
Feature Article 

ne argument often given to explain the 
popularity of NURBS (nonuniform ratio- 

nal B-spline) is that it permits the 
definition of free-form curves and 
surfaces (as do most spline models), 
It also provides an exact representa- 
tion of conic sections and thus of a 
large set of curves and surfaces used 
intensivelyincm: circulararcs, cir- 
cles, cylinders, cones, spheres, sur- 
faces of revolution, and so forth. 
Nevertheless, few published works 
discuss the mathematical properties 
behind the representation of conics 
by NURBS except for two recent 
monographs by Piegl and Tiller' and 
by Farin.' This article does not pre- 
tend to fill this theoretical lack but 

Zigzag re parametrization 

improves the 

parametrization of a NURBS 

curve or surface according 

to a given criterion, as 

illustrated here through 

parametrization of a circle. 

rather intends to deal with the following problems: 

All known NURBS representations of curves and sur- 
faces based on conics have only a C1 continuity. 
Moreover, no technique exists that would eventually 
allow us to find a parametrization with a higher level 
of continuity. 
The parametrization resulting from the NURBS rep- 
resentation of conics can deviate significantly from 
the ideal arc length (that is, uniform) parametriza- 
tion. The only known solution to reduce this devia- 
tion is to increase the number of control points of the 
spline (by using refinement algorithms, for instance), 
but such a process converges only slowly to the uni- 
form parametrization. 

The solution we propose here uses an original repa- 
rametrization process that we call zigzag reparametriza- 
tion, based on a specific family of rational polynomials. 
This technique improves the parametrization by mini- 
mizing a given error criterion (in our case, giving a high- 
er order continuity as well as a more uniform 
parametrization). On the other hand, it raises the degree 
of the resulting NURBS (in our case, from two to four). 

Carole Blanc and Christophe Schlick 
University of Bordeaux 

Conics, circles, spheres, and splines 

ed curves and surfaces) can be modeled by splines. 
We briefly review here how conic sections (and relat- 

Conics 
In the early 1800s, Moebius stated that a conic can be 

considered the projection on IR2 of a parabola defined in 
IR3. Using this result, we can show that a conic can also be 
expressed as a rational quadratic Bezier curve (and alter- 
natively as a quadratic NURBS) .3,4 Such a curve is defined 
by three points, PO, PI, Pz, and three weights, WO, w1, w2: 

or by explicating the Bernstein polynomials Bg(t), B?(t), 
and Bz(t): 

kft E 10.11 

wo 1- t  P0+2w1 1-t tP1+w, t 2  P2 07 0 ( 2 )  1 
C k ) =  

w,-2t w -wl + t2  wo-2w1+w 
( 0  1 ( 

Parameters wo, w1, and w2 are linked by the conic 
invariant5 relationship wowl/wf which means that every 
set (WO, w1, w2) that provides the same value for the 
conic invariant also provides the same c ~ r v e . ~ , ~ , ~  
Moreover, because the roles of Po andPz are symmetric, 
it is preferable to have wo = W Z .  Finally, without loss of 
generality, we can assume that wo = w2 = 1 and w1= w 
(this condition is sometimes called the normalform of 
the rational curve7), which leads to 

(1-t) Po+2w 1-t t P1+t2 Pz 
C ( t )  = ( 1  (3) 

1 - 241 - w ) + 2t2 (1 - w ) 

November 1996 0272-1 7-1 6/96/$5.00 0 1996 IEEE 



This expression enables a simple classification of the 
resulting curve (as shown in Figure 1): 

if w < 1, then C(t )  is an ellipse, 
if w = 1, then C(t) is a parabola, and 
if w > 1, then C(t) is a hyperbola. 

Circular arcs 
For geometric modeling, the circular arc is undoubt- 

edly the most useful particular case of conic sections. 
Such an arc results when Po, PI, PZ form an isosceles tri- 
angle and when w = cos@ (where @ is the angle between 
P& and P&).3,4,6 For instance, a circular arc of length 
29 starting from the trigonometric origin (see Figure 2) 
is obtained with the following control points: 

p2 (cos24, sin2qj 

which can be computed more efficiently by 

where T = tan@. 

Circles and spheres 
Equation 5 gives us a control triangle PoPlPz that only 

permits the definition of a circular arc sweeping less 
than 180 degrees (T becomes infinite for 24, = 7c). 
Therefore, at least three circular arcs are needed to 
obtain a full circle. These arcs are pieced together (the 

(4 (4 
last point of each arc becomes the first point of the next 
one), giving a circle defined by n arcs and 2n+ 1 control 
points. The resulting curve can be considered either a 
piecewise rational Bezier or a NURBS. Arcs of different 
lengths may be pieced together, but concatenating sim- 
ilar arcs provides a much better parametrization. 

Several authors have proposed representations for 
circular arcs sweeping over 180 degrees by using infi- 

structions are less relevant to CAD, because they lose 

The reparametrization process we propose, on the other 
hand, may eventually be employed to improve the qual- 
itv of this Darametrization. 

-1 -& 
p4 -,- 

PO (1’ 0 )  

( 2  Pl(l>&] 

nite control points or negative weights.6,8 Such con- 

the convex hull property and give bad parametrizations. 

P 5 d q  
P2 -,- [; f ]  Pb(L0) 

p3 (-2,o) 

Among all the possible representations, the follow. 
ing ones appear particularly interesting. 

Triangle-based circle. Versprille4 proposed the 
first exact representation of a circle by a NURBS. In that 
model, the circle is composed of three arcs (each of 
length 2~c/3) and defined by six control points (one 
point being repeated) regularly placed on an equilater- 
al triangle (see Figure 3a): 

where even-indexed (or, respectively, odd-indexed) 
points have their weights set to 1 (respectively, 1/2). 

Square-based circle. The main drawback of the 
triangle-based circle is that the size of the control poly- 
gon is relatively large compared to the circle. An 
improvement proposed by Tiller’ defines the circle by 
four arcs (each of length x/2) using eight control points 
(one repeated) placed on a square (see Figure 3b): 
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1 Three types 
of conics. 

2 Circular arc. 

3 Three 
different 
control lattices 
defining a 
circle. 
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4 Two different 
control lattices 
defining a 
sphere. 

5 junction of 
two circular 
arcs. 

where even-indexed (respectively, odd-indexed) points 
have their weights set to 1 (respectively, d2/2). 

Hexagon-based circle. The square-based circle is 
by far the most commonly used in modeling software, 
mainly because of its simplicity. Nevertheless, another 
simple representation provides a tighter convex hull as 
well as a better parametrization. In this model, the cir- 
cle is composed of six arcs (each of length x /3)  and 
defined by 12 control points (one repeated) on a hexa- 
gon (see Figure 3c) : 

where even-indexed (respectively, odd-indexed) points 
have their weights set to 1 (respectively,&/2). 

Any regular polygon can be used to define the circle, 
but the square and the hexagon provide the best trade- 
off among cost, accuracy, and ease of use. 

Sphere. Starting from a NURBS-based representa- 
tion of a circle, we can easily obtain a NURBS-based rep- 
resentation of a sphere by computing a tensor product 
of a set of circles (providing the parallels) by a set of half- 

circles (providing the meridians). The most popular rep- 
resentation, proposed by Tiller,' is based on the cir- 
cumscribing cube (defined with 26 control points, five 
of them repeated). We can also imagine a tighter con- 
trol lattice having a kind of hexahedrical shape (defined 
with 62 control points, seven of them repeated), as 
shown in Figure 4. 

Since the circle results from concatenation of several 
circular arcs, the question of continuity at the junction 
points (knots in B-spline terminology) arises naturally. 
To study this problem," let us take the case where two 
arcs, defined by the control trianglesP&Pz andPgP4, 
respectively (see Figure 5), are connected. When the 
arcs have the same length, we necessarily have wo = wz 
= w4 = 1 and w1 = w3 = w. Moreover, let us suppose 
that the parameter range is [0,1] for the first segment 
and [ 1,2] for the second one. If we use the 1- and I+ 
notation to express the left and right limits for the curve 
at the parameter value t = 1, Equation 3 gives 

C+P2 

C'(7j=2w jp2 -5) 

c"1- ( ) i o  =2 P -Pz 1 + 4 w  i 1-w PI-P,) 

C(l')=Pz 

Cf$')=2wjP,-P2) 

C j l +  )=2 iP4 - Pz )+ 4w (1- w) (p3 - P2 ) 
Notice that even if the curve C(t) and its derivatives are 
rational in the general case, they become polynomial 
at the parameter value t = 1 because the denominator 
vanishes. 

continuity exists 
at point P,. Moreover, since the two arcs have the same 
length, triangles P&Pz and P.&P4 are similar, which 
means, in particular, that 

Equation 6 shows that at least a 

Pz-P1= P3-Pz (7) 

The junction therefore also has a C1 continuity. The sim- 
ilarity of trianglesP&Pz and P&P4, as shown in Figure 
5, also provides 

1 P4 - P2 = Po - Pz +2 1 +cos 24 j (pz - Pl i 
= Po - Pz + 4w2 0 Pz - Pl (8)  

The substitution of Equation 8 in the expression of 
C"(1+) showsthatwecanonlygetC'(l-)=C"(l+) when 
w = 0 (a 180-degree arc, which is forbidden), or w = 1 
(a 0-degree arc, which is not of interest). In other words, 
we cannot define a circle with a C2 continuity using a 
quadratic NURBS (or a quadratic piecewise rational 
Bezier) .6,7 Note that w = 0 is allowed when considering 
infinite points, but in that case Equation 6 is not valid 
and there is still a C1 continuity only (see Piegl and Tiller6 
for further details). 
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Note also that the C1 continuity is only obtained in the 
Euclidian space (that is, after projection). In the associ- 
ated homogeneous space (before projection), the con- 
tinuity is not better than (? (see Piegl and Tiller6). 

Study of the parametrization 
Let us take again the circular arc of length 241 starting 

from the trigonometric origin, illustrated in Figure 2. 
For many applications, the best parametrization of a 
curve is the arc length parametrization (also called uni- 
form parametrization or constant-speed parametriza- 
tion) because the variation of this parameter represents 
the exact distance on the curve from one point to anoth- 
er. The most obvious need for arc length parametriza- 
tion is to provide constant-speed movements in 
animation sequences. Such a parametrization is also 
useful for surface design or surface rendering; for 
instance, arc length parametrization minimizes distor- 
tion when doing texture mapping. 

In our example, this arc length parametrization is 
given by the trigonometric parametrization: 

Combining Equation 3 and Equation 5 gives us the 
rational Bezier parametrization of our arc: 

vt E [0,1] 

(1 -2(1- w)t -2p - w )t’ 

1-2jl-wjt+2(1-wjt2 ’ 
C(t j = 

2Twt -2Tw(l- w)t’ 
(9) 

We can evaluate the quality of this parametrization 
by comparing it with the arc length parametrization. In 
the ideal case, the two parametrizations are related by 
a linear function: 

vt €[0,1] 

e(t ) = 24t 

Obviously, this is not the case here because it would 
mean that the cosine function could be expressed as a 
rational polynomial. When this linear relationship is not 
fulfilled, we obtain a quantitative evaluation of the 
parametrization by computing the distance between the 
actual function 0(t) and the ideal one 29t. Using a 
Euclidian norm, this distance A(t) (sometimes called 
chordal deviation) is given by 

Consequently, to evaluate our parametrization, we 

have to find the actual expression of O ( t ) .  For that, we 
involve another classical parametrization of the circu- 
lar arc, the half-tungentparametrization: 

vs E [OJ] 

where T=tan@ (11) 1-T’s2 2Ts 

1 + T2s2 ’ 1 + T2s2 

The main advantage of this parametrization is that it 
provides a simple relationship between the arc length 8 
and the parameters: 

v s  E [OJ] 

Therefore, ifwe can find s(t) ,  we will get immediate- 
ly 0( t ) .  Fortunately, a fundamental result of projective 
geometry, developed by Moebius, states that two param- 
etrizations of the same curve by a rational polynomial of 
the same degree (Equation 9 and Equation 11) are relat- 
ed by a rational linear function: 

a + b t  3 ( a , b , c , d ) ~ I R ~  / s t =- ( I  c+dt  

Lee and Lucian’’ recently extended this result to piece- 
wise rational polynomial curves such as NURBS. In our 
case, parameters t and s are equal at the boundaries of 
the range [OJ] . This induces a more precise expression: 

The substitution of Equation 13 in Equation 11 gives 
p = w - 1. Therefore, 

s t  =- ( 14) 
wt ( I  1 - t+wt  

and, finally, 

7- 

t&W2 t r j t )  =2arctan- 
1- t+wt  

The plot of this function, for several values of (I, 
appears on the left side of Figure 6 (next page). Note 
that the function becomes less straight (in fact, it oscil- 
lates around the ideal straight line) when @ increases. 
This phenomenon is more apparent on the right side of 
the figure, which shows the deviations of 8(t)  from the 
ideal horizontal lines. But the best quantitative infor- 
mation is given by the chordal deviation A@) plotted in 
Figure 7 (next page). This means that except for very 
small angles, the representation of a circular arc by a 
quadratic NURBS (or a quadratic piece-wise rational 
Bezier) involves a parametrization that deviates signif- 
icantly from the arc length.” 
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6 e(t) and W(t) 
for 4, = 0.25, 0.5, 
0.75, and 1 (in 
radians). 

7 A(t) for 4, = 
0.25, 0.5, 0.75, 
and 1 (in 
radians). 

8 Zigzag 
reparametriza- 
t ion function 
S(t) for p = 0, 
0.5, 1,2,6, and 
16. 
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zag reparametrization 
Our discussion has shown that the usual representa- 

tion of circles and spheres by NURBS curves or surfaces 
suffers from two main weaknesses. First, the continuity 
of the parametrization is C1 at best. Second, the param- 
etrization can deviate significantly from the arc length. 

In fact, these two weak points have the same origin: 
Because the degree of the curve is only quadratic, there 
are not enough degrees of freedom to correct one (or 
both) faults. We might therefore raise the degree to get 
more parameters to manipulate. Unfortunately, the clas- 
sical process of raising the degree of a Bezier or a B-spline 
without modifying its shapeZ8,l3 does not work for this 
particular goal because it does not change the parame- 
trization. For that reason, we propose here a technique 
(restricted to rational or piece-wise rational curves) that 
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enables degree raising while con- 
trolling precisely the resulting 
parametrization. 

Principle 
We borrowed our technique’s 

general principle from the reparam- 
etrization scheme defined by Moe- 
bius. Equation 12 showed that the 
reparametrization of a rational curve 
by a linear rational polynomial mod- 

ifies neither its shape nor its degree. A corollary of this 
result is that a reparametrization by a quadratic rational 
polynomial doubles the degree of the initial curve, a cubic 
rational polynomial triples the degree, and so on. There- 
fore, the conic defined by Equation 3, for instance, can be 
represented by a quartic rational curve when we replace 
t by S(t) where S is a quadratic rational polynomial. 

In the most general formulation for S(t), there are s ix  
degrees of freedom: 

a+bt + c t 2  

d+et+ f t2  
S ( t ) =  

but several characteristics appear desirable for this repa- 
rametrization. For instance, it is important for the two 
parametrizations to have the same domain of variation 
(S(0)  = 0 and S(1) = 1). Moreover, due to the isoscelism 
of the control triangle, the symmetry of the parame- 
trization should be conserved (S(1- t) = 1 - S(t) or in 
other words S’(1- t )  = S’(t)). All these constraints imply 
that there remains only one degree of freedom. If we 
call this parameter p and define it as the value of the 
derivative at the boundaries (S’(0) = S’(1) = p ) ,  
we obtain 

pt+(l-p)tZ 

1 -2(1- p ) t  + 2 p -  p)t 2 
S ( t )  = 

The shape of this function (see Figure 8) inspired the 
name of our reparametrization technique: zigzag repa- 
rametrization. Notice thatp has to be positive (or even- 
tually null) in order to produce an increasing function in 
the range [OJ]. 

Zigzag reparametrization of a conic 

Bezier curve defined by Equation 3, we obtain 
If we apply our zigzag reparametrization on the 

a’ Po +2wab PI + b2 P2 

a2 +2wab+ b2 
c(t) = 

with a=l-(2-p)t+(l-p)t2 and b=pt+(1-p)t2. The 
result is a quartic rational curve, but it is not a rational 
Bezier since it is no longer written in terms of Bernstein 
polynomials. But because the Bernstein polynomials 
form a basis for the polynomial space, we are assured 
that there exists a Bezier curve equivalent to Equation 
17. To find this quartic rational Bezier curve, we have to 
find five points (Qo, QI, Q2, Q3, Q4) and five weights (WO, 

W I ,  W Z ,  w3, wq) that obey Equation 18 (Figure 9) .  



~ , ( l - t ) ~ Q ~  +4~, t ( l - t )~Q,  +6W2t2(1-trQ, +4W3t3(l-f) Q3 +w4t4Q4 

wo(l- t )  +4w,t(l- t )  + 6w2t2(1-t)’ +4w,t3(1- t )+  w4t4 
9 Equation 18. 

4 3 
C(t)  = 

Obviously, QO = Po and Q4 = PZ because of the inter- 
polation of the boundaries. We also know that we can 
let wo = 1 and w4 = 1 for symmetry reasons, without 
loss of generality. We obtain the remaining weights wlr 
w2, and w3 by comparing the denominators of Equation 
18 (see Figure 9) and Equation 17 term by term. 
Similarly, we obtain the remaining points QI, Qz, and Q3 
by comparing the numerators. 

Finally, the zigzag reparametrization of Equation 17 
provides a quartic rational Bezier (and therefore quar- 
tic NURBS) defined by 

Qo =Po 

$Po +2w l+p2 P1+p2P2 0 
i Qz = 2jpz +p2w+w 

Q4 =P2 

wg =1 
l+w 

2 
w1 = -p 

p2  +p2w+w w2 = 
3 

l + w  
P w3 =- 

2 
w4 =1 

Four important observations emerge from this for- 
mulation: 

W Only the position of point Q 2  depends on the value of 
parameterp. A nice consequence of this is that the 
zigzag reparametrization has a very simple geomet- 
ric interpretation: changing the value ofp consists in 
moving Qz along a straight line (more precisely, a half 
line because we forcep 2 0). The simultaneous mod- 
ification ofwl, w2, and w3 keeps the curve unchanged 
(except for its parametrization) despite the displace- 
ment of Qz. 

H Whenp = 1, we obtain exactly the points and weights 
provided by the classical degree raising technique 
mentioned above. In other words, it means that 
zigzag reparametrization is a kind of generalization of 
this process, which provides an additional degree of 
freedom. 
The principle of the zigzag reparametrization can be 
extended to nonsymmetric reparametrization by per- 
mitting two degrees of freedom ( p  = S’(0) and 
q = S’(1)) for Equation 16. We can also use such an 

extension for the reparametrization of nonsymmet- 
ric curves such as ellipses or parabolas. 
Zigzag reparametrization can also be extended above 
degree 2. We do this by defining a family of rational 
polynomials where each member Sk(t) of degree k 
fulfills 

3p, EIR+/- (O)=~,  d‘S 

dt‘ 

Therefore, each successive member of this zigzagpoly- 
nomialfamily includes one additional parameter that 
enables more precise control of the parametrization. 

Next, we show how to use zigzag reparametrization 
to improve the parametrization of a circle represented by 
a NURBS. We provide these examples only as illustra- 
tion. The new technique may in fact be employed in 
many applications that involve reparametrization 
according to a given criterion. 

A C2 parametrization of the circle 
We first apply zigzag parametrization to obtain a cir- 

cle with a C2 parametrization. Starting again from the 
configuration of control points illustrated in Figure 5, 
we can study the continuity at point P2: 

As previously, Equation 7 yields C1 continuity. To 
check the C2 continuity, we have to substitute Equation 
7 and Equation 8 in the expression of C“(1’): 

Finally, comparing C”(1-) and C”(1’) provides 

p2(1+ w)- p -1 = 0 (21) 
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I CLlLulc _I C 3 L . L  

10 C’ repara- 
metrization of 
the triangle- 
based circle. 

11 A(t)for$= 
0.25, 0.5,0.75, 
and 1 (in 
radians). 

12 e(t) and 
W(t) for 4 = 
0.25,0.5, 0.75, 
1, 1.25, and 1.5 
(in radians). 

13 Quasi- 
uniform 
reparametriza- 
tion of the 
triangle-based 
circle. 

Q3 

Qi 

QO 

0.0004 

0.0003 

0.0002 

0.0001 

n 

same length, with the resulting curve being represent- 
ed either by quartic rational Bezier or a quartic NURBS. 
To illustrate this, Figure 10 shows a circle with a C2 
parametrization obtained by zigzag reparametrization 
of the triangle-based circle, using for p the value pro- 
vided by Equation 22. 

A second application of the zigzag reparametrization 
is to obtain a circle with a quasi-uniform parametriza- 
tion, as close as possible to the trigonometric parame- 
trization. As we have seen, the parametrization error 
can be quantified by computing the chordal deviation 
A(t) between the arc length parametrization and the 
actual one. Substituting Equation 16 in Equation 10 
expresses the chordal deviation for a circular arc on 
which we have applied the zigzag reparametrization. 
The formulation of this new chordal deviation is a func- 
tion of parameterp: 

& Z q p t  + (1-p)tZ) 

JZ 
2 arctan - 24t 

I-%+ I + W  pt+ I -p  t 
A(t) = i i 2 ,  (23) 

0 0.2 0.4 0.6 0.8 1 

What we have here is a classical 
optimization problem: Find the opti- 
mal value of a parameter (in our 
case, the reparametrization factorp) 
that minimizes a given condition (in 
our case, the chordal deviation A(t)). 
One possibility is to minimize the Lz 
norm of A(t) by employing a least- 

0.5 squares minimization method. The 
drawback of this technique (and all 

0 0.5 1 0  0.5 other techniques of the same fami- 

1 

;=, 3 

2.5 
2 

1.5 
1 

0.5 
0 0 

Q3 

Qi 

Qo 

This quadratic equation has always two solutions 
(A=4w+5>0), but only the positive solution is useful 
for our reparametrization: 

1+ 45+ 4w 
P =  

2(1+ w) 

Therefore, Equation 22 combined with Equation 19 
enables a C2 continuous junction for circular arcs of the 

ly) is that it provides only a numeri- 
cal (and not an analytical) solution. Thus, for each new 
angle I$ needed, the user has to restart the whole least- 
squares process to find the new parameterp. 

Another possibility is to minimize theLw norm of A(t), 
which only requires computing the maximal chordal 
deviation. This maximum has an analytical expression 
that can be computed by symbolic calculation software 
such as Maple or Mathematica, but this expression is so 
complex as to be useless in practice. 

For these reasons, we propose here a third solution 
that is only heuristic but, in fact, very close to the opti- 
mum. If we study the variation of the maximal chordal 
deviation for different values of @, we can see that this 
maximum always results for a value t that belongs in 
[0.19, 0.241. If we take a value in that range ( t  = 1/5 
seems to work well), we are assured that the chordal 
deviation at point A ( l / 5 )  will not be too far from the 
maximal deviation. Therefore, we simply have to force 
A(l /5)  = 0, that is, 

(I+ 4p)sin4 

18 + 12p - (1 + 4p)cos$ - tan(4/5) = o (24) 
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to get a quasi-optimal value forp: 

4-2cos3 (@/5)+cos(@/5) 

-1+ 8c0s3 (@/5)-- 4cos($/5) 
P =  (25) 

Figure 11 shows the plot of the chordal deviation (t)  
obtained with the quasi-optimal value p .  Notice that 
there is a factor of 100 in the scale between Figure 7 and 
Figure 11, meaning that the parametrization error has 
been reduced more than 100 times. Figure 12 confirms 
this result, showing the variations of O(t) and O’(t) for 
different values of $ when using the quasi-optimal para- 
meter: The resulting curves are almost straight, and no 
more oscillations are visible. 

Figure 13 illustrates the circle with a quasi-uniform 
parametrization obtained by zigzag reparametrization 
of the triangle-based circle, using the parameter p pro- 
vided by Equation 25. Comparing Figure 10 and Figure 
13 shows that the C2 continuous circle and the quasi- 
uniform circle are almost identical. In fact, the differ- 
ence between the reparametrizations is so small 
(p  1.21525 for the first andpz 1.20669 for the second) 
that the variation of the position of the control points is 
hardlyvisible (remember that only Qz, Q6, and Qlo have 
actually moved). 

Table 1 presents all the numerical results relative to 
zigzag reparametrization of the triangle-based, square- 
based, and hexagon-based circles. Notice that the 
chordal deviation can be reduced more than 1,000 times 
by the reparametrization. Notice also that the analytic 
LM minimization offers only an average of 5 percent addi- 
tional precision compared to our heuristic minimization, 
for a much more expensive computation cost. This con- 
firms the nice behavior of the “A(1/5) = 0 heuristic. 

To conclude, we would like to note that we have cho- 
sen to use the circle here only as an illustrating exam- 
ple. The idea of zigzag reparametrization is much more 
general and we feel that it could benefit many situations 
where well-behaving parametrization is important. W 
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