
Scalable and Shape Sensitive As-Rigid-As-Possible Deformations

Paper ID 1234

Figure 1. Several poses obtained with skeleton-driven as-rigid-as-possible deformations.

Abstract

The use of as-rigid-as-possible deformations in standard
applications such as character animation or modeling has
been hindered by two factors: its relatively high cost, spe-
cially when aimed at large models, and the fact that it was
originally conceived as a space-deforming scheme, being
virtually blind to the shape of the model. In this paper we
discuss two enhancements of this technique: a less expen-
sive formulation which provides approximate results, and
a skeleton-driven deformation scheme capable of deform-
ing meshes in a shape-sensible way. Both methods are ca-
pable of handling models of up to a few hundred thousand
vertices at interactive rates.

1. Introduction

The ability to edit large 3D models in a controlled way is
useful in a variety of applications including modeling, ani-
mation, shape interpolation, illustrative visualization, surgi-
cal simulation, games and many others. The problem usu-
ally imposes some restrictions on the desired result, such as
minimizing detail distortion, preserving volumes or avoid-
ing self-intersections. It is also common to require that the
method is able to apply deformations at interactive rates.

In this work, we study how to perform the so-called
as-rigid-as-possible deformations [2] on large models, i.e.,
models composed of up to a few hundred thousand vertices.
The term “as-rigid-as-possible” arises from the fact that the
deformation applied to each point of the space is expressed
as a rigid transformation. Schaefer et al. [18] have shown
how such deformations can be applied to 2D images by us-
ing a Moving Least Squares (MLS) minimization scheme.
In that work, the authors noted that the extension of their
method to 3D would probably lead to an eigenvector prob-
lem. Recently, a method capable of handling 3D models [7]
was presented. In that approach, the standard eigenvalue
problem is replaced by the solution of a depressed quar-
tic equation for each vertex. Although that approach is suit-
able for editing small models, it fails to yield interactive
rates when applied to dense meshes. The two main con-
tributions of this work are aimed at improving the scala-
bility of the process of applying as-rigid-as-possible defor-
mations on 3D models. Namely, we describe a mathemati-
cal framework capable of computing such deformations in
an approximate way, and a skeleton-driven deformation ap-
proach suitable for character animation.

In a nutshell, the approximate method follows closely the
mathematical reasoning of [7], i.e., the rotation transforma-
tion to be applied to each vertex of the model is expressed in
terms of a rotation axis and an angle which maximize a non-



linear system. However, rather than determining one eigen-
value for each mesh vertex, an approximate solution is com-
puted by solving a linear 3×3 system. The second proposal
adapts the MLS space deformation scheme into a method fit
for deforming meshes by switching from a purely Euclidean
distance metric to a shape-sensible metric based on skele-
tons. The transformation for each mesh vertex is computed
by linear interpolation of the rigid transformations of the
associated skeleton joints. Experiments show performance
improvements over the approach of [7] of around 3× for
both the approximate method and the skeleton-driven de-
formation.

2. Related work

Algorithms and techniques for applying deformations to
3D models have been intensely investigated in the last two
decades. Alexa et al. recently surveyed the area [1], divid-
ing the various approaches into freeform methods, which
are mostly aimed at producing global smooth deformations,
and detail-preserving methods. The former class is further
divided into surface-based and space-based methods, while
the latter class includes, among others, multiresolution tech-
niques and methods based on differential coordinates.

Several of these techniques cope well with large-
sized models. Multiresolution methods work by reducing
the original model’s cardinality to a coarse represen-
tation [13, 15, 16]. Others simply divide the models
into parts on which deformations may be applied us-
ing a quick method and later combine the deformed
parts into a smooth whole [10, 4]. Skeleton-driven de-
formation approaches (e.g., [14, 22]) are special cases
of this idea where the partition is induced by an artic-
ulated structure which is also used to specify the de-
sired deformation. A key problem of these approaches is
how to extend the deformation of the parts to the com-
plete model. The most commonly used method for per-
forming this task is known as skeletal subspace defor-
mation (SSD) or linear blend skinning. SSD is a popular
because of its simplicity and efficiency. The idea is to em-
bed a skeleton in the model and assign its vertices to
bones of the skeleton. Each vertex may be bound to mul-
tiple bones with a set of weights to indicate the influence
of each bone. In this context, a separate problem con-
sists of building a suitable skeleton. This can be done either
manually or by means of some skeleton generation algo-
rithm (see [6] for a recent survey).

One of the key disadvantanges of SSD is that linear inter-
polation may generate artifacts. This has led to the proposal
of enhancements such as extra weights [21], extra bones
[17] and nonlinear interpolation [19]. Recently, Kavan et al.
[12] show how to address some of the SSD drawbacks by
using dual quaternions to perform the skinning process.

The so-called as-rigid-as-possible deformation methods
are of special interest, since they tend to produce physically
plausible results by avoiding unnatural shearing and non-
uniform scaling of the model. In particular, by making use
of a Moving Least Squares approach, Schaefer et al. [18]
have recently presented a way of computing such deforma-
tions for 2D images.

In order to produce as-rigid-as-possible deformations in
<3, it is necessary to obtain a rigid transformation which
best approximates a mapping f : <3 7→ <3, f(pi) = qi, for
given sets of points {pi}, {qi}. This problem is also known
as point registration, or, more specifically, the Absolute Ori-
entation Problem. Analytical solutions have been proposed,
for instance, based on SVD (Singular Value Decomposition)
[3], quaternions [8, 11], orthonormal matrices [9] and dual
quaternions [20]. Another related group of techniques in-
cludes those based on iterative schemes such as the ICP
(Iterative Closest Point) algorithm [5] and its variants. In
[7] a solution is proposed where the axis and angular pa-
rameters of the rotation are obtained. That method requires
a smaller number of computations than matricial and even
quaternion-based approaches, but is still quite computation-
ally expensive, as it requires solving a depressed quartic
equation for every vertex of the mesh.

3. Moving least squares deformation

The Moving Least Squares (MLS) formulation can be
thought of as an extension of the traditional Least Squares
minimization technique. Rather than finding a global opti-
mum solution for the problem, MLS tries to find continu-
ously varying solutions for all points of the domain. Let us
define the deformation operation as a transformation which
maps a set of points {pi} of the domain onto new posi-
tions {qi}. Thus, solving the problem for a given point
v = [x y z] of the domain can be reduced to finding the
best transformation lv(x) that minimizes∑

i

wi|lv(pi)− qi|2, (1)

where wi are weights of the form wi = |pi−v|−u for some
integer constant u > 0.

Let us define the deformation function f as f(v) = lv(v).
We observe that when v is close to some constraint pi, then
wi tends to infinity, which means that f is interpolating with
respect to the constraint points, i.e., f(pi) = qi. Further-
more, if qi = pi, then f(v) = v, for all v, meaning that,
in this case, f is the identity function. Finally, it can be
shown that f is smooth everywhere for u ≥ 2. This de-
fines the Moving Least Squares minimization in which the
sought transformation lv depends on the point of evaluation
v.



3.1. As rigid as possible MLS

By imposing different additional requirements on the
form of lv, we may obtain different results. We may re-
quire, for instance, that lv is a general affine transformation,
in which case the classical normal equations solution can
be applied directly [18]. For obtaining deformations which
are as rigid as possible, lv must be constrained to be a rigid
transformation, i.e., lv must be of the form: lv(x) = xR+T,
where R is a rotation matrix and T is a translation vector.
Solving for T yields T = q* − p*R, where q* and p* are
the weighted centroids of {qi} and {pi} respectively:

q* =
∑

i wi qi∑
i wi

. p* =
∑

i wi pi∑
i wi

, (2)

This permits us to factor out the translation from (1) by
rewriting it as ∑

i

wi|p̂iR− q̂i|2, (3)

where q̂i = qi − q* and p̂i = pi − p*. Expanding (3), we
infer that R minimizes (3) if and only if it maximizes∑

i

wiq̂iRp̂T
i . (4)

3.2. 3D rigid transformations

In 3D space, R may be defined as a rotation of an angle
α around an axis e. Applying such a rotation on a vector v
yields:

Re,α(vT) = eTevT + cos(α)(I− eTe)vT + sin(α)(e× v).
(5)

By replacing this definition of R in (4) we obtain∑
i

wiq̂iRp̂T
i = e M eT+cos(α)(E−e M eT)+sin(α)V eT,

where

M=
∑

iwiq̂T
i p̂i =

 ∑
iwiq̂ixp̂ix

∑
i wiq̂ixp̂iy

∑
iwiq̂ixp̂iz∑

iwiq̂iyp̂ix

∑
i wiq̂iyp̂iy

∑
iwiq̂iyp̂iz∑

iwiq̂izp̂ix

∑
i wiq̂izp̂iy

∑
iwiq̂izp̂iz

 ,

E=
∑

iwiq̂i · p̂i= Trace(M),

V=
∑

iwip̂i×q̂i=(M23−M32 M31−M13 M12−M21).
(6)

3.3. Optimization problem

Thus, the optimization problem can be written as

max F(e, α) = e M eT+cos(α)(E− e M eT)+sin(α)V eT

s.t. ‖e‖ = 1,

cos(α)2 + sin(α)2 = 1. (7)

By considering the optimality conditions (Kuhn-Tucker)
for this problem, the solutions must satisfy

(1− cos(α)) e(M + MT) + sin(α)V = k1 e, (8)(
E− e M eT

V eT

)
= k2

(
cos(α)
sin(α)

)
.(9)

If these conditions are satisfied with α = 0 or k2 = 0
then F(e, α) = E. While searching for (e, α) such that
F(e, α) > E, we can, therefore, assume that both these con-
ditions do not hold. If that search does not succeed, the null
rotation is a solution of (7).

Define N = M + MT. Under the assumptions above the
system (8) can be re-written in a more compact form as:

(N− λI) uT = VT (10)

VuT = ‖u‖(VeT) = 2E− λ. (11)

where

u =
1− cos(α)

sin(α)
e and λ =

k1

(1− cos(α)).
(12)

It is possible to show that the optimal rotation of a vector
v can be computed by

Re,α(v) = v− 2(u× (v× u) + (v× u))
1 + ‖u‖2

(13)

Finally, it can be proved that u is related to the quater-
nion q of the optimal rotation Re,α by the Equation q =
cos(α/2)(1, u).

Now using Equation 11 to eliminate λ from (10), so that
u becomes the only unknown, we obtain

(N− (2E− VuT)I)uT = VT, (14)

which is non-linear.
Now, let us consider a typical application where the de-

formation process is performed interactively. In this case,
the user employs some GUI to drag one or more control
points while examining the intermediate results. This means
that the deformation is computed repeatedly, with the result
for each step differing from that of the previous step by a
small amount. Let index k refer to the kth step of such an in-
teractive deformation session, for which equation (14) must
hold, that is,

(Nk − (2Ek − VkuT
k )I)uT

k = VT
k . (15)

For sufficiently high sampling rates, however, we may as-
sume uk−1 ∼ uk. This suggests a linearization of (15), al-
lowing us to obtain uk directly from

(Nk − (2Ek − VkuT
k−1)I)u

T
k = VT

k , (16)

where the initial solution u0 is set at 0.



(a) (b) (c) (d) (e) (f)

Figure 2. Reinitializing the process. The method works correctly if det(M) > 0 (a) and (b), but results
in distortions for det(M) ≤ 0 (c) and (d). Automatic reinitialization yields correct results (e) and (f).

3.4. Correlation matrix updating

The components of system (16) Nk, Ek, Vk can all be
obtained from de correlation matrix Mk. In relation to the
cost of computing that matrix we observe that in the com-
mon case where some control points are translated by the
same vector – dk in iteration k – that matrix can be ob-
tained by adding to M0 the result of an unique tensor prod-
uct dk ⊗

∑
i∈M wip̂i where M = {i | piis non-fixed}.

Thus, we see that, at each step, a new solution may be ob-
tained very cheaply from the solution computed in previous
step. Essentially, the work needed for each vertex is O(n),
where n is the number of control points being moved. This
is similar to the complexity of [7]. Note, however, that the
constant work needed for each vertex is dominated by the
solution of a 3× 3 linear system. This means that the com-
putational effort is only a fraction of the cost of exact ap-
proaches which require the computation of eigenvalues of
the correlation matrix M and its eigenvectors [3, 8, 9, 11].

Incidentally, we have tried other ways for linearizing
(15) with less convincing results. For instance, uk can be
obtained by adding an increment to uk−1 which is deter-
mined by solving a first order approximation of (15). In that
case, however, the average error is not reduced and the per-
formance becomes worse since there are more variables to
be computed.

We conducted a simple experiment to assess how the
error between the exact and approximate solutions accu-
mulates during the deformation process of the position of
the vertices during a 10-step deformation of the dolphin
model (see Figure 2(a)). We have observed that the biggest
maximum error value corresponds to an angular difference
smaller than 3◦, while the biggest average error is smaller
than 1◦.

3.5. Reinitializing the process

A deformation session usually assumes an initial model
on which control points {pi} are placed and some sort of

user interface for establishing the displaced positions {qi}
of the control points. It is reasonable to think that after a few
interactions, the user may choose to restart the process by
using the deformed model as an initial model on which fur-
ther deformation is to be applied. Alternatively, such a re-
initialization be done automatically by the system. At any
rate, the current values {qi} then become the initial values
{pi} and the corresponding weights wi(v) must be recom-
puted.

It should be clear, however, that frequent restarts will
end up erasing the memory of the initial model, which may
be regarded as contradictory with the idea of “as-rigid-as-
possible” deformations. On the other hand, keeping the ini-
tial values of wi(v) during the whole deformation process
may cause undesirable twisting effects as illustrated in Fig-
ure 2. These effects are due to the discontinuities in the ro-
tation function Re,α(·). However, since these discontinuities
can only occur if det(M) ≤ 0, they can be totally eliminated
by checking the sign of det(M(v)) for all v and restarting the
process if a non-positive value is found. Thus the computa-
tion of sign(det(M(v))) must be efficient so that the over-
all performance of the system is not impacted. This can
be accomplished in the case of the most common interac-
tion which corresponds to keeping some control points fixed
and displacing the others by the same vector. In this case
sign(det(M(v))) can be determined with only 3 multiplica-
tions, provided that some auxiliary values are computed in
a preprocessing step.

4. Skeleton-driven mesh deformation

The scheme described in the earlier sections produces
a space deformation, i.e., it defines a <3 → <3 map-
ping. The modeling of a particular deformation is influ-
enced merely by a discrete set of {pi, qi} pairs. As such,
any model immersed in 3-space will be subject to the same
deformation, with no consideration to its shape. This is un-
fortunate in many important applications – character ani-
mation, in special – where the desired deformation must



Figure 3. MLS-based space (top) and
skeleton-driven (bottom) deformation.

take into account model peculiarities such as overall shape,
bone structure and the position and geometry of articula-
tions. As an illustration, contrast the unnatural deformation
shown in Figure 3(b) with the more reasonable deforma-
tion exhibited in Figure 3(c). In this section, we describe
a scheme whereby as-rigid-as-possible space deformations
can be made to adapt to mesh models by combining them
with skeleton-based animation techniques. Our goal is to
obtain realistic model poses specified by suitably placing a
small set of control points.

Traditional methods used in character animation for ob-
taining deformed models involve the creation of a “skele-
ton”, i.e., an articulated structure of line-segment “bones”,
which are used to set the model pose. Additionally, surface
mesh elements (vertices, mostly) must be assigned to indi-
vidual bones, thus making the model shape conform to the
skeleton pose. The term rigging is frequently used to re-
fer to the process of creating a skeleton and associating its
bones to surface parts. On the other hand, the smoothness of
the skeleton-induced deformation must be assured by some
interpolation scheme, a process known as skinning.

Both the creation of the skeleton and the assigning pro-
cess may be done manually by the animation artist or
by means of some automatic or semi-automatic process
[6, 14, 17, 21, 22]. In the method we propose for achiev-
ing mesh deformation, skeletons are not manipulated di-
rectly by the animator, rather, they are used as a medium
for estimating distances in a shape-sensible way. In a nut-
shell, we employ a variation of the MLS-based deforma-
tion algorithm in which Euclidian metrics are replaced by
a skeleton-based metric. This algorithm is applied to a few
points of the skeleton, namely, on the joints. The transfor-
mations of the joints are then transmitted to all vertices of
the model surface by means of an interpolation scheme.

4.1. Rigging

We propose a rigging scheme which supports both user-
defined and automatically constructed skeletons. Once the

skeleton is known, we define the skin Si of a bone bi as the
union of two sets of mesh vertices: The primary skin Pi of
a bone bi is the set of mesh vertices v such that, among all
bones of the skeleton which are visible to v, bi is the clos-
est. By visible, it is meant that a line segment from v to
the closest point in bi does not intersect the mesh. The sec-
ondary skin Ri of a bone bi is the set of vertices for which
bone bi is the solution of the problem

min
bj

g(v, Pj), (17)

where g(a,X) is the geodesic distance between a point a
and a set of points X . Recall that the geodesic distance be-
tween two points of a surface is the length of the shortest
path on the surface which connects them.

It should be mentioned that exact algorithms to compute
these sets are fairly costly. Thus, rather than computing ex-
act geodesic path lengths, we restrict paths to be composed
of mesh edges. This makes it possible to employ Dijkstra’s
path length algorithm starting from vertices on the border
of primary skin sets to find secondary skin vertices.

Similarly, visibility determination using, say, a ray-
casting algorithm is unduly expensive for the task at hand.
Rather, we use a visibility diffusion algorithm which em-
ploys a “local” visibility property. A bone bi locally visible
to a vertex v if the angle between the (inwards-facing) nor-
mal at v and the vector from v to the closest point of bi

is smaller than 90 degrees (we assume that bones are al-
ways placed inside the mesh). Let L(bi) be the set of mesh
vertices locally visible to bi and which are closer to bi

than to any other bone bj to which it is also locally vis-
ible. Then, the algorithm for finding the primary skin of
bone bi is the following:

1. Let P (bi) be {seed}, where seed is the vertex of L(bi)
which is closest to bi.

2. Search L(bi)− P (bi) for a vertex v′ such that v′ is an
edge neighbor of some vertex v ∈ P (bi).

3. If such a vertex is found, place it in P (bi) and repeat
step (2). Otherwise, stop.

This algorithm is very quick, as finding edge neighbors
and testing for local visibility are constant-time operations.
Eventually, other seeds must be found by an elementary ray-
casting method and the process above repeated for them. We
remark that the context of that ray-casting process is con-
strained to a neighborhood of bi. In our experience, even if
a vertex that should belong to a primary skin has not been
found, in most of the times, the algorithm to compute sec-
ondary skins has assigned that vertex to the correct bone.
Moreover, it should be stressed that the skinning process
used for deforming the model is fairly robust to vertex as-
signment errors. Figure 4 illustrates the primary and sec-
ondary skins.



Figure 4. Rigging. the primary skin Pi of bi

is the border of the red region, and the sec-
ondary skin Ri is the border of the yellow re-
gion.

4.2. Skinning

The skeleton-driven deformation process starts by ap-
plying as-rigid-as-possible transformations to the skeleton
joints. This follows the same lines discussed in Section 3,
except that Euclidian distances are replaced by path dis-
tances along the skeleton. The joint transformations, in turn,
will define the transformations along the connected bones
using linear interpolation. If we consider that a bone bi

contributes to the transformation of a vertex v by a factor
proportional to ρ(bi, v), then that contribution is ρ(bi, v) ·
T (ni(v)), where ni(v) is the point of bone bi closest to v
and T (x) stands for the transformation of a point x of a
bone.

All it remains is to find a weighting scheme capable
of ascertaining the smoothness of the deformed mesh. Let
h : [0,∞) → [0, 1] be any smooth function such that
h(0) = 1, h decreases in [0, r] and is null in [r,∞) for a
given value r > 0 which acts as the maximum amplitude
of a diffusion process. Thus, the weight ρ(bi, v) is given by
ρ(bi, v) = h(g(v, Si). Possible choices for h in [0, r] are:

h(x) =
Gr/3(x)−Gr/3(r)
Gr/3(0)−Gr/3(r)

, (18)

where Gσ is the Gaussian function relative to the normal
distribution of average 0 and standard deviation σ or

h(x) = (1− x

r
)2, (19)

which was most often used in our experiments due to its
simplicity.

In our implementation, vertex weights are computed by
extending the process used to obtain secondary skins, i.e.,
visiting all mesh points with a geodesic distance smaller
than r from the border of Si.

Finally, the transformation applied on any given vertex v
is given by

T (v) =

∑
bi

ρ(bi, v)T (ni(v))∑
bi

ρ(bi, v)
. (20)

We conclude by observing that this formulation can be
made more efficient by expressing the vertex transformation
directly as a function of the transformations of the joints.

5. Implementation and Results

Our prototype was implemented in C++ and OpenGL
under Linux. All the experiments were rendered on screens
with 600 × 600 pixels. Times have been taken on a PC
equipped with a Pentium-IV Core 2 Duo processor running
at 2 × 2.13 GHz, with 2GB of main memory and a NVidia
GeForce 7600GT graphics card.

The algorithm inputs are the model mesh, with nv ver-
tices, and the control point sets {pi, qi}, with cardinality
nc. The implementation of the deformation algorithm is di-
vided in two phases, a setup phase and an interaction phase.
The first phase consists of pre-computing several tables. It
takes place just after the first step of the interaction, i.e., for
k = 1. In the approximate deformation case, the follow-
ing values are pre-computed:

(1) The table of weights wij of size nv × nc.

(2) The vector table p̂ij of size nv × nc.

(3) The vector array v̂i of size nv .

(4) The array of matrices {Mi} of size nv .

(5) The vector array {ui} of size nv .

(6) The vector array p̂i∈M, whereM is the set of non-fixed
constraint points.

The initialization code is a direct implementation of the for-
mulae presented in Section 3. Recall that the values of ui

are initially set to 0. Observe that items (4), (5) and (6) are
not necessary for the exact deformation algorithm.

All the experiments involving skeleton-driven deforma-
tion use the exact algorithm. For these, however, the rigging
procedure must be included in the pre-processing phase. If
the data structure for storing the skeleton has nj joints, then
the process stores for each mesh vertex an array with nj

weights ρ. Notice that only the skeleton joints are actually
deformed in an as-rigid-as-possible way, i.e., nv = nj .

The second phase performs the deformation in every
frame after the user changes the control points positions
{qi}. Notice that values (1), (2), and (3) are constant dur-
ing the interaction. For the approximate deformation each
new step in the interaction starts by filling up variables (4)
and (5) with the new values for {qi} and {∆qi}.

Experiments

The first batch of experiments consisted of deforming the
Armadillo model in several resolutions using: (i) the exact
method of [7], (ii) the approximate method using only the



Vertices CtrlPoints Exact +M +u +M+u

50K 5 22 31 39 62.5
100K 5 10.5 15 18 29
165K 5 6.5 9 11.5 17.5
50K 15 13 31 18 62.5
100K 15 6.5 15 9.5 29
165K 15 4 9 6.0 17.5

Table 1. Frame rates for the approximate de-
formation of the Armadillo model.

Model Vertices Joints Ctrls Exact r0 r1 r2

Armadillo 165K 33 5 6.5 17 18 19.5
Elephant 185K 29 5 5 13 14 16
Hand 195K 32 6 4.5 12 13 14.5
Dragon 247K 26 5 4 10 11 12

Table 2. Deformation frame rates using the
skeleton-driven scheme.

continuous updating of Mi, (iii) the approximate method us-
ing only the continuous updating of ui, and (iv) the approx-
imate method with continuous updating of both Mi and ui.
The frame rates obtained in these experiments are shown in
Table 1. In general, the rendering speed increases roughly
3× when we contrast the exact method with the approxi-
mate method. Moreover, notice that the continuous updat-
ing of Mi does help more if the number of constraints is not
small.

The second batch of experiments compare space defor-
mations with skeleton-driven mesh deformations. Table 2
presents frame rates obtained with both deformation algo-
rithms for the models in Figure 5, where the factor r which
controls the diffusion process was varied between 0.1 and
0.3. We notice that the skeleton-driven deformation scheme
is approximately 3× faster than the space-based scheme.
This was expected, given that the costly as-rigid-as-possible
deformation is applied to much fewer vertices in the former
case. The influence of r can be explained by the fact that
smoother deformations require that more joints be taken
into account for many vertices.

Another important consideration is that, in all experi-
ments, vertex normals were merely transformed from their
values in the original model, rather than re-estimated from
face normals at each frame.

6. Conclusions and future work

This work describes two alternatives aimed at making
3D “as-rigid-as-possible” MLS a competitive option for de-
forming mesh models. In a purely algebraic context, we
have proposed a method for obtaining approximate solu-
tions without solving more costly eigenvalue/eigenvector
problems. On the other hand, a skeleton-driven scheme was
developped, transforming the original space-deforming al-
gorithm into one which is more sensible to the geometry
of meshes. As a side-effect, this approach is also more ef-
ficient, since only skeleton joints must be transformed di-
rectly by the MLS formulation.

The proposed skeleton-driven method employs rigging
and skinning procedures which require a very simple set of
operations – essentially, the computation of distances from
vertices to bones and a progressive expansion process in the
mesh graph.

Experiments show that these alternatives substantially
increase the frame rates of interactive deformation sessions
of models with up to a few hundred thousand vertices. In
particular, the skeleton-driven framework is suitable for use
in character animation.

We are currently working on GPU-based implementa-
tions of these algorithms. Early results indicate that a GPU
implementation of the exact method improves it by factor of
up to 2×. Two variants of the present work are being stud-
ied. One of them is to provide skeleton joints and bones
with a cost structure to make it possible to express prop-
erties like stiffness or degrees of liberty. The other variant
concentrates in building a more natural user interface suit-
able for character animation.

References

[1] M. Alexa. Interactive shape editing. ACM SIGGRAPH
Courses, 2006.

[2] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible
shape interpolation. Proceedings of SIGGRAPH 2000, pages
157–164, July 2000. New Orleans, Louisianna USA, July
23-28.

[3] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares
fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach.
Intell., 9(5):698–700, 1987.

[4] O. K.-C. Au, H. Fu, C.-L. Tai, and D. Cohen-Or. Handle-
aware isolines for scalable shape editing. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2007), 26(3):to ap-
pear, 2007.

[5] P. J. Besl and N. D. McKay. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and machine
Intelligence, 14(2):239–258, Feb. 1992.

[6] N. D. Cornea, D. Silver, and P. Min. Curve-skeleton
properties, applications, and algorithms. Visualization and
Computer Graphics, IEEE Transactions on, 13(3):530–548,
May-June 2007.



Figure 5. Deformation examples.

[7] A. Cuno, C. Esperança, A. Oliveira, and P. R. Cavalcanti.
3D as-rigid-as-possible deformations using MLS. In CGI
2007: Proceedings of the 27th Computer Graphics Interna-
tional Conference, page to appear, 2007.

[8] B. K. P. Horn. Closed form solutions of absolute orienta-
tion using unit quaternions. Journal of the Optical Society of
America, 4(4):629–642, Apr. 1987.

[9] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed
form solutions of absolute orientation using orthonormal ma-
trices. Journal of the Optical Society of America, 5(7):1127–
1135, 1988.

[10] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng,
H. Bao, B. Guo, and H.-Y. Shum. Subspace gradient domain
mesh deformation. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, pages 1126–1134, New York, NY, USA, 2006.
ACM Press.

[11] K. Kanatani. Analysis of 3-d rotation fitting. IEEE Trans.
Pattern Anal. Mach. Intell., 16(5):543–549, 1994.

[12] L. Kavan, S. Collins, J. Zara, and C. O’Sullivan. Skinning
with dual quaternions. In I3D ’07: Proceedings of the 2007
symposium on Interactive 3D graphics and games, pages 39–
46, New York, NY, USA, 2007. ACM Press.

[13] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. In-
teractive multi-resolution modeling on arbitrary meshes. In
Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 105–114, New
York, NY, USA, 1998. ACM Press.

[14] J. P. Lewis, M. Cordner, and N. Fong. Pose space deforma-
tion: a unified approach to shape interpolation and skeleton-
driven deformation. In SIGGRAPH ’00: Proceedings of the
257th annual conference on Computer graphics and interac-
tive techniques, pages 165–172, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[15] M. Marinov, M. Botsch, and L. Kobbelt. Gpu-based mul-
tiresolution deformation using approximate normal field re-

construction. ACM Journal of Graphics Tools, 2007, to ap-
pear, 2007.

[16] L. K. Mario Botsch. Multiresolution surface representation
based on displacement volumes. Computer Graphics Forum,
22(3):483–491, 2003.

[17] A. Mohr and M. Gleicher. Building efficient, accurate char-
acter skins from examples. In SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers, pages 562–568, New York, NY, USA,
2003. ACM Press.

[18] S. Schaefer, T. McPhail, and J. Warren. Image deformation
using moving least squares. ACM Trans. Graph., 25(3):533–
540, 2006.

[19] N. M. Thalmann, F. Cordier, H. Seo, and G. Papagianakis.
Modeling of bodies and clothes for virtual environments. In
CW ’04: Proceedings of the 2004 International Conference
on Cyberworlds (CW’04), pages 201–208, Washington, DC,
USA, 2004. IEEE Computer Society.

[20] M. W. Walker, L. Shao, and R. A. Volz. Estimating 3-D lo-
cation parameters using dual number quaternions. CVGIP:
Image Understanding, 54(3):358–367, Nov. 1991.

[21] X. C. Wang and C. Phillips. Multi-weight envelop-
ing: least-squares approximation techniques for skin ani-
mation. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation,
pages 129–138, New York, NY, USA, 2002. ACM Press.

[22] H.-B. Yan, S.-M. Hu, and R. Martin. Skeleton-based shape
deformation using simplex transformations. In Computer
Graphics International, pages 66–77, 2006.


