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9(d) in particular).

8 The Videotape

The videotape accompanying this paper demon-
strates our methods. In the first part, geomet-
ric evolution of an arbitrary simple polygon is
shown.

In the second part we show an interactive mor-
phing session. The two input polygons (a regu-
lar hand and a deformed hand) are defined with
a partial correspondence. The multiresolution
representations are calculated for each polygon
by geometric polygon evolution. The morph se-
quence between the two polygons is then shown.

The third part of the videotape shows an as-
sortment of morph sequences (as in Figs. 8 and
9). The partial correspondences given for these
morph sequences are shown too.

9 Conclusions

The use of natural geometric shape representa-
tions is a key element in any morphing scheme.
In our opinion, it is hopeless to even try without
this.

We have proposed a representation which ac-
counts for shape geometry at various scales,
based on a natural smoothing scheme. Using this
representation in reverse, we are able to morph
polygons, accounting first for global shape, and
then for local deformations. Qur results are at
least as good as the only other existing algorithm
using a similar approach of interpolation between
representations, except our algorithm is simpler.

The morphing results depend on the exact
polygon evolution scheme used to generate the
polygon representations. We have experimented
with a few schemes, and, while the results are
similar, the scheme described here seemed to be
the most successful. The similarity of the results
is probably due to the fact that all the polygon
evolution schemes perform the same basic mul-
tiresolution analysis. Some, however, preserve
the polygon geometry better than others. Ex-
tensions to 3D object morphing are being inves-

()

Figure 8: Comparative results of morphing algo-
rithms. The user-supplied correspondence pairs
are similar for all algorithms and may be seen on

8 the videotape. (a) Sederberg et. al (b) Shapira

et. al (c) Ours.



Figure 7: Path interpolation: R is the vertex
on the intermediate polygon corresonding to the
vertices P; and ¢); on each of the input polygons.

path vector pairs, working from low resolution
to high resolution.

The local transformations that we use are scal-
ing and rotation. The basic issue at hand is how
to interpolate two corresponding path vectors.
Consider two vectors vy € Py and v; € P; such
that ang(vg,v;) = 6. Two possible interpolants
v; for t € [0,1] would either be the v, satisfying
ol = tlles] |+ (1 = 0)[eol| and ang(o, o) = 16,
or that satisfying v; = tv; + (1 — t)v,. Heuris-
tically, we choose between these two options de-
pending on the in/out directions of vy and v;
relative to their polygons. The first option is
used if and only if vy and v; have the same rel-
ative direction. Vector pair interpolation is per-
formed for later path vector pairs after accumu-
lating the effects of all interpolating transforma-
tions on earlier path vector pairs. See the exam-
ple in Fig. 7. Note that if only the linear inter-
polant v; = tv; + (1 — t)v, was used on all path
vector pairs, our interpolation method would be
equivalent to linear vertex interpolation, as the
accumulative effect of many such local interpo-
lations would still be a linear interpolation.

5.4 Polygon Reconstruction

Reconstructing intermediate polygons from in-
termediate representations is very easy. Simply
integrate (sum) the path vectors for each vertex
from the centroid. Each path yields a vertex on

the intermediate polygon.

6 Complexity

The space requirements of the algorithm are
dominated by the need to store the representa-
tions of the two input polygons. This space is
proportional to the number of vectors in those
representations - O(nd), where n is the number
of polygon vertices, and d is the polygon depth.
The representations of intermediate polygons are
not stored explicitly, rather calculated on the fly.

The run time of the algorithm per interme-
diate polygon generated is also O(nd), as ev-
ery representation vector undergoes interpola-
tion. Typical polygon depths vary between 10
and 80.

7 Experimental Results

It is virtually impossible to quantify the quality
of the results of a morphing algorithm, as the
true test is visual.

We have implemented our algorithm in an
interactive morphing system with a X/Motif
graphical user interface, run it on numerous test
cases, and visually compared the results with
those of Sederberg et. al [17] and Shapira et.
al [19]. Fig. 8 shows some of these compar-
isons. The algorithm of Sederberg et. al (a)
produces self intersections and shape and area
distortions. The Shapira et. al algorithm (b)
eliminates them. Our algorithm (c) seems to
yield slightly more natural intermediate poly-
gons, preserving some of the more subtle features
present in the shapes. In all our tests, we al-
most never encountered self-intersections in the
morph sequences. This is probably due to the
fact that our polygon evolution scheme almost
always preserves polygon simplicity. We cannot,
however, prove that one is a direct consequence
of the other, as these are two different processes.

Fig. 9 shows just our results on a variety of
polygons. In our opinion, the morph sequences
produced are quite natural, even for input poly-
gons with significantly different shapes (see Fig.
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Figure 6: Completing a partial correspondence
to a full correspondence: Given polygon P with
8 vertices, () with 7 vertices and a partial corre-
spondence of 4 pairs, the partial correspondence
is completed to 11 pairs by adding 3 dummy ver-
tices to P, and 4 to Q).

Of course, in order to create a complete morph
sequence for a set of discrete times ti,..,%,, €
[0,1], it suffices to perform Steps 1-3 once in a
preprocessing stage, and Steps 4-5 for each of the
different ¢;. In the following sections we elabo-
rate on the various stages of the algorithm.

5.1 Correspondence Completion

To prepare the two polygons for morphing, we
first complete the user-specified partial corre-
spondence to a full correspondence by the stan-
dard method of adding “dummy” vertices to
both polygons. Such a dummy vertex of P cor-
responds to a vertex of ) not included in the
partial correspondence, and vice versa. Given P
and ¢ with m and n vertices respectively and a
partial correspondence containing k& < min(m,n)
vertex pairs, the full correspondence will contain
n + m — k vertex pairs. The extra vertices are
generated by proportional edge length between
points of the partial correspondence (see Fig. 6),
and the correspondence is by cyclic order.

5.2 Depth Correlation

Since the representation depths of polygons P
and ¢ will probably be different, it is neccesary

to correlate them before attempting morphing.
If d, and d, are the representation depths of P
and (), respectively, the correlated depth will be
dy 4+ dy — ged(dy, d3). This is obtained by merg-
ing together the paths by proportional depth.
For example, if the depth of P is 50, and the
depth of Q is 100, each vector in every path in
the representation of P is broken into 2 smaller
(collinear) vectors. P will then also have depth
100.

5.3 Interpolating Representations

After correspondence completion of P and @,
polygon evolution, and depth correlation, we
have multiresolution representations Ry and R,
with an identical depth and number of paths. To
obtain an intermediate representation R; from
Ry and R;, we must specify how an individ-
ual path of Ry, and the corresponding path of
Ry, are interpolated for any ¢ € [0,1]. This is
done independently for all paths in the repre-
sentations, and the intermediate polygon is then
reconstructed from R,. It is important to empha-
size that, although the polygon evolution process
generates the multiresolution representation, the
temporal morph sequence will in no way resem-
ble the temporal curve evolution. These are two
separate and very different time axes.

Between two paths, Py and P;, we interpolate
starting from the path vectors corresponding to
the low resolution version of the polygon, and
work our way out towards the path vectors cor-
responding to the high resolution details. The
former capture global transformations that must
be performed in order to align the shapes, and
the latter capture the local transformations (be-
yond the global ones) needed to align the fine
details of the two polygons. The first global
rotation is determined using the full correspon-
dence. This is calculated as the average angle
between the low resolulion vectors in the corre-
sponding path pairs. These low resolution vec-
tors are used first because they contain global
information on the polygon. The additional “lo-
cal” transformations required beyond this global
one are determined from the higher resolution



tinuous case. Towards this end, we use the fol-
lowing discrete “derivatives” (all indices modulu

n):
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S = E§;E||Pj+1 - pjl|
The curvature k; at p; is then

The normal direction #; is the direction of the
angle bisector at vertex p; if p; is on a convex
region, and the opposite direction if p; is on a
concave region.

Polygon evolution is performed in discrete
steps (iterations), generating paths which are
vector sequences. Theoretically, polygon evolu-
tion also converges to a point via a (discrete) cir-
cular shape. In practice, we terminate the evo-
lution when a convex polygon is obtained, and
then add vectors from these vertices to the poly-
gon centroid. The number of iterations required
to achieve convexity is called the depth of the
evolution, or just the depth of the polygon.

The polygon representation is the set of vec-
tor paths generated for each vertex during the
polygon evolution process. FEach vector in the
representation is accompanied by an indication
of its in/out direction relative to the polygon.
Most evolution path vectors point towards the
polygon interior, but some of the high-resolution
path vectors may point towards the exterior (in
concave regions). The vectors close to the poly-
gon centroid describe low-resolution geometric
properties of the polygon, and the vectors close
to the polygon vertices describe high-resolution
properties.

As we expected, the polygons evolving from a
simple polygon, using our method, almost never
intersected themselves, as opposed to other poly-
gon evolution schemes we experimented with.

4 User-Defined
Correspondence

In order that eny morphing algorithm between
polygons P and () produce reasonable results,
it must be guided by some minimal user input.
An accepted way of doing this is to provide a
small number of correspondence pairs indicating
vertices of P which transform to vertices of ).
This is a list of index pairs {([;,J;) : 1 =1, .., k},
such that P;, corresponds to Pj, for i = 1,..,k.
These correspondence pairs are usually feature
points with special meaning for the user, and a
morph not preserving this correspondence is not
of interest. The number of user-supplied corre-
spondence pairs is usually much less than the
number of vertices of P or (). We call this a par-
tial correspondence. A correspondence involving
all vertices of P and () is called a full correspon-
dence. Note that even if a full correspondence
is supplied by the user, there are still many pos-
sible ways to interpolate the two polygons, and
the morphing problem is far from solved.

5 The Morphing Algorithm

Given polygons P, ), a partial correspondence
between them, and ¢ € [0, 1], our morphing algo-
rithm proceeds in five stages:

1. Complete the partial correspondence be-
tween P and @) to a full correspondence.

2. Generate multiresolution representations Ry
and R, for P and @) respectively.

3. Correlate the representation depths of Ry
and R;.

4. “Interpolate” Ry and R; to obtain an inter-
mediate representation R;.

5. Reconstruct an intermediate polygon from

R,.



Figure 3: C(s) and C1g;1(s) obtained from geo-
metric evolution of the closed simple curve Cy(s).
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Figure 4: Geometric evolution of a closed simple
curve.

Figure 5: Geometric evolution paths of some
points on the curve of Fig. 4.

a very coarse one. Note that paths may extrude
from the curve, especially in concave regions, as
Fig. 5 demonstrates. A possible multiresolution
representation of a curve is the set of paths of the
curve points generated by the geometric evolu-
tion process. This representation has a high de-
gree of redundancy (as the actual curve is just
the set of path endpoints), but it is precisely this
redundancy which makes it so useful for morph-
ing purposes.

3.2 The Discrete Case

In a computerized morphing system, a curve will
usually be given in discrete form, i.e. as a poly-
gon P = (po,pi1,...sPn), Where p; = (z;,9;). In
order to produce a multiresolution representa-
tion for polygons, the continuous curve evolution
schemes described in Section 2 must be adapted
to a discrete setup, where only polygon vertices
undergo evolution. This is called polygon evo-
lution. A number of different polygon evolution
schemes have been studied [3, 4]. We choose to
use a discrete version of (1) with F(z) = z. This
is because the continuous version preserves sim-
plicity, so hopefully the discrete one will too. To
use (1) in a discrete form, the notions of “nor-
mal” and “curvature” must be redefined, while
keeping their meaning similar to that of the con-
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Figure 2: The multiresolution scale-space of a
function, obtained by smoothing with a Gaussian
filter of increasing width. The number of second
derivate zero crossings decreases with scale.

ers [15, 10] have used a curve evolution method
which does achieve this. Rather than explicitly
smoothing the curve by a filtering process, the
evolution is described by the motion of the points
on the curve in time. Loosely speaking, dur-
ing evolution, a point on the curve advances in
the direction of the vector normal at that point,
by a distance proportional to a function of the
curvature at that point (see Fig. 3). The pre-
cise mathematical formulation of the process is:
Given a simple closed parametric curve Cp(s), its
geometric evolution at time ¢ > 0 is

Ct(s):Co(s)—l—/ot Pk, ()N (s)dr (1)

where k. (s) is the curvature function, and N, (s)
the normal vector function at time 7. In this
process, a point on a convex region of the curve
advances “inwards”, and a point on a concave
region advances “outwards”.

Many functions F’ have been proposed for use
in (1) [15, 10, 16], each defining an evolution with
different mathematical properties. Some caution
must be excercised when choosing F’. In the de-
generate case F(z) = const, a point on the curve
evolves along the direction of the normal a con-
stant distance (independent of the curvature at
that point). This corresponds to offsetting the
curve [11]. Not only does this type of evolution
rule not preserve the geometry of the curve, but
singularities (“shocks”) develop along the evolv-
ing curve, especially at areas of high curvature.

The function F we chose for our purposes is
the identity function F(z) = z. The effect of the
resulting process is to continuously smooth the
curve, having the following attractive properties

[15]:
e A non-simple curve becomes simple.
e A simple curve remains simple.
e A smooth curve remains smooth.
¢ A non-convex curve becomes convex.

e The number of curvature zero crossings is
non-increasing.

e The curve converges to a point in the
asymptotic form of an circle.

Starting with any planar curve, at some stage
the curve becomes simple, then convex, then cir-
cular, then shrinks until it reaches a point (see
Fig. 4). The number of curvature zero-crossings
does not increase and no singularities develop
along the curve. The curves obtained at later
times during the evolution correspond to coarse
low-resolution versions of the original, which has
been indirectly “smoothed” to eliminate its finer
details. Omne of the crucial properties of this
curve evolution process is the second in the list
above: a simple curve remains simple, i.e. does
This will
be important for the morphing process. Not all
functions F' used in conjunction with (1) yield

not intersect itself during evolution.

evolution schemes with this property.

3 Multiresolution Representa-
tions

3.1 The Continuous Case

As described in Section 2, during a geometric
curve evolution process, every point on the curve
advances continuously in the plane on a path be-
ginning at the point on the original curve, and
terminating at a common point. The geome-
try of this path, and the paths of other curve
points, describes the shape of the curve at differ-
ent scales, first at a very fine scale, and later at
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Figure 1: Morphing two polygons: (a) Natural

(b)
morph. (b) Linear vertex interpolation morph.

fails to satisfy any of the conditions mentioned
above. The interpolant easily intersects itself,
and simple geometric properties, such as lengths,
angles and areas, do not change in a consistent
manner, as Fig. 1(b) demonstrates. The main
reason why the linear vertex interpolation yields
bad results is that each vertex is treated inde-
pendently of all other vertices. Sederberg et.
al [17] propose a method in which interpolation
is performed on edge lengths and angles. Since
this type of interpolation might transform closed
polygons into open ones, an optimization algo-
rithm must be used to guarantee closedness. The
procedure they use, however, does not guaran-
tee simpleness of the interpolant. Furthermore,
the method tends to distort polygon area, as it
does not consider the polygon interior. Shapira
at. al [19] propose a complex algorithm which
takes into account the polygon interior as well as
its boundary. Their approach builds on the so-
called star-skeleton representation of a polygon.
Morphing is then performed on the representa-
tions, from which intermediate polygons are re-
constructed. The advantage of this approach is
that it yields intermediate polygons which are
closed and have natural shapes. Simplicity, how-
ever, is not guaranteed. The disadvantage of this
algorithm is the complexity of the star-skeleton
representation extraction procedure.

The reason the algorithm of [19] achieves such
good results is its use of a natural representation
of a polygon, accounting for its important geo-
metric features. It seems that this is the key to
successful morphing algorithms. Such a repre-

sentation should emphasize the intrinsic object
geometry in a way consistent with human per-
ception of that geometry.

We propose a different representation of poly-
gons, with a multiresolution character. The hu-
man visual system is able to appreciate the fine
details of an object, but also its overall geometric
shape. This type of multiresolution perception
has found its way into computing in the form
of multiresolution data structures [5], analysis
[12], and synthesis [7, 6]. The multiresolution
representation we use is based on polygon evolu-
tion schemes. This representation contains infor-
mation on the polygon at many levels of detail.
Morphing is then performed in the more natu-
ral space of the representations, from which the
intermediate polygons are reconstructed.

2 Curve Evolution

In his, by now classic, work on multiresolution
representation of one-dimensional functions (sig-
nals), Witkin [20] describes a scheme in which
the function is continuously smoothed by filter-
ing with a Gaussian kernel of increasing width.
This produces a sequence of functions whose
number of second-derivative zero-crossings does
not increase in time (see Fig. 2). Advancing
along the time axis, also known as the scale axis,
reduces the resolution of the function so that
only its low-frequency, or very coarse, behavior
is visible. At the limit of very low resolution -
a straight line is obtained. This (highly redun-
dant) decomposition of a signal has been useful
in a variety of signal processing applications. In
a series of papers, Mokhatarian et al. extended
the methods of Witkin to 2D closed parametric
curves by first performing 1D smoothing tech-
niques independently on each of the coordinates
[13], and then accounting for the curve geometry
by normalizing the filter kernel coordinate sys-
tem by the curve arc-length [14]. It can be shown
that application of these so-called curve evolu-
tion techniques cause any smooth closed curve
to converge smoothly to a point.

These methods, however, do not take into ac-
count directly the intrinsic curve geometry. Oth-
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Abstract

We present an algorithm for morphing between
two simple polygons. The two polygons are con-
verted to multiresolution representations. In-
termediate representations are generated from
these two, from which intermediate polygons are
reconstructed. Our algorithm is simpler than
the few existing polygon morphing schemes, and
its results compare favorably. The key to the
success of our algorithm is the multiresolution
shape representation, based on curve evolution
schemes. This representation captures the geo-
metric properties of a shape at different levels of
detail, a crucial requirement for aesthetic shape
deformations.

1 Introduction

Morphing (metamorphosis) is a term reserved for
processes which, when given two objects, con-
tinuously deform one to the other. Morphing
of objects is popular in animations seen in the
entertainment and broadcasting industry. How-
ever, many of the spectacular effects that have
been achieved, have, by large, been done manu-
ally, albeit with the support of a computer. This
is notoriously time consuming, so a major re-
search challenge is the design of algorithms which
morph objects automatically with a minimum
of manual intervention. The only manual inter-
vention we would like to require is the input of
some correspondence points between the objects,

which guide the morphing process. The gener-
ation of the actual intermediate objects should
be completely automatic. Algorithms have been
designed for the morphing of images [1], poly-
gons [18, 17, 19], polyhedra [2] and volume data
[9, 8]. This work concentrates on 2D polygons.

More formally, the morphing problem may be
formulated as follows: Given two objects Og, O
and ¢ € [0,1], construct an intermediate object
O, which is similar to Oy as t — 0 and similar to
0, as t — 1. In a way, the morphing problem is
a multidimensional interpolation problem, and,
as such, is ill-posed, in the sense that there are
many possible interpolants O; satisfying these
very vague conditions. An accepted way of re-
ducing the number of possible solutions to an in-
terpolation problem is by regularization, namely,
constraining the solution to satisfy a variety of
other “natural” conditions not explicit in the in-
put. In the case of 2D polygons, the following
are some natural conditions that an intermedi-
ate morphed curve should satisfy: If P and @)
are closed and simple, then the interpolant R
should also be closed and simple. The area of R
should vary smoothly between that of P and Q.
If @ is a translated (rotated) version of P, then
R should also be an appropriate translation (ro-
tation) of P. These properties should hold both
globally, and locally, in some sense.

The most naive algorithm for morphing be-
tween two polygons P and (), namely, interpo-
lation along a line segment between correspond-
ing vertices of P and @) (“vertex interpolation”),



