record of fixed length. This hierarchical spatial data structure will
enable efficient range reporting of points.

3.2 View Frustum Culling

The first step in frame generation is to determine which DTM tiles
are relevant to the current view. In principle, if the terrain surface
were planar, the intersection of the viewing frustum with the terrain
surface (the view footprint) would be a trapezoid, whose four vertex
positions could be easily computed (see Fig. 3). Since the terrain
surface is not planar, the footprint terrain is bounded by a region
which is the union of two trapezoids, formed on horizontal planes
whose elevations coincide with the minimal and maximal elevations
in the projection area, repectively.

The footprint is “scan-converted” by the client to determine
which DTM tiles intersect it, and what resolution data (which levels
of the octree) are required. This data is requested from the server.
For every tile received, the octree structure of its points enables
to efficiently determine which tile points are actually contained in
the footprint. Efficiency is achieved by pruning off large sets of
the points corresponding to branches of the octree close to its root.
The remaining points are then tested, as described in Section 3.3,
to determine if they are required for the terrain approximation and
rendering.

3.3 Continuous Resolution

Each DTM point has a grade quantifying its importance in the ter-
rain approximation. This grade is traded off with distance from the
viewpoint. In other words, more distant points are considered less
significant. In practice, the client considers a virtual cone centered
at the viewpoint, and calculates which DTM points in the geome-
try cache have a grade positioning them inside the cone (see Fig.
3). We would like to be able to determine this set of points in time
proportional mainly to their number (and not to the total number of
points in the viewing frustum). In computational-geometric termi-
nology, this is called output-sensitive range reporting. We achieve
this again using the tile octree. The complexity of the range report-
ing procedure is O(\/A_7 + k), where N is the number of points in
the viewing frustum, and & the number of points in the answer to
the query ([13], p.79). Using this virtual cone also implies that a
small change in the viewpoint induces a small change in the DTM
points used for the rendering, thus ensuring the temporal continuity
of the rendered images.

3.4 Caching

Portions of geometry tiles are imported from the server on demand
and stored in the client cache. Only the neccesary upper levels of
the tile octree are imported, possible due to the fixed structure of
the octree. Hence a typical snapshot of the client cache contents
would reveal a few (foreground) tiles from which almost the en-
tire data content has been read, and many (background) tiles with a
very sparse content. A prediction mechanism, based on the view-
point trajectory, enables the loading of tiles in advance, resulting in
smooth streaming of geometry from server to client.

3.5 Dynamic Delaunay Triangulation

The piecewise linear surface induced by the Delaunay triangulation
of the 2D projection of the DTM points is generally considered the
most suitable for surface approximation. This is because the mini-
mal angle in the triangulation is maximized, eliminating long “sliv-
ery” triangles. Hence, the client constantly maintains a Delaunay
triangulation of the DTM points contributing to the approximation
of the terrain in the footprint. Many O(nlogn) time algorithms
exist for the Delaunay triangulation of n points, but not many are
able to efficiently support update of the triangulation upon insertion
or deletion of points. We use the algorithm of DeVillers et al [7],
which inserts points in O(log n) and deletes points in O(log log n)
average time using a hierarchical data structure. Care must be taken
to slightly perturb the spatial positions of the DTM points, other-
wise degeneracies in the Delaunay triangulation and unstable nu-
merics may occur.

At the client, points which were in the footprint corresponding
to the previous frame, and are no longer in the current footprint, are
removed from the triangulation - the main geometric data structure
maintained online by the client. New points which were previously
not in the footprint, and now are, are inserted into the triangulation.
The turnover of points in the triangulation depends on the viewpoint
velocity. Theoretically, very large velocities could cause successive
frames to see totally different regions of the terrain, requiring the
formation of an entirely different triangulation between frames. In
practice, however, this does not occur. Typically, 99% of the foot-
print areas overlap between successive frames.

Pseudo-code of the flow of control in the client while rendering
a single frame appears in Fig. 1.

4 Texture Processing

The texture data must also be manipulated at multiple resolutions,
since image foreground pixels contain high resolution texels, and
image background pixels contain low resolution texels. The reso-
lution of the texels contributing to any given image pixel is essen-
tially a function of the viewing distance to that scene point. The
server texture database is also organized in tiles, storing the texels
compressed to approximately 30% of their original volume, using
a progressive wavelet scheme. This results in a bit stream sorted by
importance.

A typical low-end client computer contains a texture buffer of
limited capacity (e.g. 1024x1024 pixels) with a pyramid struc-
ture on top of it. By supplying appropriate texture coordinates for
the rendered triangle vertices, the graphics hardware/software maps
texels from the texture buffer to the image pixels in the interior of
the projected triangles. Each level of the texture pyramid contains
texels representing the same terrain area, at decreasing resolutions.
However, since not all texels, especially not at all resolutions, will
contribute to the terrain image (see Fig. 4), there is no need to
import them from the server. We optimize network bandwidth by
loading only those texture tiles which intersect the view footprint,
at the appropriate resolution, if they are not yet loaded. By this
we mean we calculate the number of encoded bits of the texture
stream required to reconstruct the texture tile at the appropriate res-



gons in the approximation is more or less constant, independent of
the viewing parameters (for a fixed frame rate). For the texture,we
employ a progressive wavelet compression scheme [2], which en-
ables the extraction of texture at a continuum of resolutions from
arbitrary prefixes of the encoded bit stream.

Our ultimate goal is to render any terrain image in time propor-
tional to the image resolution (in pixels), and not to the scene com-
plexity, number of DTM points in the viewing frustrum, texture
resolution, etc. We are motivated by the (simple) observation that
an image of fixed resolution can contain only a bounded amount
of information, therefore any algorithm rendering such an image
should not use more than a bounded number of polygons and tex-
els. Such algorithms are called output-sensitive. Most algorithms
are not output-sensitive, and in order that they be such, require care-
ful design. Our system contains a careful blend of techniques, some
borrowed from computational geometry, which together achieve a
high degree of output sensitivity, enabling adequate performance in
a limited-resource environment.

Since one server may be accessed simultaneously by a large
number of clients, is is crucial to minimize the amount of work the
server performs per client. If this load is minimized, the server will
be scalable, able to support a virtually unlimited number of clients.
We adhere to this principle throughout our implementation.

Using these methods, we have developed a client application
achieving terrain visualization at interactive rates on a low-end SGI
(O2)workstation, accessing a server database over a network with
bandwidth comparable to the Internet. This paper describes the ar-
chitecture and algorithms incorporated into our system.

2 System Overview

The large terrain scene resides on the server disk, partitioned into
geometry and texture tiles of fixed size. A raw geometry tile con-
tains a matrix of elevation heights, and a texture tile a matrix of
texels. Tiling schemes are standard in terrain visualization appli-
cations (e.g. [4]). The server processes requests for geometry and
texture data received from remote clients. In a preprocessing step
at the server, applied independently to each tile (thus enabling a
scene consisting of an unlimited number of tiles), the DTM points
are assigned “grades” related to their importance in approximating
the terrain surface. These grades are obtained from the simplifica-
tion algorithm of Heckbert and Garland [9]. Using these grades
as a third dimension, the DTM points in each tile are organized
into a 3D octree, which will enable efficient answers to future geo-
metric queries. The client maintains online a geometry cache con-
taining DTM points from a small subset of the server’s geometry
tiles. Even from these tiles, only the relevant upper levels of the
corresponding octrees are imported to the client. Which levels are
relevant is determined on the fly by the client.

At any given moment, a subset of the geometry cache points are
maintained at the client in a dynamic Delaunay triangulation, our
primary geometric data structure. To maintain the triangulation, we
use the algorithms of Devillers, Meiser and Teillaud [7] for efficient
insertion and deletion into a 2D Delaunay triangulation. Delaunay
triangulations are commonly considered to be suitable for terrain

visualization purposes. A DTM point deserves to be in the triangu-
lation if its grade is greater than a threshold, which is proportional
to the distance of the point from the viewpoint. Section 3 elaborates
on the details of how we handle the geometry.

The texture data is maintained at the server in tiles, compressed
using the progressive wavelet scheme of Buccigrossi and Simon-
celli [2]. This scheme compresses the data to approximately 30%
of its raw size with negligble loss, and, more important, allows the
decoding of the texture data from any prefix of the bit stream. Nat-
urally, using more bits will result in a higher quality result. Client
requests for texture data at a given resolution result in the streaming
of the prefix of minimal length sufficing for the required resolution.
Section 4 describes our handling of the texture in more detail.

The client graphics pipeline, sometimes supported in hardware,
is fed relevant triangles and texels. This pipeline takes care of the
basic rendering operations, e.g. perspective projection, hidden sur-
face elimination, and texture mapping. The main issues we ad-
dress in our implementation are the minimization of data transmit-
ted from the server to the client caches and subsequently fed to the
graphics pipeline.

Typical triangulations and rendered images generated by our
client system are shown in Fig. 2.

3 Geometry Processing

3.1 Data Reduction

A typical DTM is supplied on a regular grid, and this data is usu-
ally highly redundant. If the surface is to be approximated by a
piecewise-linear 2D function (a collection of planar polygons), a
small number of large polygons suffice to approximate the surface
well in planar regions. On the other hand, terrain areas with high
curvature, such as ridges and ravines, require a large number of
small polygons to achieve a satisfactory approximation (see Fig.
2). By this argument, is it obvious that some DTM points are more
important than others. Heckbert and Garland [9] have described
a procedure which starts off with a small number of DTM points
(usually the four corners of the DTM coverage), and incremen-
tally adds points whose contribution to the surface approximation
is most significant. The contribution of a point to the approxima-
tion is quantified by its vertical distance from the piecewise-linear
approximation built with all previous points. The larger this dis-
tance - the more important the point is. The incremental procedure
is done efficiently using a priority queue mechanism.

We use the Heckbert and Garland procedure at the server as a
preprocessing operation on each tile to assign each DTM point a
numeric “grade” - precisely the vertical distance described in the
previous paragraph. This grade is stored with the point, and used
later to determine online whether the point is required for the ter-
rain approximation. This decision is based on the grade and the
point’s distance from the viewpoint. To facilitate efficient decision-
making, we build a 3D octree of the DTM points, the grade serving
as the third dimension. The grid structure of the points in the XY
plane facilitates a fixed quadtree structure in this plane, which, in
turn, facilitates the organization of the data stored in the tile in a



Visualization of Large Terrains in Resource-Limited Computing
Environments

Boris Rabinovich

Craig Gotsman

Computer Science Department
Technion - Isradl Ingtitute of Technology
Haifa 32000, |srael

[borisr|gotsman]@cs.technion.ac.il

Abstract

We describe a software system supporting interactive visualization
of large terrains in a resource-limited environment, i.e. a low-end
client computer accessing a large terrain database server through a
low-bandwidth network. By “large”, we mean that the size of the
terrain database is orders of magnitude larger than the computer
RAM. Superior performance is achieved by manipulating both ge-
ometric and texture data at a continuum of resolutions, and, at any
given moment, using the best resolution dictated by the CPU and
bandwidth constraints. The geometry is maintained as a Delaunay
triangulation of a dynamic subset of the terrain data points, and the
texture compressed by a progressive wavelet scheme.

A careful blend of algorithmic techniques enables our system
to achieve superior rendering performance on a low-end computer
by optimizing the number of polygons and texture pixels sent to
the graphics pipeline. It guarantees a frame rate depending only
on the size and quality of the rendered image, independent of the
viewing parameters and scene database size. An efficient paging
scheme minimizes data I/0, thus enabling the use of our system in
a low-bandwidth client/server data-streaming scenario, such as on
the Internet.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; D.4.4 [Operating Systems]:
Communications Management—Network Communication.

Keywords: Terrain rendering, level-of-detail, interactive graphics

1 Introduction

Terrain visualization is an important component of many civilian
and military applications [10, 3]. The input to the terrain visualiza-
tion problem is usually a large Digital Terrain Map (DTM), consist-
ing of elevation data sampled on a regular grid, and corresponding
aerial and/or satellite texture data, which is mapped onto the recon-
structed terrain surface. The output is rendered images of the terrain
surface, usually as part of a “flythrough” sequence.

The advent of the World-Wide-Web suggests the running of
this type of application over the Internet, in a client/server sce-
nario. The server is a very large remote database, accessed by the

client, usually a low-end computer, over a narrow-bandwidth line
(3 KByte/sec is typical for the contemporary Internet). The two
bottlenecks that have to be overcome are the bandwidth in deliver-
ing relevant terrain data from the server to the client, and the CPU
power required at the client for rendering this data.

The key to efficient terrain rendering is efficient online manipu-
lation of both the geometric and texture data, especially when the
scene database at the server is orders of magnitude larger that the
size of client system RAM. Naive terrain rendering algorithms con-
vert each DTM cell (bounded by four adjacent grid points) into two
3D triangles, and render (send through the graphics pipeline) all
such triangles in a region determined by the viewing frustum. They
also map the texture data at its highest resolution onto these poly-
gons. This is a very inefficient procedure, as for low pitch angles,
the number of these triangles and texture pixels (texels) may be ex-
tremely large. Each individual triangle projection to image space is
very small, and many texels may be condensed to one image pixel,
contributing negligibly to the image. One remedy to this prob-
lem, adopted in a number of works over the past few years (e.g.
[8]) is to maintain the scene data at a number of discrete levels-
of-detail. Since terrain areas at large viewing distances project to
small image areas, there is no point rendering them in full detail.
At any given moment during the animation, the appropriate level-
of-detail is used to render the image. To do this effectively, pieces
of the scene must be taken from multiple levels (foreground areas
from a high-detail version, and background areas from a low-detail
version), requiring methods to “stitch” together pieces of differ-
ent models in a continuous fashion, so that there are no holes or
breaks along the seams. This has proven to be a major problem
for the geometric data, since there usually is no topological corre-
lation between the different levels of detail. De Berg and Dobrint
[1], Cohen-Or and Levanoni [5], and Lindstrom et al. [12] have
provided partial solutions to the stitching problem.

In this paper we use a different approach to maintaining the
terrain geometry, proposed independently by Klein and Huttner
[11] and Delepine [6]. The geometry is treated in a continuous-
resolution fashion. We do not maintain multiple geometric models
(at different levels of detail), rather continuously update one model
online to represent in an optimal way the projection of the terrain
contained in the viewing frustum. As a result, the number of poly-



