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Abstract 

We show how to use fixed bases for efficient spectral 
compression of 3D meshes. In contrast with compres-
sion using variable bases, this permits efficient decoding 
of the mesh. The coding procedure involves efficient 
mesh augmentation and generation of a neighborhood-
preserving mapping between the vertices of a 3D mesh 
with arbitrary connectivity and those of a 6-regular 
mesh. 
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1. Introduction 

Due to the need to transmit 3D data sets rapidly over the 
Internet, 3D mesh compression is an important and ac-
tive research topic. Since most of the 3D content in use 
are polygonal meshes, most of the published work con-
centrates on coding that type of data, consisting of two 
main components: mesh connectivity and mesh geome-
try. Mesh connectivity has a combinatorial graph struc-
ture, so can be coded losslessly, as has been done by a 
variety of methods (e.g. [6,7]). Mesh geometry consists 
of the floating-point coordinates of the mesh vertices in 
3D space, so may incur loss when coded. The simplest 
way of implementing this is to uniformly quantize each 
coordinate to an integer grid, and then losslessly code 
the result. Hence the sole loss incurred is due to the 
quantization.  

The mesh geometry component dominates the con-
nectivity component in terms of information content, so 
any effort made to make it more compact is justified. 
The conventional way to compress mesh geometry is by 
spatial prediction methods, for example, by predicting 
the coordinates of a vertex from the coordinates of 
neighboring vertices. A particularly effective method is 
the parallelogram predictor [7], which operates under 
the (quite correct) assumption that adjacent triangles in 
a mesh tend to form a parallelogram. This is a local 
method, which captures reasonably well the correlations 
present in the mesh geometry. Other local methods [4] 

predict the vertex coordinates by finding other sorts of 
patterns in the mesh geometry. 

Karni and Gotsman [2] proposed the use of spectral 
methods for compressing 3D mesh geometry. In a nut-
shell, this involves projecting the mesh geometry vec-
tor(s) onto basis vectors, which are the eigenvectors of 
the mesh Laplacian matrix, derived from the mesh con-
nectivity as follows: If A is the connectivity (adjacency) 
matrix: 
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and D is the diagonal matrix such that Dii=1/di, where di 
is the degree (valence) of vertex i, then L=I-DA is the 
mesh Laplacian: 
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Smooth meshes, i.e. those whose vertex coordinates 

are close to the average of their neighbors, concentrate 
most of their energy on the vectors with small eigenval-
ues (analogous to low “frequency” Fourier basis func-
tions) when expanded on this basis. Karni and Gotsman 
show that this method yields a progressive compression 
technique providing a good tradeoff between bit rate 
and approximation error. However, despite the encour-
aging results, the method suffers from a number of 
drawbacks which limit the practicality of the method. 
One of these drawbacks is that the Laplacian matrix is 
different for each mesh connectivity, hence the basis 
must be computed separately for each mesh. Computing 
the eigenvalues of a nxn matrix, even a sparse one such 
as the Laplacian, requires O(n3) operations, which is 
prohibitive for large n’s. This problem is amplified by 
the need to compute these eigenvectors also at the de-
coder, meaning that efficient (real-time) decoding using 
this method is probably impossible. 

This paper explores the possibility of using fixed ba-
sis functions, independent of the mesh connectivity, for 
spectral mesh coding. While these basis functions will 



 

 

obviously not be optimal, the hope is that on the aver-
age, most of the mesh energy will still be concentrated 
on the low frequency basis functions. The fixed basis 
functions that we propose are those derived from a 2D 
6-regular connectivity. The eigenvectors associated with 
this connectivity are identical to those associated with 
the traditional 4-regular connected (grid) mesh, which 
are none other than the discrete Fourier basis functions. 
The spectrum (set of eigenvalues) is different, however, 
between the two connectivities. The fact that the eigen-
vectors are the Fourier basis functions means that the 
encoding and decoding procedures may be efficiently 
implemented using the FFT. This paper shows that even 
though these basis functions are not precisely what the 
true mesh connectivity prescribes, they are still good 
enough for the purpose of mesh compression. 

The remainder of this paper is organized as follows: 
Section 2 describes the technique we use to map a mesh 
with arbitrary connectivity to a 6-regular mesh in order 
to encode it and Section 3 describes the decoder. Sec-
tion 4 presents the experimental results we obtained 
with these methods. We conclude in Section 5. 

 
2. The Encoder 
The main problem that arises when using bases derived 
from regular grids is the mapping of the vertices of the 
given mesh to the vertices of the regular mesh. This 
mapping problem is known in general as embedding a 
candidate mesh into a host mesh. Our host is the 6-
regular mesh – the mesh in which each interior vertex 
has exactly 6 neighbors. The problem is further compli-
cated if the number of boundary and interior vertices in 
the candidate is different from that of the host. In order 
for it to be useful in our application, the embedding e 
should be such that it preserves as much as possible the 
neighborhood relationships of the mesh, namely, if u 
and v are vertices at (topological) distance d in the can-
didate, e(u) and e(v) should also be at a distance as close 
to d as possible in the host. A close relative of the graph 
embedding problem is the geometric embedding prob-
lem [1], where each vertex of the candidate is assigned a 
location in Rm. The embedding is considered good if the 
Euclidean distances between the locations of the verti-
ces in Rm is similar to the topological distances between 
the same vertices in the candidate.  

Let us first consider embedding a given n-vertex 
mesh M with connectivity graph G(M) in the n-vertex 
6-regular triangle graph H. Not only do we assume that 
the two meshes have the same number of vertices, but 
also the same number of vertices on their boundaries 
(IM=IH, BM=BH, IM+BM=n). Graph embedding is known 
to be a difficult problem, so we reduce the problem to a 
geometric problem of matching two point sets in the 
plane. Tutte [8] proposed the following simple method 

of embedding (“drawing”) a mesh in the plane:  Map the 
mesh boundary vertices onto a convex shape, and posi-
tion each interior vertex such that its coordinates are the 
centroid of its neighbor’s coordinates. This involves 
iteratively solving a set of linear equations for the 
coordinates of the interior points. 

We use the Tutte method to embed both M and H 
into the unit disk, yielding eH:V(H)→R2 and 
eM:V(M)→R2, where V(M) is the vertex set of the mesh 
M. Now, given these embeddings, find a mapping 
m:V(M)→V(H) such that the sum of the Euclidean 
mapping distances in the plane is minimized: 

∑ −=
)(

))(()(minarg
MVv

HM vmevem
ε

 

For this we use the following recursive algorithm: 
Partition each of the point sets eM(V(M)) and eM(V(H)) 
into two sets of equal size (as much as possible) by a 
(separate) vertical line in the plane. Such a partition is 
commonly known as a median cut. Now recursively 
map each half between themselves. The recursion ter-
minates when the point set sizes drop below a threshold. 
In this case, the points are matched greedily, i.e. first the 
pair of closest points, then the pair of second closest, 
and so on until all points are matched. The median cut is 
chosen to be either a vertical or a horizontal partition-
ing, depending on which results in an aspect ratio which 
is closer to square. Figure 1 shows the 6-regular host 
mesh and a candidate embedded in the plane, and the 
matching resulting from running the recursive median 
cut algorithm. Note that at first glance it seems that this 
matching is far from optimal. It turns out however, that 
is hard to improve on this result if the objective is to 
minimize the average matching distance (as opposed to 
the minimal matching distance). The quality of the em-
bedding may be visualized by drawing the candidate 
mesh with the connectivity of the host. The result is 
good if all resulting edges are short, even though they 
may now intersect. 

For the more general case where the candidate mesh 
has fewer interior vertices than the host, i.e. IM<IH, and 
also fewer vertices along its boundary BM<BH, we must 
augment the candidate by adding these missing vertices 
to the boundary and the interior and prescribing their 
connectivity and geometry. In essence, since all interior 
vertices of the regular host have degree 6, we search for 
triangles whose sum of vertex degrees is small, and in-
sert a vertex into that triangle, connected to its three 
vertices. We avoid boundary triangles (which will usu-
ally have lower vertex degrees), and of all triangles with 
the same sum of vertex degrees, we prefer that with less 
variance among the degrees. Adding a new vertex to a 
triangle increases the degree of the triangle vertices by 
one, and introduces a new vertex of degree 3 into the 



 

 

mesh. The new vertex is assigned geometry (3D coordi-
nates) which are just the average of its three neighbors 
coordinates. This keeps the mesh smooth. A similar 
procedure is followed for the boundary vertices. Figure 
2 illustrates this. 

After the candidate has been augmented and mapped 
to the fixed host, the candidate vertex geometry is pro-
jected onto the fixed spectral basis functions associated 
with the host. These are just the inner product of the 
mesh coordinate vector with each of the basis functions. 

If we take the host to be the 6-regular grid (including 
the boundary vertices, namely, use a closed toroidal 
mesh), these basis functions are just the 2D Fourier ba-
sis functions, and the projections may be computed (to-
gether) efficiently using the FFT. If the boundary verti-
ces of the host have degree 4, the basis functions differ 
slightly from the Fourier basis. After being computed, 
the projection coefficients are quantized, entropy coded, 
and transmitted progressively from low frequency to 
high frequency to the decoder. 

  
(a) (b) 

  
(c) (d) 

Figure 1: Embedding a candidate mesh in a 6-regular host. Both meshes have 52 boundary vertices 
and 144 interior vertices. (a) The candidate M embedded in the planar unit disk using the Tutte 
method. (b) The host H embedded in the planar unit disk using the Tutte method. (c) The results of 
our geometric mapping procedure. Lines indicate mapped pairs. The average mapping distance is 
0.08. (d) The embedding of M with the connectivity of H. 



 

 

3. The Decoder 

The decoder receives the connectivity code separately 
from the geometry, which arrives in the form of coded 
spectral coefficients. The geometry is recovered pro-
gressively by summing the precomputed (or hardwired) 
host basis functions weighted by the coded coefficients 
as they arrive, or decoded in one shot using the FFT (if 
the Fourier basis is used) after the entire code has ar-
rived. Since the encoding and decoding of the mesh 
connectivity may in general permute the vertex ordering 
relative to the original, but the encoder is aware of this 
and also knows the permutation, we assume the map-

ping of the mesh to the host was done at the encoder 
after the permutation was applied, hence is consistent 
with the connectivity generated by the decoder. To map 
the decoded geometry of the host vertices to the vertices 
of the decoded connectivity, the decoder must first de-
termine the correct ordering of the host vertices, and 
then eliminate the extra dummy vertices introduced at 
the encoder. The first is easily achieved by running at 
the decoder the same linear time (Tutte embedding + 
recursive partitioning) procedures run at the encoder, 
and the latter by just discarding the appropriate suffix of 
the host vertex list after ordering. 

It turns out that the visual quality of the decoded 

  
(a) (b) 

  
(c) (d) 

Figure 2: Embedding a candidate mesh in a 6-regular host by augmentation. (a) The candidate M has 
48 boundary vertices and 121 interior vertices. (b) The host H has 52 boundary vertices and 144 inte-
rior vertices. (c) The augmented candidate M’. All meshes are embedded in the unit disk using the Tutte 
method. (d) The embedding of M’ with the connectivity of H. The average mapping distance resulting 
from the mapping procedure was 0.107. 



 

 

meshes may be somewhat improved by smoothing them 
using the Laplacian smoothener derived from the candi-
date’s original connectivity (which has already been 
received and decoded). This reduces high frequencies 
relative to the optimal basis which were introduced in 
the transition to the fixed basis. This will be elaborated 
on in the next section. 

 
4. Experimental Results 
Figures 3, 4 and 5 show the results of our methods run 
on a single candidate patch containing 965 vertices, 
rendered in Figures 5a and 5b. The candidate was pro-
jected onto the fixed basis functions associated with the 
host - a 32x32 grid with 6-regular connectivity, and, to 
compare, onto the “optimal” spectral basis which are the 
eigenvectors of the Laplacian associated with the candi-
date’s connectivity matrix.  

Figure 3 shows various spectra related to the candi-
date manipulation at the encoder: the spectra when pro-
jecting the candidate and its augmented version onto the 
optimal bases associated with the mesh connectivities. 
Note that the effect of the augmentation is negligible. 
As is to be expected, most of the spectral energy is con-
centrated in the lower “frequencies”. Also shown are the 
spectra of the augmented candidate when projected onto 
the fixed basis using an arbitrary mapping of the mesh 
vertices to the 6-regular grid vertices. Not surprisingly, 

high frequencies are now very significant. This contrasts 
with what happens when our vertex mapping algorithm 
is employed, where the candidate energy is forced back 
onto the low frequencies of the fixed basis. 

Figure 4 shows the spectra of the mesh reconstructed 
at the decoder. The spectrum of the reconstructed mesh 
on the fixed basis is identical to that of the original 
augmented candidate, except for the truncated high fre-
quencies, which were not transmitted. On the optimal 
basis, this mesh has high frequencies, which are reduced 
thru the Laplacian smoothing procedure. At the end, the 
spectrum of the reconstructed mesh, after eliminating 
the extraneous vertices from the augmented reconstruc-
tion, is quite similar to that of the original. 

All the spectral coefficients were calculated at 16 bit 
precision, and the code consisted of a small number of 
these coefficients, which were then entropy coded. Of 
course, the more coefficients used, the longer the code, 
and the closer the reconstructed mesh to the original. 
Figures 5c, 5f and 5i show the reconstructions possible 
using 200, 400 and 800 coefficients of the optimal basis, 
and Figures 5d, 5g and 5j show the reconstructions pos-
sible using the same number of coefficients of the fixed 
basis. It is possible (and expected) that the reconstruc-
tions for the fixed basis are not as good as those of the 
optimal basis. This is because the spectral decomposi-
tion of the augmented candidate on the fixed basis con-
tains non-negligible high frequencies, which are lost 

 
Figure 3: Mesh spectra at the encoder. 



 

 

when the coefficient sequence is truncated, damaging 
the result more than in the case of the optimal basis. 
This is alleviated by smoothening the result using the 
smoothening operator associated with the candidate 
connectivity (which is known at the decoder). Figures 
5e, 5h and 5k show that this indeed produces much bet-
ter results, without paying any penalty in code length. 

Figure 6 shows the compression and decompression 
of the “Stanford bunny” model, containing 34,834 verti-
ces, used also in the work of Karni and Gotsman [2]. 
This mesh was partitioned, using the MeTiS software 
[3], into 36 submeshes, each coded as described above. 
The figure shows models reconstructed using an aver-
age of 300 and 600 coefficients per submesh. It is pos-
sible to see that at every working point, the bunny re-
constructed from the compression procedure described 
here is almost visually identical to that reconstructed 
from coding using the optimal bases. This is a very 
small penalty to pay for the benefit of a very efficient 
decoding procedure, which runs in less than a second on 
a 800MHz Pentium PC. 
 
5. Discussion and Conclusion 
This paper has shown how to overcome one of the ma-
jor obstacles to using spectral mesh compression in 
practical implementations – that of lengthy decoding 
times. This is achieved by using fixed spectral bases. 
While this does incur a penalty in the rate-distortion 

tradeoff, the reconstruction results are still visually very 
similar to those obtained using optimal spectral bases at 
given bit-rates. 

There is room for improvement in the algorithmic 
procedures we have employed here. Our mapping algo-
rithm is probably suboptimal, since it approximates a 
solution to a combinatorial problem by reduction to a 
geometric problem. It would be better if we could di-
rectly solve the original problem on graphs, such that a 
connectivity distance function is minimized. Also, the 
geometric approximation introduces error, since we do 
not optimize the matching over all possible embeddings 
resulting from rotating the unit disk. It also uses a very 
specific (Tutte) embedding, and other embedding meth-
ods might be better, possibly into the unit square instead 
of the unit disk. However, two others we checked [5,8] 
did not seem to perform any better. 

The geometric mapping method might also be prone 
to numerical errors, which can cause inconsistencies 
between the encoder and decoder. This can occur when 
vertices are mapped to locations very close to each other 
in the plane, which happens when applying the Tutte 
embedding to a large mesh whose boundary contains 
very few vertices. However, in practice, our vertex sets 
are neither large (usually n is a couple of hundred verti-
ces), and the boundaries quite “full”, namely the number 
of boundary vertices is O(√n). 

 
Figure 4: Mesh spectra at the decoder, after 400 spectral coefficients were transmitted. 
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 Optimal basis Fixed basis Laplacian smoothed 
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Figure 5: Reconstructions of a candidate mesh using our methods, at different bit-rates. All spectral coefficients in 
all cases were quantized to 16 bits.  (a) Original shaded mesh, containing 965 vertices, of which 97 are boundary 
vertices. (b) Original wireframe mesh. (c) Reconstruction using 200 spectral coefficients on optimal basis, equivalent 
to 5 bits/vertex after entropy coding.  (d) Reconstruction using 200 spectral coefficients on fixed basis, equivalent to 
5 bits/vertex. (e) Smoothed version of (d). (f) Reconstruction using 400 spectral coefficients on optimal basis, equiva-
lent to 10 bits/vertex. (g) Reconstruction using 400 spectral coefficients on fixed basis, equivalent to 10 bits/vertex. 
(h) Smoothed version of (g). (i) Reconstruction using 800 spectral coefficients on optimal basis, equivalent to 20 
bits/vertex. (j) Reconstruction using 750 spectral coefficients on fixed basis, equivalent to 20 bits/vertex. (k) 
Smoothed version of (j). 
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Figure 6: Comparison of optimal basis compression with fixed basis compression on the Stanford bunny model of 
34,834 vertices, partitioned into 36 submeshes. Note the differences in the area of the ears and the overall smooth-
ness of the body. (a) Original mesh. (b) Average of 300 spectral coefficients per submesh with optimal basis. (c) 
Same as (b) with fixed basis. (d) Average of 600 spectral coefficients per submesh with optimal basis. (e) Same as (d) 
with fixed basis. 
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