
I Jim Blinn’s Corner I 
What We Need Around Here Is More Aliasing 
James F Blinn, Caltech 

Isn’t it weird that when you apply for something 
you can either “fill in a form” or “fill out a form”? If a 
chicken is “boned” what about one that’s “deboned”? 
If “flammable” means that something can catch fire, 
what does “inflammable” mean? I f  you want to create 
something out of sheet metal you can “stamp it out.” If 
you want to destroy something you also “stamp it out.” 
(And some people want to program computers in 
English!) 

demo of a display system at which the demonstrator 
promised “we can get rid of the jagged edges by using 
aliasing.” (He was probably in the marketing 
department.) 

mention of the word in either a positive or negative 
sense means you are aware of the problem and are 
doing something about it. Anyway, I thought this would 
be a good time to give a brief tutorial on what aliasing 
means, show plots of some relevant functions, describe 
some of the conventional wisdom about aliasing, and 
tell why that wisdom may not be so wise. 

Some basic knowledge 

three basic mathematical concepts: the Fourier trans- 
form, convolution, and the convolution theorem. 

I want to do this in an intuitive way, so I will mostly 
state results without proving them, and I’l l  mostly 
explain things with pictures rather than equations. 
(Much as I love algebra, this is an area where the 
algebra can make things look more complicated than 
they really are.) You can get more information from any 
book on signal processing. My favorite is Transmission 
and Display of Pictorial Information by D.E. Pearson, 
Halsted Press, John Wiley and Sons, New York, 1975. 

The Fourier transform 
Loosely speaking, the Fourier transform (FT) is a 

way of representing a function as the sum of a bunch of 
sine waves of various frequencies. It’s as though there 
were a Twilight Zone version of each function. Normal 
functions exist in the “spatial domain” while the FT 
doppelgangers exist in the “frequency domain.” 

There are actually two numbers to specify each fre- 
quency component: an amplitude and a phase offset (or 
horizontal position). These two are usually encoded as 
a single complex number. A complete FT plot would 
then require three dimensions (real and imaginary axes 
versus frequency) and be a bit confusing, so I will just 
plot the magnitudes (amplitudes). 

If an input picture happens to be symmetric about 

Why do I bring this up? I recently attended a product 

I think he meant “antialiasing.” I suppose the mere 

To understand aliasing, you need to start with 

the origin, the imaginary part of the FT is zero. In this 
case I will plot the real part of the FT, which may have 
negative values, instead of the magnitude. 

Remember, there’s no new information in a Fourier 
transform; it’s just a different way of looking at an 
existing function. 

Convolution 
A convolution takes two input functions and 

generates a third. It is a sort of sliding weighted average 
of the first function with the second function providing 
the weights. Glossing over a few details, it is formed as 
follows: Multiply the two functions together and inte- 
grate the result. Plot this number at 0. Slide the weight- 
ing function to the right by x. Multiply and integrate 
again; plot this number at x. Repeat this for every x you 
want to plot. Look at the convolutions of Figure 1 to get 
a feel for this. 

The convolution theorem 
Convolutions are interesting because of how they 

interact with Fourier transforms. Suppose you multiply 
two functions together to get a new function. What do 
their FTs look like? It turns out that if you convolve the 
FTs of the original functions, you get the FT of the new 
function. Symmetrically, if you convolve two functions 
to get a third, you can multiply their FTs to get the FT 
of the third. Multiplication in the spatial domain 
becomes convolution in the frequency domain and vice 
versa. It’s sort of like logarithms, in which multiplica- 
tion of normal numbers becomes addition in the “loga- 
rithm domain.” (You remember what logarithms are, 
don’t you? They’re what they use to make slide rules.) 

What does this have to do with pictures? 

one dimension, along a single 16-pixel scan line. I’ll 
present the story in parallel with spatial functions in 
Figure 1 and with the FT of these functions in Figure 2. 

Let’s look at the image-making process in just 
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Figure 1. Spatial domain. 

The horizontal scales of the FTs are in units of 
cycles/pixel. The little boxes down the center show 
how the functions are combined, “X” for multiplica- 
tion and “C” for convolution. 

First, a few things about the production of the pic- 
tures. To get an approximately continuous plot, I super- 
sampled the functions by 8 times, giving a total of 128 
subsamples. This is not an awful lot, so functions that 
are supposed to be impulses appear as tall skinny trian- 

gular pulses. Also, a straight FT of 128 subsamples 
generates amplitudes that are 8 times too big. They 
have therefore all been scaled by one eighth. 

Getting back to the pictures, we start with some con- 
tinuous intensity as a function of the x position, PICT. 
It has a sharp edge, some smooth area, and some highly 
detailed area. Its FT has a spike at frequency 0 (this 
represents the average intensity over the whole line) 
and trails off with lower amplitudes for the higher fre- 
quencies. Notice the bump in the FT at about 1.6 
cycles/pixel that comes from the high detail region of 
the original image. 

Next, sample the intensity at the center of each pixel. 
That’s tantamount to multiplying PICT by the function 
COMB giving SPICT. Remember, multiplying spatial 
functions implies convolving frequency functions. The 
FT of COMB happens to be another comb with teeth 
spaced at 1 cycle/pixel. So, looking at the sampling pro- 
cess in the frequency domain, what we have done is 
convolve the original FT with a comb function. That’s 
the same as adding together a whole lot of copies of the 
FT, all shifted 1 cycle/pixel apart. Since the original 

76 IEEE Computer Graphics & Applications 



2 

1.5 

1 

5 

0 a -35 -3 -2.5 

a -3.5 -3 -2.5 -2 -1.5 -1 -3 0 .5 1 1.5 2 2.5 3 3.5 4. 

J 

1 

8 

6 

4 

2 

0 

-.2 

Mag IT(BPICI? 

8 

6 

I I  4 

2 

0 
-3.5 -3 -2.5 -2 -1.5 -1 -3 0 .5 1 1.5 2 2.5 3 35 4 

Figure 2. Frequency domain. 

frequency function stretches quite far in the plus and 
minus directions, the copies will overlap. This is where 
“aliasing” comes from. The high frequencies of a 
shifted copy overlap onto the low frequencies of the 
central copy. This shows up with the 1.6 cycles/pixel 
bump producing the little spikes in the FT of SPICT at 
frequencies of .6, -.4, etc., and the -1.6 bump making 
spikes at -.6, +.4, etc. Once these have been added in, 
there is no way to tell them apart from the original 

i -1.5 

IT(B0X) 

-5 0 .5 1 1.5 25 
~ 3.5 

amplitudes at .4 and .6. Sampling is essentially an 
information-destroying process. We started out with 
unique frequencies across the whole spectrum. Now 
we have only the region between -.5 and +.5 and 
several identical copies of it. 

Next, we try to display the scan line on a CRT. This 
process is called “reconstruction.” We pass each pixel 
value through a D/A converter for the duration of one 
pixel time. This turns the sampled function from a 
train of spikes into a stairstep function. This can be 
represented functionally as a convolution of the sam- 
pled picture with a box one pixel wide, BOX. (I have 
plotted the stairsteps centered at the pixels to make it 
easier to compare with the original picture. Really they 
should be shifted half a pixel to the right.) The fre- 
quency domain interpretation of this is to multiply the 
sampled FT with the FT of BOX. This shrinks down the 
extra copies of the spectrum, but there is still a bit of 
them left. Remember that all the stuff above .5 c/p and 
below -.5 c/p looks like information, but isn’t. It’s just 
mathematical debris left over from the frequency- 
replicating sampling process. The frequency .5 is called 
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Figure 3. Spatial domain. 

the Nyquist frequency. 
Finally, the spot on the CRT itself has an approxi- 

mately Gaussian intensity distribution. Stroking across 
the screen, the electron beam convolves itself with the 
output of the D/A converter. In the frequency domain 
this means multiplication by the FT of the Gaussian 
(another Gaussian as it happens]. 

You can see what damage is done to the picture both 

in the spatial domain and in the frequency domain by 
comparing the bottom plot on each sjde with the top 
plot. The sharp edges are smoothed over. The high fre- 
quency ripple region has turned into something com- 
pletely bogus. In the FT the high frequencies have been 
removed, and there are some extra spikes in the low fre- 
quency caused by aliasing. 

The signal-processing solution 

about aliasing: Kill it before it multiplies. Follow along 
in Figure 3 (the spatial domain) and Figure 4 (the fre- 
quency domain). 

Since we can't represent high frequencies accurately, 
and since they will return to haunt us disguised as low 
frequencies, we have to get rid of them before sam- 
pling. It's obvious how to do this in the frequency 
domain. Just multiply the FT of the picture by zero for 
frequencies beyond .5 cycles/pixel. What does this 
translate into in the spatial domain? Convolve the origi- 
nal picture with the inverse FT of a box function, the 
function [sin x ) / x .  This is interesting; we would not 
have thought of this particular function off the tops of 

The world of signal processing tells us what to do about 
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Figure 4. Frequency domain. 

our heads. The result is a blurred image whose FT has 
no frequencies greater than .5 cycles/pixel. 

The sampling process then operates as before, but 
now when we go to convolve the FT with a comb we 
have the happy consequence that the FTs do not over- 
lap. No aliasing occurs because there are no high fre- 
quencies to alias. 

Actually, the filtering and sampling can be combined 

into one operation. Since we know we need the sam- 
ples only at pixel centers, don’t bother convolving the 
LFILT continuously through the picture. Just calculate 
a weighted average at each pixel center, using LFILT as 
the weighting function. 

Signal-processing theory then goes on to tell us that 
to reconstruct our best approximation to the original 
picture, we must remove the extra copies of the FT by 
convolving with another low-pass filter. Again obvious 
in the Fourier domain, multiply by a box function to 
squash out the extra copies. In the spatial domain this 
consists of placing copies of LFILT at each pixel, scaled 
by the sample value, and adding them up. 

home now. Or can we? 

What’s wrong with this picture? 
Most signal processing was invented to deal with 

sound or radar signals. But remember, this is computer 
graphics-it’s not supposed to be this easy. And, as 
usual, the real world doesn’t disappoint us in this 
regard. Unfortunately, I seem to be out of room, so the 
problems and their solution must wait for next time. 

So ... simple. The problem is solved. We can all go 
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