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In this chapter, we discuss 3D compression techniques for reducing the delays in transmitting triangle meshes
over the Internet. We first explain how vertex coordinates, which represent surface samples may be compressed
through quantization, prediction, and entropy coding. We then describe how the connectivity, which specifies
how the surface interpolates these samples, may be compressed by compactly encoding the parameters of a
connectivity-graph construction process and by transmitting the vertices in the order in which they are
encountered by this process. The storage of triangle meshes compressed with these techniques is usually reduced
to about a byte per triangle. When the exact geometry and connectivity of the mesh are not essential, the
triangulated surface may be simplified or retiled. Although simplification techniques and the progressive
transmission of refinements may be used as a compression tool, we focus on recently proposed retiling
techniques designed specifically to improve 3D compression. They are often able to reduce the total storage,
which combines coordinates and connectivity, to half-a-bit per triangle without exceeding a mean square error of
1/10,000 of the diagonal of a box that contains the solid.

BACKGROUND AND TERMINOLOGY
A triangle mesh is defined by a set of vertices and by its triangle-vertex incidence graph. The vertex description
comprises geometry (3 coordinates per vertex) and optionally photometry (surface normals, vertex colors, or
texture coordinates), which will not be discussed here (see [IsSn00, GaHe98, BPZ99] for more information).
Incidence (sometimes referred to as “topology”) defines each triangle by the 3 integer indices that identify its
vertices. For simplicity and elegance, we restrict our discussion in this chapter on simple meshes, which are
homeomorphic to a triangulation of a sphere.  However, most of the techniques presented here work for, or have
been extended to,  more general meshes with borders, handles, non-manifold degeneracies, and non-triangular
faces [Ross99, GBTS99, RoCa99, ToGo98, RSS01, KRS99, BPZ99, IsSn00, Lo&02] and even to tetrahedral meshes
[SzRo99, SzRo00, PRS99].

In what follows, we assume that our triangle mesh is a connected manifold surface with no boundary and no
handle and that it has v vertices, e edges, and t triangles. To simplify the formalism, we consider the edges to be
the relatively open line segments that do not include their endpoints. Similarly, we use the term face to denote
the relative interior of a triangle, excluding its edges and vertices. The surface of the mesh is the point-set union
of its faces, edges, and vertices, which are all pair-wise disjoint.

In order to prove the linear equation linking t and v and to facilitate the description of several compression
approaches, we will use the following terminology. A Vertex-Spanning Tree (VST) of a triangle mesh is a
subset of its edges, selected so that their union with all the vertices forms a tree (connected cycle-free graph).
Consider that a given VST has been selected. The edges it contains are called the cut-edges. The union of the
cut-edges with all the vertices is called a cut. Because the VST is a tree, there are v–1 cut-edges. The difference
between the surface and its cut is called the web. Edges that are not cut-edges are called hinge-edges. The web is
composed of all the faces and of all the hinge-edges. Removing the cut, which has no loop, from the surface of a
mesh will not disconnect it and will produce a web that is a (relatively open) triangulated two-dimensional point-
set in three-space. Because by definition a simple mesh has no hole or handle, the web is simply connected and
may be represented by an acyclic graph, whose nodes correspond to faces and whose links correspond to hinge
edges. Thus there are t–1 hinge edges. Note that by picking a leaf of this graph as root and orienting the links,
we can always turn it into a binary tree, which we call the Triangle-Spanning-Tree (TST). It is a spanning tree
of the dual of the graph made of the edges and vertices of the mesh. The TST defines a connected network of
corridors through which one may visit all the triangles by walking across hinge-edges and never crossing a cut-
edge. Because an edge is either hinge or cut, the total number of edges, e, is v–1+t–1. Each triangle uses 3 edges
and each edge is used by 2 triangles. Thus the number e of edges is also equal to 3t/2. Combining these two
equations yields t=2v–4, which shows that there are roughly twice as many triangles as vertices.
When 32-bit integers are used to represent triangle-vertex incidence references and 32-bit floats to represent
vertex coordinates, an uncompressed representation of a simple mesh requires 12v bytes to store the geometry
and 12t bytes (or equivalently 24v–28 bytes) to store the incidence, which amounts to a total of 144t bits. Note
that, surprisingly, the incidence information requires twice more storage than the geometry.
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CORNER TABLE REPRESENTATION
The Corner Table [RSS01, RSS02] is a simple data structure which simplifies the storage and processing of
manifold triangle meshes, whether they are simple or have holes and handles. We introduce it here and use it in
this chapter to clarify the implementation details of compression and decompression techniques.

The geometry is stored in the coordinate table, G, where G[v] contains the triplet of the coordinates of vertex
number v, and will be denoted v.g. Note that the order in which the vertices are listed in G is arbitrary, although
once it is chosen, it defines the integer reference number associated with each vertex.

Triangle-vertex incidence defines each triangle by the three integer references to its vertices. These references
are stored as consecutive integer entries in the V table. Note that each one of the 3t entries in V represents a
corner (association of a triangle with one of its vertices). Let c be such a corner. Let c.t denote its triangle and
c.v its vertex. Remember that c.v and c.t are integers in [0,v–1] and [0,t–1] respectively. Let c.p and c.n refer to
the previous and next corner in the cyclic order of vertices around c.t.

FIGURE 1: Corner operators for traversing a corner table representation of a triangle mesh.

Although G and V suffice to completely specify the triangles and thus the surface they represent, they do not
offer direct access to a neighboring triangle or vertex. We chose to use the reference to the opposite corner, c.o,
which we cache in the O table to accelerate mesh traversal from one triangle to its neighbors. For convenience,
we also introduce the operators c.l and c.r, which return the left and right neighbors of c (Fig. 1).

Note that we do not need to cache c.t, c.n, c.p, c.l, or c.r, because they may be quickly evaluated as follows: c.t is
the integer division c.t DIV 3; c.n is c–2, when c MOD 3 is 2, and c+1 otherwise; and c.p is c.n.n; c.l is c.n.o; and
c.r is c.p.o. Thus, the storage of the connectivity is reduced to the O and V arrays.

We assume that all triangles have been consistently oriented, so that c.n.v=c.o.p.v for all corners c. For example,
one may adhere to the convention that when a triangle c.t is visible by a viewer outside of the solid (i.e., the finite
set that is bounded by the triangle mesh), the three vertices, c.p.v, c.v, and c.n.v, appear in clockwise order.

Assume that c.t.m is a Boolean set to TRUE when the triangle c.t has been visited. The procedure visit(c) {IF
NOT c.t.m THEN {c.t.m:=TRUE; visit(c.r); visit(c.l)}} will visit all the triangles in a depth-first order of a TST.

Given the V table, the entries in O may be computed by: FOR c:=0 TO 3t–2 DO FOR b:=c+1 TO 3t–1 DO IF
(c.n.v==b.p.v)&&(c.p.v==b.n.v) THEN {c.o:=b; b.o:=c}. A faster approach sorts the triplets {min(c.n.v,c.p.v),
max(c.n.v,c.p.v), c} into bins. All entries in a bin have the same first record: min(c.n.v,c.p.v), an integer in
[0,v–1]. There are rarely more than 20 entries in a bin. Then, we sort the entries in each bin by the second record:
max(c.n.v,c.p.v). Now, pairs with identical first record and with identical second record are consecutive and
correspond to opposite corners, which are identified by the third record in each triplet. Thus, if a sorted bin
contains consecutive entries (a,b,c) and (a,b,d), we set c.o:=d and d.o:= c.

Because it can be easily recreated, the O table needs not be transmitted. Furthermore, the 31–log2v leading zeros
of each entry in the V table need not be transmitted. Thus, assuming that Floats are used for the coordinates, a
compact, but uncompressed representation of a triangle mesh requires 48t bits for the coordinates and 3tlog2v
bits for the V table. Note that Edgebreaker (discussed below) encodes the full connectivity information contained
in both V and O with a linear cost of less than 2t bits, and hence eliminates the need for the decompression
modules on the client to re-compute O from V.

GEOMETRY COMPRESSION
The compression of vertex coordinates usually combines three steps: quantization, prediction, and statistical
coding of the residues. We explain them briefly in this section.

Quantization truncates the vertex coordinates to a desired accuracy and maps them into integers that can be
represented with a limited number of bits. To do this, we first compute a tight (min-max), axis-aligned bounding
box around each object. The minima and maxima of the x, y, and z coordinates, which define the box, will be
encoded and transmitted with the compressed representation of each object. Then, given a desired accuracy, e,
we transform each x coordinate into an integer i=INT((x–xmin)/(e(xmax–xmin))), which ranges between 0 and 2B,
where B=Èlog2((xmax–xmin)/e)˘ is the maximum number of bits needed to represent the quantized coordinate i. The
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y and z coordinates are quantized similarly. Choosing e=max((xmax–xmin)/2
12, (ymax–ymin)/2

12, (zmax–zmin)/2
12)

yields B≤12 for all coordinates and ensures a sufficient geometric fidelity for most applications and most models.
Thus, this lossy quantization step reduces the storage cost of geometry from 96v bits to less than 36v bits.

The next, and most crucial, geometry compression step involves using a vertex predictor. Both the encoder and
the decoder use the same predictor. Thus, only the residues between the predicted and the correct coordinates
need to be transmitted. The coherence between neighboring vertices in meshes of finely tiled smooth surfaces
reduces the magnitude of the residues.

Because most edges are short with respect to the size of the model, adjacent vertices are in general close to each
other and the differences between the coordinates are small. Thus a new vertex may be predicted by a previously
transmitted neighbor [Deer95].

Instead of using a single neighbor, when vertices are transmitted in VST top-down order, a linear combination
of the 4 ancestors in the VST may be used [TaRo98]. The 4 coefficients of this combination are computed to
minimize the magnitude of the residues over the entire mesh and transmitted as part of the compressed stream.

The most popular predictor for single-rate compression is based on the parallelogram construction [ToGo98].
Assume that the vertices of c.t have been decoded. We predict c.o.v.g using c.n.v.g+c.p.v.g–c.v.g. The
parallelogram prediction may sometimes be improved by predicting the angle between c.t and c.o.t from the
angles of previously encountered triangles or from the statistics of the mesh.

Some of the residues may be large. Thus, good prediction, by itself may not lead to compression. For example, if
the coordinates have been quantized to B-bit integers, some of the coordinates of the corrective vector, c.o.v.g
–c.n.v.g –c.p.v.g +c.v.g may require B+2 bits of storage. Thus, parallelogram prediction could in principle
expand storage rather than compress it. However, the distribution of the residues is usually biased towards zero,
which makes them suitable for statistical compression [Salo00].

In practice, the combination of these steps compresses vertex location data to about 7t bits.

CONNECTIVITY COMPRESSION
As argued above, geometry may be encoded efficiently, provided that connectivity information is available
during geometry decompression to locate previously decoded neighbors of each vertex. This section presents
techniques for compressing the connectivity information from 3tlog2v bits to bt bits, where b is guaranteed never
to exceed 1.80, and in practice is usually close to 1.0. As a result, meshes may be encoded with a total of about 8t
bits (7t bits for geometry, 1t bit for connectivity).

Instead of retracing the chronological evolution of the research in the field of single-rate incidence compression,
we first describe in detail Edgebreaker [Ross99], which is arguably the simplest and one of the most effective
single-rate compression approaches. The source code for Edgebreaker is publicly available [SaRo02]. Then, we
briefly review several variants and other approaches, using Edgebreaker’s terminology to characterize their main
differences and respective advantages or drawbacks.

Edgebreaker
The Edgebreaker compression visits the triangles in a spiraling (depth-first) TST order and generates the clers
string of labels, one label per triangle, which indicate to the decompression how the mesh can be rebuilt by
attaching new triangles to previously reconstructed ones (Fig. 2).
RECURSIVE PROCEDURE Compress (c) { # compresses a simple t-meshes

REPEAT { # traverses TST, stopped by RETURN
set(c.t.m); # mark triangle as visited
IF !c.v.m # test whether tip vertex was visited

   THEN { encode(c.v.g); # store location of tip
WRITE(clers, ‘C’); # append C to clers string
set(c.v.m); # mark tip vertex as visited
c:= c.r} # continue with the right neighbor

ELSE IF c.r.t.u # test whether right triangle was visited
THEN IF c.l.t.u # test whether left triangle was visited

THEN {WRITE(clers, ‘E’); RETURN } # append code for E and pop or stop
ELSE  {WRITE(clers, ‘R’); c:= c.l } # append code for R, move to left triangle

ELSE IF c.l.t.u # test whether left triangle was visited
THEN {WRITE(clers, ‘L’); c:= c.r } # append code for L, move to right triangle
ELSE {WRITE(clers, ‘S’); # append code for S

Compress(c.r); c:= c.l }} } # recurse right, then continue left
The Edgebreaker compression pseudo-code is shown in the insert above. The following explanations contain in
parentheses the excerpts of the pseudo-code they reference. Edgebreaker works directly on the Corner Table and
does not require any additional data structure, except for one bit per vertex and one bit per triangle to mark the
ones that have already been processed. In particular, it does not require maintaining linked lists of border edges.
It traverses the mesh in depth-first order of a TST using iteration (REPEAT) and occasionally recursion (Compress)
on corner indices. It marks all visited vertices (set(c.v.m)) and triangles (set(c.t.m)). The current triangle is
identified by its tip corner (c). Note that the current triangle has been reached though the gate edge joining c.n.v
with c.p.v. By testing the marks of the tip vertex of the current triangle and of neighboring triangles, it selects the
label and appends it to the sequence the clers string.



J. Rossignac                                    3D Mesh Compression                                     Page 4 of 15

4

If the tip vertex (c .v) has not yet been visited (!c.v.m), its location is encoded (encode(c.v.g)) using the
parallelogram prediction and geometry compression, as explained earlier. The label C is appended to the clers
string (WRITE(clers, C)) and the iteration moves to the right neighbor (c:=c.r). Note that the vertices are encoded in
the order in which they are encountered by C-triangles during this traversal. This order does not usually reflect
the order in which the vertices were listed in the original mesh. Similarly, the triangles are reordered during
transmission. A dictionary mapping the original order on the server to the new order on the client may be kept on
the server to reconcile vertex or triangle selections between one location and the other in subsequent processing.

FIGURE 2: The five Edgebreaker situations (C, L, E, R, S) are illustrated top-to-bottom. On the left, we show
the “before” and “after” states for each situation during compression. The current triangle is marked by “?”.
Previously visited triangles and vertices are darker. An X marks the triangle through which we came. We encode
a C label when the tip vertex of the current triangle was not marked (top). Otherwise, the label depends on the
status of the left and right neighbor triangles. When neither were visited, we encode an S (bottom), after which
compression goes right via a recursive call and then left. We show this symbolically by adding the left neighbor
to a stack. When both neighbors have been visited previously, we encode and E and exit the procedure (possibly
returning from a recursive call). The right column shows how decompression interprets the CLERS symbols to
reconstruct the connectivity of the mesh. For each symbol in the clers string, Edgebreaker decompression
attaches a new triangle to the gate edge (indicated by a thick line on the left figure, where the state before the
insertion of the new triangle is shown). The gate for the next operation is placed as indicated by a thick line on
the right column, which shows the state after the new triangle was inserted. Decoding a C symbol (top) creates a
new vertex (v). When decoding an S symbol (bottom), the location of the tip of the new triangle is defined by the
offset o from the gate around the bounding loop. The S operation puts the gate on the right edge of the new
triangle and proceeds to fill the right hole using a recursive call. Then it sets the gate to the left edge of the new
triangles and resumes the process. The offsets o for each S symbol may be computed from the clers string using
the fact that C and S increment the edge count, L and R decrement it, and E reduces it by 3.
When the tip of the current triangle has been previously visited, we distinguish four other types of triangles: L, R,
S, and E (Fig. 2).

case L: When the left neighbor has been visited, but not the right one, we append the label L to the clers string
and iterate on the right neighbor (c:= c.r).

case R: When the triangle on the right has been visited, but not the one on the left, we append R to the clers
string and iterate on the left neighbor (c:= c.l).
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case S: When both neighbors have not-visited status, we append S to clers, start a recursive process on the right
neighbor (Compress(c.r)), and then iterate on the left neighbor (c:= c.l).

case E: When both neighbors have been visited, we append E to the clers string, and return from recursion or
from the compression process (RETURN).

The connectivity of the first triangle is implicit. The initialization, detailed in the insert below, sets the visited
tags (.m) to zero (not shown here). Then it encodes the first three vertices and marks them and their triangle. It
calls the compression on one of the corners of that triangle (Compress (c.o)).

PROCEDURE initCompression (c){
encode(c.p.v.g); encode(c.v.g); encode(c.n.v.g); # store first 3 vertices
set(c.v.m, c.p.v.m, c.n.v.m, c.t.m); # mark first 3 vertices and triangle as visited

Compress (c.o); } # start compression at opposite corner

A typical execution of the compression process is illustrated in Fig. 3.

FIGURE 3: In this example of a typical  compression situation, Edgebreaker starts with the darker triangle
(left) and spirals out clockwise, filling the beginning of the clers string with CCCCRCCRCRC. It appends the tip
of each C triangle to the vertex list.  A typical situation where Edgebreaker finishes compression or closes a hole
is shown (center). It spirals counterclockwise, appending the label sequence CRSRLECRRRLE to the clers string
and adding the vertices (a) and (b) to the vertex list. The triangles in the rabbit (right) have been shaded
according to their Edgebreaker labels. Notice that half of the triangles are C (white) and about a third are R.

Because, except for the first two vertices, there is a one-to-one mapping between each C triangle and each vertex,
the number of C triangles is v–2. Consequently, the number of non-C triangles in a simple mesh is t–(v–2), which
is also v–2. Thus exactly half of the triangles are of type C. Hence, Edgebreaker guarantees that a compressed
representation of the connectivity of a simple triangle mesh will never exceed 2t bits [Ross99] if we use the
following simple binary code for the labels (C=0, L=110, E=111, R=101, S=100).

Given that the subsequences CE and CL are impossible, a slightly more complex code [KiRo99] may be used to
guarantee that the compressed file will never exceed 1.84t bits. This code uses (C=0, S=10, and R=11) for
symbols that follow a C and one of the following 3 codes for symbols that do not follow a C:

- Code 1: C is 0, S is 100, R is 101, L is 110, E is 111
- Code 2: C is 00, S is 111, R is 10, L is 110, E is 01
- Code 3: C is 00, S is 010, R is 011, L is 10, E is 11

It was proven [KiRo99] that one of these 3 codes always takes less than 11t/6 bits. A 2-bit switch header is used
to identify which code is used for each model.

Further constraints exist on the clers string. For example, CCRE is impossible, because CCR increments the
length of the loop, which must have been at least 3. By exploiting such constraints to better estimate the
probability of the next symbol, a more elaborate code was developed [Gumh00], which guarantees 1.778t bits
when using a forward decoding [RoSz99] and 1.776t bits when using a reverse decoding scheme [IsSn01].

Hence, the Edgebreaker encoding of the connectivity of any mesh (homeomorphic to a sphere) may be
compressed down to 1.78t bits. This brings it within 10% of the proven 1.62t theoretical lower bound for
encoding planar triangular graphs, as established by [Tutt62], who by counting all planar triangulations of v
vertices has proven that an optimal encoding uses at least vlog2(256/7)≈3.245v bits, for a sufficiently large v.

These recent developments constitute a significant advance in the study of short encodings of planar triangle
graphs. They are often the best solution for compressing small or irregular meshes. For large and fairly regular
meshes, better compression ratios may often be obtained. For example, one may encode CC, CS, and CR pairs as
single symbols. Each odd C symbol will be paired with the next symbol. After an even number of C symbols, we
use the following codes: CR=01, CC=00, CS=1101, R=10, S=1111, L=1110, E=1100. This encoding guaranteed
2.0t bits, but usually yields between 1.3t and 1.6t bits [RoSz99].

Furthermore, by arranging symbols into words that each start with a sequence of consecutive Cs and by using a
Huffman code [Salo00], we often reduce storage to less than 1.0t bits. For example, 0.85t bits suffice for the
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Huffman codes of the Stanford Bunny. Including the cost of transmitting the associated 173 words dictionary
brings the total cost to 0.91t bits. A gzip compression of the resulting bit stream reduces it by only 2%.

As shown earlier, the location of the next vertex may be predicted using previously decoded geometry and
connectivity. Coors and Rossignac [CoRo02] have proposed to also predict the connectivity of the next triangle
using the same information. In their Delphi system, compression and decompression perform the same
geometric prediction of the location of the tip-vertex of the next triangle. Then they estimate the triangle
connectivity, and thus its symbol in the CLERS string produced by the Edgebreaker compression, by snapping
the tip-vertex to the nearest vertex in the active loop, if one lies sufficiently close. If no bounding vertex lies
nearby, the next clers symbol is estimated to be a C. If the guess is correct, a single confirmation bit is sufficient.
Otherwise, an entropy-based code is received and used to select the correct CLERS symbol from the other four
possible ones (or the correct tip of an S triangle). Reported experiments indicate that, depending on the model, up
to 97% of Delphi's guesses are correct, compressing the connectivity down to 0.19t bits. When the probability of
a wrong guess exceeds 40%, the Delphi encoding stops being advantageous.

Let us now discuss several approaches to the decompression of the clers string. All approaches attach a new
triangle, one at a time, to a gate edge, which so far has only one incident triangle. The next symbol in the clers
string defines where the tip of the new triangle is (Fig. 2). Symbol C indicates that the new triangle will have as
tip a new vertex. Note that the three vertices of the previously decoded triangle that is incident upon the gate
have been previously decoded and may be used in a parallelogram prediction of the new vertex. Also note that
the numbering of the vertices and hence their order in the G table of the reconstructed mesh reflects the order in
which the vertices are instantiated as tips of C triangles.
Symbol L indicates that the tip vertex is immediately to the left of the gate along the boundary of the portion of
the mesh decoded so far. R indicates that the tip immediately the right of the gate. E indicates that the new
triangle will close a hole, which must have exactly 3 vertices. S indicates that the tip of the new triangle is
elsewhere on the boundary of the previously decoded portion of the mesh.

Consider the edge-connected components of the not-yet decoded portion of the mesh. Let M be the component
incident upon the gate. Because by definition of simple meshes M has no handle, an S triangle will always split it
in two parts. Through a recursive call, Edgebreaker will first reconstruct the portion of M that is incident upon
the right edge of S, as seen when entering the triangle through the gate. Then, upon return from the recursive call,
the reconstruction of the rest of M will resume.

After the new triangle is attached, the gate is moved to the right edge of the new triangle for cases C and L. It is
moved to the left edge for case R. When an S triangle is attached, the gate is first moved to the right edge of the
S triangle and the right hole is filled through a recursive call to decompression. Then the gate is moved to the left
edge and the process resumes as if the S triangle had been an R triangle.

The only challenge in the Edgebreaker decompression lies in the location of the tips of the S triangles. Several
approaches have been proposed and are briefly discussed below.

The integer reference number of the tip of each S triangle could be encoded using log2k bits, where k is the
number of previously decoded vertices. A more economical approach encodes an offset, o, indicating the number
of vertices that separate the gate from the tip in the current loop (Fig. 2). Because the current loop may include a
large fraction of the vertices, one may still need up to log2k bits to encode the offset. Although the total cost of
encoding the offsets is linear in the number of triangles [Gumh99], the encoding of the offsets constitutes a
significant fraction of the total size of the compressed connectivity. Hence, several authors strived to minimize
the number of offsets [AlDe01b], mostly by using heuristics for selecting gates with a low probability of being the
base of S triangles.

The breakthrough of Edgebreaker lies in the discovery that offsets need not be transmitted at all, because they
can be recomputed by the decompression algorithm from the clers string itself. The initial solution [Ross99] is
based on the observation that the attachment of a triangle of each type changes the number of edges in the current
loop by specific amounts (Fig. 2). C increments the edge-count. R and L decrement it. E removes a loop of three
edges and thus decreases the edge-count by 3. S splits the current loop in two parts, but if we count the edges in
both parts, it increments the total edge count. Each S label starts a recursive call that will fill in the hole bounded
by the right loop and will terminate with the corresponding E label. Thus S and E labels work as pairs of
parentheses. Combining all these observation, we can compute the offset by identifying the sub-string of the
clers string between an S and the corresponding E, and by summing the edge-count changes for each label in that
sub-string. To avoid the multiple traversals of the clers string, all offsets may be pre-computed by reading the
clers string once and using a stack for locating the S of each E.

The elegant, “Spirale Reversi” approach [IsSn01] for decompressing clers strings that have been created by the
Edgebreaker compression avoids this preprocessing by reading the clers string backwards and building the
triangle mesh in reverse order (Fig. 4). It assigns a reference number to a vertex, not at its creation, but only
when a C triangle incident upon it is created. The order in which vertices are assigned reference numbers by the
Spirale Reversi decompression is reversed from the order in which they are first encountered by the Edgebreaker
compression. Note that the vertices of new triangles are initially unlabeled, and remain so, until the
corresponding C triangles are created.
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FIGURE 4: The connectivity of the remaining portion of the mesh shown on the top is encoded by Edgebreaker
in the clers string: CCRRCCRRRCRRCRCRRCCCRRCRRCRCRRRCRCRCRRSCRRSLERERLCRRRSEE. The
order in which the triangles are visited is shown by the arrows. The Spirale Reversi decompression receives the
string reversed. Processing the first symbol (E) of the reversed string generates the first triangle (bottom-left).
The arrow leaving the previously reconstructed portion of the mesh indicates the gate where a new triangle will
be attached. Then next symbol (another E) puts the gate on a stack (1) and creates a new disconnected triangle
with a new gate. Moving clockwise, the next symbol (S) makes a new triangle which joins the gate with the top of
the stack. Reading the symbols RRC creates aright-turning fan that encloses a vertex (large dot), which will
receive the reference number 1. Then the LR symbols are red. The next symbol (E) puts the gate on the stack (1)
and creates an isolated triangle to which another one is attached as we read the next R symbol (top left). This
creation, growing, and merging process continues, as shown by the clockwise sequence.
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A third approach, “Wrap&Zip” [RoSz99], also avoids the preprocessing of [Ross99] and directly builds a Corner
Table as it reads the clers string. It does not require maintaining a linked list of border vertices or edges. For each
symbol, as a new triangle is attached to the gate, Wrap&Zip fills-in the known entries to the V and O tables.
Specifically, it fills in c.o for the tip corner, c, of the new triangle and for its opposite, c.o. It assigns vertex
reference numbers to the tips of C triangles as they are created, by simply incrementing a vertex counter. It
defers assigning the reference numbers to other vertices until a Zip process matches them with vertices that
already have a reference number.  Thus, it produces a web, as defined earlier. The border edges of the web must
be matched into pairs. The correct matching could be specified by encoding the structure of the cut [Tura84]
[TaRo98]. However, as discovered in [RoSz99], the information may be trivially extracted from the clers string by
orienting the border edges of the web as shown in Fig. 5. Note that these border orientations are consistent with
an upward orientation of the cut-edges toward the root of the VST. The pseudo-code for the Wrap&Zip
decompression algorithm is shown in the frame below. It was extended to meshes with handles [Lo&02].

The zipping part matches pairs of adjacent border edges that are oriented away from their shared vertex. Only the
creation of L and E triangles opens new zipping opportunities. Zipping the borders of an E triangle may start a
chain of zipping operations (Fig. 6). The cost of the zipping process is linear, since there are as many zipping
operations as edges in the VST and the number of failed zipping tests equals the number of E or L triangles.

FIGURE 5: The borders of the web are oriented clockwise, except for the seed and the C triangles.

FIGURE 6: We assume that the part of the mesh not shown here has already been decoded into a web with
properly oriented borders (exterior arrows). Building the TST(shown by the labeled triangles) for the sub-string
CRSRLECRRRLE produces a web whose free borders are oriented clockwise for all non-C triangles and
counterclockwise for C triangles (left). Each time Wrap&Zip finds a pair of edges oriented away from their
common vertex, it matches them. The result of the first zip operation (center) enables another zip. Repeating the
process zips all the borders and restores the desired connectivity (right).
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PROCEDURE initDecompression {
GLOBAL V[] = { 0,1,2,0,0,0,0,0,…}; # table of vertex Ids for each corner
GLOBAL O[] = {–1,–3,–1, –3, –3, –3…}; # table of opposite corner Ids for each corner
GLOBAL T = 0; # id of the last triangle decompressed so far
GLOBAL N = 2; # id of the last vertex encountered
DecompressConnectivity(1); # starts connectivity decompression

RECURSIVE PROCEDURE DecompressConnectivity(c) {
REPEAT { # Loop builds triangle tree and zips it up

T++; # new triangle
O[c] = 3T; O[3T] = c; # attach new triangle, link opposite corners
V[3T+1] = c.p.v; V[3T+2] = c.n.v; # enter vertex Ids for shared vertices
c = c.o.n; # move corner to new triangle
Switch decode(READ(clers)) { # select operation based on next symbol

Case C: {O[c.n] =  –1; V[3T] = ++N;} # C: left edge is free, store ref to new vertex
Case L: { O[c.n] =  –2; zip(c.n); } # L: orient free edge, try to zip once
Case R: { O[c] =  –2; c = c.n } # R: orient free edge, go left
Case S: { DecompressConnectivity(c);  c = c.n } # S: recursion going right, then go left
Case E: { O[c] =  –2; O[c.n] =  –2; zip(c.n);  RETURN }}}} # E: zip, try more, pop

RECURSIVE PROCEDURE Zip(c) { # tries to zip free edges opposite c
b = c.n; WHILE b.o>=0 DO b=b.o.n; # search clockwise for free edge
IF b.o != –1 THEN RETURN; # pop if no zip possible
O[c]=b; O[b]=c; # link opposite corners
a = c.p;  V[a.p] = b.p.v; # assign co-incident corners
WHILE a.o>=0 && b!=a DO {a=a.o.p; V[a.p]=b.p.v};
c = c.p; WHILE c.o >= 0 && c!= b DO c = c.o.p; # find corner of next free edge on right
IF c.o == –2 THEN Zip(c) } # try to zip again
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Other approaches
The cut-border machine [GuSt98] has strong similarities with Edgebreaker. Because it requires the explicit
encoding of the offset of S triangles and because it was designed to support manifold meshes with boundaries,
cut-border is slightly less effective than Edgebreaker. Reported connectivity compression results range from 1.7t
to 2.5t bits. A context-based arithmetic coder further improves them to 0.95t bits [Gumh99]. In [Gumh00]
Gumhold proposes a custom variable length scheme that guarantees less than 0.94t bits for encoding the offsets,
thus proving that the cut-border machine has linear complexity.

Turan [Tura84] noted that the connectivity of a planar triangle graph can be recovered from the structure of its
VST and TST, which he proposed to encode using a total of roughly 12v bits. Rossignac [Ross99c] has reduced
this total cost to 6v bits by combining two observations: (1) The binary TST may be encoded with 2t bits, using
one bit per triangle to indicate whether it has a left child and another one to indicate whether it has a right child.
(2) The corresponding (dual) VST may be encoded with 1t bits, one bit per vertex indicating whether the node is
a leaf and the other bit per vertex indicating whether it is the last child of its parent. (Remember that 2v=t+4.)
This scheme does not impose any restriction on the TST. Note that for less than the 2t bits budget needed for
encoding the TST alone, Edgebreaker [Ross99] encodes the clers string, which not only describes how to
reconstruct the TST, but also how to orient the borders of the resulting web, so as to define the VST, and hence
the complete incidence. This surprising efficiency seems linked to the restriction of using a spiraling TST.

Taubin and Rossignac have noticed that a spiraling VST, formed by linking concentric loops into a tree, has
relatively few branches. Furthermore, the corresponding dual TST, which happens to be identical to the TST
produced by Edgebreaker, has also in general few branches (Fig 7). They have exploited this regularity by Run
Length Encoding (RLE) the TST and the VST. Each run is formed by consecutive nodes that have a single
child. The resulting Topological Surgery 3D compression technique [TaRo96, TaRo98] encodes the length of
each run, the structure of the trees of runs, and a marching pattern, which encodes each triangle run as a
generalized triangle strip [ESV96] using one bit per triangle to indicate whether the next triangle of the run is
attached to the right or to the left edge of the previous one. An IBM implementation of the Topological Surgery
compression has been developed for the VRML standard [THLR98] for the transmission of 3D models across the
Internet, thus providing a compressed binary alternative to the original VRML ASCII format [VRML97],
resulting in a 50-to-1 compression ratio. Subsequently, the Topological Surgery approach has been selected as
the core of Three Dimensional Mesh Coding (3DMC) algorithm in MPEG-4 [MPEG01], which is the ISO/IEC
multimedia standard developed by the Moving Picture Experts Group for digital television, interactive graphics,
and interactive multimedia applications.

Instead of linking the concentric rings of triangles into a single TST, the layered structure color-coded in Fig. 7
(left) may be preserved [BPZ99]. The incidence is represented by the total number of vertex layers, and by the
triangulation of each layer. When the layer is simple, its triangulation may be encoded as a triangle strip, using
one marching bit per triangle, as was originally done in the Topological Surgery approach. However, in practice,
a significant number of overhead bits are needed to encode the connectivity of more complex layers. The
topological surgery approach resulted from an attempt to reduce this additional cost by chaining the consecutive
layers into a single TST (see Fig. 7).

FIGURE 7:
The Topological Surgery approach
merges concentric circles of triangles
into a single TST (left). That TST and
its dual VST have relatively few runs
(right).

Focusing on hardware decompression, Deering [Deer95] encodes generalized triangle strips using a buffer of 16
vertices. One bit identifies whether the next triangle is attached to the left or the right border edge of the previous
triangle. Another bit indicates whether the tip of the new triangle is encoded in the stream or is still in the buffer
and can hence be identified with only 4 bits. Additional bits are used to manage the buffer and to indicate when a
new triangle strips must be started. This compressed format is supported by the Java 3D’s Compressed Object



J. Rossignac                                    3D Mesh Compression                                   Page 10 of 15

10

node [Java99]. Chow [Chow97] has provided an algorithm for compressing a mesh into Deering’s format by
extending the border of the previously visited part of the mesh by a fan of not-yet-visited triangles around a
border vertex. When the tip of the new triangle is a previously decoded vertex no longer in the cache, its
coordinates, or an absolute or relative reference to them, must be included in the vertex stream, significantly
increasing the overall transmission cost. Therefore, the optimal encoding traverses a TST that is different from
the spiraling TST of Edgebreaker, in an attempt to reduce cache misses.

Given that there are 3 corners per triangle and that t=2v-4, there are roughly six times as many corners as
vertices. Thus, the average valence, i.e., the number of triangles incident upon a vertex, is 6. In most models, the
valence distribution is highly concentrated around 6. For example, in a subdivision mesh, all vertices, that do not
correspond to vertices of the original mesh have valence 6. To exploit this statistics, Touma and Gotsman
[ToGo98] have developed a valance-based encoding of the connectivity, which visits the triangles in the same
order as Edgebreaker. As in Edgebreaker, they encode the distinction between the C and the S triangles.
However, instead of encoding the symbols for L, R, and E, they encode the valence of each vertex and the offset
for each S triangle. When the number of incident triangles around a vertex is one less than its valence, the
missing L, R, or E triangle may be completed automatically. For this scheme to work, the offset must not only
encode the number of vertices separating the gate from the tip of the new triangle along the border (Fig. 2), but
also the number of triangles incident on the tip of the S triangle that are part of the right hole. To better
appreciate the power of this approach, consider the statistics of a typical case. Only one bit is needed to
distinguish a C from an S. Given that 50% of the triangles are of type C and about 5% of the triangles are of type
S, the amortized entropy cost of that bit is around 0.22t bits. Therefore, about 80% of the encoding cost lies in
the valence, which has a low entropy for regular and finely tessellated meshes and in the encoding of the offsets.
For example, when 80% of the vertices have valence 6, a bit used to distinguish them from the other vertices has
entropy 0.72 and hence he sequence of these bits may be encoded using close to 0.36t bits. The amortized cost of
encoding the valence of the other 20% vertices with 2 bits each is 0.40t bits. Thus, the valence of all vertices in a
reasonably regular meshes may be encoded with 0.76t bits. If 5% of the triangles are of type S and each offset is
encoded with an average of 5 bits, the amortized cost of the offsets reaches 0.25t bits. Note that the offsets add
about 25% to the cost of encoding the C/S bits and the valence, yielding a total of 1.23t bits. This cost drops
down significantly for meshes with a much higher proportion of valence-6 vertices.

Although attempts to combine the Edgebreaker solution that avoids sending the offsets and the valence-based
encoding of the connectivity have failed, Alliez and Desbrun [AlDe01b] managed to significantly reduce the total
cost of encoding the offsets, by reducing the number of S triangles. They use a heuristic that selects as gate a
border edge incident upon a border vertex with the maximal number of incident triangles. To further compress
the offsets, they sort the border vertices in the active loop according to their Euclidean distances from the gate
and encode the offset values using an arithmetic range encoder [Schi98]. They also show that if one could
eliminate the S triangles, the valence-based approach would guarantee to compress the mesh with less than 1.62t
bits, which happens to be Tutte’s lower bound [Tutt62].
An improved Edgebreaker compression approach was proposed [SKR00, SKR00b] for sufficiently large and
regular meshes. It is based on a specially designed context-based coding of the clers string and uses the Spirale
Reversi decompression. For a sufficiently large ratio of degree six vertices and a sufficiently large t, this
approach is proven to guarantee a worst-case storage of 0.81t bits.

RETILING
Triangle mesh simplification techniques, surveyed in [HeGa97, PuSc97] and more recently in [Lu&02], reduce the
sampling of the mesh, while decreasing its accuracy. Recently proposed approaches [PoHo97, GaHe97, Lueb98,
Lind00] combine ordered edge-collapse operations [Ho&93, Hopp96] with proximity-based or grid-based vertex
clustering [RoBo93, LoTa97]. Both merge vertices and eliminate degenerate triangles. Simplification techniques
have been developed to accelerate hardware assisted 3D rasterization, and as such, they attempt to find the best
compromise between reducing the triangle count and reducing the error. The error resulting from such a
simplification process may be estimated using the maximum [RoRo96] or the sum [Garl98, GaHe98, Garl99] of the
squared distances between the new location of displaced vertices and the planes containing their incident
triangles in the original model. It may also be evaluated [CRS98] by sampling the original mesh and computing
the distance between the samples and the simplified mesh. One may combine these simplification techniques
with the 3D compression approaches described above to achieve a flexible lossy compression. To support the
transmission of multi-resolution scenes, several levels-of-detail of each model in the scene should be generated
through simplification and compressed. The level at which a model is downloaded may depend on the scale at
which a model is projected on the screen and on the total bit budget allocated to the transmission. After an initial
transmission of such an approximation of the scene, compressed higher resolution versions of selected models
may be downloaded, either to improve the overall accuracy of the image or to adapt to the motions of the
viewpoint.

When the complexity ratio between one level-of-detail and the next is large, there is little or no savings in trying
to reuse the lower level of detail to reduce the transmission cost of the next level. When finer granularity
refinements are desired, parameters to undo the sequence of simplifying edge-collapses in reverse order may be
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transmitted one by one [Hopp96], or grouped into 6 to 12 batched and compressed [Hopp98, PaRo00, PaRo00b]. A
transmission cost of 3.5t bits for connectivity and 7.5t bits for geometry was achieved by using one bit per vertex
to mark which vertices must be split in each batch [PaRo00, PaRo00b]. Marking the edges, instead of vertices
[Vale02, VaPr02, Va&03] allows to recover for free the connectivity of valence-6 portions of the mesh and in
general reduces the cost of the progressive transmission of connectivity to between 1.0t bits and 2.5t bits. A
series of simplification passes [AlDe01]—which do not take geometry into account, but each divide by 3 the
number of vertices through the systematic removal of vertices of valence less than 7, a re-triangulation of the
resulting holes, and a subsequent removal of vertices of valence 3—permit to encode connectivity upgrades with
about 1.9t bits.

The above simplification or progressive coding techniques encode a simplified version of the original
connectivity graph and optionally the data necessary to fully restore it to its original form. When there is no need
to preserve that connectivity, one may achieve better compression by producing a more regular sampling of the
original mesh at the desired accuracy, so as to reduce the cost of connectivity compression, improve the accuracy
of vertex prediction, and reduce the cost of encoding the residues. We review several such retiling techniques.

An early retiling technique [Turk92] first places samples on the surface and distributes them evenly using
repulsive forces derived from estimates of the geodesic distances [PoSc99] between samples. Then it inserts
these samples as new vertices in the mesh. Finally, the old vertices are removed through edge-collapse
operations that preserve topology.

The MAPS algorithm [Le&98] was used [KSS00] to compute a crude simplified model, which can be
compressed using any of the single-rate compression schemes discussed above. Once received and restored by
the decompression module, the crude model is used as the coarse mesh of a subdivision process. Each
subdivision stage splits each edge into two and each triangle into four, by the insertion of one new vertex per
edge, in accordance to the Loop subdivision [Loop94] rules, which split each edge (c.n.v,c.p.v) by inserting point
(c.v.g+c.o.v.g+3c.n.v.g+3c.o.v.g)/8 and then displaces the old vertices towards the average of their old
neighbors. After each subdivision stage, the client downloads a displacement field of corrective vectors and
uses them to adjust the vertices, so as to bring the current level subdivision surface closer to the desired surface.
The distribution of the coefficients of the corrective vectors is concentrated around zero and their magnitude
diminishes as subdivision progresses. They are encoded using a wavelet transform and compressed using a
modified version of the SPIHT algorithm [SaPe96] originally developed for image compression.

Instead of encoding corrective 3D vectors, the Normal Mesh approach [GVSS00] restrict each offset vector to be
parallel to the surface normal estimated at the vertex. Only one corrective displacement value needs to be
encoded per vertex, instead of three coordinates. A Butterfly subdivision [DLG90] is used. It preserves the old
vertices, and for each pair of opposite corners c and c.o splits edge (c.n.v,c.p.v) by inserting point
(8c.n.v.g+8c.p.v.g+2c.v.g+2c.o.v.g+c.l.v.g+c.r.v.g+c.o.l.v.g+c.o.r.v.g)/16. The corrective displacement of new
vertices are compressed using the un-lifted version of the Butterfly wavelet transform [DLG90, ZSS96]. Further
subdivision stages generate a smoother mesh that interpolates these displaced vertices. The challenge of this
approach lies in the computation of a suitable crude simplified model and in handling situations where no
suitable displacement for a new vertex exists along the estimated surface normal. The connectivity of the crude
mesh and the constraint imposed by the regular subdivision process limit the way in which the retiling can adapt
to the local shape characteristics, and thus may result in suboptimal compression ratios. For example, regular
meshes may lead to sub-optimal triangulations for surfaces with high curvature regions and saddle points,
where vertices of valence different than 6 would be more appropriate.

In the PRM approach [SRK02], the surface may be algorithmically decomposed into 6 reliefs, each one
comprising triangles whose normals are closest to one of the six principal directions (Fig. 8 left). Each relief is
re-sampled along a regular grid of parallel rays (Fig. 8 right). Triangles are formed between samples on adjacent
rays and also, to ensure the proper connectivity, at the junction of adjacent reliefs. When the sampling rate (i.e.
the density of the rays) is chosen so that the resulting Piecewise Regular Mesh (PRM) has roughly the same
number of vertices as the original mesh, the PRM approximates the original mesh with the mean square error of
less than 0.02% of the diameter of the bounding box. Because of the regularity of the sampling in each relief, the
PRM may be compressed down to a total about 2t bits, which accounts for both connectivity and geometry.
PRM uses Edgebreaker compression [Ross99] and the Spirale Reversi decompression [IsSn01] to encode the
global relief connectivity and the triangles which do not belong to the regular regions. Edgebreaker produces the
CLERS string, which is then turned into a binary string using the context-based range coder, which reduces the
uncertainty about the next symbol for a highly regular mesh. The geometry of the reliefs is compressed using an
iterated two-dimensional variant of the differential coding. The regular retiling causes the entropy of the
parallelogram rule residues to decrease by about 40% when compared to the entropy for the original models,
because, on reliefs, two out of three coordinates of the residual vectors become zero. Since this approach does
not require global parameterization, it may be used for models with complex topologies. It is faster than the
combination of the MAPS algorithm [Le&98] and the wavelet mesh compression algorithm of [GVSS00, KSS00],
while offering comparable compression rates.
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FIGURE 8: The reliefs produced by the Piecewise Regular Mesh (PRM) approach are shown (left) and
resampled (right) into a nearly regular triangle mesh.
By tracing geodesics, SwingWrapper [Atte01] partitions the surface of an original mesh M into simply connected
regions, called triangloids. From these, it generates a new mesh M’. Each triangle of M’ is a linear
approximation of a triangloid of M (Fig. 9). By construction, the connectivity of M’ is fairly regular (96% of the
triangles are of type C or R and 82% of the vertices have valence 6) and can be compressed to less than a bit per
triangloid using Edgebreaker. The locations of the vertices of M’ are encoded with about 6 bits per vertex of M’,
thanks to a new prediction technique, which uses a single correction parameter per vertex. Instead of using
displacements along the surface normal or heights on a grid of parallel rays, SwingWrapper requires that the left
and right edges of all C triangles have a prescribed length L, so that the correction to the predicted location of
their tip may be encoded using the angle of the hinge edge. For a variety of popular models, it is easy to create an
M’ with 10 times fewer triangles than M. the appropriate choice of L yields a total file size of 0.4t bits and a
mean square error with respect to the original of about 0.01% of the bounding box diagonal.

FIGURE 9: The original model (first from the left, courtesy of Cyberware) contains t=134,074 triangles. A
dense partitioning of its surface into triangloids (second), was produced by SwingWrapper. The corresponding
retiled mesh (third) was generated by flattening the triangloids. Its L2 error is about 0.007% of the bounding box
diagonal and its 13642 triangles were encoded with a total of 3.5 bits per triangloid, for both the connectivity
and geometry, using Edgebreaker’s connectivity compression combined with a novel geometry predictor,
yielding a compressed file 0.36t bits. A coarser partitioning (fourth) decomposes the original surface into 1505
triangloids. The distortion of the corresponding retiled mesh (last) is about 0.15%, the total file size is 0.06t bits.

CONCLUSION
The connectivity of triangle meshes homeomorphic to a sphere may always be encoded with less than 1.8t bits
and usually requires less than 1.0t bits. Their quantized geometry may be compressed to about 7.0t bits.
Compression and decompression algorithms are extremely simple and efficient. Progressive transmission
doubles the total cost of connectivity. When the original connectivity needs not be preserved, retiling the surface
of the mesh to enhance regularity often reduces the storage cost to 0.5t bits with a mean square error of less than
1/10000 of the size of the model. These statistics remain valid for meshes with relatively few holes and handles.
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