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Chapter 1

Introduction

Twenty years ago the publication of the papers by Catmull and Clark [3] and Doo and Sabin [4] marked
the beginning of subdivision for surface modeling. This year, another milestone occurred when subdivi-
sion hit the big screen in Pixar’s short “Geri's Game,” for which Pixar received an Academy award for
“Best Animated Short Film.” The basic ideas behind subdivision are very old indeed and can be traced
as far back as the late 40s and early 50s when G. de Rham used “corner cutting” to describe smooth
curves. It was only recently though that subdivision surfaces have found their way into wide application
in computer graphics and computer assisted geometric design (CAGD). One reason for this develop-
ment is the importance of multiresolution techniques to address the challenges of ever larger and more
complex geometry: subdivision is intricately linked to multiresolution and traditional mathematical tools
such as wavelets.

Constructing surfaces through subdivision elegantly addresses many issues that computer graphics
practitioners are confronted with

e Arbitrary Topology: Subdivision generalizes classical spline patch approaches to arbitrary topol-
ogy. Thisimplies that there is no need for trim curves or awkward constraint management between
patches.

e Scalability: Because of its recursive structure, subdivision naturally accommodates level-of-detalil
rendering and adaptive approximation with error bounds. The result are algorithms which can
make the best of limited hardware resources, such as those found on low end PCs.

e Uniformity of Representation: Much of traditional modeling uses either polygonal meshes or
spline patches. Subdivision spans the spectrum between these two extremes. Surfaces can behave
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as if they are made of patches, or they can be treated as if consisting of many small polygons.

e Numerical Stability: The meshes produced by subdivision have many of the nice properties fi-
nite element solvers require. As a result subdivision representations are also highly suitable for
many numerical simulation tasks which are of importance in engineering and computer animation
settings.

e Code Simplicity: Last but not least the basic ideas behind subdivision are simple to implement and
execute very efficiently. While some of the deeper mathematical analyses can get quite involved
this is of little concern for the final implementation and runtime performance.

In this course and its accompanying notes we hope to convince you, the reader, that in fact the above
claims are true!

The main focus or our notes will be on covering the basic principles behind subdivision; how subdivi-
sion rules are constructed; to indicate how their analysis is approached; and, most importantly, to address
some of the practical issues in turning these ideas and techniques into real applications.

The following 2 chapters will be devoted to understanding the basic principles. We begin with some
examples in the curve, i.e., 1D setting. This simplifies the exposition considerably, but still allows us to
introduce all the basic ideas which are equally applicable in the surface setting. Proceeding to the surface
setting we cover a variety of different subdivision schemes and their properties.

With these basics in place we proceed to the second, applications oriented part, covering algorithms
and implementations addressing

e Interactive Multiresolution Mesh Editing: This section discusses many of the data structure
and algorithmic issues which need to be addressed to realize high performance. The result is a
system which allows for interactive, multiresolution editing of fairly complex geometry on PC
class machines with little hardware graphics support.

e Subdivision Surfaces and WaveletsThis section shows how subdivision is the key element in
generalizing the traditional wavelet machinery to arbitrary topology surfaces. The result are a
class of algorithms which open up applications such as compression for subdivision surfaces, for
example.

e A Variational Approach to Subdivision: Most subdivision methods are stationary, i.e., they use a
fixed set of rules. They are generally designed to exhibit some order of differentiability. In practice
it is often much more important to consider the fairness of the resulting surfaces. Variational
subdivision incorporates fairness measures into the subdivision process.
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e Exploiting Subdivision in Modeling and Animation: One reason subdivision is becoming very
popular is that it supports hierarchical editing and animation semantics. This was discovered
originally in the traditional spline setup and lead to the development of hierarchical splines. From
that technique it is only a small step to multiresolution modeling using subdivision. This section
discusses some of the issues in controlling animation hierarchically.

e Subdivision Surfaces in the Making of Geri's Game: This section discusses how subdivision
surfaces successfully address the needs of very high end production environments. in the process
new technigues had to be developed which are detailed in this part of the notes.

Beyond these Notes

One of the reasons that subdivision is enjoying so much interest right now is that it is very easy to
implement and very efficient. In fact it is used in many computer graphics courses at universities as a
homework exercise. The mathematical theory behind itis very beautiful, but also very subtle and at times
technical. We are not treating the mathematical details in these notes, which are primarily intended for
the computer graphics practitioners. However, for those interested in the theory there are many pointers
to the literature.

These notes as well as other materials such as presentation slides, applets and snippets of code are
available on the web &itp://www.multires.caltech.edu/teaching/courses/subdivision/
and all readers are encouraged to explore the online resources. A repository of additional information
beyond this course is maintainedtatp://www.mrl.nyu.edu/dzorin/subdivision
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Chapter 2

Foundations |;: Basic Ildeas

Peter Schoder, Caltech

In this chapter we focus on the 1D case to introduce all the basic ideas and concepts before going
on to the 2D setting. Examples will be used throughout to motivate these ideas and concepts. We
begin initially with an example from interpolating subdivision, before talking about splines and their
subdivision generalizations.

LOUL

Figure 2.1: Example of subdivision for curves in the plane. On the left 4 points connected with straight
line segments. To the right of it a refined version: 3 new points have been inserted “inbetween” the old
points and again a piecewise linear curve connecting them is drawn. After two more steps of subdivision
the curve starts to become rather smooth.
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2.1 The ldea of Subdivision
We can summarize the basic idea of subdivision as follows:

Subdivision defines a smooth curve or surface as the limit of a sequence of successive re-
finements.

Of course this is a rather loose description with many details as yet undetermined, but it captures the
essence.

Figure 2.1 shows an example in the case of a curve connecting some number of initial points in the
plane. On the left we begin with 4 points connected through straight line segments. Next to it is a refined
version. This time we have the original 4 points and additionally 3 more points “inbetween” the old
points. Repeating the process we get a smoother looking piecewise linear curve. Repeating once more
the curve starts to look quite nice already. It is easy to see that after a few more steps of this procedure
the resulting curve would be as well resolved as one could hope when using finite resolution such as that
offered by a computer monitor or a laser printer.
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Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left
an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular
subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.
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An example of subdivision for surfaces is shown in Figure 2.2. In this case each triangle in the original
mesh on the left is split into 4 new triangles quadrupling the number of triangles in the mesh. Applying
the same subdivision rule once again gives the mesh on the right.

Both of these examples show what is known as interpolating subdivision. The original points remain
undisturbed while new points are inserted. We will see below that splines, which are generally not
interpolating, can also be generated through subdivision. Albeit in that case new points are aserted
old points are moved in each step of subdivision.

How were the new points determined? One could imagine many ways to decide where the new points
should go. Clearly, the shape and smoothness of the resulting curve or surface depends on the chosen
rule. Here we list a number of properties that we might look for in such rules:

e Efficiency: the location of new points should be computed with a small number of floating point
operations;

e Compact support: the region over which a point influences the shape of the final curve or surface
should be small and finite;

e Local definition: the rules used to determine where new points go should not depend on “far
away” places;

e Affine invariance: if the original set of points is transformed, e.g., translated, scaled, or rotated,
the resulting shape should undergo the same transformation;

e Simplicity: determining the rules themselves should preferably be an offline process and there
should only be a small number of rules;

e Continuity: what kind of properties can we prove about the resulting curves and surfaces, for
example, are they differentiable?

For example, the rule used to construct the curve in Figure 2.1 computed new points by taking a weighted
average of nearby old points: two to the left and two to the right with weighté@-1,9,9, —1) respec-

tively (we are ignoring the boundaries for the moment). It is very efficient since it only involves 4
multiplies and 3 adds (per coordinate); has compact support since only 2 neighbors on either side are
involved; its definition is local since the weights do not depend on anything in the arrangement of the
points; the rule is affinely invariant since the weights used sum to 1; it is very simple since only 1 rule is
used (there is one more rule if one wants to account for the boundaries); finally the limit curves one gets
by repeating this process ad infinitum &k
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Before delving into the details of how these rules are derived we quickly compare subdivision to other
possible modeling approaches for smooth surfaces: traditional splines, implicit surfaces, and variational
surfaces.

1. Efficiency: Computational cost is an important aspect of a modeling method. Subdivision is
easy to implement and is computationally efficient. Only a small humber of neighboring old
points are used in the computation of the new points. This is similar to knot insertion methods
found in spline modeling, and in fact many subdivision methods are simply generalization of knot
insertion. On the other hand implicit surfaces, for example, are much more costly. An algorithm
such as marching cubes is required to generate the polygonal approximation needed for rendering.
Variational surfaces can be even worse: a global optimization problem has to be solved each time
the surface is changed.

2. Arbitrary topology: Itis desirable to build surfaces of arbitrary topology. This is a great strength
of implicit modeling methods. They can even deal witiangingtopology during a modeling
session. Classic spline approaches on the other hand have great difficulty with control meshes of
arbitrary topology. Here, “arbitrary topology” captures two properties. First, the topological genus
of the mesh and associated surface can be arbitrary. Second, the structure of the graph formed by
the edges and vertices of the mesh can be arbitrary; specifically, each vertex may be of arbitrary
degree.

These last two aspects are related: if we insist on all vertices having degree 4 (for quadrilateral)
control meshes, or having degree 6 (for triangular) control meshes, the Euler characteristic for a
planar graph tells us that such meshes can only be constructed if the overall topology of the shape
is that of the infinite plane, the infinite cylinder, or the torus. Any other shape, for example a
sphere, cannot be built from a quadrilateral (triangular) control mesh having vertices of degree 4
(6).

When rectangular spline patches are used in arbitrary control meshes, enforcing higher order con-
tinuity at extraordinary vertices becomes difficult and considerably increases the complexity of the
representation (see Figure 2.3 for an example of points not having valence 4). Implicit surfaces
can be of arbitrary topological genus, but the genus, precise location, and connectivity of a surface
are typically difficult to control. Variational surfaces can handle arbitrary topology better than
any other representation, but the computational cost can be high. Subdivision can handle arbitrary
topology quite well without losing efficiency; this is one of its key advantages. Historically sub-
division arose when researchers were looking for ways to address the arbitrary topology modeling
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Figure 2.3: A mesh with two extraordinary vertices, one with valence 6 the other with valence 3. In
the case of quadrilateral patches the standard valence is 4. Special efforts are required to guarantee high
order of continuity between spline patches meeting at the extraordinary points; subdivision handles such
situations in a natural way.

challenge for splines.

3. Surface features: Often it is desirable to control the shape and size of features, such as creases,
grooves, or sharp edges. Variational surfaces provide the most flexibility and exact control for cre-
ating features. Implicit surfaces, on the other hand, are very difficult to control, since all modeling
is performed indirectly and there is much potential for undesirable interactions between different
parts of the surface. Spline surfaces allow very precise control, but it is computationally expen-
sive and awkward to incorporate features, in particular if one wants to do so in arbitrary locations.
Subdivision allows more flexible controls than is possible with splines. In addition to choosing
locations of control points, one can manipulate the coefficients of subdivision to achieve effects
such as sharp creases or control the behavior of the boundary curves.

4. Complex geometry: For interactive applications, efficiency is of paramount importance. Because
subdivision is based on repeated refinement it is very straightforward to incorporate ideas such
as level-of-detail rendering and compression for the internet. During interactive editing locally
adaptive subdivision can generate just enough refinement based on geometric criteria, for example.
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For applications that only require the visualization of fixed geometry, other representations, such
as progressive meshes, are likely to be more suitable.

Since most subdivision techniques used today are based upon and generalize splines we begin with
a quick review of some basic facts of splines which we will need to understand the connection between
splines and subdivision.

2.2 Review of Splines

2.2.1 Piecewise Polynomial Curves

Splines are piecewise polynomial curves of some chosen degree. In the case of cubic splines, for exam-
ple, each polynomial segment of the curve can be written as

x(t) = agtd+at®+alt+ay
y(t) = b5t3+bht?+ bt + by,
where(a,b) are constant coefficients which control the shape of the curve over the associated segment.

This representation uses monomiafd t€,t,t%), which are restricted to the given segment, as basis
functions.

1.0+

-0.5 T T T T T T T |

Figure 2.4: Graph of the cubic B-spline. It is zero for the independent parameter outside the interval
[—2, 2]

Typically one wants the curve to have some order of continuity along its entire length. In the case of
cubic splines one would typically wa@? continuity. This places constraints on the coefficigas)
of neighboring curve segments. Manipulating the shape of the desired curves through these coefficients,
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while maintaining the constraints, is very awkward and difficult. Instead of using monomials as the basic
building blocks, we can write the spline curve as a linear combination of stBftgplines each with a
coefficient known as aontrol point

X(t) = inB(t—i)
yt) = > viB(t—i).

The new basis functioB(t) is chosen in such a way that the resulting curves are always continuous and
that the influence of a control point is local. One way to ensure higher order continuity is to use basis
functions which are differentiable of the appropriate order. Since polynomials themselves are inifinitely
smooth, we only have to make sure that derivatives match at the points where two polynomial segments
meet. The higher the degree of the polynomial, the more derivatives we are able to match. We also
want the influence of a control point to be maximal over a region of the curve which is close to the
control point. Its influence should decrease as we move away along the curve and disappear entirely at
some distance. Finally, we want the basis functions to be piecewise polynomial so that we can represent
any piecewise polynomial curve of a given degree with the associated basis functions. B-splines are
constructed to exactly satisfy these requirements (for a cubic B-spline see Figure 2.4) and in a moment
we will show how they are constructed.

The advantage of using this representation rather than the earlier one of monomials, is that the conti-
nuity conditions at the segment boundaries are already “hardwired” into the basis functions. No matter
how we move the control points, the spline curve will always maintain its continuity, for exa@fie,
the case of cubic B-splinésFurthermore, moving a control point has the greatest effect on the part of
the curve near that control point, and no effect whatsoever beyond a certain range. These features make
B-splines a much more appropriate tool for modeling piecewise polynomial curves.

Note: When we talk about curves, it is important to distinguish the curve itself and the graphs of the
coordinate functions of the curve, which can also be thought of as curves. For example, a curve can
be described by equationét) = sin(t), y(t) = coqt). The curve itself is a circle, but the coordinate
functions are sinusoids. For the moment, we are going to concentrate on representing the coordinate
functions.

IThe differentiability of the basis functions guarantees the differentiability of the coordinate functions of the curve. How-
ever, it does not guarantee the geometric smoothness of the curve. We will return to this distinction in our discussion of
subdivision surfaces.
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2.2.2 Definition of B-Splines

There are many ways to derive B-splines. Here we choose repeated convolution, since we can see from
it directly how splines can be generated through subdivision.

We start with the simplest case: piecewise constant coordinate functions. Any piecewise constant
function can be written as

x(t) = 3 %Bb(t),
whereBy(t) is the box function defined as

Bot) = 1 if 0<t<1

= 0 otherwise

and the function})(t) = Bo(t — i) are translates do(t). Furthermore, let us represent the continuous
convolution of two functiond (t)andg(t) with

(fog)t) = [ f(9gt—sds

A B-spline basis function of degraecan be obtained by convolving the basis function of degreel
with the boxByo(t).2 For example, the B-spline of degree 1 is defined as the convoluti@g(bf with
itself

B1(t) = [ Bo(9)Bo(t — 9)ds

Graphically (see Figure 2.5), this convolution can be evaluated by sliding one box function along the
coordinate axis from minus to plus infinity while keeping the second box fixed. The value of the con-
volution for a given position of the moving box is the area under the product of the boxes, which is just
the length of the interval where both boxes are non-zero. At first the two boxes do not have common
support. Once the moving box reaches 0, there is a growing overlap between the supports of the graphs.
The value of the convolution grows withuntil t = 1. Then the overlap starts decreasing, and the value
of the convolution decreases down to zerb-at2. The functiorB(t) is the linear hat function as shown
in Figure 2.5.

We can compute the B-spline of degree 2 convolvit) with the boxBy(t) again

Bo(t) — [ Bu(9)Bolt —9)ds

2Thedegreeof a polynomial is the highest order exponent which occurs, whilettier counts the number of coefficients
and is 1 larger. For example, a cubic curve is of degree 3 and order 4.
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Figure 2.5: The definition of degree 1 B-SpliBg(t) (right side) through convolution dy(t) with itself
(left side).

In this case, the resulting curve consists of three quadratic segments defined on if@etya($, 2) and
(2,3). In general, by convolving times, we can get a B-spline of degiee

Bi(t) :/Bl—l(S)BO(t_S)dS

Defining B-splines in this way a number of important properties immediately follow. The first concerns
the continuity of splines

Theorem 1 If f (t) is C*-continuous, theriBo ® f)(t) is C<+1-continuous.
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This is a direct consequence of convolution with a box function. From this it follows that the B-spline of
degreen is C"* continuous because the B-spline of degree@isontinuous.

2.2.3 Refinability of B-splines

Another remarkable property of B-splines is that they obeyefinement equation This is the key
observation to connect splines and subdivision. The refinement equation for B-splines of Idisgree
given by

I+1
Bi(t 21| > (|+1>B| (2t —K). (2.1)

In other words, the B-spline of degréecan be written as a linear combination tedinslated (k) and
dilated (2t) copies of itself. For a function to be refineable in this way is a rather special property. As an
example of the above equation at work consider the hat function shown in Figure 2.5. Itis easy to see that
it can be written as a linear combination of dilated hat functions with weidh& 1,1/2) respectively.

The property of refinability is the key to subdivision and so we will take a moment to prove it. We
start by observing that the box function, i.e., the B-spline of degree 0 can be written in terms of dilates
and translates of itself

Bo(t) = Bo(2t) + Bo(2t — 1), (2.2)

which is easily checked by direct inspection. Recall that we defined the B-spline of degree
[ [
Bi(t) = ) Bo(t) = (X)(Bo(2t) +Bo(2t — 1)) (2.3)
i=0 i=0

This expression can be “multiplied” out by using the following properties of convolution for functions
f(t), g(t), andh(t)

f)®@(g(t)+ht)) = ft)xgt)+ f(t)®h(t) linearity
ft—i)®glt—k) = mt—i—k) time shift
f(2)®@g(2t) = Im(2t) time scaling

wherem(t) = f(t) ® g(t). These properties are easy to check by substituting the definition of convolution
and amount to simple change of variables in the integration.
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For example, in the case Bf we get

Bi(t) = Bo(t)®Bo(t)
= (Bo(2t) +Bo(2t — 1)) ® (Bo(2t) + Bo(2t — 1))
= Bo(2) ®Bo(@) + Bo(2) © Bo( — 1)+ Bo(2 ~ 1)@ Bo(2) + Bo(2 - ) 0 Bu(2 ~ )
- %Bl(Zt)—i—;'Bl(Zt 1)+§Bl(2t 1)+%Bl(2t—1—1)
_ %mﬂzyumﬂz—m+8ﬂﬁ—@)

- ﬂz(>mz K).

The general statement for B-splines of dedraew follows from the binomial theorem

(x+y)*t = Iil (I JIZ l> X Ry

k=0
with Bo(2t) in place ofx andBp(2t — 1) in place ofy.

2.2.4 Refinement for Spline Curves

With this machinery in hand let’s revisit spline curves. Let

x| =
WU—[WU]—Zn&m

be such a spline curve of degrewith control points(x,,y;)T = pi € R%. Since we don’'t want to worry
about boundaries for now we leave the index setspecified. We will also drop the subscriggince the
degree, whatever it might be, is fixed for all our examples. Due to the definitiBhtof= B(t — i) each
control point exerts influence over a small part of the curve with parameter vafuigs +1].

Now considerp, the vector of control points of a given curve:

p-2
pP-1

P1
P2
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and the vectoB(t), which has as its elements the translates of the fun&ias defined above
B(t)y=| ... B(t+2) B(t+1) B(t) B(t—1) B(t—2)

In this notation we can denote our curveBi($)p.
Using the refinement relation derived earlier, we can rewrite each of the elem@his t#rms of its
dilates

B(2)=| ... B@+2 B@+1) B@) B@-1) B&-2) .|

using a matrixSto encode the refinement equations

The entries oS are given by Equation 2.1

1/1+1
SZi+k7i:5k:§< K )

The only non-zero entries in each column are the weights of the refinement equation, while successive
columns are copies of one another save for a shift down by two rows.
We can use this relation to rewrijét)

y(t) = B(t)p = B(2)Sp.

It is still the same curve, but desribed with respect to dilated B-splines, i.e., B-splines whose support is
half as wide and which are spaced twice as dense. We performed a change from the @dthésithe

new basiB(2t) and concurrently changed the old control popt® the appropriate new control points

. This process can be repeated

yt) = B(p°
= B@p' = B
= B(2yp! = B(@Ysp’,
from which we can define the relationship between control points at different levels of subdivision
pl*t =),
whereSis our infinite subdivision matrix.
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Looking more closely at one componentof our control points we see that
" _
pl = ZSLI Pl

To find out exactly whicls is affecting which term, we can divide the above into odd and even entries.
For the odd entries we have

p%itrll = ZSZHLI pl = ZSZ(ifI)Jrl o
and for the even entries we have
it = ZSZU pl = ZSZ(i—I) pl.

From which we essentially get two different subdivision rules one for theevamcontrol points of the
curve and one for the neadd control points. As examples of the above, let us consider two concrete
cases. For piecewise linear subdivision, the basis functions are hat functions. The odd coeffici%nts are
and%, and a lone 1 for the even point. For cubic splines the odd coefficients turn ou%tarhi%, while
the even coefficients arg §, and3.

Another way to look at the distinction between even and odd is to notice that odd points gttelrel
are newly inserted, while even points at leyel 1 correspond directly to the old points from levjel
In the case of linear splines the even points are in facs#meat level j + 1 as they were at levgl.
Subdivision schemes that have this property will later be catiggtpolating since points, once they
have been computed, will never move again. In contrast to this consider cubic splines. In that case even
points at levelj + 1 are local averages of points at leyedo thatpii+1 # p,J Schemes of this type will
later be callecdapproximating

2.2.5 Subdivision for Spline Curves

In the previous section we saw that we can refine the control point sequence for a given spline by multi-
plying the control point vectop by the matrixS, which encodes the refinement equation for the B-spline
used in the definition of the curve. What happens if we keep repeating this process over and over, gen-
erating ever denser sets of control points? It turns out the control point sequence converges to the actual
spline curve. The speed of convergence is geometric, which is to say that the difference between the
curve and its control points decreases by a constant factor on every subdivision step. Loosely speaking
this means that the actual curve is hard to distinguish from the sequence of control points after only a
few subdivision steps.
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We can turn this last observation into an algorithm and the core of the subdivision paradigm. Instead
of drawing the curve itself on the screen we draw the control polygon, i.e., the piecewise linear curve
through the control points. Applying the subdivision matrix to the control points defines a sequence of
piecewise linear curves which quickly converge to the spline curve itself.

In order to make these observations more precise we need to introduce a little more machinery in the
next section.

2.3 Subdivision as Repeated Refinement

2.3.1 Discrete Convolution

The coefficientss, of the B-spline refinement equation can also be derived from another perspective,
namely discrete convolution. This approach mimics closely the definition of B-splines through continu-
ous convolution. Using this machinery we can derive and check many useful properties of subdivision
by looking at simple polynomials.

Recall that the generating function of a sequescis defined as

AR =3 ad

whereA(z) is the ztransform of the sequen@g. This representation is closely related to the discrete
Fourier transform of a sequence by restricting the argurnemthe unit circlez= exp(i0). For the case
of two coefficient sequenceg andby their convolution is defined as

C=(a®@b)k =) ak-—nbn.
n
In terms of generating functions this can be stated succinctly as
C(2) = A(2)B(2),

which comes as no surprise since convolution in the time domain is multiplication in the Fourier domain.

The main advantage of generating functions, and the reason why we use them here, is that manip-
ulations of sequences can be turned into simple operations on the generating functions. A very useful
example of this is the next observation. Suppose we have two functions that each satisfy a refinement
equation

f(t)y = Zakf(zt_k)
git) = Zbkg(Zt—k)-
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In that case the convolutidm= f ® g of f andg also satisfies a refinement equation
h(t) = ch h(2t — k),

whose coefficientsy are given by the convolution of the coefficients of the individual refinement equa-
tions

1
Ckzélzak—ibi-

With this little observation we can quickly find the refinement equation, and thus the coefficients of the
subdivision matrixS, by repeated multiplication of generating functions. Recall that the box function
Bo(t) satisfies the refinement equati@j(t) = Bo(2t) + Bo(2t —1). The generating function of this
refinement equation i&(z) = (1+ z) since the only non-zero terms of the refinement equation are those
belonging to indices 0 and 1. Now recall the definition of B-splines of delgree

from which we immediately get the associated generating function

1
S2) = 5(1+2' "
The valuess used for the definition of the subdivision matrix are simply the coefficients of the various
powers ofzin the polynomialS(z)

11431 /141
s<z>=§kzo( : )zk,

where we used the binomial theorem to exp&g). Note how this matches the definition gf in
Equation 2.1.

Recall Theorem 1, which we used to argue that B-splines of deggieaC"~1 continuous. That same
theorem can now be expressed in terms of generating functions as follows

Theorem 2 If S(2) defines a convergent subdivision scheme yieldinf-eddtinuous limit function then
%(11L 2)S(2) defines a convergent subdivision scheme witht@ontinuous limit functions.

We will put this theorem to work in analyzing a given subdivision scheme by peeling off as many fac-
tors of%(l+ z) as possible, while still being able to prove that the remainder converges to a continuous
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limit function. With this trick in hand all we have left to do is establish criteria for the convergence of
a subdivision scheme to a continuous function. Once we can verify such a condition for the subdivi-
sion scheme associated with B-spline control points we will be justified in drawing the piecewise linear
approximations of control polygons as approximations for the spline curve itself. We now turn to this
task.

2.3.2 Convergence of Subdivision

There are many ways to talk about the convergence of a sequence of functions to a limit. One can use
different norms and different notions of convergence. For our purposes the simplest form will suffice,
uniform convergence.
We say that a sequence of functiofiglefined on some intervéd, b] C R converges uniformlyo a
limit function f if for all € > 0 there exists ang > 0 such that for alh > ng
max| f(t) — fn(t)] <e.
te[ab]
Or in words, as of a certain indeRrg) all functions in the sequence “live” within ansized tube around
the limit function f. This form of convergence is sufficient for our purposes and it has the nice prop-
erty that if a sequence of continuous functions converges uniformly to some limit furfGtibiat limit
function is itself continuous.
For later use we introduce some norm symbols

@) = sgplf(t)l
pll sup|pi|
|
S| = su ,
ISl ipZ|S|k|

which are compatible in the sense that, for examjpBe|| < ||| ||p||-

The sequence of functions we want to analyze now are the control polygons as we refine them with
the subdivision rules. Recall that the control polygon is the piecewise linear curve through the control
pointsp! at level j. Independent of the subdivision ruave can use the linear B-splines to define the
piecewise linear curve through the control point$ag) = B, (2/t)p!.

One way to show that a given subdivision scheB®nverges to a continuous limit function is to
prove that (1) the limit

P (t) = lim PI(t)

jovoo
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exists for allt and (2) that the sequen@d(t) converges uniformly. In order to show this property we
need to make the assumption that all rows of the m&esxm to 1, i.e., the odd and even coefficients of
the refinement relation separately sum to 1. This is a reasonable requirement since it is needed to ensure
the affine invariance of the subdivision process, as we will later see. In matrix notation this$heams
or in other words, the vector of all 1’s is an eigenvector of the subdivision matrix with eigenvalue 1. In
terms of generating functions this meajs-1) = 0, which is easily verified for the generating functions
we have seen so far.

Recall that the definition of continuity in the function setting is based on differences. Wg(5ay
is continuous aty if for any € > 0 there exists & > 0 so that| f (tp) — f(t)| < € as long asty —t| < d.
The corresponding tool in the subdivision setting is the difference between two adjacent control points
pij+1 — pij = (Ap');. We will show that if the differences between neighboring control points shrink fast
enough, the limit curve will exist and be continuous:

Lemma 3 If ||Ap!| < cy! for some constant & 0 and a shrinkage factod <y < 1 for all j > jo >0
then P (t) converges to a continuous limit functior? ).

Proof: Let Sbe the subdivision rule at hang! = $° andS; be the subdivision rule for B-splines of
degree 1. Notice that the rows $f S; sum to 0

(S—S)1=Sl-S1=1-1=0.

This implies that there exists a matiix such thatS— S = DA, whereA computes the difference of
adjacent element&));j = —1, (A)iji+1 = 1, and zero otherwise. The entriesfare given adj; =

— 2|j<:i (S—S)ik- Now consider the difference between two successive piecewise linear approximations
of the control points

[P —PIt)| = [B1(2 )i —Ba(2t)pl|
= [By(2*)Sp! — By (2 ) Spl|
= [Bi(2*'t)(S—S1)p!]|
< B2 )llID2p’)|
< [Dflap|
< [IDlley'.

This implies that the telescoping sup(t) + 5} _,(P<1 — P¥)(t) converges to a well defined limit func-
tion since the norms of each summand are bounded by a constant times a geometyic tetr®>(t)
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asj — o, then
P(t) — P(t [Ble,
IP=(t) =PI (1) < 1y
since the latter is the tail of a geometric series. This implies uniform convergence and thus continuity of
P>(t) as claimed.
How do we check such a condition for a given subdivision scheme? Suppose we had a derived

subdivision schemP for the differences themselves
Apitt = DAp!,
defined as the scheme that satisfies
AS= DA.

Or in words, we are looking for difference scheme Buch that taking differences after subdivision is
the same as applying the difference scheme to the differences.Dalesys exist? The answer is yes
if Sis affinely invariant, i.e.S(—1) = 0. This follows from the following argument. Multiplyin§ by A
computes a matrix whose rows are differences of adjacent ro&s3imce odd and even numbered rows
of Seach sum to one, the rows A5 must each sum to zero. Now the existence of a m&irsuch that
AS= DA follows as in the argument above.

Given this difference scheni@ all we would have to show is that some power- 0 of D has norm
less than 1) D™|| =y < 1. In that casd/Ap! || < c(y¥™)i. (We will see in a moment that the extra degree
of freedom provided by the parametaiis needed in some cases.)

As an example, let us check this condition for cubic B-splines. RecalBj(a = 3(1+2)%, i.e.,

b = glan +4pl,)
pgrl = %(pij—l+6pij + pij+1)-
Taking differences we have
(Bp' Y = p%itrll —pht= %(_pij—l —2p] +3pij+1)
= 53— p) + 15— ply) = 5(3(00Y) + 18p))i )

and similarly for the odd entries so tafz) = 3 (1+2)%, from which we conclude thgD|| = 3, and that
the subdivision scheme for cubic B-splines converges uniformly to a continuous limit function, namely
the B-spline itself.
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Another example, which is not a spline, is the so called 4 point scheme [5]. It was used to create
the curve in Figure 2.1, which is interpolating rather than approximating as is the case with splines. The
generating function for the 4 point scheme is

S(z) = %3(—2‘3 +472-7Y(142*

Recall that each additional factor§)¢1+ z) in the generating function increases the order of continuity of
the subdivision scheme. If we want to show that the limit function of the 4 point scheme is differentiable
we need to show th%(—f3+4fz — 7z 1)(1+ 23 converges to a continuous limit function. This in
turn requires thab(z) = %(—T3+4T2 — 7z 1)(1+2)? satisfy a norm estimate as before. The rowBof
have non-zero entries 6, 1), and(=, 2, %) respectively. ThugD|| = 1, which is not strong enough.
However, with a little bit more work one can show thi@?|| = %, so that indeed the 4 point scheme is
cl.
In general, the difficult part is to find a set of coefficients for which subdivision converges. There
is no general method to achieve this. Once a convergent subdivision scheme is found, one can always

obtain a desired order of continuity by convolving with the box function.

2.3.3 Summary

So far we have considered subdivision only in the context of splines where the subdivision rule, i.e., the
coefficients used to compute a refined set of control points, was fixed and everywhere the same. There
is no pressing reason for this to be so. We can create a variety of different curves by manipulating the
coefficients of the subdivision matrix. This could be done globally or locally. I.e., we could change the
coefficients within a subdivision level and/or between subdivision levels. In this regard, splines are just
a special case of the more general class of curves, subdivision curves. For example, at the beginning of
this chapter we briefly outlined an interpolating subdivision method, while spline based subdivision is
approximating rather than interpolating.

Why would one want to draw a spline curve by means of subdivision? In fact there is no sufficiently
strong reason for using subdivision in one dimension and none of the commercial line drawing packages
do so, but the argument becomes much more compelling in higher dimensions as we will see in later
chapters.

In the next section we use the subdivision matrix to study the behavior of the resulting curve at a point
or in the neighborhood of a point. We will see that it is quite easy, for example, to evaluate the curve
exactly at a point, or to compute a tangent vector, simply from a deeper understanding of the subdivision
matrix.
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2.4 Analysis of Subdivision

In the previous section we have shown that uniform spline curves can be thought of as a special case of
subdivision curves. So far, we have seen only examples for which we use a fixed set of coefficients to
compute the control points everywhere. The coefficients define the appearance of the curve, for example,
whether it is differentiable or has sharp corners. Consequently it is possible to control the appearance of
the curve by modifying the subdivision coefficients locally. So far we have not seen a compelling reason
to do so in the 1D setting. However, in the surface setting it will be essential to change the subdivision
rule locally around extraordinary vertices to ensure maximal order of continuity. But before studying this
guestion we once again look at the curve setting first since the treatment is considerably easier to follow
in that setting.

To study properties such as differentiability of the curve (or surface) we need to understand which
of the control points influences the neighborhood of the point of interest. This notion is captured by the
concept of invariant neighborhoods to which we turn now.

2.4.1 Invariant Neighborhoods

Suppose we want to study the limit curve of a given subdivision scheme in the vicinity of a particular
control point® To determindocal properties of a subdivision curve, we do not need the whole infinite
vector of control points or the infinite matrix describing subdivision of the entire curve. Differentiability,
for example, is a local property of a curve. To study it we need consider only an arbitrarily small piece
of the curve around the origin. This leads to the question of which control points influence the curve in
the neighborhood of the origin?

As a first example consider cubic B-spline subdivision. There is one cubic segment to the left of the
origin with parameter valuese [—1,0] and one segment to the right with parameter rang€o0, 1].
Figure 2.6 illustrates that we need 5 control points at the coarsest level to reach any point of the limit
curve which is associated with a parameter value betwekmnd 1, no matter how close it is to the
origin. We say that theévariant neighborhoodhas size 5. This size depends on the number of non-zero
entries in each row of the subdivision matrix, which is 2 for odd points and 3 for even points. The latter
implies that we need one extra control point to the left-dfand one to the right of 1.

Another way to see this argument is to consider the basis functions associated with a given subdivision
scheme. Once those are found we can find all basis functions overlapping a region of interest and

SHere and in the following we assume that the point of interest is the origin. This can always be achieved through renum-
bering of the control points.
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Figure 2.6: In the case of cubic B-spline subdivision the invariant neighborhood is of size 5. It takes
5 control points at the coarsest level to determine the behavior of the subdivision limit curve over the
two segments adjacent to the origin. At each level we need one more control point on the outside of
the intervalt € [—1,1] in order to continue on to the next subdivision level. 3 initial control points for
example would not be enough.

their control points will give us the control set for that region. How do we find these basis functions
in the setting when we don’t neccessarily produce B-splines through subdivision? The argument is
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straightforward and also applies to surfaces. Recall that the subdivision operator is linear, i.e.,

Pitt) = Bl(zjt)sﬂpo

el

= zp Bl ZJt )0

= Izpi

In this expressiomg? stands for the vector consisting of all 0s except a single 1 in positibm other
words the final curve is always a linear combination with weigjﬁtef fundamental solutions

lim 0/ (t) = ().
If we used the same subdivision weights throughout the domain it is easy to sefg(that ¢(t —
i), i.e., there is a single functiofi(t) such that all curves produced through subdivision from some
initial sequence of pointp® are linear combinations of translatesdoft). This function is called the
fundamental solution of the subdivision scheme. Questions such as differentiability of the limit curve
can now be studied by examining this one function

¢(t) = lim S (e0)°.
oo
For example, we can read off from the support of this function how far the influence of a control point
will be felt. Similarly, the shape of this function tells us something about how the curve (or surface) will
change when we pull on a control point. Note that in the surface case the rules we apply will depend on
the valence of the vertex in question. In that case we won’t get only a single fundamental solution, but a
different one for each valence. More on this later.

With this we can revisit the argument for the size of the invariant neighborhood. The basis functions
of cubic B-spline subdivision have support width of 4 intervals. If we are interested in a small open
neighborhood of the origin we notice that 5 basis functions will overlap that small neighborhood. The
fact that the central 5 control points control the behavior of the limit curve at the origin holds independent
of the level. With the central 5 control points at leyjelve can compute the central 5 control points at
level j + 1. This implies that in order to study the behavior of the curve at the origin all we have to
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analyze is a small & 5 subblock of the subdivision matrix

p' 16 100)/p,

plt! 04400/ p,

i+ |1 j

pi™t 00440 p)

phtt 00161 p}
3 2 1 0 1 2 3
O O ° 0 0

AR W ENNV NNV

©) ©) [ ] [ ] [ ] [ ] [ ] ©) ©)
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Figure 2.7: In the case of the 4 point subdivision rule the invariant neighborhood is of size 7. It takes 7
control points at the coarsest level to determine the behavior of the subdivision limit curve over the two
segments adjacent to the origin. One extra poirnéas needed to computp{*l. The other is needed

to computepé“, which requirespé. Two extra points on the left and right result in a total of 7 in the
invariant neighborhood.

The 4 point subdivision scheme provides another example. This time we do not have recourse to
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splines to argue the properties of the limit curve. In this case each basis function has a support ranging
over 6 intervals. An easy way to see this is to start with the sequeficee., a single 1 at the origin
surrounded by zeros. Repeatedly applying subdivision we can see that no points outside the original
[—3,3] interval will become non-zero. Consequently for the invariant neighborhood of the origin we
need to consider 3 basis functions to the left, the center function, and 3 basis functions to the right. The
4 point scheme has an invariant neighborhood of 7 (see Figure 2.7). In this case the local subdivision
matrix is given by

piit -1 9 9 -1 0 0 O pltt
pltt 0O 0 16 0 0 0 O pltt
pltt 0 -1 9 9 -1 0 0 pltt
j+1 1 j+1
Pt == 0 0o 0 16 0 0 O P}
j+1 16 j+1
P1 o 0 -2 9 9 -1 0 P1
pytt 0O 0 0 0 16 0 O pytt
pytt 0O 0 0 -1 9 9 -1 pytt

Since the local subdivision matrix controls the behavior of the curve in a neighborhood of the origin,
it comes as no surprise that many properties of curves generated by subdivision can be inferred from
the properties of the local subdivision matrix. In particular, differentiability properties of the curve are
related to the eigenstructure of the local subdivision matrix to which we now turn. From now on the
symbolSwill denote thelocal subdivision matrix.

2.4.2 Eigen Analysis

Recall from linear algebra that agenvectoix of the matrixM is a non-zero vector such thistx = Ax,
whereA is a scalar. We say thatis theeigenvaluecorresponding to the right eigenvectar

Assume the local subdivision mati$has sizen x n and has real eigenvectaxg, X1, ... ,Xn_1, which
form a basis, with corresponding real eigenvaldigs> A1 > ... > A,_1. For example, in the case of
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cubic splinesn=5 and

(Ao, A1,A2,A3,A4) = (1,%,%,%,%)
1 -1 1 10
1 -3 & 00
(X0,X1,X2,X3,X4) = 1 0 -4 00
1 1 & 00
1 1 1 01
Given these eigenvectors we have
Mo O O O O
0O M 0O O O
S(X0,X1,X2,X3,Xa) = (Xo,X1,X2,X3,X4)| O O A, O O
0O 0 0 A3 O
0 0 0 0 M\
SX = XD
X~1sx = D.

The rows%; of X~1 are called left eigenvectors since they sati&f$ = A%, which can be seen by
multiplying the last equality wittX = on the right.

Note: not all subdivision schemes have only real eigenvalues or a complete set of eigenvectors. For
example, the 4 point scheme has eigenvalues
1 1
16’ _1_6)’
but it does not have a complete set of eigenvectors. These degeneracies are the cause of much technical
difficulty in the theory of subdivision. To keep our exposition simple and communicate the essential
ideas we will ignore these cases and assume from now on that we have a complete set of eigenvectors.

In this setting we can write any vectprof lengthn as a linear combination of eigenvectors:

n—1
p= i;axi,

where theg; are given by the inner producgs = X; - p. This decomposition works also when the entries
of p aren 2-D points(or 3-D points in the case of surfaces) rather than single numbers. In this case each
“coefficient” g is a 2-D (3-D) point. The eigenvectoxs,... ,X,_1 are simply vectors af real numbers.

1111
(7\03)\13)\237\337\43)\53)\6) - (13 Ea Za Za éa_
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In the basis of eigenvectors we can easily compute the result of application of the subdivision matrix
to a vector of control points, that is, the control points on the next level

n—-1

$° = SY ax
2,
n—-1

= Z;aiS(i by linearity of S
i=

n-1
= i; aNiXi

Applying S jtimes, we obtain
) o n—1 .
pl=9p°= i;ew\i’xi.

2.4.3 Convergence of Subdivision

If Ao > 1, thenSIx® would grow without bound agincreased and subdivision would not be convergent.
Hence, we can see that in order for the sequ&hge®to converge at all, it is necessary that all eigenvalues
are at most 1. It is also possible to show that only a single eigenvalue may have magnitude 1 [25].
A simple consequence of this analysis is that we can compute the limit position directly in the eigen-
basis
n—-1 .
P*(0) = lim Ip° = lim Z;ai)\ijxi = ay,
] —0 ] —00 =
since all eigen componenisi| < 1 decay to zero. For example, in the case of cubic B-spline subdivision
we can compute the limit position cpqd asap = Xo-p!, which amounts to

P =ag= é(pij_1+4pij +pl,)-

Note that this expression is completely independent of the leaklvhich it is computed.

2.4.4 Invariance under Affine Transformations

If we moved all the control points simultaneously by the same amount, we would expect the curve defined
by these control points to move in the same way as a rigid object. In other words, the curve should be
invariant under distance-preserving transformations, such as translation and rotdtidollows from
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linearity of subdivision that if subdivision is invariant with respect to distance-preserving transforma-
tions, it also should be invariant under any affine transformations. The family of affine transformations
in addition to distance-preserving transformations, contains shears.

Figure 2.8: Invariance under translation.

Let 1 be amn-vector of 1's andh € R? a displacement in the plane (see Figure 2.8) Tharepresents
a displacement of our seven points by a veetoApplying subdivision to the transformed points, we get

Sp'+1-a) = P'+1-a) by linearity ofS
= ptligi-a).

From this we see that for translational invariance we need
S1l-a)=1-a

Therefore,1 should be the eigenvector 8fwith eigenvalue\g = 1.

Recall that when proving convergence of subdivision we assumed ihanh eigenvector with eigen-
value 1. We now see that this assumption is satisfied by any reasonable subdivision scheme. It would be
rather unnatural if the shape of the curve changed as we translate control points.
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2.4.5 Geometric Behavior of Repeated Subdivision

If we assume thakg is 1, and all other eigenvalues are less than 1, we can choose our coordinate system
in such a way thady is the origin inR2. In that case we have

) n—-1 )
pl= i; aiAxi

Dividing both sides by\J, we obtain

1 j n—1 }\i j

—pl=axi+ ) g (—> Xi.

A iZZ M)
If we assume tha\,|, ... ,|An_1| < |A1], the sum on the right approaches zerg as . In other words
the term corresponding %, will “dominate” the behavior of the vector of control points. In the limit,
we get a set off points arranged along the vectmr. Geometrically, this is a vector tangent to our curve
at the center point (see Figure 2.9).

Just as in the case of computing the limit point of cubic B-spline subdivision by compagting can
compute the tangent vector gt by computinga; = X; - p!

t"=a;=pl,,—p. ;.

If there were two equal eigenvalues, say= A,, asj increases, the points in the limit configuration
will be linear combinations of two vectoes anday, and in general would not be on the same line. This
indicates that there will be no tangent vector at the central point. This leads us to the following condition,
that, under some additional assumptions, is necessary for the existence of a tangent

All eigenvalues of S excepg = 1 should be less than;.

2.4.6 Size of the Invariant Neighborhood

We have argued above that the size of the invariant neighborhood for cubic splines is 5 (7 for the 4pt
scheme). This was motivated by the question of which basis functions overlap a finite sized, however
small, neighborhood of the origin. Yet, when we computed the limit position as well as the tangent
vector for the cubic spline subdivision we used left eigenvectors, whose non-zero entries did not extend
beyond the immediate neighbors of the vertex at the origin. This turns out to be a general observation.
While the larger invariant neighborhood is neededaioalysis we can actually get away with a smaller
neighborhood if we are only interested éomputationof point positions and tangents at those points
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Figure 2.9: Repeatedly applying the subdivision matrix to our setoitrol points results in the control
points converging to a configuration aligned with the tangent vector. The various subdivision levels have
been offset vertically for clarity.

corresponding to one of the original vertices. The value of the subdivision curve at the center point only
depends on those basis functions which are non-zero at that point. In the case of cubic spline subdivision
there are only 3 basis functions with this property. Similarly the first derivatives at the origin of the basis
functions centered at -2 and +2 are zero as well. Hence the derivative only depends on the immediate
neighbors as well. This must be so since the subdivision sche@ke i§he basis functions have zero
derivative at the edge of their support 8y-continuity assumption, because outside of the support the
derivative is identically zero.

For curves this distinction does not make too much of a difference in terms of computations, but
in the case of surfaces life will be much easier if we can use a smaller invariant neighborhood for the
computation of limit positions and tangents. For example, for Loop’s scheme we will be able to use
a 1-ring (only immediate neighbors) rather than a 2-ring. For the Butterfly scheme we will find that a
2-ring, rather than a 3-ring is sufficient to compute tangents.
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2.4.7 Summary

For our subdivision matrigwe desire the following characteristics
e the eigenvectors should form a basis;
e the first eigenvaluég should be 1;
¢ the second eigenvalug should be less than 1;

¢ all other eigenvalues should be less thhan
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Chapter 3

Subdivision Surfaces

Denis Zorin, New York University

In this chapter we review the basic principles of subdivision surfaces. These principles can be applied
to a variety of subdivision schemes described in Chapter 4. Doo-Sabin, Catmull-Clark, Loop, Modified
Butterfly, Kobbelt, Midedge.

Some of these schemes were around for a while: the 1978 papers of Doo and Sabin and Catmull and
Clark were the first papers describing subdivision algorithms for surfaces. Other schemes are relatively
new. Remarkably, during the period from 1978 until 1995 little progress was made in the area. In
fact, until Reif’s work [23] onC!-continuity of subdivision most basic questions about the behavior
of subdivision surfaces near extraordinary vertices were not answered. Since then there was a steady
stream of new theoretical and practical results: classical subdivision schemes were analyzed [24, 16],
new schemes were proposed [30, 10, 8, 17], and general theory was developtardCK-continuity
of subdivision [23, 18, 26, 28]. Smoothness analysis was performed in some form for allmost all known
schemes, for all of them, definitive results were obtained during the last 2 years only.

One of the goals of this chapter is to provide an accessible introduction to the mathematics of subdi-
vision surfaces (Sections 3.4 and 3.5). Building on the material of the first chapter, we concentrate on
the few general concepts that we believe to be of primary importance: subdivision surfaces as parametric
surfacesC!-continuity, eigenstructure of subdivision matrices, characteristic maps.

The developments of recent years have convinced us of the importance of understanding the mathe-
matical foundations of subdivision. A Computer Graphics professional who wishes to use subdivision,
probably is not interested in the subtle points of a theoretical argument. However, understanding the
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general concepts that are used to construct and analyze subdivision schemes allows one to choose the
most appropriate subdivision algorithm or customize one for a specific application.

3.1 Subdivision Surfaces: an Example

One of the simplest subdivision schemes isltbep schemeinvented by Charles Loop [14]. We will
use this scheme as an example to introduce some basic features of subdivision for surfaces.

The Loop scheme is defined for triangular meshes. The general pattern of refinement, which we call
vertex insertionis shown in Figure 3.1.

Figure 3.1. Refinement of a triangular mesh. New vertices are shown as black dots. Each edge of the
control mesh is split into two, and new vertices are reconnected to form 4 new triangles, replacing each
triangle of the mesh.

Like most (but not all) other subdivision schemes, this scheme is based on a spline basis function,
called the three-directional quartic box spline. Unlike more conventional splines, such as the bicubic
spline, the three-directional box spline is defined on the redritargular grid; the generating polyno-
mial for this spline is

1
S(21.22) = 75 (1+ 2)2(1+2)2(1+z2)%.

Note that the generating polynomial for surfaces has two variables, while the generating polynomials for
curves descibed in Chapter 2, had only one. This spline basis funct@rdsntinuous. Subdivision
rules for it are shown in Figure 3.2.
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Figure 3.2: Subdivision coefficients for a three directional box spline.

In one dimension, once a spline basis is chosen, all the coefficients of the subdivision rules that are
needed to generate a curve are completely determined. The situation is radically different and more
complex for surfaces. The structure of the control polygon for curves is always very simple: the vertices
are arranged into a chain, and any two pieces of the chain of the same length always have identical
structure. For two-dimensional meshes, the local structure of the mesh may vary: the number of edges
connected to a vertex may be different from vertex to vertex. As a result the rules derived from the spline
basis function may be applied only to parts of the mesh that are locally regular; that is, only to those
vertices that have a valence of 6 (in the case of triangular schemes). In other cases, we have to design
new rules for vertices with different valences. Such vertices are catiedordinary

For the time being, we consider only meshes without a boundary. Note that the quartic box spline
rule used to compute the control point inserted at an edge (Figure 3.2,left) can be applied anywhere. The
only rule that needs maodification is the rule used to compute new positions of control points inherited
from the previous level.

Loop proposed to use coefficients shown in Figure 3.3. It turns out that this choice of coefficients
guarantees that the limit surface of the scheme is “smooth.”

Note that these new rules only influence local behavior of the surface near extraordinary vertices. All
vertices inserted in the course of subdivision are always regular, i.e., have valence 6.

This example demonstrates the main challenge in the design of subdivision schemes for surfaces:
one has to define additional rules for irregular parts of the mesh in such a way that the limit surfaces
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Figure 3.3: Loop scheme: coefficients for extraordinary vertices. The choifei®fnot unique;
Loop [14] suggestg (5/8— (2 + 2 cos?l)?).

have desired properties, in particular, are smooth. In this chapter one of our main goals is to describe
the conditions that guarantee that a subdivision scheme produces smooth surfaces. We start with defin-
ing subdivision surfaces more rigorously (Section 3.2), and defining subdivision matrices (Section 3.3).
Subdivision matrices have many applications, including computing limit positions of the points on the
surface, normals, and explicit evaluation of the surface (Chapter 4). Next, we define more precisely what
a smooth surface is (Section 3.4), introducing two concepts of geometric smoottiaegent plane
continuity andC!-continuity Then we explain how it is possible to understand local behavior of sub-
division near extraordinary vertices using characteristic maps (Section 3.5). In Chapter 4 we discuss a
variety of subdivision rules in a systematic way.

3.2 Natural Parameterization of Subdivision Surfaces

The subdivision process produces a sequence of polyhedra with increasing numbers of faces and vertices.
Intuitively, the subdivision surface is the limit of this sequence. The problem is that we have to define
what we mean by the limit more precisely. For this, and many other purposes, it is convenient to represent
subdivision surfaces as functions defined on some parametric domain with vaR&slimthe regular

case, the plane or a part of the plane is the domain. However, for arbitrary control meshes, it might be
impossible to parameterize the surface continuously over a planar domain.
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Fortunately, there is a simple construction that allows one to usitiied control mesh or more
precisely, the corresponding polygonal complex, as the domain for the surface.

Parameterization over the initial control mesh. We start with the simplest case: suppose the initial
control mesh is a simple polyhedron, i.e., it does not have self-intersections.

Suppose each time we apply the subdivision rules to compute the finer control mesh, we also apply
midpoint subdivision to a copy of the initial control polyhedron (see Figure 3.4). This means that we
leave the old vertices where they are, and insert new vertices splitting each edge in two. Note that
each control point that we insert in the mesh using subdivision corresponds to a point in the midpoint-
subdivided polyhedron. Another important fact is that midpoint subdivision does not alter the control
polyhedron regarded as a set of points; and no new vertices inserted by midpoint subdivision can possibly
coincide.

Figure 3.4: Natural parameterization of the subdivision surface

We will use the second copy of the control polyhedron as our domain. We denot itideen it is
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regarded as a polyhedron with identified vertices, edges and facel janten it is regarded simply as
a subset oR3.

Important remark on notation: we will refer to the points computed by subdivision eantrol
points; the wordvertex is reserved for the vertices of the polyhedron that serves as the domain and
new vertices added to it by midpoint subdivision. We will use the latterdenote vertices, angl (v) to
denote the control point correspondingvtafter j subdivision steps.

As we repeatedly subdivide, we get a mapping from a denser and denser subset of the domain to the
control points of a finer and finer control mesh. At each step, we linearly interpolate between control
vertices, and regard the mesh generated by subdivision as a piecewise linear function on the&kdomain
Now we have the same situation that we had for curves: a sequence of piecewise linear functions defined
on a common domain. If this sequence of functions converges uniformly, the limit is & rfnam |K|
into R3. This is the limit surface of subdivision.

An important fact about the parameterization that we have just constructed is that for a regular mesh
the domain can be taken to be the plane with a regular triangular grid. If in the regular case the subdivision
scheme reduces to spline subdivision, our parameterization is precisely the standaphrameteriza-
tion of the spline, which is guaranteed to be smooth.

To understand the general idea, this definition is sufficient, and a reader not interested in the sub-
tle details can proceed to the next section and assume from now on that the initial mesh has no self-
intersections.

General case. The crucial fact that we needed to parameterize the surface over its control polyhedron
was the absence of self-intersections. Otherwise, it could happen that a vertex on the control polyhedron
has more than one control point associated with it.

In general, we cannot rely on this assumption: quite often control meshes have self-intersections or
coinciding control points. We can observe though that the positions of vertices of the control polyhedron
are of no importance for our purposes: we can deform it in any way we want. In many cases, this
is sufficient to eliminate the problem with self intersections; however, there are cases when the self-
intersection cannot be removed by any deformation (example: Klein bottle, Figure 3.5). It is always
possible to do that if we place our mesh in a higher-dimensional space; in fact, 4 dimensions are always
enough.

This leads us to the following general choice of the domain: a polyhedron with no self-intersections,
possibly in four-dimensional space. The polyhedron has to have the same structure as the initial control
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Figure 3.5: The surface (Klein bottle) has an intersection that cannot be removed in 3D.

mesh of the surface, that is, there is a one-to-one correspondence between vertices, edges and faces of
the domain and the initial control mesh. Note that now we are completely free to chose the control points
of the initial mesh any way we like.

3.3 Subdivision Matrix

An important tool both for understanding and using subdivision issthtadivision matrix similar to

the subdivision matrix for the curves introduced in Chapter 2. In this section we define the subdivision
matrix and discuss how it can be used to compute tangent vectors and limit positions of points. Another
application of subdivision matrices is explicit evaluation of subdivision surfaces described in Chapter 4.

Subdivision matrix. Similarly to the one-dimensional case, the subdivision matrix relates the con-
trol points in a fixed neighborhood of a vertex on two sequential subdivision levels. Unlike the one-
dimensional case, there is not a single subdivision matrix for a given surface subdivision scheme: a
separate matrix is defined for each valence.

For the Loop scheme control points for only two rings of vertices around an extraordinary Bertex
definef(U) completely. We will call the set of vertices in these two ringsdbatrol setof U.

Let p(j) be the value at levell of the control point corresponding B Assign numbers to the vertices
in the two rings (there areiertices). Note that/ | andU 11 are similar: one can establish a one-to-one
correspondence between the vertices simply by shrinkihdpy a factor of 2. Enumerate the vertices
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Figure 3.6: The Loop subdivision scheme near a vertex of degree 3. Notestt&at-3 = 10 points in
two rings are required.

in the rings; there arekdvertices, plus the vertex in the center. I@ti = 1...3k be the corresponding
control points.

By definition of the control set, we can compute all vaquéJél from the valuespij. Because we only
consider subdivision which computes finer levels by linear combination of points from the coarser level,
the relation between the vectors of poipts* andp! is given by a(3k+ 1) x (3k+ 1) matrix:

po P
| =8|
i :

pj3k pJSk

It is important to remember that each componenpbfs a point in the three-dimensional space. The
matrix Sis the subdivision matrix, which, in general, can change from level to level. We consider only
schemes for which it is fixed. Such schemes are callationary

We can now rewrite each of the coordinate vectors in terms of the eigenvectors of theSetnm-
pare to the use of eigen vectors in the 1D setting). Thus,

P’ =3 ax
|

and



where thex; are the eigenvectors & and the)\; are the corresponding eigenvalues, arranged in nonin-
creasing order. As discussed for the one-dimensional ag$®s to be 1 for all subdivision schemes, in
order to guarantee invariance with respect to translations and rotations. Furthermore, all stable, converg-
ing subdivision schemes will have all the remainkdess than 1.

Subdominant eigenvalues and eigenvectorslt is clear that as we subdivide, the behaviop&fwhich
determines the behavior of the surface in the immediate vicinity of our point of interest, will depend only
on the eigenvectors corresponding to the largest eigenvalugs of

To proceed with the derivation, we will assume for simplicity that A3 = A, > Az. We will call
A1 andA, subdominant eigenvalueBurthermore, we letig = O; this corresponds to choosing the origin
of our coordinate system in the limit position of the vertex of interest (just as we did in the 1D setting).
Then we can write

j Az
% = a1X1 +apXo+ag (f) X3... (31)

where the higher-order terms disappear in the limit.

This formula is very important, and deserves careful consideration. Recalitissa vector of 8+ 1
3D points, whilex; are vectors of 84+ 1 numbers. Hence the coefficier@sin the decomposition above
have to be 3D points.

This means that, up to a scaling by)!, the control set forf (U) approaches a fixed configuration.
This configuration is determined by andx,, which depend only on the subdivision scheme, and;on
anday which depend on the initial control mesh.

Each vertex imp! for sufficiently largej is a linear combination of; anday, up to a vanishing term.

This indicates thah; anda, span the tangent plane. Also note that if we apply an affine transéorm
taking a; anday to coordinate vectore; ande; in the plane, then, up to a vanishing term, the scaled
configuration will be independent of the initial control mesh. The transformed configuration consists of
2D points with coordinategj, xzi), i = 0... 3k, which depend on the subdivision matrix.

Informally, this indicates that up to a vanishing term, all subdivision surfaces generated by a scheme
differ near an extraordinary point only by an affine transform. In fact, this is not quite true: it may happen
that a particular configuratiofxyi, %), i = 0...3k does not generate a surface patch, but, say, a curve.
In that case, the vanishing terms will have influence on the smoothness of the surface.
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Tangents and limit positions. We have observed that similar to the one-dimensional case, the coef-
ficientsag a; anday in the decomposition 3.1 are the limit position of the control point for the central
vertex vp, and two tangents respectively. To compute these coefficients, we need corresponding left
eigenvectors:

ao = (lo,p), a=(1,p), a=(l2,p)

Similarly to the one-dimensional case, the left eigenvectors can be computed using only a smaller
submatrix of the full subdivision matrix. For example, for the Loop scheme we need to consider the
k+ 1 x k+ 1 matrix acting on the control points of 1-neighborhood of the central vertex, not on the
points of the 2-neighborhood.

In the descriptions of subdivision schemes in the next section we describe these left eigenvectors
whenever information is available.

3.4 Smoothness of Surfaces

Intuitively, we call a surface smooth, if, at a close distance, it becomes indistinguishable from a plane.
Before discussing smoothness of subdivision surfaces in greater detail, we have to define more precisely
what we mean by a surface, in a way that is convenient for analysis of subdivision.

The discussion in the section is somewhat informal; for a more rigorous treatment, see [23, 22, 26],

3.4.1 Cl-continuity and Tangent Plane Continuity

Recall that we have defined the subdivision surface as a funétigi| — R® on a polyhedron. Now

we can formalize our intuitive notion of smoothness, namely local similarity to a piece of the plane. A
surface is smooth at a poiriof its domain|K|, if for a sufficiently small neighborhoody of that point

the imagef (Uy) can be smoothly deformed into a planar disk. More precisely,

Definition 1 A surface f: |K| — R is Cl-continuous if for every point xc |K| there exists a regular
parameterizatiort: D — f(Uy) of f(Uy) over a unit disk D in the plane, whergis the neighborhood

in |K| of x. Aregular parameterizatiorrtis one that is continuously differentiable, one-to-one, and has
a Jacobi matrix of maximum rank.

The condition that the Jacobi matrix pfhas maximum rank is necessary to make sure that we have no
degeneracies, i.e., that we really do have a surface, not a curve or pgint (ps1, p2, ps) and the disc
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is parameterized by, andx,, the condition is that the matrix

opL  0py
0X1 aXZ
o 0P
aX1 aXZ
ops  dps
aX1 aXZ

have maximal rank (2).

There is another, weaker, definition of smoothness, which is often useful. This definition captures the
intuitive idea that the tangent plane to a surface changes continuously near a smooth point. Recall that a
tangent plane is unquely characterized by its normal. This leads us to the following definition:

Definition 2 A surface f |K| — R®istangent plane continuoust x€ |K | if and only if surface normals
are defined in a neighborhood around x and there exists a limit of normals at x.

This is a useful definition, since it is easier to prove surfaces are tangent plane continuous. Tangent
plane continuity, however, is weaker th@h-continuity.

As a simple example of a surface that is tangent plane continuous bDt4continuous, consider the
shape in Figure 3.7. Points in the vicinity of the central point are “wrapped around twice.” There exists a
tangent plane at that point, but the surface does not “locally look like a plane.” Formally speaking, there
is no regular parameterization of the neighborhood of the central point, even though it has a well-defined
tangent plane.

From the previous example, we see how the definition of tangent plane continuity must be strength-
ened to becom€!:

Lemma 4 If a surface is tangent plane continuous at a point and the projection of the surface onto the
tangent plane at that point is one-to-one, the surfacelis C

The proof can be found in [26].

3.5 Analysis of Subdivision Surfaces

In this section we discuss how to determine if a subdivision scheme produces smooth surfaces. Typically,
it is known in advance that a scheme producésontinuous (or better) surfaces in the regular setting.

For local schemes this means that the surfaces generated on arbitrary mesblesarnuous away

from the extraordinary vertices. We start with a brief discussion of this fact, and then concentrate on
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Figure 3.7: Example of a surface that is tangent plane continuous bGt+wantinous.

analysis of the behavior of the schemes near extraordinary vertices. Our goal is to formulate and provide
some motivation for Reif’s sufficient condition f@-continuity of subdivision.

We assume a subdivision scheme defined on a triangular mesh, with certain restrictions on the struc-
ture of the subdivision matrix, defined in Section 3.5.2. Similar derivations can be performed without
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these assumptions, but they become significantly more complicated. We consider the simplest case so as
not to obscure the main ideas of the analysis.

3.5.1 Cl-continuity of Subdivision away from Extraordinary Vertices

Most subdivision schemes are constructed from regular schemes, which are known to produce at least
Cl-continuous surfaces in the regular setting for almost any initial configuration of control points. If our
subdivision rules are local, we can take advantage of this knowledge to show that the surfaces generated
by the scheme ar@!-continuous for almost any choice of control points anywraesay from extraor-
dinary vertices We call a subdivision scheme local, if only a finite number of control points is used to
compute any new control point, and does not exceed a fixed number for all subdivision levels and all
control points.

One can demonstrate, as we did for the curves, that for any tridngl¢he domain the surfacg(T)
is completely determined by only a finite number of control points corresponding to vertices around
T. For example, for the Loop scheme, we need only control points for vertices that are adjacent to the
triangle. (see Figure 3.8). This is true for triangles at any subdivision level.

Figure 3.8: Control set for a triangle for the three-directional box spline.

To show this, fix a poink of the domainK| (not necessarily a vertex). For any leyek is contained
in a face of the domain; i is a vertex, it is shared by several faces. Uéfx) be the collection of faces
on levelj containingx, thel-neighborhoodf x. The 1-neighborhood of a vertex can be identified with a
k-gon in the plane, wherkis the valence. We negdo be large enough so that all neighbors of triangles
in Ul(x) are free of extraordinary vertices. Unlesis an extraordinary vertex, this is easily achieved.
f(U1(x)) will be regular (see Figure 3.9).

This means thaf (U (x)) is identical to a part of the surface corresponding to a regular mesh, and
is thereforeC!-continuous for almost any choice of control points, because we have assumed that our
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Figure 3.9: 2-neighborhoods (1-neighborhood of 1-neighborhood) of veAid@<ontain only regular
vertices; this is not the case fBr which is an extraordinary vertex.

scheme generat&?-continuous surfaces over regular meshes.

3.5.2 Smoothness Near Extraordinary Vertices

Now that we know that surfaces generated by our scheme are (at@@asthtinuous away from the
extraordinary vertices, all we have to do is find a a smooth parameterization near each extraordinary
vertex, or establish that no such parameterization exists.

Consider the extraordinary vert®&in Figure 3.9. After sufficient number of subdivision steps, we
will get a 1-neighborhootl! of B, such that all control points definingU!) are regular, excef® itself.
This demonstrates that it is sufficient to determine if the scheme gen@atantinuous surfaces for
a very specific type of domairi§: triangulations of the plane which have a single extraordinary vertex
in their center, surrounded by regular vertices. We can assume all triangles of these triangulations to be
identical (see Figure 3.10) and call such triangulatikmsgular.

At first, the task still seems to be very difficult: for any configuration of control vertices, we have to
find a parameterization df(U!). However, it turns out that the problem can be further simplified.

We outline the idea behind sufficientcondition forC*-continuity proposed by Reif [23]. This cri-
terion tells us when the scheme is guaranteed to pro@bamntinuous surfaces, but if it fails, it is still
possible that the scheme might®&continuous.

In addition to the subdivision matrix described in Section 3.3 , we need one more tool to formulate
the criterion: thecharacteristic maplt turns out that rather than trying to consider all possible surfaces
generated by subdivision, it is typically sufficient to look at a single map—the characteristic map.

1our argument is informal, and there are certain unusual cases when it fails; see [26] for details.
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Figure 3.10k-regular triangulation fok = 9.

3.5.3 Characteristic Map

Our observations made in Section 3.3 motivate the definition ofllaeacteristic map Recall that the
control points near a vertex converge to a limit configuration independent, up to an affine transformation,
from the control points of the original mesh. This limit configuration defines a map. Informally speaking,
any subdivision surface generated by a scheme looks near an extraordinary vertex of kiéilentiee
characteristic map of that scheme for valekce

Figure 3.11: Control set of the characteristic mapkfer 9.

Note that when we described subdivision as a function from the plafRé twe may use control
vertices not fromR3, but fromR?; clearly, subdivision rules can be applied in the plane rather then in
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space. Then in the limit we obtain a map from the plane into the plane. The characteristic map is a map
of this type.

As we have seen, the configuration of control points near an extraordinary vertex appraghes
axXo, Up to a scaling transformation. This means that the part of the surface defined logdhé)
asj — o, and scaled by the factor/d}, approaches the surface defined by the vector of control points
ajx1 +axXp. Letflp]: U — RS be the limit surface generated by subdivisionlbfrom the control set

p.

Definition 3 The characteristic map of a subdivision scheme for a valence k is thedmdp — R?
generated by the vector of 2D control pointxe+ exxe: @ = flerx; + exXz], where g and e are unit
coordinate vectors, andpand % are subdominant eigenvectors.

Regularity of the characteristic map Inside each triangle of thiegonU, the map isC!: the argu-

ment of Section 3.5.1 can be used to show this. Moreover, the map has one-sided derivatives on the

boundaries of the triangles, except at the extraordinary vertex, so we can define one-sided Jacobians on

the boundaries of triangles too. We will say that the characteristic maggusar if its Jacobian is not

zero anywhere ol excluding the extraordinary vertex but including the boundaries between triangles.
The regularity of the characteristic map has a geometric meaning: any subdivision surface can be

written, up to a scale factor, as

f[pl)(t) = AD(t) +a(t)O ((As/A)]),

teul, a(t) a bounded functiot)] — RS, andA is a linear transform taking the unit coordinate vectors
in the plane ta; anday. Differentiating along the two coordinate directidnsandt, in the parametric
domainU/, and taking a cross product, after some calculations, we get the expression for the normal to
the surface:

n(t) = (a1 x &)J[@(1)] + O (As/N)?) &(t)

whereJ[®] is the Jacobian, ara(t) some bounded vector function oH.

The fact that the Jacobian does not vanishdiameans that the normal is guaranteed to converge to
a; X ap; therefore, the surface is tangent plane continuous.

Now we need to take only one more step. If, in addition to regularity, we assum@ ikanjective,
we can invert it and parameterize any surfacd @8 1(s)), wheres € ®(U). Intuitively, it is clear that
up to a vanishing term this map is just an affine map, and is differentiable. We omit a rigorous proof
here. For a complete treatment see [23]; for more recent developments, see [26] and [28].
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We arrive at the following condition, which is the basis of smoothness analysis of all subdivision
schemes considered in these notes.

Reif’s sufficient condition for smoothness.Suppose the eigenvectors of a subdivision matrix form a
basis, the largest three eigenvalues are real and satisfy

)\o:1>7\1:7\2>|)\3|

If the characteristic map is regular, then almost all surfaces generated by subdivision are tangent
plane continuous; if the characteristic map is also injective, then almost all surfaces generated by
subdivision areCt-continuous.

Note: Reif’s original condition is somewhat different, because he defines the characteristic map on an
annular region, rather than orkagon. This is necessary for applications, but makes it somewhat more
difficult to understand.

In Chapter 4, we will discuss the most popular stationary subdivision schemes, all of which have
been proved to b€!-continuous at extraordinary vertices. These proofs are far from trivial: checking
the conditions of Reif’s criterion is quite difficult, especially checking for injectivity. In most cases
calculations are done in symbolic form and use closed-form expressions for the limit surfaces of subdivi-
sion [24, 8, 16, 17]. In [27] an interval-based approach is described, which does not rely on closed-form
expressions for limit surfaces, and can be applied, for example, to interpolating schemes.

3.6 Piecewise-smooth surfaces and subdivision

Piecewise smooth surfaces. So far, we have assumed that we consider only closed smooth surfaces.
However, in reality we typically need to model more general classes of surfaces: surfaces with bound-
aries, which may have corners, creases, cusps and other features. One of the significant advantages of
subdivision is that it is possible to introduce features into surfaces using simple modifications of rules.
Here we briefly describe a class of surfacgieg¢ewise smooth surfageshich appears to be adequate
for many applications. This is the class of surfaces that includes, for example, quadrilateral free-form
patches, and other common modeling primitives. At the same time, we have excluded from considera-
tion surfaces with various other types of singularities. To generate surfaces from this class, in addition to
vertex and edge rules such as the Loop rules (Section 3.1), we need to define several other types of rules.
To define piecewise smooth surfaces, we start with smooth surfaces that have a piecewise-smooth
boundary. For simplicity, assume that our surfaces do not have self-intersections. Recall that for closed
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Figure 3.12: The charts for a surface with piecewise smooth boundary.

Cl-continuous surfac in R3 each point has a neighborhood that can be smoothly deformed into an
open planar disio.

A surface with a smooth boundaigydefined in a similar way, but the neighborhoods of points on the
boundary can be smoothly deformed into a half-dislkwith closed boundary. To define a surface with
piecewise smooth boundaries, we introduce two additional types of local charts: concave and convex
corner chartsQs; andQ; (Figure 3.12). Thus, &!-continuous surface with piecewise smooth boundary
locally looks like one of the domair3, H, Q; andQs.

Piecewise-smooth surfacase the surfaces that can be constructed out of surfaces with piecewise
smooth boundaries joined together.

If the resulting surface is n@!-continuous at the common boundary of two pieces, this common
boundary is a crease. We allow two adjacent smooth segments of a boundary to be joined, producing a
crease ending in dart (cf. [9]). For dart vertices an additional cha& is required; the surface near a
dart can be deformed into this chart smoothly everywhere except at an open edge starting at the center of
the disk.

Subdivision schemes for piecewise smooth surfacesAn important observation for constructing sub-
division rules for the boundary is that the last two corner types are not equivalent, that is, there is no
smoothnondegeneratenap fromQ; to Qs. It follows from the theory of subdivision [26], that a single
subdivision rule cannot produce both types of corners. In general, any complete set of subdivision rules
should contain separate rules for all chart types. Most, if not all, known schemes provide rules for charts
of type D andH (smooth boundary and interior vertices); rules for charts of @p&and Qg (convex
corners and darts) are typically easy to construct; how&€gefconcave corner) is more of a challenge,
and no rules were known until recently.

In Chapter 4 we present descriptions of various rules for smooth (not piecewise smooth) surfaces with
boundary. For extensions of the Loop and Catmull-Clark schemes including concave corner rules, see
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2].

Interpolating boundaries. Quite often our goal is not just to generate a smooth surface of a given
topological type approximating or interpolating an initial mesh with boundary, but to interpolate a given
set of boundary or even an arbitrary set of curves. In this case, one can use a technique developed
by A. Levin [11, 12, 13]. The advantage of this approach is that the interpolated curves need not
be generated by subdivision; one can easily create blend subdivision surfaces with different types of
parametric surfaces (for a example, NURBS).
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Chapter 4

Subdivision Zoo

Denis Zorin, New York University

4.1 Overview of Subdivision Schemes

In this section we describe most known stationary subdivision schemes gen&@hiogtinuous sur-
faces on arbitrary meshes. Without doubt, our discussion is not exhaustive even as far as stationary
schemes are concerned. There are even wholly different classes of subdivision schemes, most impor-
tantly variational schemes, that we do not discuss here. Different approaches to variational subdivision
are described in the parts of the notes written by Joe Warren and Leif Kobbelt.

At a first glance, the variety of existing schemes might appear chaotic. However, there is a straight-
forward way to classify most of the schemes based on three criteria:

¢ the type of refinement rule (vertex insertion or corner-cutting);
¢ the type of generated mesh (triangular or quadrilateral);

e whether the scheme is approximating or interpolating.

The following table shows this classification:

Vertex insertion Corner-cutting
Triangular meshes Quadrilateral meshes Doo-Sabin
Approximating| Loop Catmull-Clark Midedge
Interpolating | Modified Butterfly | Kobbelt
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It can be seen from this table that there is little replication in functionality: most schemes produce
substantially different types of surfaces. Now we consider our classification criteria in greater detail.

First, we note that each subdivision scheme defined on meshes of arbitrary topology is based on a
regular subdivision schermsich as a subdivision schemes for splines, for example. Our classification is
primarily a classification of regular subdivision schemes—once such a scheme is fixed, additional rules
have to be specified only for extraordinary vertices or faces that cannot be part of a regular mesh.

Mesh type. Regular subdivision schemes act on regular control meshes, that is, vertices of the mesh
correspond to regularly spaced points in the plane. However, the faces of the mesh can be formed in
different ways. For a regular mesh, it is natural to use faces that are identical. If, in addition, we assume
that the faces are regular polygons, it turns out that there are only three ways to choose the face polygons:
we can use only squares, equilateral triangles and regular hexagons. Meshes consisting of hexagons are
not very common, and the first two types of tiling are the most convenient for practical purposes. These
leads to two types of regular subdivision schemes: those defined for quadrilateral tilings, and those
defined for triangular tilings.

Vertex insertion and corner-cutting. Once the tiling of the plane is fixed, we have to define how a
refined tiling generated by the scheme is related to the original tiling. There are two main approaches
that are used to generate a refined tiling: ongdgex insertionand the other igorner cutting(see

Figure 4.1). The schemes using the first method are often catledhl, and the schemes using the
second method are callelial. In the first case, each edge of a triangular or a quadrilateral mesh is split
into two, old vertices of the mesh are retained, and new vertices inserted on edges are connected. For
guadrilaterals, an additional vertex is inserted for each face.

In the second case, for each old face, a new similar face is created inside of it and the newly created
faces are connected. As a result, we get two new vertices for each old edge, a new face for each edge
and each vertex. The old vertices are discarded. Geometrically, one can think about this process as first
cutting off the vertices, and then cutting off the edges of a polyhedron. For quadrilateral tilings, this can
be done in such a way that the refined tiling has only quadrilateral faces. For triangles, we can get only a
hexagonal tiling. Thus, a regular corner-cutting algorithm for triangles would have to alternate between
triangular and hexagonal tilings.

Approximation vs. Interpolation. Vertex insertion schemes can be interpolating or approximating: as
the vertices of the coarser tiling are also vertices of the refined tiling, for each vertex a sequence of control
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Vertex insertion for triangles

Corner-cutting for quadrilaterals

Figure 4.1: Different refinement rules.

points, corresponding to different subdivision levels, is defined. If all points in the sequence are the same,
we say that the scheme is interpolating. Otherwise, we call it approximating. Interpolation is an attractive
feature in more than one way. First, the original control points defining the surface are also points of the
limit surface, which allows one to control it in a more intuitive manner. Second, many algorithms can be
considerably simplified, and many calculations can be performed “in place.” Unfortunately, the quality

of these surfaces is not as high as the quality of surfaces produced by approximating schemes, and the
schemes do not converge as fast to the limit surface as the approximating schemes.

We concentrate primarily on vertex insertion schemes; we briefly discuss two corner-cutting schemes,
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Doo-Sabin and the Midedge subdivision scheme, proposed by Habib and Warren [7], and independently
discovered by Peters and Reif [17].

4.1.1 Notation and Terminology

Here we summarize the notation that we use in subsequent sections. Some of it was already introduced
earlier.

Regular and extraordinary vertices. We have already seen that subdivision schemes defined on trian-
gular meshes create new vertices only of valence 6 in the interior. On the boundary, the newly
created vertices have valence 4. Similarly, on quadrilateral meshes both vertex-insertion and
corner-cutting schemes create only vertices of valence 4 in the interior, and 3 on the boundary.
Hence, after several subdivision steps, most vertices in a mesh will have one of these valences (6
in the interior, 4 on the boundary for triangular meshes, 4 in the interior, 3 on the boundary for
quadrilateral). The vertices with these valences are cabigdlar, and vertices of other valences
extraordinary

Notation for vertices near a fixed vertex. In Figure 4.2 we show the notation that we use for vertices
of quadrilateral and triangular subdivision schemes near a fixed vertex. Typically, we need it for
extraordinary vertices; we also use it for regular vertices, to describe calculations of limit positions
and tangent vectors. Note that this notation is for a fixed level; the names of vertices changes from
one level to the next. For brevity, we denote the vqﬂje/ij,l) by pi{l.

Odd and even vertices.For vertex insertion (primal) schemes, the vertices of the coarser mesh are also
vertices of the refined mesh. For any subdivision level, we call all new vertices that are created
at that level,odd vertices This term comes from the one-dimensional case, when vertices of the
control polygons can be enumerated sequentially and on any level the newly inserted vertices are
assigned odd numbers. The vertices inherited from the previous level are @zdled See also
Chapter 2).

Face and edge verticesFor triangular schemes (Loop and Modified Butterfly), there is only one type
of odd vertex. For quadrilateral schemes, some vertices are inserted when edges of the coarser
mesh are split, other vertices are inserted for a face. These two types of odd vertices are called
edgeandfacevertices respectively.

Boundaries and creases.Typically, special rules have to be specified on the boundary of a mesh. These
rules are commonly chosen in such a way that the boundary curve of the limit surface does not
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D Pin

Figure 4.2: Enumeration of vertices of a mesh near an extraordinary vertex; for a boundary vertex, the
0—th sector is adjacent to the boundary.

depend on any interior control vertices, and is smooth or piecewise sn@otin C3-continuous).

The same rules can be used to introduce sharp feature€lirgarfaces: some interior edges can
betaggedas crease edges, and boundary rules are applied for all vertices that are inserted on such
edges.

Masks. We often specify a subdivision rule by providing itgsk The mask is a picture showing which
control points are used to compute a new control point, which we denote with a black dot. The
numbers are the coefficients of the subdivision rule. For example,, ip, are vertices of an
edge, ands; andv, are the other two vertices of the triangles that share this edge, then the Loop
subdivision rule for an interior odd vertexdepicted in Figure 4.3, can be written as

- 3 3 1 1
ptiv) = 8 p!(ve) + 8 P! (v2) + 8 p'(v3) + 8 P! (va)
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4.2 Loop Scheme

The Loop scheme is a simple approximating vertex insertion scheme for triangular meshes proposed by
Charles Loop [14].C -continuity of this scheme for valences up to 100, including the boundary case,
was proved by Schweitzer [24]. The proof for all valences can be found in [26].

The scheme is based on ttreee-directional box splinevhich produce€?-continuous surfaces on
the regular meshes. The Loop scheme produces surfaces ti@t-epatinuous everywhere except at
extraordinary vertices, where they a&é&-continuous. Hoppe, DeRose, Duchamp et al. [9] proposed a
piecewiseCl-continuous extension of the Loop scheme, with special rules defined for edges; in [2], the
boundary rules are further improved, and new rules for concave corners and normal modification are
proposed.

The scheme can be applied to arbitrary polygonal meshes, after the mesh is converted to a triangular
mesh, for example, by triangulating each polygonal face.

Subdivision rules The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges
tagged asreaseedges, special rules are used. These rules produce a cubic spline curve along the
boundary/crease. The curve only depends on control points on the boundary/crease.

In [9], the rules for extraordinary crease vertices and their neighbors on the crease were modified to
produce tangent plane continuous surfaces on either side of the crease (or on one side of the boundary).
In practice, for reasons discussed in [29], this modification does not lead to a significant difference in
the appearance of the surface. At the same time, as a result of this modification, the boundary curve
becomes dependent on the valences of vertices on the curve. This is a disadvantage in situations when
two surfaces have to be joined together along a boundary. It appears that in practically all cases it is
safe to use the rules shown in Figure 4.3. Although the surface will not be for@attpntinuous near
vertices of valence greater than 7, the result will be visually indistinguishable f@rsarface obtained
with modified rules, with the additional advantage of independence of the boundary from the interior.

If it is necessary to ensuf@!-continuity, we propose a different modification. Rather than modifying
the rules for the boundary curve, and making it dependent on the valence of vertices, we modify rules
for interior odd vertices adjacent to an extraordinary vertex. ri-ar7, no modification is necessary.

Forn > 7, it is sufficient to use the mask shown in Figure 4.4. Then the limit surface can be shown to
beC!-continuous on the boundary. A better, although slightly more complex modification can be found
in [2]: instead of} and% we can usé + 2 cosZ% and$ — 1 cos; 2% respectively, wherk is the valence

of the boundary vertex.
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' 1 Crease and boundary ° w
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2 2 8 4 8

a. Masks for odd vertices b. Masks for even vertices

Figure 4.3: Loop subdivision: in the picture abofesan be chosen to be eithf(5/8— (2 + 1 cosZ)?)
(original choice of Loop [14]), or, fon > 3,3 = % as proposed by Warren [25]. For= 3,3 =3/16

can be used.

Tangent vectors. The rules for computing tangent vectors for the Loop scheme are especially simple.
To compute a pair of tangent vectors at an interior vertex, use

k—1 271
t; = Z) cosT p(Vi,1)
I':l 4.1)

211
to=) sin—p(vi1).
i;) k =

These formulas can be applied to the control points at any subdivision level.
Quite often, the tangent vectors are used to compute a normal. The normal obtained as the cross

productt; x t, can be interpreted geometrically. This cross product can be written as a weighted sum of

normals to all possible triangles with verticp§/), p(vi1), p(Vi,1), i,1 =0...k—1,i#1. The standard
way of obtaining vertex normals for a mesh by averaging the normals of triangles adjacent to a vertex,
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Figure 4.4: Modified rule for odd vertices adjacent to a boundary extraordinary vertex (Loop scheme).

can be regarded as a first approximation to the normals given by the formulas above. At the same time,
it is worth observing that computing normalstas t, is less expensive than averaging the normals of
triangles. The geometric nature of the normals obtained in this way suggests that they can be used to
compute approximate normals for other schemes, even if the precise normals require more complicated
expressions.

At a boundary vertex, the tangent along the curve is computed tigiRg= p(vo,1) — P(Vk-1,1). The
tangent across the boundary/crease is computed as follows [9]:

tacross= p(VO,l) + p(VLl) —2p(vp) fork=2

tacross= P(V2,1) — P(vo) fork=3 ) 4.2)
2
tacross= SiNB (P(Vo,1) + P(Vk-11)) + (2c0B — 2) leinie p(vi1) fork>4

where® = 11/(k— 1). These formulas apply whenever the scheme is tangent plane continuous at the
boundary; it does not matter which method was used to ensure tangent plane continuity.

Limit positions  Another set of simple formulas allows one to compute limit positions of control points

for a fixed vertex, that s, the limit lif, . pl (v) for a fixedv. For interior vertices, the mask for computing

the limit value at an interior vertex is the same as the mask for computing the value on the next level,
: __1

with  replaced by = e

72



For boundary vertices, the formula is always
o 1 3 1
P”(vo) = £P(Vo) + z P(Vo) + £ P(Vak-1)
This expression is similar to the rule for even boundary vertices, but with different coefficients. However,
different formulas have to be used if the rules on the boundary are modified as in [9].

4.3 Modified Butterfly Scheme

The Butterfly scheme was proposed by Dyn, Gregory and Levin in [6]. However, although the original
Butterfly scheme is defined on arbitrary triangular meshes, the limit surface Blrmintinuous at
extraordinary points of valende= 3 andk > 7 [26]. It isC! on regular meshes.

Unlike approximating schemes based on splines, this scheme does not produce piecewise polynomial
surfaces in the limit. In [30] a modification of the Butterfly scheme was proposed, which guarantees that
the scheme produce&-continuous surfaces for arbitrary meshes (for a proof see [26]). The scheme is
known to beC! but notC? on regular meshes. The masks for the the scheme are shown in Figure 4.5.

The tangent vectors at extraordinary interior vertices can be computed using the same rules as for
the Loop scheme. For regular vertices, the formulas are more complex: in this case, we have to use
control points in a 2-neighborhood of a vertex. If the control points are arranged into a yegtor
[Po, Po,1, P11, - -- » P51, Po,2, P1,2, P2,2, - . - Ps,3] Of length 19, then the tangents are given by scalar products
(I1- p) and(l2- p), where the vectorly andl, are

1 1 11
Il == |:O, 16,8, _8,_16,_8,8, _4707474?0’_4’1 :|

aéa_éa_la_éaé
4 8 4484,11, 1 1
37 37 37373737 72727 ? 27 2

(4.3)
l, =3 [o, 0,8,8,0,—8,—8,—

Because the scheme is interpolating, no formulas are needed to compute the limit positions: all control
points are on the surface. On the boundary, the four point subdivision scheme is used [5]. To achieve
Cl-continuity on the boundary, special coefficients have to be used (see [29] for details).

4.4 Catmull-Clark Scheme

The Catmull-Clark scheme was described in [3]. It is based on the tensor product bicubic spline. The
masks are shown in Figure 4.6. The scheme produces surfaces tBateserywhere except at extraor-
dinary vertices, where they a@. The tangent plane continuity of the scheme was analyzed by Ball and
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Mask for interior odd vertices with .
regular neighbors S,
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o
1 9 9 1
16 16 16 16
Mask for crease
and boundary vertices
a. Masks for odd vertices b. Mask for odd vertices adjacent to

an extraordinary vertex

Figure 4.5: Modified Butterfly subdivision. The coefficiestsare 1 (1 +cosi™ + 1 cosd™) for k > 5.
Fork=3,s0=3,812= -5 fork=4,9=3, =—§,s3=0.

Storry [1], andC-continuity by Peters and Reif [16]. The valuesooéndf can be chosen from a wide

range (see Figure 4.8). On the boundary, using the coefficients for the cubic spline produces acceptable
results, however, the resulting surface formally is @bicontinuous. A modification similar to the one
performed in the case of Loop subdivision makes the sct@mntinuous (Figure 4.7). Again, a bet-

ter, although a bit more complicated choice of coefficient-is} cos; 2 instead off and3 — 7 cos 2%

instead of%. See [29] for further details about the behavior on the boundary.

The rules of Catmull-Clark scheme are defined for meshes with quadrilateral faces. Arbitrary polygo-
nal meshes can be reduced to a quadrilateral mesh using a more general form of Catmull-Clark rules [3]:
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Mask for a boundary odd vertex
a. Masks for odd vertices b. Mask for even vertices

Figure 4.6: Catmull-Clark subdivision. Catmull and Clark [3] suggest the following coefficients for rules
at extraordinary vertice® = 3 andy= &

e aface control point for an-gon is computed as the average of the corners of the polygon;

e an edge control point as the average of the endpoints of the edge and newly computed face control
points of adjacent faces;

¢ the formula for even control points can be chosen in different ways; the original formula is
2 k—1 k—1

P =P+ 5 P+ 3 P
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Figure 4.7: Modified rule for odd vertices adjacent to a boundary extraordinary vertex (Catmull-Clark
scheme).

B,
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0.6 |

0.4 1

0.21

0 0.2 0.4 0.6 0.8 ;] a

Figure 4.8: Ranges for coefficierdsandf3 of the Catmull-Clark schemer = 1—y— 3 is the coefficient
of the central vertex.

wherey; are the vertices adjacentimn levelj, andvif are face vertices on levgh- 1 correspond-
ing to faces adjacent ta

45 Kobbelt Scheme

This interpolating scheme was described by Kobbelt in [10]. For regular meshes, it reduces to the tensor
product of four point scheme€!-continuity of this scheme for interior vertices for all valences is proven
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in [27].

1 9 9 1
256 256 256 256
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91 256 256 | 9
256 256
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256 256
1 9 9 1
256 256 256 236

Mask for a face vertex

L9 81
16 16 16 16
Mask for edge, crease

and boundary vertices b. Computing a face vertex adjacent to an extraordinary

vertex

a. Regular masks

Figure 4.9: Kobbelt subdivision.

Crucial for the construction of this scheme is the observation (valid for any tensor-product scheme)
that the face control points can be computed in two steps: first, all edge control points are computed.
Next, face vertices are computed using duge ruleapplied to a sequence of edge control points on the
same level. As shown in Figure 4.9, there are two ways to compute a face vertex in this way. In the
regular case, the result is the same. Assuming this method of computing all face control points, only one
rule of the regular scheme is modified: the edge odd control points adjacent to an extraordinary vertex
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are computed differently. Specifically,

pli = (5~ WP+ (5wl +wpl +wpls
vl = K i; Pli— (Pt P+ Plyy) - m(pitz,fr Pliot Pt Plig) + (1/2—wyk i; Pz

(4.4)

wherew = —1/16 (also, see Figure 4.2 for notation). On the boundaries and creases, the four point
subdivision rule is used.

Unlike other schemes, eigenvectors of the subdivision matrix cannot be computed explicitly; hence,
there are no precise expressions for tangents. In any case, the effective support of this scheme is too large
for such formulas to be of practical use: typically, it is sufficient to subdivide several times and then use,
for example, the formulas for the Loop scheme (see discussion in the section on the Loop scheme).

For more details on this scheme, see the part of the notes written by Leif Kobbelt.

4.6 Doo-Sabin and Midedge Schemes

The Doo-Sabin subdivision is quite simple conceptually: there is no distinction between odd and even
vertices, and a single mask is sufficient to define the scheme. A special rule is required only for the
boundaries, where the limit curve is a quadratic spline. It was observed by Doo that this can also be
achieved by replicating the boundary edge, i.e., creating a quadrilateral with two coinciding pairs of
vertices. Nasri [15] describes other ways of defining rules for boundaries. The rules for the Doo-Sabin
scheme are shown in Figure 4.1G1-continuity for schemes similar to the Doo-Sabin schemes was
analyzed by Peters and Reif [16].

An even simpler scheme was proposed by Habib and Warren [8] and by Peters and Reif [17]: this
scheme uses even smaller stencils than the Doo-Sabin scheme; for regular vertices, only three control
points are used (Figure 4.11).

The disadvantage of all dual schemes is that the mesh hierarchy associated with this schemes is
somewhat less natural: the vertices of coarser meshes cannot be identified with vertices of finer meshes.

4.7 Limitations of Stationary Subdivision

Stationary subdivision, while overcoming certain problems inherent in spline representations, still has
a number of limitations. Most problems are much more apparent for interpolating schemes than for
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Figure 4.10: The Doo-Sabin subdivision. The coefficients are defined by the foroy#ad /44 5/4k
anda; = (3+2cogq2it/k))/4k, fori=1...k—1

approximating schemes. In this section we briefly discuss a number of these problems.

Problems with curvature continuity While it is possible to obtain subdivision schemes which are
C?-continuous, there are indications that such schemes either have very large support [21, 19], or nec-
essarily have zero curvature at extraordinary vertices. A compromise solution was recently proposed by
Umlauf [20]. Nevertheless, this limitation is quite fundamental: degeneracy or discontinuity of curvature
typically leads to visible defects of the surface.

Decrease of smoothness with valenceFor some schemes, as the valence increases, the magnitude of
the third largest eigenvalue approaches the magnitude of the subdominant eigenvalues. As an example
we consider surfaces generated by the Loop scheme near vertices of high valence.

In Figure 4.12 (right side), one can see a typical problem that occurs because of “eigenvalue clus-
tering:” a crease might appear, abruptly terminating at the vertex. In some cases this behavior may be
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Figure 4.11: The Midedge subdivision. The coefficients are defined by the fornwlas
25" g2 VicosF, = 25| fori=0...k—1

desirable, but our goal is to make it controllable rather than let the artifacts appear by chance.

Ripples Another problem, presence of ripples in the surface close to an extraordinary point, is also
shown in Figure 4.12. It is not clear whether this artifact can be eliminated. It is closely related to the
curvature problem.

Uneven structure of the mesh On regular meshes, subdivision matrice<Codfcontinuous schemes
always have subdominant eigenvaly@1When the eigenvalues of subdivision matrices near extraordi-
nary vertices significantly differ from/2, the structure of the mesh becomes uneven: the ratio of the size
of triangles on finer and coarser levels adjacent to a given vertex is roughly proportional to the magnitude
of the subdominant eigenvalue. This effect can be seen clearly in Figure 4.14.
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Figure 4.12: Left: ripples on a surface generated by the Loop scheme near a vertex of large valence;
Right: mesh structure for the Loop scheme near an extraordinary vertex with a significant “high-
frequency” component; a crease starting at the extraordinary vertex appears.

Optimization of subdivision rules It is possible to eliminate eigenvalue clustering, as well as the
difference in eigenvalues of the regular and extraordinary case by prescribing the eigenvalues of the
subdivision matrix and deriving suitable subdivision coefficients. This approach was used to derive

coefficients of the Butterfly scheme.
As expected, the meshes generated by the modified scheme have better structure near extraordinary

points (Figure 4.13). However, the ripples become larger, so one kind of artifact is traded for another. It
is, however, possible to seek an optimal solution or one close to optimal; alternatively, one may resort to
a family of schemes that would provide for a controlled tradeoff between the two artifacts.
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Abstract

In this paper we disprove the belief widespread within the computer graphics community that
Catmull-Clark subdivision surfaces cannot be evaluated directly without explicitly subdividing.
We show that the surface and all its derivatives can be evaluated in terms of aesgerddasis
functions which depend only on the subdivision scheme and we derive analytical expressions for
these basis functions. In particular, on the regular part of the control mesh where Catmull-Clark
surfaces are bi-cubic B-splines, the eigenbasis is equal to the power basis. Also, our technique is
both efficient and easy to implement. We have used our implementation to compute high quality
curvature plots of subdivision surfaces. The cost of our evaluation scheme is comparable to that
of a bi-cubic spline. Therefore, our method allows many algorithms developed for parametric
surfaces to be applied to Catmull-Clark subdivision surfaces. This makes subdivision surfaces an
even more attractive tool for free-form surface modeling.

1 Introduction

Subdivision surfaces have emerged recently as a powerful and useful technique in modeling free-
form surfaces. However, although in theory subdivision surfaces admit local parametrizations,
there is a strong belief within the computer graphics community that these parametrizations can-
not be evaluated exactly for arbitrary parameter values. In this paper we disprove this belief and
provide a non-iterative technique that efficiently evaluates Catmull-Clark subdivision surfaces and
their derivatives up to any order. The cost of our technique is comparable to the evaluation of a
bi-cubic surface spline. The rapid and precise evaluation of surface parametrizations is crucial for
many standard operations on surfaces such as picking, rendering and texture mapping. Our evalu-
ation technique allows a large body of useful techniques from parametric surfaces to be transferred
to subdivision surfaces, making them even more attractive as a free-form surface modeling tool.



Our evaluation is based on techniques first developed to prove smoothness theorems for subdi-
vision schemes [3, 5, 1, 4, 8, 6]. These proofs are constructed by transforming the subdivision into
its eigenspace In its eigenspace, the subdivision is equivalent to a simple scaling of each of its
eigenvectors by their eigenvalue. These techniques allow us to compute limit points and limit nor-
mals at the vertices of the mesh, for example. Most of the proofs, however, consider only a subset
of the entire eigenspace and do not address the problem of evaluating the surface everywhere. We,
on the other hand, use the entire eigenspace to derive an efficiently evaluated analytical form of the
subdivision surface everywhere, even in the neighborhood of extraordinary vertices. In this way,
we have extended a theoretical tool into a very practical one.

In this paper we present an evaluation scheme for Catmull-Clark subdivision surfaces [2]. How-
ever, our methodology is not limited to these surfaces. Whenever subdivision on the regular part
of the mesh coincides with a known parametric representation [8], our approach should be appli-
cable. We have decided to present the technique for the special case of Catmull-Clark subdivision
surfaces in order to show a particular example fully worked out. In fact, we have implemented
a similar technique for Loop’s triangular subdivision scheme [5]. The details of that scheme are
given in another paper in these course notes. We believe that Catmull-Clark surfaces have many
properties which make them attractive as a free-form surface design tool. For example, after one
subdivision step each face of the initial mesh is a quadrilateral, and on the regular part of the mesh
the surface is equivalent to a piecewise uniform B-spline. Also, algorithms have been written to
fair these surfaces [4] and to dynamically animate them [7].

In order to define a parametrization, we introduce a new setgenbasis functionsThese
functions were first introduced by Warren in a theoretical setting for curves [10] and used in a
more general setting by Zorin [11]. In this paper, we show that the eigenbasis of the Catmull-
Clark subdivision scheme can be computed analytically. Also, we show that in the regular case
the eigenbasis is equal to the power basis and that the eigenvectors then correspond to the “change
of basis matrix” from the power basis to the bi-cubic B-spline basis. The eigenbasis introduced in
this paper can thus be thought of as a generalization of the power basis at extraordinary vertices.
Since our eigenbasis functions are analytical, the evaluation of Catmull-Clark subdivision surfaces
can be expressed analytically. As shown in the results section of this paper, we have implemented
our evaluation scheme and used it in many practical applications. In particular, we show for the
first time high resolution curvature plots of Catmull-Clark surfaces precisely computed around the
irregular parts of the mesh.

The paper is organized as follows. Section 2 is a brief review of the Catmull-Clark subdivision
scheme. In Section 3 we cast this subdivision scheme into a mathematical setting suitable for anal-
ysis. In Section 4 we compute the eigenstructure to derive our evaluation. Section 5 is a discussion
of implementation issues. In Section 6 we exhibit results created using our technique, comparing it
to straightforward subdivision. Finally in Section 7 we conclude, mentioning promising directions
for future research.

This paper is almost equivalent to our SIGGRAPH’98 paper [9]. We have corrected two errors
in the Appendices and added a small section devoted to stability issues in Section 5. Also we have
included on the CDROM course notes a data file which contains the eigenstructures up to valence

00.
1To be defined precisely below.




Figure 1: A bi-cubic B-spline is defined by 16 control vertices. The numbers on the right show the
ordering of the corresponding B-spline basis functions in the végiory).

Figure 2: Initial mesh and two levels of subdivision. The shaded faces correspond to regular
bi-cubic B-spline patches. The dots are extraordinary vertices.

1.1 Notations

In order to make the derivations below as clear and compact as possible we adopt the following
notational conventions. All vectors are assumed to be columns and are denoted by boldface lower
case roman characters, e.g., The components of the vector are denoted by the corresponding
italicized character: theth component of a vectar is thus denoted;. The component of a vector
should not be confused with an indexed vector suck,asMatrices are denoted by uppercase
boldface characters, e.dJ. The transpose of a vecter(resp. matrixM) is denoted by’ (resp.

MT). The transpose of a vector is simply the same vector written row-wise. Therefore the dot
product between two vectors andv is written “u’v”. The vector or matrix having only zero
elements is denoted iy The size of this vector (matrix) should be obvious from the context.

2 Catmull-Clark Subdivision Surfaces

The Catmull-Clark subdivision scheme was designed to generalize uniform B-spline knot insertion
to meshes of arbitrary topology [2]. An arbitrary mesh such as the one shown on the upper left
hand side of Figure 2 is used to define a smooth surface. The surface is defined as the limit of a
sequence of subdivision steps. At each step the vertices of the mesh are updated and new vertices
are introduced. Figure 2 illustrates this process. On each vertex of the initial meshlghees
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Figure 3: Surface patch near an extraordinary vertex with its control vertices. The ordering of the
control vertices is shown on the bottom. Vertex 1 is an extraordinary vertex of valéreé.

the number of edges that meet at the vertex. A vertex having a valence not equal to four is called
anextraordinary vertex The mesh on the upper left hand side of Figure 2 has two extraordinary
vertices of valence three and one of valence five. Away from extraordinary vertices, the Catmull-
Clark subdivision is equivalent to midpoint uniform B-spline knot insertion. Therefore]Ghe
vertices surrounding a face that contains no extraordinary vertices are the control vertices of a
uniform bi-cubic B-spline patch (shown schematically in Figure 1). The faces which correspond to
a regular patch are shaded in Figure 2. This figure shows how the portion of the surface comprised
of regular patches grows with each subdivision step. In principle, the surface can thus be evaluated
whenever the holes surrounding the extraordinary vertices are sufficiently small. Unfortunately,
this iterative approach is too expensive near extraordinary vertices and does not provide exact
higher derivatives.

Because the control vertex structure near an extraordinary vertex is not a simple rectangular
grid, all faces that contain extraordinary vertices cannot be evaluated as uniform B-splines. We
assume that the initial mesh has been subdivided at least twice, isolating the extraordinary vertices
so that each face is a quadrilateral and contains at most one extraordinary vertex. In the rest of
the paper, we need to demonstrate only how to evaluate a patch corresponding to a face with just
one extraordinary vertex, such as the region near vertex 1 in Figure 3. Let us denote the valence
of that extraordinary vertex b. Our task is then to find a surface patgh, v) defined over the
unit square? = [0, 1] x [0, 1] that can be evaluated directly in terms of thie= 2V + 8 vertices
that influence the shape of the patch corresponding to the face. We assume in the following that
the surface point corresponding to the extraordinary vertef0i®)) and that the orientation &t
is chosen such that, x s, points outside of the surface.

A simple argument shows that the influence on the limit surface of the seven “outer control
vertices” numbere@ N + 2 through2N + 8 in Figure 3 can be accounted for directly. Indeed,
consider the situation depicted in Figure 4 where we show a mesh containing a vertex of Jalence
and a regular mesh side by side. Let us assume that all the control vertices are set to zero except for
the seven control vertices highlighted in Figure 4. If we repeat the Catmull-Clark subdivision rules
for both meshes we actually obtain the same limit surface, since the exceptional control vertex
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Figure 4: The effect of the seven outer control vertices does not depend on the valence of the
extraordinary vertex. When tiEV + 1 control vertices in the center are set to zero the same limit
surface is obtained.

at the center of the patch remains equal to zero after each subdivision step. Therefore, the effect
of the seven outer control vertices is simply each control vertex multiplied by its corresponding
bi-cubic B-spline tensor product basis function. In the derivation of our evaluation technique we
do not need to make use of this fact. However, it explains the simplifications which occur at the
end of the derivation.

O

/
2N+10\O IN+9

Figure 5: Addition of new vertices by applying the Catmull-Clark subdivision rule to the vertices
in Figure 3.



3 Mathematical Setting

In this section we cast the informal description of the previous section into a rigorous mathematical
setting. We denote by
Cg = (c0,17 Ty CO,K) )

the initial control vertices defining the surface patch shown in Figure 3. The ordering of these
vertices is defined on the bottom of Figure 3. This peculiar ordering is chosen so that later com-
putations become more tractable. Note that the vertices do not resultlié doatrol vertices of a
uniform bi-cubic B-spline patch, except whéh= 4.

Through subdivision we can generate a new sét/of K + 9 vertices shown as circles super-
imposed on the initial vertices in Figure 5. Subsets of these new vertices are the control vertices
of three uniform B-spline patches. Therefore, three-quarters of our surface patch is parametrized,
and could be evaluated as simple bi-cubic B-splines (see top left of Figure 6). We denote this new
set of vertices by

T ~T T
C = (C1,1, Tt CI,K) and C; = (C1 y CLK+1," ", CI,M) .

With these matrices, the subdivision step is a multiplication byKar K (extended) subdivision
matrix A:

Cl == ACO (1)
Due to the peculiar ordering that we have chosen for the vertices, the extended subdivision matrix
has the following block structure:
S o0
A= 2
( S S > ’ @

whereS is the2 N +1 x 2N +1 subdivision matrix usually found in the literature [4]. The remaining
two matrices correspond to the regular midpoint knot insertion rules for B-splines. Their exact
definition can be found in Appendix A. The additional points needed to evaluate the three B-spline
patches are defined using a bigger makiof size M x K:

Cl - ACO,

where
S 0

A: Sll SIQ . (3)
SZI SZQ

The matricesS,; andS,, are defined in Appendix A. The subdivision step of Equation 1 can be
repeated to create an infinite sequence of control vertices:

C, = AC, ;=A"Cy and

Cn = ACn_l == AAn_ICO, n Z 1.

As noted above, for each level> 1, a subset of the vertices @f,, becomes the control vertices
of three B-spline patches. These control vertices can be defined by selsttogtrol vertices
from C,, and storing them in6 x 3 matrices:

Blc,n = Pkcna
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Figure 6: Indices of the control vertices of the three bi-cubic B-spline patches obtaine@from

whereP, is al6 x M “picking” matrix andk = 1,2, 3. Letb(u, v) be the vector containing the
16 cubic B-spline basis functions (see Appendix B). If the control vertices are ordered as shown
on the left of Figure 1, then the surface patch corresponding to each matrix of control vertices is

defined as

Sk (u,v) = B, b(u,v) = CIP{b(u,v),

(4)

where(u,v) € Q,n > 1 andk = 1,2, 3. Using the ordering convention for the B-spline control
vertices of Figure 1, the definition of the picking matrices is shown in Figure 6. Each r&y of

is filled with zeros except for a one in the column corresponding to the index shown in Figure 6
(see Appendix B for more details). The infinite sequence of uniform B-spline patches defined by
Equation 4 form our surfacgu, v), when “stitched together”. More formally, let us partition the
unit square? into an infinite set of tile§Q}}, n > 1,k = 1,2, 3, as shown in Figure 7. Each tile
with indexn is four times smaller than the tiles with index- 1. More precisely:

. 11
. 11
o = _Q_n,_Qn_l]
o = o i}x[

3 - _7271

| %

.
o5
2n
{1
X

1 1

2_71,’ 27171_ '

on’ gn—1

)

! (5)

.

A parametrization fos(u, v) is constructed by defining its restriction to each flieto be equal to
the B-spline patch defined by the control vertit®s,:

s(u,v) [ap = Sk (trn(u,v)). (6)
The transformatiotty, ,, maps the tile2} onto the unit squar@:
tin(u,v) = (2"u—1,2"), (7)
ton(u,v) = (2"u—1,2"v —1) and (8)
tan(u,v) = (2"u,2"v —1). 9)
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Figure 7: Partition of the unit square into an infinite family of tiles.

Equation 6 gives an actual parametrization for the surface. However, it is very costly to evaluate,
since it involves: — 1 multiplications of theKX” x K matrix A. The evaluation can be simplified
considerably by computing the eigenstructur@ofThis is the key idea behind our new evaluation
technique and is the topic of the next section.

4 Eigenstructure, Eigenbases and Evaluation

The eigenstructure of the subdivision matAxis defined as the set of its eigenvalues and eigen-
vectors. In our case the matrX is non-defective for any valence. Consequently, there always ex-
ists K linearly independent eigenvectors [4]. Therefore we denote this eigenstructufe Wy,

where A is the diagonal matrix containing the eigenvaluesAgfandV is an invertible matrix

whose columns are the corresponding eigenvectors. The computation of the eigenstructure is then
equivalent to the solution of the following matrix equation:

AV = VA, (10)

where thei-th diagonal element oA is an eigenvalue with a corresponding eigenvector equal to
thei-th column of the matriv (i = 1,---, K). There are many numerical algorithms which can
compute solutions for such equations. Unfortunately for our purposes, these numerical routines do
not always return the correct eigenstructure. For example, in some cases the solver returns complex
eigenvalues. For this reason, we must explicitly compute the eigenstructure. Since the subdivision
matrix has a definite block structure, our computation can be done in several steps. In Appendix
A we analytically compute the eigenstructu®, Uy) (resp. (A, W;)) of the diagonal blocks

(resp. S15) of the subdivision matrix defined in Equation 2. The eigenvalues of the subdivision
matrix are the union of the eigenvalues of its diagonal blocks:

- (22)

8



Using the eigenvectors & andS,, it can be proven that the eigenvectors for the subdivision
matrix must have the following form:

(U, 0
v_<U1 W1>'

The matrixU; is unknown and is determined from Equation 10. If we replace the mathic&5
and A by their block representations, we obtain the following matrix equation:

SHU() + 812U1 == U12 (11)

SinceU, is known, U, is computed by solving the N + 1 linear systems of Equation 11. In
principle, this equation could be solved symbolically. In practice, however, because of the small
sizes of the linear systems & 7) we can compute the solution up to machine accuracy (see the
next section for details). The inverse of our eigenvector matrix is equal to

1 Up'! 0
\'% - ( —WflUanl W;l ) (12)

where bothU, and W, can be inverted exactly (see Appendix A). This fact allows us to rewrite
Equation 10:
A=VAV™

This decomposition is the crucial result that we use in constructing a fast evaluation scheme of the
surface patch. Indeed, the subdivided control vertices at teaet now equal to

C,=AA"'Cy=AVA" 'V ICy = AVA" 'C,,

whereC, = V1C, is the projection of thé{ control vertices into the eigenspace of the subdi-
vision matrix. Using this new expression for the control vertices atittte level of subdivision,
Equation 4 can be rewritten in the following form:

Sen(u,v) = CTA"! (PkAV)Tb(u, v).

We observe that the right most terms in this equation are independent of the control vertices and
the powem. Therefore, we can precompute this expression and define the following three vectors:

x(u,v,k) = (PLAV) b(u,v) k=1,2,3. (13)

The components of these three vectors correspond to a géthdfcubic splines. In Appendix
B we show how to compute these splines. Notice that the sptifiesv, k) depend only on the
valence of the extraordinary vertex. Consequently, we can rewrite the equation for each patch more
compactly as:

Sk (U, v) = COTA"_Ix(u, v, k) k=1,2,3. (14)
To make the expression for the evaluation of the surface patch more concregtg,denhote the
rows of Cy. Then the surface patch can be evaluated as:

K
S(ua U) Qp — Z ()‘i)n_l xi(tk,n(ua U), k)pz (15)

=1



Therefore, in order to evaluate the surface patch, we must first compute the new ver{icely
once for a given mesh). Next, for each evaluation we determized then scale the contribution
from each of the splines by the relevant eigenvalue to the pawet. Since all but the first of the
eigenvalues are smaller than one, their contribution decreasga@ases. Thus, for largei.e.,
for surface-points near the extraordinary vertex, only a few terms make a significant contribution.
In fact for (u, v) = (0,0) the surface point ip,, which agrees with the definition of a limit point
in [4].

Alternatively, the bi-cubic spline functions(u, v, k) can be used to define a setefienbasis
functionsfor the subdivision. For a given eigenvaldgwe define the functiom; by its restrictions
on the domain$} as follows:

@i(ua U) ‘QZ = ()‘i)n_lxi(tk,n(ua U)a k)a

withi = 1,---, K. By the above definition these functions satisfy the following scaling relation:

wi(u/2,v/2) = Nipi(u,v).

The importance of these functions was first noted by Warren in the context of subdivision curves
[10]. More recently, Zorin has defined and used eigenbasis functions to prove smoothness condi-
tions for very general classes of subdivision schemes [11]. However, explicit analytical expressions
for particular eigenbases have never appeared before. On the other hand, we can compute these
bases analytically. Figures 8 and 9 show the complete sets of eigenbasis functions for valences 3
and 5. In the figures we have normalized each function such that its range is bounded-within
and1. In particular, the first eigenbasis corresponding to an eigenvalue of one is always a constant
function for any valence. A closer look at Figures 8 and 9 reveals that they share seven identical
functions. In fact as shown in Appendix B, the last seven eigenbasis functions for any valence are
always equal to

36uv,6u,6uv,2uv,6v,6uv,2uv
Furthermore, by transforming these functions back from the eigenspaceWsihgve obtain the
seven tensor B-spline basis functions

{13313131321313123}.

b4(u7U)abS(uav)abIZ(uav)a T blﬁ(uav)a

i.e., the basis functions corresponding to the “outer layer” of control vertices of Figure 3. This
should not come as a surprise since as we noted above, the influence of the outer layer does not
depend on the valence of the extraordinary vertex (see Figure 4).

In the regular bi-cubic B-spline casé&/(= 4), the remaining eigenbasis can be chosen to be
eqgual to the power basis

2 2 2 2 2 2
{1, u,v,u”, uv, v°, u v, uv”, uv°}.

The scaling property of the power basis is obvious. For example, the basis funtticorre-
sponds to the eigenvalu¢s:

(u/2)*(v/2) = (1/2)*(1/2)u*v = éu%.

This relationship between the Catmull-Clark subdivision and the power basis in the regular case
does not seem to have been noted before. Note also that the eigenvectors in this case correspond

10



to the “change of basis matrix” from the bi-cubic B-spline basis to the power basis. The eigen-
basis functions at extraordinary vertices can thus be interpreted as a generalization of the power
basis. However, the eigenbases are in general not polynomials. In the case of the Catmull-Clark
subdivision they are piece-wise bi-cubic polynomials. The evaluation of the surface patch given
by Equation 15 can now be rewritten exactly as:

s(u,v) = z:gpi(u,v)pi. (16)

This is the key result of our paper, since this equation gives a parametrization for the surface
corresponding to any face of the control mesh, no matter what the valence is. There is no need to
subdivide. Equation 16 also allows us to compute derivatives of the surface up to any order. Only
the corresponding derivatives of the basis functions appearing in Equation 16 are required. For
example, the partial derivative of tlieh eigenbasis with respect to's:

., 0
%‘pi(u’ U) Qp = 2n()‘i)n I%xi(tk,n(u’ U)7 k):

where the factoR” is equal to the derivative of the affine transformattpp. Generally a factor
2™ will be present when the order of differentiatiorpis

5 Implementation

Although the derivation of our evaluation technique is mathematically involved, its implementation

is straightforward. The tedious task of computing the eigenstructure of the subdivision matrix only
has to be performed once and is provided in Appendix A. In practice, we have precomputed these
eigenstructures up to some maximum valence NlsAX=50 and have stored them in a file. The

file and some C code that reads in the data can be found on the course CDROM. Any program using
our evaluation technique can read in these precomputed eigenstructures. In our implementation the
eigenstructure for each valenNes stored internally as

typedef
struct  {
double L[K]; I* eigenvalueg/
double iVIK][K]; [* inv of the eigenvector¥y
double Xx[K][3][16]; /* coeffs of the spliney

} EIGENSTRUCT;
EIGENSTRUCT eigen[NMAX]; ,

whereK=2*N+8. At the end of this section we describe how we computed these eigenstructures.
We emphasize that this step has to be performed only once and that its computational cost is
irrelevant to the efficiency of our evaluation scheme.

Given that the eigenstructures have been precomputed and read in from a file, we evaluate a
surface patch around an extraordinary vertex in two steps. First, we project the control vertices
surrounding the patch into the eigenspace of the subdivision matrix. Let the control vertices be
ordered as shown in Figure 3 and stored in an a@f§] . The projected verticeSp[K] are then
easily computed by using the precomputed inverse of the eigenvectors:

11



ProjectPoints(point *Cp,point *C,int N) {

for (i=0 ; I<2*N+8 ; i++ ) {
Cpli] = (0,0,0);
for ( j=0 ; j<2*N+8 ; j++ ) {
Cpli] += eigen[N].iV[i][] * C[[;
}
}
}

This routine is called only whenever one of the patches is evaluated for the first time or after an
update of the mesh. This step is, therefore, called at most once per surface patch. The second
step of our evaluation, on the other hand, is called whenever the surface has to be evaluated at a
particular parameter valu@,v) . The second step is a straightforward implementation of the
sum appearing in Equation 15. The following routine computes the surface patch at any parameter
value.

EvalSurf ( point P, double u, double v,
point *Cp, int N ) {
* determine in which domaife} the parameter lie¥
n = floor(min(-log2(u),-log2(v)))+1;
pow2 = pow(2,n-1);
u *= pow2; v *= powz,
if (v<05) {
k=0; u=2*u-1; v=2*v;

}
else if (u < 05) {
k=2; u=2*u; v=2*v-1;
}
else {
k=1; u=2*u-1; v=2*v-1;
}
/* Now evaluate the surface */
P = (0,0,0);
for (=0 ; i<2*N+8 ; i++ ) {

P += pow(eigen[N].L[i],n-1) *
EvalSpline(eigen[N].x]i][k],u,v)*Cp]i];
}

}

The functionEvalSpline  computes the bi-cubic B-spline polynomial whose coefficients are
given by its first argument at the parameter vglug) . When either one of the parameter values

u or v is zero, we set it to a sufficiently small value near the precision of the machine, to avoid
an overflow that would be caused by tlog2 function. Becaus&valSpline  evaluates a bi-

cubic polynomial, the cost divalSurf is comparable to that of a bi-cubic surface spline. The
extra cost due to the logarithm and the elevation to an integer power is minimal, because these
operations are efficiently implemented on most current hardware. Since the projection step is only
called when the mesh is updated, the cost of our evaluation depends predomin&vidySunf

12



The computation of th@-th derivative is entirely analogous. Instead of using the routine
EvalSpline  we employ a routine that returns tpeth derivative of the bi-cubic B-spline. In
addition, the final result is scaled by a facfow(2,n*p) . The evaluation of derivatives is
essential in applications that require precise surface normals and curvature. For example, Newton
iteration schemes used in ray surface computations require higher derivatives of the surface at
arbitrary parameter values.

We now describe how we compute the eigenstructure of the subdivision matrix. This step
only has to be performed once for a given set of valences. The efficiency of this step is not
crucial. Accuracy is what matters here. As shown in the appendix, the eigenstructure of the
two matricesS andS;, can be computed analytically. The corresponding eigenstructure of the
extended subdivision matrik requires the solution of th&V + 1 linear systems of Equation 11.

We did not solve these analytically because these systems are only @fsize Consequently,

these systems can be solved up to machine accuracy using standard linear solvers. We used the
dgesv routine from LINPACK to perform the task. The inverse of the eigenvectors is computed

by carrying out the matrix products appearing in Equation 12. Using the eigenvectors, we also
precompute the coefficients of the bi-cubic splinés, v, k) as explained in Appendix B. For each
valenceN we stored the results in the data structeigen[NMAX] and saved them in a file to be

read in at the start of any application which uses the roufttegectPoints andEvalSurf

described above. This data is provided in theditdata50.dat  on the CDROM for valences
uptoNMAX=50 The C prograntctest.c  demonstrates how to read in that data.

5.1 Some Remarks on Stability

As noted previously there is a problem when evaluating the surface at the extraordinary point
usingEvalSurf  since thdog is ill-defined at(0, 0). One option as mentioned above is to clamp
the (u,v) values below a certain threshold. A better option is to return the limit gopj0]

directly. When computing derivatives other instabilities can occur, although in practice we have
not encountered them in our implementation using the clamping o# they values. However,
instabilities could be a nuisance in other applications of the evaluation method. The problem is
that we have to multiply the derivative by a facfmw(2,n*p)  which diverges for larga. One
possible solution is to include this factor when taking powers of the eigenvalues, i.e., line

P += pow(eigen[N].L[i],n-1) *

should be replaced by
P += p2*pow(p2*eigen[N].L[i],n-1) * ,

wherep2=pow(2,p) . Although this simple modification reduces instabilities it is not completely
satisfactory. The problem is that the inverse of the eigenvalisae not always powers of two so
that the product§2?\)™ either converge to zero or diverge.

The cleanest solution is to reparametrize the surface using the characteristic map introduced in
[8]. The characteristic map is simply the mapping defined by the eigenbasis fungtiens) and
p3(u,v). Let

X(u, v) = (z(u,v),y(u,v)) = (p2(u, v), @3(u, v)),
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be the characteristic map. A more stable implementation would be to evaluate:

SX(:U7 y)=s (Xil(% U)) :

This reparametrization requires the inversion of the two eigenbasis functioaad 3. Note

also that the evaluation of the derivatives requires the computation of the derivatives of the inverse
of the characteristic map as well. Also we point out that the evaluation of the curvature near
the extraordinary point is inherently unstable since the the curvature at these points is known not
to exist (diverge) for Catmull-Clark surfaces. In particular, this implies that Catmull-Clark are in
general notC? surfaces. As a corollary, for example, a perfect sphere cannot be represented exactly
by a Catmull-Clark surface.

6 Results

In Figure 10 we depict several Catmull-Clark subdivision surfaces. The extraordinary vertex whose
valenceN is given in the figure is located in the center of each surface. The position information
within the blue patches surrounding the extraordinary vertex is computed using our new evaluation
technique. The remaining patches are evaluated as bi-cubic B-splines. Next to each surface we also
depict the curvature of the surface. We map the value of the Gaussian curvature onto a hue angle.
Red corresponds to a flat surface, while green indicates high curvature. We have purposely made
the curvature plot discontinuous in order to emphasize the iso-contour lines. Both the shaded
surface and the curvature plot illustrate the accuracy of our method. Notice especially how the
curvature varies smoothly across the boundary between the patches evaluated using our technique
and the regular bi-cubic B-spline patches. The curvature plots also indicate thst #ort the
Gaussian curvature takes on arbitrarily large values near the extraordinary vertex. The curvature at
the extraordinary vertex is in fact infinite, which explains the diverging energy functionals in [4].
Figure 11 depicts more complex surfaces. The blue patches are evaluated using our technique.

7 Conclusion and Future Work

In this paper we have presented a technique to evaluate Catmull-Clark subdivision surfaces. This is
an important contribution since the lack of such an evaluation schemes has been sited as the chief
argument against the use of subdivision scheme in free-form surface modelers. Our evaluation
scheme permits many algorithms and analysis techniques developed for parametric surfaces to be
extended to Catmull-Clark surfaces. The cost of our algorithm is comparable to the evaluation
of a bi-cubic spline. The implementation of our evaluation is straightforward and we have used

it to plot the curvature near extraordinary vertices. We believe that the same methodology can
be applied to many other subdivision schemes sharing the features of Catmull-Clark subdivision:
regular parametrization away from extraordinary vertices. We have worked out the details for
Loop’s triangular scheme, and the derivation can be found in the accompanying paper in these
course notes. Catmull-Clark surfaces and Loop surfaces (when the vadeahare the property

that their extended subdivision matrices are non-defective. In general, tis tise case. For
example, the extended subdivision matrix of Doo-Sabin surfaces cannot generally be diagonalized.
In that case, however, we can use the Jordan normal form of the extended subdivision matrix and
employ Zorin’s general scaling relations [11].

14



Acknowledgments

| wish to thank the following individuals for their help: Eugene Lee for assisting me in fine tuning
the math, Michael Lounsbery and Gary Herron for many helpful discussions, Darrek Rosen for
creating the models, Pamela Jackson for proofreading the paper, Gregg Silagyi for his help during
the submission, and Milan Novacek for his support during all stages of this work. Thanks also to
Markus Meister from Brown University who kindly pointed out a mistake in Appendix A of our
SIGGRAPH paper.

A Subdivision Matrices and Their Eigenstructures

The matrixS corresponds to the extraordinary rules around the extraordinary vertex. With our
choice of ordering of the control vertices the matrix is:

an bN CN bN CN bN e bN CN bN CN

d d e e 0 0 --- 0 0 e e

f f f f 0 0 -~ 0 0 0 O

d e e d e e 0O 0 0 0

S= ¢ 10 0o f f f 0 0 0 0

d e 0 O 0 O e d e

f f 0 0 0 O o o0 f f
where 7 3 1 3 1 1
aN T ooy T e Tl 9l T

Since the lower right N x 2N block of S has a cyclical structure, we can use the discrete Fourier
transform to compute the eigenstructureSof This was first used in the context of subdivision
surfaces by Doo and Sabin [3]. The discrete Fourier transform can be written compactly by intro-
ducing the following2 NV x 2N “Fourier matrix”;

10 1 0 1 0
01 0 1 0 1
1 0 w! 0 - w (=D

F—| 01 0 o 0 w =
1 0w -1 B e (A i S R
01 0 wWO-1... 0 (V=12

wherew = exp(i27/N). Using these notations we can write down the “Fourier transform” of the
matrix S compactly as:

So | o 0 0
. 0[S |0 0 )
S=|— =TST,
: 0 0
0 0 0 | Sy,
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where

(1 o0 L (10
v o) me(or)

R an NbN NCN
Sy = d 2f 2e and
o2 f
5 — ( e(w’l—i-wl) +d e(l—i—w*l) )
f 1+ f ’
[=1,---,N — 1. The eigenstructure of the Fourier transfdénis computed from the eigenstruc-

tures of its diagonal blocks. The first blo8k has eigenvalues

1
mo=1, piz, 3=z (=7+3N F V49— 30N +5N?)

8N
and eigenvectors
) 1 16p3 —12up +1 16p3 — 123 + 1
KO = 1 6”2 —1 6,“/3 -1
1 dps +1 dps +1
Similarly, the two eigenvalues of each blagk(l = 1,---, N — 1) are equal to:

1 27l [ 27l
A= i (5+Cos (%) F cos (%) JlS + 2cos (%)) ,

where we have used some trigopnometric relations to simplify the resulting expressions. The corre-
sponding eigenvectors of each block are

o [ -1 A -1
S A A

We have to single out the special case whéis even and = N/2. In this case the corresponding

block is
N 10
KN/QZ(O 1>

The eigenvalues of the matrikare the union of the eigenvalues of its blocks and the eigenvectors
are

K, | O 0 0
R 0 K, | 0 0
K=|—

: 0 . 0

0 0 0 | Ky,

Since the subdivision matri& and its Fourier transforr8 are similar, they have the same eigen-
values. The eigenvectors are computed by inverse Fourier transforming these eigenvectors:

K-T"'K.
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Consequently, we have computed the eigenvalues and eigenvectrdHafwever, in this form
the eigenvectors are complex valued and most of the eigenvalues are actually of multiplicity two,
since)\; = Ay, and)\; = \y_,. We relabel these eigenvalues as follows:

fa = AT, s = Al s = A5, i = A3, -

Since we have rearranged the eigenvalues, we have to rearrange the eigenvectors. Atthe same time
we make these eigenvectors real. ket- - -, k,y 1 be the columns oK, then we can construct
the columns of a matriXJ, as follows:

u = ki, uy=ky, uz=ks,
1
Uy = B (kiys + kon_i42) and
1
U433 = 2—2 (kl+3 - k2N—l+2) .

More preciselyu,, uy, us, uy,» anduy 3 are equal to

1\ [16p3 — 124 + 1

16p2 — 12u3 + 1

1 6ps — 1 6pus — 1
1 4/12 +1 4/13 +1
1 6ps — 1 6pus — 1
1 4/L2 + 1 4M3 + 1
0 0
dpys — 1 0
1+ G Sy
(4p43 — 1)Cyq (4t — 1) S50
Coy + Cony and Syty + S ’
(4puss — D)Civ—1)y0) (441143 — 1)S(v—1)7()

Civ—tyyay + 1 S(N=1)y(1)

respectively, wheré=1,---, N5, Ny = N — 1 whenN is odd andV, = N — 2 whenN is even,
() = (I +1)/2 whenl is odd andy(l) = [/2 whenl is even, and

21k . [ 27k
C) = cos <T> and S, =sin <T> )

WhenN is even the last two eigenvectors are

usy = (0,1,0,—1,0,1,0,---,—1,0) and
ugN-i—l = (07071707_1707]-7"'707_]-)-

Finally, the diagonal matrix of eigenvalues is

> = diag (1, po, f13, fa, fhas*+* s iN2, UN+2) -
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The inverse of the eigenvectot$, can be computed likewise by first computing the inverses of
each blockK; in the Fourier domain and then setting

K!'=K'T.

With the same reshuffling as above we can then complite The resulting expressions are,
however, rather ugly and are not reproduced in this paper.

The remaining blocks of the subdivision matek directly follow from the usual B-spline
knot-insertion rules.

c b c 0 b c O c 00 b adb 00O
0 ee 0000 e 00 eddOO00O0
0O ¢c b c 0O00 b 00 ¢c badcO
812 = 0 0e e 00O y SH = e 00 00dde O s
0 00 0 ee O e 00 ddeO0OO0O
000 0 ¢ b c b ¢ b abc 00O
000 OO eece e edd O0O0O0O0O
where
azg, b:iand c:i.
16 32 64

For the caseV = 3, there is no control vertexs (cg = ¢3) and the second column of the matrix
S, is equal to(0,0, ¢, e, 0, ¢, e)L.
The eigenstructure of the matrdg, can be computed manually, since this matrix has a simple
form. Its eigenvalues are:
1 11 111 1
A =di <_a_a_7_7_7_a_>7

81648716732’ 8° 16’ 32

with corresponding eigenvectors:

11 2 11 1 2 11
601 1 2 0 0 0
01 0 -1 0 0 O
W, =01 -1 2 0 0 O
0o 0 o 1 1 2
oo 0o o0 1 0 -1
0o 0 0 1 -1 2

The inverséW ! of this matrix is easily computed manually.
The other two matrices appearingAnare:

]
]
]

821 = 7822 =

ol oNoNoNoNoNoNa!
cCooCcooco o

e =l e R e R e R en N et

RO OO0 o O

SO =AU O D~ QU
OO OO AUHROD O
SO OOHRDI O OO
O OO OO OO OO0
OO OO DD
S OO OB QA
OO OO AUHRO O
SO OOHD» OO O
O D HAU DO DD %
AR OO OO O OO
S el ol eNoNoloNo)
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B Eigenbasis Functions

In this appendix we compute the bi-cubic spline piegés, v, k) of the eigenbasis defined in
Equation 13. The vectds(u, v) contains the 6 tensor B-spline basis functions=£ 1, - - -, 16):

bi(u, v) = N—1ysa (u) Nii—1)/4(v),

where ‘%" and “/” stand for the remainder and the division respectively. The functiéig) are
the uniform B-spline basis functions:

6No(t) = 1—3t+3t2 -+,

6N (1) = 4—6t>+3t%,

6No(t) = 1+ 3t+3t2—3t> and
6Ns(t) = t°.

The projection matriceR, P, andP; are defined by introducing the following three permutation
vectors (see Figure 6):

a = (8,7,2N+5,2N +13,1,6,2N +4,2N + 12,
4,5,2N +3,2N +11,2N +7,2N + 6,2N + 2,
2N + 10),

a° = (1,6,2N +4,2N +12,4,5, 2N + 3,2N + 11,
2N + 7,2N +6,2N + 2,2N + 10,2N + 16,
2N +15,2N + 14,2N +9),

q’ = (2,1,6,2N +4,3,4,52N +3,2N +8,2N + 7,
2N +6,2N +2,2N +17,2N + 16,2N + 15,
2N + 14).

Since for the cas®&/ = 3 the vertices:; andcg are the same vertey; = 2 instead of8 for N = 3.
Using these permutation vectors we can compute each bi-cubic spline as follows:

16
xi(u, v, k) = Z ‘7:1]-“,2' bj(uﬂ U):
=1

wherei =1,---, K andV = AV.
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Figure 9: The complete set ®8 eigenbasis functions for extraordinary vertices of valeNce 5.

Figure 10: Surfaces having an extraordinary vertex in the center. For each surface we depict
the patches evaluated using our technique in blue. Next to them is a curvature plot. Derivative
information for curvature is also computed near the center vertex using our technique.
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Figure 11: More complex surfaces rendered using our evaluation technique (in blue).
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Abstract

This paper describes a technique to evaluate Loop subdivision surfaces at arbitrary parame-
ter values. The method is a straightforward extension of our evaluation work for Catmull-Clark
surfaces. The same ideas are applied here, with the differences being in the details only.

1 Introduction

Triangular meshes arise in many applications, such as solid modelling and finite element simula-
tions. The ability to define a smooth surface from a given triangular mesh is therefore an important
problem. For topologically regular meshes a smooth triangular surface can be defined using box
splines [1]. In 1987 Loop generalized the recurrence relations for box splines to irregular meshes
[3]. Using his subdivision rules any triangular mesh can be refined. In the limit of an infinite
number of subdivisions a smooth surface is obtained. Away &gtraordinary verticegwhose
valenceN # 6) the surface can be parametrized using triangular Bezier patches derived from the
box splines [2]. Until recently it was believed that no parametrizations that lend themselves to
efficient evaluation existed at the extraordinary points. This paper disproves this belief. We define
parametrizations near extraordinary points and show how to evaluate them efficiently. The tech-
niques are identical to those used in our previous work on evaluating Catmull-Clark subdivision
surfaces [5]. The differences are in the details only: different parameter domain, different subdivi-
sion rules and consequently a different eigenanalysis. We assume that the reader is familiar with
the content of [5].

The remainder of this short paper is organized as follows. The next section briefly reviews trian-
gular Loop subdivision surfaces. Section 3 summarizes how we define and evaluate a parametriza-
tion for such surfaces. Section 4 discusses implementation details while Section 5 depicts some
results obtained using our scheme. Finally, some conclusions and possible extensions of this work
are given in Section 6. Material which is of a rather technical nature is explained in the appendices.
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Figure 1: A single regular triangular patch definediycontrol vertices.

2 Loop Subdivision Surfaces

Loop triangular splines generalize the box spline subdivision rules to meshes of arbitrary topology.
On a regular part of the mesh each triangular patch can be definetldmntrol vertices as shown

in Fig. 1. The basis functions corresponding to each of the control vertices are given in Appendix
A. We obtained these basis functions by using a conversion from box splines to triangular Bezier
patches developed by Lai [2]. This (regular) triangular patch can be denoted compactly as:

s(v,w) = CT b(v,w), (v,w) € Q,

whereC is al12 x 3 matrix containing the control vertices of the patch ordered as in Fig. 1 and
b(v,w) is the vector of basis functions (see Appendix A). The surface is defined over the “unit
triangle”:

Q={(v,w)|vel0,1] and we [0,1—v]}.

The parameter domain is a subset of the plane suchvthat corresponds to the poift, 0) and
w = 1 corresponds to the poird, 1). We introduce the third parameter= 1 — v — w such
that (u, v, w) forms a barycentric system of coordinates for the unit triangle. The valge1
corresponds to the origifd, 0). The degree of the basis function is at mésh each parameter
and our surface patch is therefore a quartic spline.

The situation around an extraordinary vertex of valences depicted in Fig. 2. The shaded
triangle in this figure is defined by thE€ = N + 6 control vertices surrounding the patch. The
extraordinary vertex corresponds to the parameter valgel. Since the valence of the extraor-
dinary vertex in the middle of the figure i = 7, there are’ = 13 control vertices in this case.
The figure also provides the labelling of the control vertices. We store the iRittaintrol vertices
inak x 3 matrix

C:‘)F = (Co,l, T, Co,K) .
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Figure 2: An irregular triangular patch defined By= N + 6 = 13 control vertices. The vertex
labelled “1” in the middle of the figure is extraordinary of valence
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Figure 3. The mesh of Fig. 2 after one Loop subdivision step. Notice that three-quarters of the
triangular patch can be evaluated.
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Figure 4: Three regular meshes corresponding to the three shaded patches. The labelling of the
control vertices defines the picking matrices.



3 Method of Evaluation

3.1 Setup

Through subdivision we can generate a new setfo= K + 6 = N + 12 control vertices as
shown in Fig. 3. Notice that we now have enough control vertices to evaluate three-quarters of the
triangular patch. We denote the new set of control vertices by:

C{ = (Cl’l, ey CI,K) and

C1T = (C1,1, o CLK, CLKL, C1,M) .
The subdivision step in terms of these matrices is entirely described By>aik extended subdi-

vision matrixA:
Cl = ACO:

S 0
AZ(SH Sm>’ S

and the blocks are defined in Appendix B. The additional vertices needed to evaluate the surface
are obtained from a bigger subdivision matAx

) S 0
A= Sll SIQ )
SZI SZZ

andS,; andS,, are defined in Appendix B. Three subsetsl dfcontrol vertices fronC, define
three regular triangular patches which can now be evaluated. If we repeat the subdivision step, we
generate an infinite sequence of control vertices:

C,=AC, =AA"'Cy), n>1

where

where

For eachn > 1 subsets ofl2 vertices fromC,, form the control vertices of a regular triangular
patch. Let us denote these three sets of control vertices by the following threematricesB,, .,
with £ = 1,2, 3. To compute these control vertices we introducelthex M “picking matrices”
P.:

B,;=P.C,, k=1,23.

Each row of the picking matri®,, is filled with zeros except for a one in the column corresponding
to the index shown in Fig. 4. Each surface patch is then defined as follows:

Sn,k(va w) = Bg,kb(va ’U)) = CZP;}Fb(Ua ’U))

We seek a parametrizatiafiv, w) for our triangular surface for allv, w) € €. As shown in Fig.
5 we can partition the parameter domain into an infinite set offifeswith » > 1 andk = 1, 2, 3.
These subdomains are defined for 1 more precisely as:

Qr = { (v,w) | ve [2‘",2‘"“] and w € [0,2_7”rl — U] }
Qy = { (v,w) | v e [0,2’”] and w € [0, v] }
Qy = { (v,w) | ve [0,27"] and w € [2’",2””rl - U] }

4
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Figure 5: The parameter domain is partitioned into an infinite set of triangular tiles.

The surface patch is then defined by its restriction to each of these triangles:

s(v, w)

op = Sue(tui(v, ) = CF (PLAA™) b(tu(v, w)), @)

where the transformatiot), , maps the til&} onto the unit tile2 (with the correct orientation of
Fig. 1):
tpa(v,w) = (2"v—1,2"w),
tpo(v,w) = (1—-2",1—-2"w) and
tns(v,w) = (2"0,2"w —1).
Eq. 2 actually defines a parametrization for the surface patch. However, it is expensive to evaluate

since it involves taking powers of a certain matrix to any number 1. To make the parametriza-
tion more efficient, we eigenanalyze.

3.2 Eigenstructure

When the valencé’ > 3, the extended subdivision matri is non-defective ConsequentlyA
can be diagonalized:
A=VAV (3)

whereA is the diagonal matrix which contains the eigenvalues¥ntbntains the eigenvectors.
These matrices have the following block structure:

(X2 0 (U, O
A—<0A>andV—<U1 W1>'

The diagonal block®& and A correspond to the eigenvalues®tndS,,, respectively, and their
corresponding eigenvectors are storelinpandW,, respectively. The matrikJ; is computed by
extending the eigenvectors 8f i.e., by solving the following linear systems:

UIE - SIQUI = SIIUO- (4)

!The caseV = 3 has a non-trivial Jordan block and is treated in Appendix C.
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In Appendix B we compute the entire eigenstructure for Loop’s scheme preciselyCLet
V ~1C, be the projection of the initial control vertices onto the eigenspadearfd let® (v, w) be
the K-dimensional vector ogéigenbasigunctions defined by:

(v, w)|gp = A" (PLAV) b(tu(v,w)) n>1 and k=1,2,3. 5)

k

The eigenbasis functions for valenc¥s= 5 and N = 7 are depicted in Fig. 6. Each function of

the eigenbasis corresponds to one of the eigenvectors of the Matiitach eigenbasis function

is entirely defined by its restriction on the unit triangfés Q) andQ}. On each of these domains

the eigenbasis is a quartic spline. The basis functions can be evaluated elsewhere since they satisfy
the following scaling relation:

O(v/2,w/2) = AD(v,w).

The triangular surface patch can now be written solely in terms of the eigenbasis:
s(v,w) = CT® (v, w). (6)

In the next section we show how to implement this equation.

4 Implementation

The eigenstructures of the subdivision matrices for a meaningful range of valences have to be com-
puted once only. LeNMAXe the maximum valence, then each eigenstructure is stored internally
in the following data structure:

typedef
struct  {
double L[K]; I* eigenvalueg/
double iVIK][K]; I* inverse of the eigenvectots
double Phi[K][3][12]; /* Coefficients of the eigenbasis

} EIGENSTRUCT;
EIGENSTRUCT eigen[NMAX]; ,

whereK=N+6. The coefficients of the eigenbasis functions are given in the basis of Appendix A.
There are three sets of control vertices, one for each of the fundamental domains of the eigenbasis.
These control vertices are simply equalRQAV. The eigenstructure was computed from the
results of Appendix B and by solving the linear system defined by Eq. 4 numerically. Also, we
numerically inverted the eigenvectors without encountering any numerical instabilities. We have
included a data file callegpdata50.dat on the CDROM which contains these eigenstructures
up toNMAX=50 Also included on the CDROM is a C program which reads in and prints out the
data.

Using this eigenstructure the surface for any patch can be evaluated by first projectiag the
control vertices defining the patch into the eigenspace of the subdivision matrix with the following
routine.

ProjectPoints ( point *Cp, point *C, int N ) {
for ( i=0 ; I<KN+6 ; i++ ) {
Cpli]=(0,0,0);



for ( j=0 ; j<N+6 ; j++ ) {
Cpli] += eigen[N].iV[i]i] * C[[;
}
}
}

This routine has to be called only once for a particular set of control vertices.
The evaluation at a parameter valiwew) is performed by computing the product given in
Eqg. 6.

EvalSurf ( point P, double v, double w, point *Cp, int N ) {
[* determine in which domaife} the parameter lie¥
n = floor(1-log2(v+w));
pow2 = pow(2,n-1);
V *= pow2; W *= powz2,
if (v>05) {
k=0; v=2*v-1; w=2*w;

}

else if (w > 0.5) {
k=2; v=2*v; w=2*w-1;

}

else {
k=1; v=1-2*v; w=1-2*w;

}

/* Now evaluate the surface */

P = (0,0,0);

for (i=0 ; i<KN+6 ; i++ )
P += pow(eigen[N].L[i],n-1) *
EvalBasis(eigen[N].Phi[i][k],v,w) * Cpli];
¥

}

where the routindvalBasis evaluates a regular triangular patch using the basis of Appendix
A. To evaluate higher order derivatives, we replas@lBasis  with a function that evaluates a
derivative of the basis. In this case, the end result also must be multiplied by two to the power
n*p , wherep is the order of differentiation. Therefore, the following line should be added at the
end ofEvalSurf

P = k==1 ? pow(-2,n*p)*P : pow(2,n*p)*P;

5 Results

We have implemented our evaluation technique and have used it to compute the eigenbases for
different valences. Fig. 6 depicts the entire set of eigenbasis for valérasesr. Notice that the

last 6 eigenbasis functions are the same regardless of the valence, since they depend only on the
eigenvectors 08,;, which are the same for any valence. In fact, as for Catmull-Clark surfaces,



Figure 6: Complete set of eigenbasis function for a patch of valencg ), and (b)NV = 7.



Figure 7: Results created using our evaluation scheme: (a) The base mesh which contains vertices
with valences ranging from to 9, (b) Isoparameter lines, (c) shaded surface and (d) Gaussian
curvature plot.



these eigenbasis functions are equal to simple monomials (see [5]). The eigenbasis functions
contain all the information necessary to analyze Loop subdivision surfaces.

To test our code we created the mesh shown in Figure 7.(a) which contains vertices of valence
3 t0 9. Figure 7.(b) shows a closeup of the isoparameter lines generated by Loop subdivision and
evaluated using our technique. In Figure 7.(c) we evaluated both the surface and the normal. Figure
7.(d) shows a Gaussian curvature plot, where red denotes positive curvature, green flat curvature
and blue negative curvature.

6 Conclusions and Future Work

In this paper we have shown that our evaluation technique first developed for Catmull-Clark sur-
faces can be extended to the class of Loop subdivision surfaces. Our next step will be to present
these results in a more general setting in which Catmull-Clark and Loop are regarded as special
cases. The class of polynomial surfaces defined by Reif would be a good candidate [4].
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A Regular Triangular Spline Basis Functions

The triangular surface defined by the control vertices shown in Fig. 1 can be expressed in terms of
12 basis functions. Since Loop’s scheme on the regular part of the mesh is a box spline, we can
find the corresponding Bezier patch control vertices of the triangle. Lai has developed FORTRAN
code which provides the conversion to the control vertices for the quartic triangular Bezier patches
corresponding to the box spline [2]. We have used his code (with M=2andN=2) to get a

12 x 15 matrix M which converts from the Bezier control vertices of the patch toltheontrol
vertices shown in Fig. 1. We get the basis functions for our triangular patch by multiplying the

15 multivariate Bernstein polynomials by the math&. Carrying out this multiplication leads to

the following result (thanks to Maple’s built in feature which converts to LaTeX):

b’ (v,w) = % ( ut +2udv, vt + 2dPw,
ut + 20w + 6 uPv + 6 vow + 12 w0? + 6 uvw + 6 uv® + 203w + v,
6u’ + 24 vPw + 24 v?w? + Suw® + w* 4+ 24 vPv + 60 vPvw + 36 vvw? +
6 vw> + 24 u*v? + 36 uvw + 12 v*w? + 8 uv® + 6 V3w + v,
ut + 6utw + 12 u?w? 4+ 6 uw® + w* + 2udv + 6 uPvw + 6 uvw? + 2vwd,
2uv® + vt ut + 6uPw + 12 v + 6 uw® + wt + 8 udv + 36 uPvw +
36 uvw? + 8vw? + 24 uv? + 60 uv?w + 24 v2w? + 24 uv® + 24 V3w + 6v*,
ut + 8 udw + 24 vPw? + 24 uw® + 6 w* + 6 uPv + 36 uPvw + 60 uvw? +
24 vw? + 12 u?v? + 36 uwv*w + 24 v?*w? + 6 uv® + 8 v3w + v,

2uw® + w, 203w + v,
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2uw® + wt + 6 uvw? + 6 vw® + 6 uviw + 12 v*w? + 2w + 6 V3w + v,
w4+2vw3),

whereu =1 — v — w.

B Eigenstructure of the Subdivision Matrix

The subdivision matripA is composed of three blocks. The upper left block contains the “extraor-
dinary rules” of Loop’s scheme. It is equal to

an bN bN bN bN bN bN bN
c ¢ d 0 0 -+ 0 0 d
S — c d ¢ d 0 -+ 0 0 0
c d 0 0 0 0 d ¢

where
ay =1—a(N), by =a(N)/N, ¢=3/8 and d=1/8.
We have used the shorthand notation

a(N) = 5 (3+2cos(2m/N)) .

8 64
If we Fourier transform the matrix we get:
an NbN 0 0 0
c c¢c+2d 0 0 0
. 0 0 f(1) 0 0
S=1 0 0o 0 f©2 0 )
0 0 0 0 - f(N=1)

where 5 9
f(k) = 3 + g o8 (2rk/N) .

The eigenvalues and the eigenvectors of the transformed matrix are trivial to compute because of
the almost-diagonal structure. They are
5)

m=1 g =g —a(N), pg=f(1), - pya = f(N - 1).
Notice that we have2 = 1. This is not surprising since Loop constructed his scheme from this
relation [3]. The eigenvalugs; to uy_; are of multiplicity two, sincef(k) = f(N — k), except
of course for the case whevi is even, thenu,, y/» is only of multiplicity one. The corresponding
eigenvectors are (when stored column wise):

1 —Say 0 0 0
1 1 00 0
) 0 0 10 0
U=[0o 0o 01 0
0O 0 00 1

11



By Fourier transforming these vectors back, we can compute the eigenvectors of theSmatrex
result is

1 —§CYN 0 0 0

1 1 1 1 1

11 E(1) E(2) E(N —1)
Uo=|1 1 E(2) E(4) B(2(N - 1)) )

11 E(N:— 1) EQ2(N-1)) E((N - 1:)(N —1))

whereE (k) = exp (2mik/N). These are complex valued vectors. To get real-valued vectors we
just combine the two columns of each eigenvalue to obtain two corresponding real eigenvalues.
For example, the two real eigenvectors for the eigenvalue, £k =0,---, N — 1 are:

vi = (0,0(0),C(k),C(2k),---,C((N = 1)k)) and
wi = (0,5(0),8(k),S(2k), -, S(N = 1)k)),
where
C(k) = cos (2nk/N) and S(k) =sin (27k/N).
The corresponding matrix of diagonal vectors is equal to

3= dlag (17 M2y gy 3y =y (N —1)/25 ,U/(Nfl)/Q) )
whenN is odd, and is equal to

1

3 = diag (1, 2y 3y 3y =5y UN/2—15 WN/2—1, g) )

whenN is even. This completes the eigenanalysis of the matrixet us now turn to the remainder
of the matrixA.
The remaining blocks of the matrik are now given.

2000 0 2 6 00 00 6
lrrroo 110 1 0 00 1
S,=—| 002 00| andSy=—1]2 6 60 00 0
6110011 1611 1 00 01 10
0000 2 2 0 00 06 6

The matrixS;, has the following eigenvalues:

1 1
V=vy=v3=—, and vy =v5 = —

8’ 16’
e 1111 1
A =diag (=, -, -, —,— ).
diag <8’ 8816’ 16)
And the corresponding eigenvectors are:
0 -1 100
1 -1 1 01
W;,=11 0 000
0 0 110
0 1 000
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We point out that the following problem might occur when trying to solve Eq. 4. Wkien
is even, the column corresponding to the last eigenvect® gives rise to a degenerate linear
system, since the eigenvaluelig3. Fortunately, the system can be solved manually, and in this
case the last column &f, is given by:

uf v, =(0,8,0,-8,0).

The remaining two blocks of the matrix are

0300 00 1 31000
0300 00 0 13100
110310 00 0 01300
Su=3l01 0 0 003 | ™M S2=g|3 401
0000 00 3 100 31
000 0 01 3 0001 3

C ValenceN =3

When the valence of the extraordinary point is equal to three, the analysis of Section 3 breaks
down since, in that case, the extended subdivision matrix has a non-trivial Jordan block. This
means that the eigenvectors do not form a basis and the subdivision matrix cannot be diagonalized.
Fortunately, this case can be dealt with quite easily since the matrices involved are only of size
9 x 9. Most of the computations reported in this appendix were computed using MpgptéEs
command. In this case the Jordan decomposition of the subdivision matrix is

A=VIV!
where
1 0 0 0 0 0 0 0 0
0 1/4 0 0 0 0 0 0 0
0 0 1/4 0 0 0 0 0 0
0 0 0 1/8 0 0 0 0 0
J=10 0 0 0 1/8 0 0 0 0 ,
0 0 0 0 0o 1/8 0 0 0
0 0 0 0 0 0 1/16 0 0
0 0 0 0 0 0 0 1/16 1
0 0 0 0 0 0 0 0 1/16

13



1 0 0 0 0 0O O 33
1 0 1 0 0 00 0 —22
1 -1 -1 0 0 00 0 —22
1 1. 0 0 0 00 0 —22
V=1 3 3 1 —-100 0 198
1 0 4 1 0 00 £ 473
1 -3 0 0 1 00 0 198
1 4 0 0 0 1 1 1% 438
1 0 -3 -1 1 10 0 198
and
2/5 1/5 1/5 1/5 0 0 0 0 0
0 —-1/3 —-1/3 2/3 0 0 0 0 0
0o 2/3 —-1/3 -1/3 0 0 0 0 0
-8 0 3 3 1 0 1 0 0
Vi=| -4 0 0 3 o 0 1 0 0
-8 3 3 0 1 0 0 0 1
= B L -2 0 -1 1 1 -1
%5 0 1% 15 15 15 "5 0 O
= - —1 -~ 0 0 0 0 0

Using these matrices the surface can now be evaluated as in the other cases. Only the evaluation
routine has to be modified to account for the additional Jordan block. The modification relies on
the fact that powers of the Jordan block have a simple analytical expression:

116 1 \" [ 1/16" n/16""
0o 1/16 ) — 0 /16" |-
With this in mind the last lines of routinévalSurf  should read:

I* Now evaluate the surface */
P = (0,0,0);
for ( i=0 ; I<KN+6 ; i++ ) {
P += pow(eigen[N].L[i],n-1) *
EvalBasis(eigen[N].Phi[i][k],v,w) * Cpli];
if ( i==N+4 && N==3 )
P += (n-1) * pow(eigen[N].L[i],n-2) *
EvalBasis(eigen[N].Phi[i][k],v,w) * Cp[i+1];
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Data structures for subdivision

In this section we briefly describe some considerations that we found useful when choosing appropri-
ate data structures for implementing subdivision surfaces. We will consider only primal subdivision
schemes, such as Loop, Catmull-Clark or Butterly.

Representing meshes. In all cases, we need to start with data structures representing the top-level
mesh. For subdivision schemes we typically assume that the top level mesh satisfies several requirements
that allow us to apply the subdivision rules everywhere. These requirements are

e no more than two triangles share an edge;

¢ all triangles sharing a vertex form an open or closed neighborhood of the vertex; in other words,
can be arranged in such order that two sequential triangles always share an edge.

A variety of representations were proposed in the past for general meshes of this type, sometimes
with some of the assumptions relaxed, sometimes with more assumptions added, such as orientability of
the surface represented by the mesh. These representations include winged edge, quad edge, half edge
end other data structures. The most common one is the winged edge. However, this data structure is
far from being the most space efficient and convenient for subdivision. First, most data that we need to
store in a mesh, is naturally associated with vertices and polygons, not edges. Edge-based data structures
are more appropriate in the context of edge-collapse-based simplification. For subdivision, it is more
natural to consider data structures with explicit representations for faces and vertices, not for edges. One
possible and relatively simple data structure for polygons is

struct Polygon {
vector<Vertex*> vertices;
vector<Polygon*> neighbors;
vector<short> neighborEdges;

For each polygon, we store an array of pointers to vertices, an array of adjacent polygons (neighbors)
across corresponding edge numbers; and an array of adjacent edge numbers in neighbors. In addition,
if we allow nonorientable surfaces, we need to keep track of the orientation of the neighbors, which

1



can be achieved by using signed edge numbers in the naigjhorEdges . To complete the mesh
representation, we add a data structure for vertices to the polygon data structure.

Let us compare this data structure to the winged edge. PUe¢ the number of polygons in the
meshV the number of vertices ariel the number of edges. The storage required for the polygon-based
data structure is approximately52 P - Vp 32-bit words, wher&/p is the average number of vertices per
polygon. Here we assuming that all polygons have fewer th&ed@yes, so only 2 bytes are required to
store the edge number. Note that we disregard the geometric and other information stored in vertices and
polygons, counting only the memory used to maintain the data structure.

To estimate the value of.2- P-Vp in terms ofV, we use the Euler formula. Recall that any mesh
satisfiesv — E + P = g, whereg is the genus, the number of “holes” in the surface. Assuming genus
small compared to the number of vertices, we get an approximate eqWvatiof + P = 0; we also
assume that the boundary vertices are a negligible fraction of the total number of vertices. Each polygon
on the average ha# vertices and the same number of edges. Each edge is shared by two polygons
which results inE =Vp-P/2. LetR, be the number of polygons per vertex. THers- R, -V /Vp, and
E =V R//2. This leads to

In addition, we know thaVp, the average number of vertices per polygon, is at least 3. It follows
from (1) thatR, < 6. Therefore, the total memory spent in the polygon data structurig 2/ < 15V.

For the winged edge data structure, for each edge we use 8 pointers (4 pointers to adjacent edges, 2
pointers to adjacent faces, and two pointers to vertices); given that the total number oEgdggesater
than 3/, the total memory consumption is greater thaW 2dignificantly worse than the polygon data
structure.

One of the commonly mentioned advantages of the winged edge data structure is its constant size. It
is unclear if this has any consequence in the context of C++: it is relatively easy to create structures with
variable size. However, having a variety of dynamically allocated data of different small sizes may have
a negative impact on performance. We observe that after the first subdivision step all polygons will be
either triangles or quadrilaterals for all schemes that we have considered, so most of the data items will
have fixed size and the memory allocation can be easily optimized.

Hierarchical meshes: arrays vs. trees. Once a mesh is subdivided, we need to represent all the
polygons generated by subdivision. The choice of representation depends on many factors. One of the
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important decisions to make is whether adaptive subdivision is necessary for a particular application or
not. For simplicity, lets assume that we have performed one subdivision step on an arbitrary polygonal
mesh, so we always start with a mesh consisting only of quads or triangles. If we assume that we
need only uniform subdivision, all vertices and polygons of each subdivided top-level quad or triangle
can be represented as a two-dimensional array. Thus, the complete data structure would consist of a
representation of a top level mesh, with each top level face containing a 2D array of vertex pointers.
The pointers on the border between two top-level neighbors point pairwise to the same vertices. The
advantage of this data structure is that it has practically no pointer overhead. The disadvantage is that
even though it is possible to do adaptive subdivision on this structure, a lot of space will be wasted.

If we do want adaptive subdivision and maintain efficient storage, the alternative is to use a tree
structure; each non-leaf polygon becomes a node in the tree, containing a pointer to a block of N children,
with N being 4 for non-top-level polygons (both for triangular and quadrilateral schemes). Similarly, the
number of vertices M is 3 or 4:

struct PolygonNode {
Vertex* v[M];
PolygonNode* ptr;

To compare the two approaches to organizing the hierarchies (arrays and trees), we need to compare
the representation overhead in these two cases. In the first case (arrays) all adjacency relations are
implicit, and there is no overhead. In the second case, there is overhead in the form of pointers to children
and vertices. For a given number of subdivision stefise total overhead can be easily estimated. We
will consider triangular meshes; the estimates will be similar for quadrilateral meshes. For the purposes
of the estimate we can assume that the genus is 0, so the number of tridngiesnumber of edges
E and the number of verticés in the initial mesh are related B§— E +V = 0. The total number of
triangles in a complete tre(4"1 — 1) /3. For the triangular mes¥h = 3, and (1) yielddR, = 6; thus,
the total number of triangles B= 2V, and the total number of edgesks= 3V.

For each leaf and non-leaf node we need 4 words (1 pointer to the block of children and three
pointers to vertices). The total cost of the structureAg#+ — 1) /3 = 8V (41 — 1) /3 words, which is
approximately 11V -4".

To estimate when a tree is spatially more efficient than an array, we determine how many nodes have
to be removed from the tree for the gain from the adaptivity to exceed the loss from the overhead. For
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this, we need a reasonable estimate of the size of the useful data stored in the structures — otherwise, the
array will always win.

The number of vertices inserted on subdivision stepapproximately 34'~1V. Assuming that for
each vertex we store all control points on all subdivision levels, and each control point takes 3 words, we
get the following estimate for the control point storage

V((N+1)+3n+3-4n—-1)+...4") =V (4" 1)

The total number of vertices - 4"; assuming that at each vertex we store the normal vector, the
limit position vector (3 words), color (3 words) and some extra information, such as subdivision tags (1
word), we get ¥4" more words. The total useful storage is approximately\M 14", the same as the
cost of the structure.

Thus for our example the tree introduces a 100% overhead, which implies that it has an advantage
over the array if at least half of the nodes are absent. Wether this will happen, depends on the criterion
for adaptation. If the criterion attempts to measure how well the surface approximates the geometry,
and if only 3 or 4 subdivision levels are used, we have observed that fewer than 50% of the nodes were
removed. However, if different criteria are used (e.g. distance to the camera) the situation is likely to
be radically different. If more subdivision levels are used it is likely that almost all nodes on the bottom
level are absent.
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arbitrary topology sting and across a contious range of scales

Abstract
. . . . and hardware resources.
We describe a multiresolution representation for meshes based on

subdivision, which is a natural extension of the existing patch-based
surface representations. Combining subdivision and the smooth-

ing algorithms of Taubin [26] allows us to construct a set of algo-
rithms for interactive multiresolution editing of complex hierarchi-
cal meshes of arbitrary topology. The simplicity of the underly-

ing algorithms for refinement and coarsification enables us to make

them local and adaptive, thereby considerably improving their effi-
ciency. We have built a scalable interactive multiresolution editing
system based on such algorithms.

1 Introduction

Applications such as special effects and animation require creation

and manipulation of complex geometric models of arbitrary topol-
ogy. Like real world geometry, these models often carry detail at
many scales (cf. Fig. 1). The model might be constructed from
scratch (ab initio design) in an interactive modeling environment or
be scanned-in either by hand or with automatic digitizinghods.

The latter is a common source of data particularly in the entertain-

ment industry. When using laser range scanners, for example, indi-

vidual models are often composed of high resolution meshes with
hundreds of thousands tallions of triangles.
Manipulating such fine meshes can be difficult, especially when

Figure 1: Before the Armadillo started working out he was flabby,
complete with a double chin. Now he exercises regularly. The orig-
inal is on the right (courtesy Venkat Krischnamurthy). The edited
version on the left illustrates large scale edits, such as his belly, and
smaller scale edits such as his double chin; all edits were performed
at about 5 frames per second on an Indigo R10000 Solid Impact.

For reasons of efficiency the algorithms should be highly adap-
tive and dynamically adjust to available resources. Our goal is to
have a single, simple, uniform representation with scalable algo-

they are to be edited or animated. Interactivity, which is crucial in (ithms. The system should be capable of deliveringtiple frames

these cases, is challenging to achieve. Even without accounting forper second update rates even on small workstations taking advan-
any computation on the mesh itself, available rendering resourcesiage of lower resolution representations.

alone, may not be able to cope with the sheer size of the data. Pos-
sible approaches include mesh optimization [15, 13] to reduce the jjag

size of the meshes.
Aside from considerations of economy, the choice of represen-
tation is also guided by the need for multiresolution editing se-

mantics. The representation of the mesh needs to provide con- e
trol at a large scale, so that one can change the mesh in a broad,

smooth manner, for example. Aitidnally designers will typi-

cally also want control over the minute features of the model (cf.
Fig. 1). Smoother approximations can be built through the use of
patches [14], though at the cost of loosing the high frequency de-
tails. Such detail can be reintroduced by combining patches with
displacement maps [17]. However, this is difficult to manage in the

*dzorin@gg.caltech.edu
tps@cs.caltech.edu
twim@bell-labs.com

In this paper we present a system which possesses these proper-

e Multiresolution control: Both broad and general handles, as
well as small knobs to tweak minute detail are available.

Speed/fidelity tradeoff: All algorithms dynamically adapt to
available resources to maintain interactivity.

¢ Simplicity/uniformity: A single primitive, triangular mesh, is

used to represent the surface across all levels of resolution.

Our system is inspired by a number of earlier approaches. We
mention multiresolution editing [11, 9, 12], arbitragpblogy sub-
division [6, 2, 19, 7, 28, 16], wavelet representations [21, 24, 8, 3],
and mesh simplification [13, 17]. Independently an approach simi-
lar to ours was developed by Pulli and Lounsbery [23].

It should be noted that our methods rely on the finest level mesh
having subdivision connectivity. This requires a remeshing step be-
fore external high resolution geometry can be imported into the ed-
itor. Eck et al. [8] have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method
that relies on a user's expertise was developed by Krishnamurthy
and Levoy [17].

1.1 Earlier Editing Approaches

H-splines  were presented in pioneering work on hierarchical

editing by Forsey and Bartels [11]. Briefly, H-splines are obtained
by adding finer resolution B-splines onto an existing coarser resolu-
tion B-spline patch relative to the coordinate frame induced by the



coarser patch. Repeating this process, one can build very compli- As more fine level detail is needed the proliferation of control
cated shapes which are entirely parameterized over the unit squarepoints and patches can quickly overwhelm both the user and the
Forsey and Bartels observed that the hierarchy induced coordinatemost powerful hardware. With detail at finer levels, patches become
frame for the offsets is essential to achieve correct editing seman-less suited and polygonal meshes are more appropriate.

tics. .

F-splines provide a uniform framework fr representing both the ¢ 9 BRI (0 IPRERE SUICAN SRR 80
coarse and fine level details. Note however, that as more detail Gjyen that most hardware rendering ultimately resolves to triangle
is added to such a model the internal control mesh data structuresg.4n_conversion even for patches, polygonal meshes are a very ba-
more and more resemble a fine polyhedral mesh. sic primitive. Because of sheer size, polygonal meshes are difficult

While their original implementation allowed only for regular 4, manipulate interactively. Mesh simplification algorithms [13]
topologies their approach could be extended to the gendtaigse 1 qyide one possible answer. However, we need a mesh simpli-

by using surface sp;llines or one of the spline derived general topol- ¢i-ation approach, that is hierarchical and gives us shape handles
ogy subdivision schemes [18]. However, these schemes have N0k, smooth changes over larger regions while maintaining high fre-
yet been made to work adaptively. quency details.

Forsey and Bartels' original work focused on the ab initio de-
sign setting. There the user's help is enlisted in defining what is
meant by different levels of resolution. The user decides where to
add detail and manipulates the corresponding controls. This way
the levels of the hierarchy are hand built by a human user and the
representation of the final object is a function of its editing history.

To edit an a priori given model it is crucial to have a general pro-
cedure to define coarser levels and compute details between levels.
We refer to this as thanalysisalgorithm. An H-spline analysis al-

Patches and fine polygonal meshes represent two ends of a spec-
trum. Patches efficiently describe large smooth sections of a surface
but cannot model fine detail very well. Polygonal meshes are good
at describing very fine detail accurately using dense meshes, but do
not provide coarser manipulation semantics.

Subdivisiorconnects and unifies these two extremes.

\
‘v

) . ; SIS
gorithm based on weighted least squares was introduced [10], but /‘(ﬁﬁ“
is too expensive to run interactively. Note that even in an ab initio fl?‘ﬂ}
design setting online analysis is needed, since after a long sequence %\

of editing steps the H-spline is likely to be overly refined and needs
to be consolidated.

Wavelets provide a framework in which to rigorously de- i 4' ‘f&‘

fine multiresolution approximations and fast analysis algorithms. f)‘y“ / A}“i\\

Finkelstein and Salesin [9], for example, used B-spline wavelets A@a‘wy“r Aﬁa’(ﬁ\}%‘y
; ] . o - . /) e

to describe multiresolution editing of curves. As in H-splines, pa- \«;‘gggw, /”%‘f;éj“'lﬂ

rameterization of details with respect to a coordinate frame induced
by the coarser level approximation is required to get correct edit-
ing semantics. Gortler and Cohen [12], pointed out that wavelet Figure 2: Subdivision describes a smooth surface as the limit of a
representations of detail tend to behave in undesirable ways duringsequence of refined polyhedra. The meshes show several levels of
editing and returned to a pure B-spline representation as used inan adaptive Loop surface generated by our system (dataset courtesy
H-splines. Hugues Hoppe, University of Washington).
Carrying these constructions over into the arbitrary topology sur-
face framework is not straightforward. In the work by Lounsbery et
al. [21] the connection between wavelets and subdivision was usedSubdivision  defines a smooth surface as the limit of a sequence
to define the different levels of resolution. The original construc- of successively refined polyhedral meshes (cf. Fig. 2). In the reg-
tions were limited to piecewise linear subdivision, but smoother ular patch based #ng, for example, this sequence can be defined
constructions are possible [24, 28]. through well known knot insertion algorithms [5]. Some subdi-
An approach to surface modeling based on variational methods vision methods generalize spline based knot insertion to irregular
was proposed by Welch and Witkin [27]. An attractive character- topology control meshes [2, 6, 19] while other subdivision schemes
istic of their method is flexibility in the choice of control points. are independent of splines and include a number of interpolating
However, they use a global optimization procedure to compute the schemes [7, 28, 16].

surface which is not suitable for interactive manipulation of com- Since subdivision provides a path from patches to meshes, it can
plex surfaces. serve as a good foundation for the unified infrastructure that we
Before we proceed to a more detailed discussion dingdwe seek. A single representation (hierarchical polyhedral meshes) sup-
first discuss different surface representations to motivate our choiceports the patch-type semantics of manipulatiow finest level de-
of synthesis (refinement) algorithm. tail polyhedral edits equally well. The main challenge is to make
the basic algorithms fast enough to escape the exponential time and
1.2 Surface Representations space growth of naive subdivision. This is the core of our contribu-
There are many possible choices for surface representations!tion. ) ) L .
Among the most popular are polynomial patches and polygons. We summarize the main features of subdivision important in our

context

¢ Topological Generality: Vertices in a triangular (resp. quadri-
lateral) mesh need not have valence 6 (resp. 4). Generated sur-
faces are smooth everywhere, and efficient algorithms exist for
computing normals and limit positions of points on the surface.

Patches are a powerful primitive for the construction of coarse
grain, smooth models using a small number of control parameters.
Combined with hardware support relatively fast implementations
are possible. However, when building complex models with many
patches the preservation of smoothness across patch boundaries can
be quite cumbersome and expensive. These difficulties are com- ¢ Multiresolution: becausethey are the limit of successive refine-
pounded in the arbitrary topologytiag when poynomial param- ment, subdivision surfaces supportitirasolution algorithms,
eterizations cease to exist everywhere. Surface splines [4, 20, 22] such as level-of-detail rendering, multiresolution editing, com-
provide one way to address the arbitrary topology challenge. pression, wavelets, and numerical multigrid.



e Simplicity: subdivision algorithms are simple: the finer mesh m
is built through insertion of new vertices followed Mgcal
smoothing.

¢ Uniformity of Representation: subdivision provides a single

"3 _ i
. A i VI T' 5(3)
representation of a surface at all resolution levels. Boundaries
and features such as creases can be resolved through modified
rules [14, 25], reducing the need for trim curves, for example.
i
s(1)

Graph with vertices M esh with points

- 5 1 2 - g
1.3 Our Contribution % T S §
Aside from our perspective, which unifies the earlier approaches, -.% 3 i1 i+1 g:
our major contribution—and the main challenge in this program— =] y*1 T+ s (6) s (3 S

is the design of highly adaptive and dynamic data structures and

algorithms, which allow the system to function across a range of y N s'+(15)
computational resources from PCs to workstations, delivering as , :

much interactive fidelity as possible with a given ygin render- 7 ) 5 )

ing performance. Our algorithms work for the class of 1-ring sub- i+1
division schemes (definition see below) and we demonstrate their s (2

performance for the concrete case of Loop's subdivision scheme.

The particulars of those algorithms will be given later, but Fig. 3 Figure 4: Left: the abstract graph. Vertices and triangles are mem-
already gives a preview of how the different algorithms make up bers of setd”* andT" respectively. Their index indicates the level
the editing system. In the next sections we first talk in more detail of refinement when they first appeared. Right: the mapping to the
about subdivision, smoothing, and hingsolution transforms. mesh and its subdivision in 3-space.

|
With each set’* we associate a map, i.e., for each vereand
H each level we have a 3D point*(v) € R’. The sets' contains
all points on level, s* = {s*(v) | v € V'}. Finally, asubdivision
; - schemes a linear operata$ which takes the points from leveto

—’ points on thdinerlevel: + 1: s'T! = S s*

Assuming that the subdivision converges, we can define a limit

Select group of vertices Create dependent surfaces as
at level i submesh o= lim S*s°
+ kE—oco ’
o(v) € R? denotes the point on the limit surface associated with
vertexv.

Local analysis L ocal synthesis In order to define our offsets with respectto a local frame we also

need tangent vectors and a normal. For the subdivision schemes
that we use, such vectors can be defined through the application of
linear operators) and R acting ons® so thatg’ (v) = (Qs*)(v)
. . ) ' andr’(v) = (Rs')(v) are linearly independent tangent vectors at
Figure 3: Thefrelat_lonshlp between various procedures as the usera(v). gl’o)geth(er wi)tgw gm orientatign the)‘/)define a Iogal orthonormal
moves a set of vertices. frame F' (v) = (n'(v),q' (v), " (v)). It is important to note that
in general it is not necessary to use precise normals and tangents
during editing; as long as the frame vectors are affinely related to
2 Subdivision Lhehpositions of vertices of the mesh, we can expect intuitive editing
ehavior.
We begin by defining subdivision and fixing our notation. There are
2 points of view that we must distinguish. On the one hand we are
dealing with an abstragiraphand perform topological operations
on it. On the other hand we havenzeshwhich is the geometric
object in 3-space. The mesh is the image of a map defined on the
graph: it associates point in 3D with everyvertexin the graph
(cf. Fig. 4). Atriangledenotes a face in the graph or the associated
polygon in 3-space.
Initially we have a trimgular graphT™® with verticesV°. By 1-ring at level i 1-ring at level i+1
recursivelyrefiningeach triangle into 4 subtriangles we can build
a sequence of finer triangulatio’$ with verticesV*, ¢ > 0
(cf. Fig. 4). The superscriptindicates thdevel of triangles and
vertices respectively. A triangle € T* is a triple of indices
t = {va, v, v} C V.

Figure 5: An even vertex has a 1-ring of neighbors at each level of
refinement (left/middle). Odd vertices—in the middle of edges—
have 1-rings around each of the vertices at either end of their edge

The vertex sets are nestedd$ C V' if j < 1. We define (right).
oddvertices on level asM* = V't \ V. V**! consists of two
disjoint sets:evenvertices {*) andoddvertices /). We define Next we discuss two common subdivision schemes, both of
thelevelof a vertexv as the smallestfor whichv € V*. The level which belong to the class df-ring schemes In these schemes

ofvist+ 1ifandonlyifv € M". points at levet + 1 depend only on 1-ring neighborhoods of points



atleveli. Letv € V' (v even) then the point ! (v) is a function Because of its computational simplicity we decided to use a version
of only thoses'(vx), v» € V*, which are immediate neighbors ~ of Taubin smoothing. As before let € V* have K neighbors
of v (cf. Fig. 5 lefymiddle). Ifm € M’ (m odd), it is the vertex ~ wvx € V'. Use the averagé; (v) = K~' 3. s'(vx), to define
inserted when splitting an edge of the graph; we call such vertices the discrete Laplaciafi(v) = gi(v) — Si(v), On this basis Taubin

middle verticedf edges. In this case the poiit! (m) is a func- gives a Gaussian-like smoother which does not exhibit shrinkage
tion of the 1-rings around the vertices at the ends of the edge (cf.
Fig. 5 right). H:=IT+upL)(I+XL).
’ 1 1 With subdivision and smoothing in place, we can describe the
1 ‘ transform needed to support ttiesolution editing. Rcall that
for multiresolution editing we want the difference betweeocas-
’ 1 3 3 sive levels expressed with respect to a frame induced by the coarser
level, i.e., the offsets are relative to the smoother level.
1 g With each vertex and each level > 0 we associate detail

1 1 vector,d'(v) € R®. The setl contains all detail vectors on lev&l
d' = {d'(v) | v € V'}. Asindicated in Fig. 7 the detail vectors

. L . ] ) are defined as
Figure 6: Stencils for Loop subdivision with unnormalized weights

for even and odd vertices. d'=(F) (s =S H=(F)Y'(I-SH)s",

) ) _ o i.e., the detail vectors at levétecord how much the points at level
Loop is a non-interpolating subdivision scheme based on a gen-; differ from the result of subdividing the points at levet 1. This
eralization of quartic triangular box splines [19]. For a given even difference is then represented with respect to the local frAfi@

vertexv € V', letvy € V' with1l < k < K beits K 1- obtain coordinate independence.

ring neighbors. The new poist*!(v) is defined ass'*! (v) = Since detail vectors are sampled on the fine level nié&stthis
(a(K) + K) ™ (a(K) s (v) + 34, s'(vx)) (cf. Fig. 6),a(K) = transformation yields an overrepresentation in the spirit of the Burt-
K(1—a(K))/a(K),anda(K) = 5/8—(3+2 cos(2r/K))? /64. Adelson Laplacian pyramid [1]. The only difference is that the
For odd e Weighis Shoun i =, © are used. Two nde- T oap). Theoretcaly i ould be possibe o subsample he detal
per;(dent tangent vectovs(p) andtz(v) are given byt,(v) = vectors and only record a detail per odd vertexd6f—'. This is

poy €827 (k 4 p)/K) s*(on). what happens in the wavelet transform. However, subsampling the

Features such as boundaries and cusps can be accommodatefbiails severely restricts the family of smoothing operators that can
through simple modifications of the stencil weights [14, 25, 29].  pe ysed.

Butterfly is an interpolating scheme, first proposed by Dyn et ’ * 1
al. [7] in the topologically regular $éng and ecently general- - 1 s
ized to arbitrary topologies [28]. Since it is interpolating we have ’ Smoothing ‘ ’ Subdivision ‘ v

s'(v) = o(v) for v € V' even. The exact expressions for odd S 4 /J\ d.gsil T d
vertices depend on the valen&eand the reader is referred to the I\ F) —

original paper for the exact values [28].
. ) ) Figure 7: Wiring diagram of the multiresolution transform.
For our implementation we have chosen the Loop scheme, since
more performance optimizations are possible in it. However, the
algorithms we discuss later work for any 1-ring scheme.
4  Algorithms and Implementation

3 Multiresolution Transforms Before we describe the algorithms in detail let us recall the overall

So far we only discussed subdivision, i.e., how to go from coarse to structure of the mesh editor (cf. Fig 3). The analysis stage builds
fine meshes. In this section we describe analysis which goes froma succession of coarser approximations to the surface, each with

fine to coarse. fewer control parameters. Details or offsets between successive
We first needsmoothingi.e., a linear operatio/ to build a levels are also computed. In general, the coarser approximations
smooth coarse mesh at level 1 from a fine mesh at level are not visible; only their control points are rendered. These con-
‘ ‘ trol points give rise to airtual surfacewith respect to which the

s =Hs" remaining details are given. Figure 8 shows wireframe representa-

tions of virtual surfaces corresponding to control points on levels 0,

Several options are available here: 1, and 2.

o Least squares:One could define analysis to be optimal in the When an edit level is selected, the surface is represented inter-

least squares sense, nally as an approximation at this level, plus the set of all finer level
details. The user can freely manipulate degrees of freedom at the

min ||Si - S Si—1||2. edit level, while the finer Ieve_I details remain gnchanged relative_

sit to the coarser level. Meanwhile, the system will use the synthesis

. . . algorithm to render the modified edit level with all the finer details
The solution may have unwanted undulations and is t00 €Xpen-,4qed in. In between edits, analysis enforces consistency on the
sive to compute interactively [10]. internal representation of coarser levels and details (cf. Fig. 9).

¢ Fairing: A coarse surface could be obtained as the solution to ~ The basic algorithm#\nalysis  and Synthesis  are very
a global variational problem. This is too expensive as well. An simple and we begin with their description.
alternative is presented by Taubin [26], who usdsaal non- Let: = 0 be the coarsest and= n the finest level withV
shrinking smoothing approach. vertices. For each vertexand all levels finer than the first level



thresholds. Three thresholds control this pruniag:for adaptive
analysisg s for adaptive synthesis, anrg: for adaptive rendering.

To make lazy evaluation fast enough several caches are maintained
explicitly and the order of computations is carefully staged to avoid
recomputation.

4.1 Adaptive Analysis

The generic version of analysis traverses entire levels of the hierar-
chy starting at some finest level. Recall that the purpose of analysis
is to compute coarser approximations and detail offsets. In many
regions of a mesh, for example, if it is flat, no significant details
will be found. Adaptive analysiavoids the storage cost associated
with detail vectors below some threshelgdby observing that small
detail vectors imply that the finer level almost coincides with the
subdivided coarser level. The storage savings are realized through
tree pruning

For this purpose we need an integer.finest :=
max;{||v.d[t]]| > ea}. Initially v.finest = n and the fol-
lowing precondition holds before callirignalysis(i)

e The surface is uniformly subdivided to leviel

Figure 9: Analysis propagates the changes on finer levels to coarser® Yoe V' v.sli] = s'(v),

levels, keeping the magnitude of details under control. Left: The o Yo € V' |i< j < v.finest : v.d[j] = d’(v).
initial mesh. Center: A simple edit on level 3. Right: The effect of Now Analysis(i) becomes:

the edit on level 2. A significant part of the change was absorbed
by higher level details.

Figure 8: Wireframe renderings of virtual surfaces representing the
first three levels of control points.
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Analysis( 1)
where the vertex appears, there are storage locationsg:] and
v.d[1], each with 3 floats. With this the total storage add3 03 *
(4N/3) floats. In generaly.s[i] holdss® (v) andv.d[:] holdsd® (v);
temporarily, these locations can be used to store other quantities.
The local frame is computed by callingF'(z).

Global analysis and synthesis are performed level wise:

Yo € V7! ¢ w.s[i — 1] := smooth (v, 1)
Yoe V' :
v.d[i] := v.s[i] — subd (v,7 — 1)
if wv.finest > or ||v.d[i]]| > ea then
v.dfi] = v.F(3)" * v.d[i]

else
v.finest ;= 1 — 1
Analysis Synthesis Prune( ¢ — 1)
for i=n downto 1 for i=11t n
Analysis( 1) Synthesis( 1) Triangles that do not contain details above the threshold are unre-
fined:
With the action at each level described by
Prune( 1)

Analysis( 1) vt € T : If all middle verticesm havem.finest = i — 1

and all children are leaves, delete children.

Yu € V’:_l : v.s[i — 1] := smooth (v, 1)
YoeV' :wudi] = v.F()" * (v.s[i] — subd (v, — 1))

This results in an adaptive mesh structure for the surface with

and v.d[i] = d'(v) forallv € V', i < v.finest. Note that the re-
sulting mesh is not restricted, i.e., two triangles that share a vertex
Synthesis( i) can differ in more than one level. Initial analysis has to be followed

by a synthesis pass which enforces restriction.
Yo € V' @ s.ofi] := v.F(i) * v.d[i] + subd (v,i — 1)

4.2 Adaptive Synthesis

The main purpose of the general synthesis algorithm is to rebuild

Analysis computes points on the coarser level1 using smooth- the finest level of a mesh from its hierarchical representation. Just
ing (smooth ), subdividess'™* (subd ), and computes the detail  as in the case of analysis we can get savings from noticing that in
vectorsd® (cf. Fig. 7). Synthesis reconstructs levddy subdividing flat regions, for example, little is gained from synthesis and one
level: — 1 and adding the details. might as well save the time and storage associated with synthe-

So far we have assumed that all levels are uniformly refined, i.e., sis. This is the basic idea behiadaptive synthesisvhich has two
all neighbors at all levels exist. Since time and storage costs grow main purposes. First, ensure the mesh is restricted on each level,
exponentially with the number of levels, this approachis unsuitable (cf. Fig. 10). Second, refine triangles and recompute points until
for an interactive implementation. In the next sections we explain the mesh has reached a certain measure of local flatness compared
how these basic algorithms can be made memory and time efficient.against the threshold;. ‘

Adaptiveand local versions of these generic algorithms (cf. The algorithm recomputes the point§(v) starting from the
Fig. 3 for an overview of their use) are the key to these savings. coarsest level. Not all neighbors needed in the subdivision stencil
The underlying idea is to use lazy evaluation and pruning based onof a given point necessarily exist. Consequently adaptive synthesis




Figure 10: A restricted mesh: the center triangle i€ nand its
vertices inV*. To subdivide it we need the 1-rings indicated by the

circular arrows. If these are present the graph is restricted and we

can compute'*! for all vertices and middle vertices of the center
triangle.

lazily creates all triangles needed for subdivision by temporarily re-

Refine (¢, ¢, dir)

if t.leaf then Create children fot
Vo €t :if wv.depth <i+1 then
GetRing (v, 1)
Update (v,1)
Ym € N(v,i+1,1) :
Update (m, 1)
if m.finest > 14 1 then
forced := true
if dir and Flat (¢) <es and not forced then
Delete children of
else
Vit € current : t.restrict := true

Update (v, 7)
v.s[i + 1] := subd (v, 1)
v.depth =1+ 1
if wv.finest > 1+ 1 then
vsfi+ 1] += v.F(i+ 1) xv.d[i + 1]

The conditiorw.depth = ¢ + 1 indicates whether an earlier call to

fining their parents, t_hen computes subdivision, and finally d_eletes Refine already recomputed+1(v)_ If not, call GetRing (U, Z)
the newly created triangles unless they are needed to satisfy theandupdate (v, ) to do so. In case a detail vector livesvait level

restriction criterion. The following premndition holds before en-
tering Adaptive Synthesis

e VteT7|0< 5< 1 tisrestricted
o Vo e V|0 < j<wv.depth :v.s[j] = (v)

wherev. depth := max;{s'(v)has been recomputed

AdaptiveSynthesis

Yo € VO : v.depth := 0
for =0t n—1
temptri := {}
VieT" :
current = {}
Refine (t,1,true )
YVt € temptri : if not
Delete children ot

t.restrict then

The list temptri serves as a cache holding triangles from levels
7 < t which are temporarily refined. A triangle is appended to the
listif it was refined to compute a value at a vertex. After processing
level ¢ these triangles are unrefined unless theiestrict flag is

set, indicating that a temporarily created triangle was later found
to be needed permanently to ensure restriction. Since triangles are

appended tdemptri, parents precede children. Deallocating the
list tail first guarantees that all unnecessary triangles are erased.

The functionRefine (¢, :, dir) (see below) creates children of
t € T* and computes the values’® (v) for the vertices and mid-
dle vertices of. The results are stored ins[: + 1]. The boolean
argumentdir indicates whether the call was made directly or recur-
sively.

i (v.finest > ¢ 4 1) add it in. Next compute‘t! (m) for mid-
dle vertices on level 4+ 1 aroundv (m € N(v,¢+ 1,1), where
N(v,1,1) is thel-ring neighborhood of vertex at level:). If m
has to be calculated, compuwigbd (2, ) and add in the detail if it
exists and record this factin the flgced which will prevent unre-
finement later. At this point, al*** have been recomputed for the
vertices and middle vertices of Unrefinet and delete its children

if Refine was called directly, the triangle is sufficiently flat, and
none of the middle vertices contain details (ifesced = false ).
The list current functions as a cache holding triangles from level
¢ — 1 which are temporarily refined to build a 1-ring around the
vertices oft. If after processing all vertices and middle vertices of
¢ it is decided that will remain refined, none of the coarser-level
triangles fromcurrent can be unrefined without violating restric-
tion. Thust.restrict is set for all of them. The functioRlat (t)
measures how close to planar the corners and edge middle vertices
of t are.

Finally, GetRing (v, 7) ensures that a complete ring of triangles
on level: adjacentto the vertex exists. Because triangles on level
¢ are restricted triangles all triangles on levet 1 that containw
exist (precontion). At least one of them is refined, since other-
wise there would be no reason to c@letRing (v, ). All other
triangles could be leaves or temporarily refined. Any triangle that
was already temporarily refined may become permanently refined
to enforce restriction. Record such candidates inctheent cache
for fast access later.

GetRing (v, 7)

Vie T 'withv €t :
if t.leaf then
Refine (¢,¢— 1,false ); temptri.append(t)
t.restrict .= false ;t.temp := true
if t.temp then
current. append(t)




4.3 Local Synthesis This could be implemented by running over thleand each time
Even though the above algorithms are adaptive, theytineis ev- computing the above sum. Instead we use the dual implementation,
erywhere. During an edit, however, not all of the surface changes. iterate over alb, accumulating<=) the right amount ta*(v’) for

The most significant economy can be gained from performing anal- v’ € R*~'(v). In case of a 2-ring Taubin smoother the coefficients

ysis and synthesis only over submeshes which require it. are given by
Assume the user edits levebnd modifies the points'(v) for
v € V* C V' This invalidates coarser level valugsandd® for c(v,0) = (T=p)(1=A)+pr/6
certain subsetg™ c V*,: < [, andfinerlevel points’ for subsets c(v,o) = pA/6K
V* C V' for: > I. Finer level detail vectorg' for i > / remain e(mve) = (1= A+ (1= N+ pr/3)/K
correct by defiition. Recomputing the coarser levels is done by ;
c(m,vp) = pA/3K,

local incremental analysigescribed in Section 4.4, recomputing

the finer level is done bipcal synthesislescribed in this section.
The setof vertice§™** which are affected depends on the support

of the subdivision scheme. If the support fits intoraning around

the computed vertex, then all modified vertices on levgl1 can

be found recursively as

where for each(v, v'), K is the outdegree of .

The algorithm first copies the old poings(v) for v € V** and
1 < [ into the storage location for the detail. If then propagates
the incremental changes of the modified points from lévelthe
coarser levels and adds them to the old points (saved in the detail
locations) to find the new points. Then it recomputes the detalil

*i41 -
Vi = U N(v,i+1,m). vectors that depend on the modified points.

vEV™! We assume that before the edit, the old poil(s) for v ¢
We assume that: = 2 (Loop-like schemes) om = 3 (Butterfly V*_l were saved in the detail locations. The algorithm starts out by
type schemes). We define thebtriangulatioril ™ to be the subset ~ building V**~" and saving the points' ™! (v) for v € V*'~! in_
of triangles of7* with vertices iV **. the detail locations. Then the changes resulting from the edit are
LocalSynthesis is only slightty modified from propagated to level — 1. Flnally S s'~! is computed and used to
AdaptiveSynthesis ~ : iteration starts at level and iter- update the detail vectors on level

ates only over the submegH:.

. LocalAnalysis( 7)
4.4 Local Incremental Analysis

After an edit on level local incremental analysiwill recompute Yo eV W' € R (v) :
s'(v) andd' (v) locally for coarser level vertices & ) which are Vet u= {v'}
affected by the edit. As in the previous section, we assume that v'.dli — 1] = v'.s[i — 1]
the user edited a set of verticeon levell and callV’** the set of Yo e V* Vo' € RHv)
vertices affected on level For a given vertex € V** we define v'.s[i — 1] += c(v,v") * (v.s[i] — v.d[z])
Yo e Vel
v, v.d[i] = v.F(3)" * (v.s[i] — subd (v, — 1))
Ym € N(v,1,1) :
m.d[i] = m.F(2)" * (m.s[i] —subd (m,s — 1))
Ve2 Ve:L

Note that the odd points are actually computed twice. For the Loop

v scheme this is less expensive than trying to compute a predicate to
avoid this. For Butterfly type schemes this is not true and one can
avoid double computation by imposing an ordering on the triangles.
The top level code is straightforward:

Figure 11: Sets of even vertices affected through smoothing by ei-

ther an even or oddm vertex. -
LocalAnalysis
R'™'(v) C V'~ to be the set of vertices on leviel- 1 affected Vo e VM udll] i= v.s[l]
by v through the smoothing operatéf. The setd”** can now be for ::=1 downto O
defined recursively starting from levek= [ to: = 0: LocalAnalysis( 7)
V*i—l _ U Rz—l(v)
vevHi It is difficult to make incremental local analysis adaptive, as it is

, formulated purely in terms of vertices. It is, however, possible to
The setR*~' (v) depends on the size of the smoothing stencil and adaptively clean up the triangles affected by the edit and (un)refine
whetherv is even or odd (cf. Fig. 11). If the smoothing filter them if needed.
is 1-ring, e.g., Gaussian, theR~'(v) = {v} if v is even and
R (m) = {ve1,ve2} if m is odd. If the smoothing filter is 2- 4.5 Adaptive Rendering

ring, e.g., Taubin, the®'~'(v) = {v} U{vx | 1 < k < K} The adaptive renderinglgorithm decides which triangles will be
if v is even and%i‘l(m) = {ve1,ve2,vp1,vp2} if vis odd. Be- drawn depending on the rendering performance available and level
cause of restriction, these vertices always exist. +Fer V* and of detail needed.
o e Bt (v) we letc(v, v') be the coefficient in the analysis sten- The algorithm uses a flagdraw which is initialized tofalse
cil. Thus but set totrue as soon as the area corresponding te drawn.
‘ ‘ This can happen either whetitself gets drawn, or when a set of
(HsH(v') = Z c(v,v")s' (v). its descendents, which coveris drawn. The top level algorithm

ool €RI-1(v) loops through the triangles starting from the lewet 1. A triangle



is always responsible for drawing its children, never itself, unless it are never copied, and a boundary is needed to delineate the actual

is a coarsest-level triangle. submesh.
The algorithms we have described above make heavy use of
. container classes. Efficient support for sets is essential for a fast
AdaptiveRender implementation and we have used the C++ Standard Template Li-
for i=n—1 downto O brary. The mesh editor was implemented using Openinventor and
Vee Tt . ifnot  t.leaf then OpenGL and currently runs on both SGI and Intel PentiumPro
Render (t) workstations.
Yt T° : if not t.draw then
displaylistappend(t)

T-vertex

\’}Y/

Figure 12: Adaptive rendering: On the left 6 triangles from leyel
one has a covered child from level 1, and one has a T-vertex.
On the right the result from applyirigender to all six.
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TheRender (¢) routine decides whether the childrert diave to be ﬁ“lﬁl!‘@l!“g‘msg\n‘\“l\\m\

drawn or not (cf. Fig.12). It uses a functiedist (m) which mea- N mggm

\ \
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sures the distance between the point corresponding to the edge's ﬂ;‘%%%%igﬁ%ﬁ%&%ﬁmﬁm R
middle vertexm, and the edge itself. In the when case any of the ',“\“‘%“l‘\ﬁﬁﬂgswﬂgﬁﬁﬁm/ ‘;‘(,EQVQA‘WMVI
children oft are already drawn or any of its middle vertices are far %Q\K@Eﬁﬁ%ﬁd\w W}A\&WM
enough from the plane of the triangle, the routine will draw the rest ““;‘;’V\W\Qﬁﬁsﬁﬁi}gﬂi&%’ N4
of the children and set the draw flag for all their vertices antt QR Ny
also might be necessary to draw a triangle if some of its middle SRR

vertices are drawn because the triangle on the other side decided
to draw its children. To avoid cracks, the routioat (¢) will cut

¢t into 2, 3, or 4, triangles depending on how many middle vertices
are drawn.
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Render (¢)
Ifor (gffetfmlig [\fé?tvsxw _| ggi?st (m) > ep) then Figure 13: On the left are two meshes which are uniformly sub-
Ye € t.child : divided and consist of 11k (upper) and 9k (lower) triangles. On
if not c.draw then the right another pair of meshes mesh with e_lpproxmately the same
displaylistappend(c) numbers of triangles. Upper and lower pairs of meshes are gen-
Yo € e v.draw = true erated from the same original data but the right meshes were op-
t.draw = true timized through suitable choice ef. See the color plates for a
else if 3m e t.mid vertex | m.draw = true comparison between the two under shading.

vt' € cut (t) : displaylistappend(t")
t.draw := true

5 Results

In this section we show some example images to demonstrate vari-
ous features of our system and give performance measures.
Figure 13 shows two triangle mesh approximations of the Ar-
4.6 Data Structures and Code g g PP

madillo head and leg. Approximately the same number of triangles
The main data structure in our implementation is a forest of trian- are used for both adaptive and uniform meshes. The meshes on the
gular quadtrees. Neighborhood relations within a single quadtree left were rendered uniformly, the meshes on the right were rendered
can be resolved in the standard way by ascending the tree to theadaptively. (See also color plate 15.)
least common parent when attempting to find the neighbor across a Locally changing threshold parameters can be used to resolve an
given edge. Neighbor relations between adjacent trees are resolvedrea of interest particularly well, while leaving the rest of the mesh
explicitly at the level of a collection of roots, i.e., triangles of a at a coarse level. An example of this “lens” effect is demonstrated
coarsest level graph. This structure also maintains an explicit rep-in Figure 14 around the right eye of the Mannequin head. (See also
resentation of the boundary (if any). Submeshesrooted at any levelcolor plate 16.)
can be created on the fly by assembling a new graph with some set We have measured the performance of our code on two plat-
of triangles as roots of their child quadtrees. It is here that the ex- forms: an Indigo R10000@175MHz with Solid Impact graphics,
plicit representation of the boundary comes in, since the actual treesand a PentiumPro@200MHz with an Intergraph Intense 3D board.




We used the Armadillo head as a test case. It has approximatelyAcknowledgments
172000 triangles on 6 levels of subdivision. Display list creation
took 2 seconds on the SGI and 3 seconds on the PC for the full
model. We adjustedr so that both machines rendered models at
5 frames per second. In the case of the SGI approximately 113,00
triangles were rendered at that rate. On the PC we achieved 5
frames per second when the rendering threshold had been raise%
enough so that an approximation consisting of 35000 polygons was
used.

The other important performance number is the time it takes to
recompute and re-render the region of the mesh which is changing
as the user moves a set of control points. This submesh is rendereReferences
in immediate mode, while the rest of the surface continues to be ; ;
rendered as a display list. Grabbing a submesh of 20-30 faces (a [ Eg;};a%tfrﬁggg écIJDdEeILEEII\:l 'Ilgralrjs I?grﬁgﬁﬂ Zﬁa(ngg)s a
typical case) at level 0 added 250 mS of time per redraw, at level 1 532-540 ) ' ' '
it added 110 mS and at level 2 it added 30 mS in case of the SGI. 2] ’
The corresponding timings for the PC were 500 mS, 200 mS and
60 mS respectively.
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Figure 15: Shaded rendering (OpenGL) of the meshes in Figure 13.
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Figure 16: Shaded rendering (OpenGL) of the meshes in Figure 14.
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Interpolatory Subdivison for Quad-Meshes

A simple interpolatory subdivision scheme for quadrilateral nets are either non-interpolatory or defined tiiangular nets which is
with arbitrary topology is presented which generate’s shirfaces not appropriate for some engineering applications.
in the limit. The scheme satisfies important requirements for prac-  The scheme which we present here istationary refinement
tical applications in computer graphics and engineering. These re- schemg9], [3], i.e., the rules to compute the positions of the new
quirements include the necessity to generate smooth surfaces withpoints use simple affine combinations of points from the unrefined
local creases and cusps. The scheme can be applied to open netsiet. The termstationaryimplies that these rules are the same on
in which case it generates boundary curves that allow’gdin of every refinement Ie_vel. They are den\(ed froma mo_dlflcatlon of the
several subdivision patches. Due to the local support of the scheme,Well-known four-point scheme [6]. This scheme refines polgons by
adaptive refinement strategies can be applied. We present a simpleS L (pi) = (pj) with
device to preserve the consistency of such adaptively refined nets. oy = pi

2 = Pi

The original paper has been published in: , _ 8+w( . )_2( D) (11)
L Kobbelt Poiy1 = 16 Pi +Pi+1 16 Pi-1+Pit2
Interpolatory Subdivision on Open Quadri-
lateral Nets with Arbitrary Topology

Computer Graphics Forum 15 (1996), Eu-

rographics '96 issue, pp. 409-420

where 0< w < 2(v/5- 1) is sufficient to ensure convergence to a

smooth limiting curve [8]. The standard valueuis= 1 for which

the scheme has cubic precision. In order to minimize the number of

special cases, we restrict ourselves to the refinement of quadrilateral

nets. The faces are split as shown in Fig. 10 and hence, to complete

3.1 Introduction the definition of the operatd, we need rules for new points corre-
o ) ) sponding to edges and/or faces of the unrefined net. To generalize

The problem we address in this paper is the generation of smooththe algorithm for interpolating arbitrary nets, a precomputing step

interpolating surfaces of arbitrary topological type in the context of s needed (cf. Sect. 3.2).

practical applications. Such applications range from the design of

free-form surfaces and scattered data interpolation to high quality

rendering and mesh generation, e.g., in finite element analysis. The

standard set-up for this problem is usually given in a form equiva-

lent to the following:

A net N= (V,F) representing the input is to be mapped tea
fined net N= (V',F’) which is required to be a sufficiently close
approximation of a smooth surface. In this notation the getsd
V' contain thedata pointsp;, p; € R3 of the input or output respec-
tively. The sets andF’ represent théopological informationof
the nets. The elements BfandF’ are finite sequences of points
S CV ors, C V' each of which enumerates the corners of one not
necessarily plandaceof a net.

If all elementss, € F have length four thel is called aquadri- Figure 10: The refinement operator splits one quadrilateral face into
lateral net To achieve interpolation of the given data,c V' is four. The new vertices can be associated with the edges and faces
required. Due to the geometric background of the problem we as- of the unrefined net. All new vertices have valency four.
sumeN to befeasible i.e., at each poinp; there exists a plang
such that the projection of the faces meetingjadnto T, is injec- The major advantages that this scheme offers, are that it has the
tive. A net isclosedif every edge is part of exactly two faces. In  interpolation propertyndworks on quadrilateral nets. This seems
opennets, boundary edges occur which belong to one face only.  to be most appropriate for engineering applications (compared to

There are two major ‘schools’ for computihg from a givenN. non-interpolatory schemes or triangular nets), e.g., in finite element
The first or classic way of doing this is to explicitely find a collec-  analysis since quadrilateral (bilinear) elements are less stiff than tri-
tion of local (piecewise polynomial) parametrizatiopatche$ cor- angular (linear) elements [19]. The scheme provides the maximum

responding to the faces bf. If these patches smoothly join at com-  flexibility since it can be applied topennets witharbitrary topol-

mon boundaries they form an overall smooth patch complex. The ogy. It produces smooth surfaces and yields the possibility to gener-
netN' is then obtained by sampling each patch on a sufficiently fine ate local creases and cusps. Since the support of the scheme is local,
grid. The most important step in this approach is to find smoothly adaptive refinement strategies can be applied. We present a tech-
joining patches which represent a surface of arbitrary topology. A nique to keep adaptively refined n&@8-consistent (cf. Sect. 3.6)

lot of work has been done in this field, e.g., [16], [15], [17] ... and shortly describe an appropriate data structure for the implemen-
Another way to generathl’ is to define arefinement operator  tation of the algorithm.

S which directly maps nets to nets without constructing an explicit
parametrization of a surface. Such an operator performs both, a ) ) .
topological refinement of the net by splitting the faces andea 3.2 Precomputing: Conversion to Quadrilateral
ometricrefinement by determining the position of the new points Nets

in order to reduce the angles between adjacent faoasdthing.

By iteratively applyingS one produces a sequence of ntsvith

No =N andNi11 = SN;. If § has certain properties then the se-

; -
qL’Je_:ncelS( N converges to a smooth limiting surface and we can set 1,5’ cjit operation divides everysided face into quadrilaterals
N’ := S¥N for_some sufficiently largé. Algorithms of this kind and needs the position of newly computiade-pointsand edge-

are proposed in [2], [4], [14], [7], [10], and [11]. All these schemes  intsto be well-defined. The vertices &f remain unchanged.

It is a fairly simple task to convert a given arbitrary étinto a
quadrilateral neN. One straightforward solution is to apply one
single Catmull-Clark-typesplit C [2] to every face (cf. Fig. 11).



The number of faces in the modified Métequals the sum of the
lengths of all sequenceg € F.

The number of faces in the quadrilateralized Netan be re-
duced by half if the neN is closed, by not applyindc but
rather its (topological) square roefC, i.e., a refinement operator
whose double application is equivalent to one applicatio6 ¢¢f.

Fig. 11). For this split, only neviace-pointshave to be computed.
For open nets, the/C-split modifies the boundary polygon in a
non-intuitive way. Hence, one would have to handle several special
cases with boundary triangles if one is interested in a well-behaved
boundary curve of the resulting surface.

3.3 Subdivision Rules for Closed Nets with Arbi-
trary Topology

The topological structure of any quadrilateral net after several ap-
plications of a uniform refinement operator consists of large regu-
lar regions with isolated singularities which correspond to the non-
regular vertices of the initial net (cf. Fig. 12). Bgpological reg-
ularity we mean a tensor product structure with four faces meeting
at every vertex. The natural way to define refinement operators for
quadrilateral nets is therefore to modify a tensor product scheme
such that special rules for the vicinity of non-regular vertices are
found. In this paper we will use the interpolatory four-point scheme
[6] in its tensor product version as the basis for the modification.

7
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T

Figure 12: Isolated singularities in the refined net.

Consider a portion of a regular quadrilateral net with vertices
pi,j- The vertices can be indexed locally such that each face is rep-
resented by a sequensg = {pi,j,Pi+1,j,Pi+1,j+1,Pij+1}. The
points pi”j of the refined net can be classified into three disjunct

groups. The/ertex-pointsp’Zi,zj .= pj,j are fixed due to the interpo-
lation requirement. Thedge-pointy, ; ,; andp; 54 are com-
puted by applying the four-point rule (11) in the corresponding grid
direction, e.g.,

8+w W

Poit12) = 16 (PiiTPi+Lj) = 75 (Pi-1j +Pi2j).  (12)
Finally, the face-points p’2i+1’2j+l are computed by apply-
ing the four-point rule to either four consecutive edge-points
Poif12j-21 -+ Paiy12j14 ON OPS_2i 15+, P2ita2j42- ThE TeE-
sulting weight coefficient masks for these rules are shown in
Fig. 13. The symmetry of théacemask proves the equivalence
of both alternatives to compute the face-points. From the differen-
tiability of the limiting curves generated by the four-point scheme,
the smoothness of the limiting surfaces generated by infinitely re-
fining a regular quadrilateral net, follows immediately. This is a
simple tensor product argument.

For the refinement of irregular quadrilateral nets, i.e., nets which

Edge-point Face-Point:

—CE——0

Figure 13: Subdivision masks for regular regions witk= f%,
B=8Lando=0a2 p=ap,v=p>

for computing the edge-points. However, once all the edge-points
are known, there always are exactly two possibilities to choose four
consecutive edge-points when computing a certain face-point since
the net is quadrilateral. It is an important property of tensor product
schemes on regular nets that both possibilities lead to the same re-
sult (commuting univariant refinement operators). In order to mod-
ify the tensor product scheme as little as possible while generalizing
it to be applicable for nets with arbitrary topology, we want to con-
serve this property. Hence, we will propose a subdivision scheme
which only need®neadditional rule: the one for computing edge-
points corresponding to edges adjacent to a non-regular vertex. All
other edge-points and all face-points are computed by the applica-
tion of the original four-point scheme and the additional rule will be
such that both possibilities for the face-points yield the same result.
We use the notation of Fig. 14 for points in the neighborhood of
a singular vertex. The index is taken to benodulo nwheren is
the number of edges meetingmtApplying the original four-point
rule wherever possible leaves only the poirtsandy; undefined.
If we require that both possible ways to computéy applying the
standard four-point rule to succeeding edge-points lead to the same
result, we get a dependence relatig; to x;

8

(hi _hi+l)+ 8(4+W)

w
8

Xip1 = Xi + (Ki—2 —Kiy2)+

(ligz —li—1) + 4%\, (ligz —1i),

which can be considered as compatibility condition. In the regular
case, this condition is satisfied for any tensor product rule. The
compatibility uniquely defines the cyclic differencés = xj11 —

Xj which sum to zerotélescoping sumisHence, there always exists

a solution and even one degree of freedom is left for the definition
of thex;.

ki
Ii+1

+1
i1
ki+2

Figure 14: Notation for vertices around a singular veRex

X

X;

include some vertices where other than four faces meet, a consistent

indexing which allows the application of the above rules is impos-
sible. If other than four edges meet at one vertex, it is not clear how
to choose the four points to which one can apply the above rule

The pointsx; will be computed by rotated versions of the same
subdivision mask. Thus, the vicinity @f will become more and
more symmetric while refinement proceeds. Hence, the distance



N CN vCN

Figure 11: Transformation of an arbitrary détinto a quadrilateral ne\l by one Catmull-Clark-spli€ (middle) or by its square root (right,
for closed nets).

betweenp and the center of gravity of the will be a good mea- applied. In the regular regions of the net (which enlarge during re-
sure for the roughness of the net npaaind the rate by which this  finement), the smoothness of the limiting surface immediately fol-
distance tends to zero can be understood as the ‘smoothing rate’lows from the smoothness of the curves generated by the univariate

The center of gravity in the regulan & 4) case is: four-point scheme. Hence to complete the convergence analysis,
it is sufficient to look at the vicinities of the finitely many isolated
1"l 44w 1t ownt singular vertices (cf. Fig. 12).
n iZ)Xi =g P+ iZ)“ ~8n izo hi. (13) Letpo,. .., Pk be the points from a fixed neighborhood of the sin-

gular vertexpg. The size of the considered neighborhood depends
on the support of the underlying tensor product scheme and con-

In the non-regular case, we have ; UL . .
tains 5 ‘rings’ of faces aroungdg in our case. The collection of

1 =1 1 =2 all rules to compute the new poingg, ..., p; of the same ‘scaled’
n ZOXi = Xj+ N Zo(n— 1-0) AXjyj, (5-layer-) neighborhood gip = pj, in the refined net can be repre-
i= i= (14) sented by a block-circulant matri such thatp; )i = A (pj);. This

matrix is called theefinement matrixAfter [1] and [18] the conver-
gence analysis can be reduced to the analysis of the eigenstructure
of A. For the limiting surface to have a unique tangent plargat

je{0,...,n—1}.

Combining common terms in the telescoping sum and equating the

right hand sides of (13) and (14) leads to it is sufficient that the leading eigenvaluesfokatisfy
4 4 M=11>A=As [A>Ai,Vi>4
Xj:f\ghﬁr%”ﬁr%vpf%w, (15) I

Table 2 shows theses eigenvalues of the refinement nfafdaxver-
where we define theirtual point tices withn adjacent edges in the standard case 1. The compu-
tation of the spectrum can be done by exploiting the block-circulant

4n-1 structure ofA. We omit the details here, because the dimension of
V= Z}Ii —(ljea+lj+1j41)+ Ais kx kwith k= 30n+1.
=
W . ke [(n][A [ A | A3 | Ai>a < |
27w Kimz Tkt ki tkje) (16) 3] L0 | 0.42633] 0.42633] 0.25
41/ 10| 05 0.5 0.25
4w n’lk_ 51 1.0 | 0.53794| 0.53794 | 0.36193
(4+w)n i; I 6 [| 1.0 | 0.55968| 0.55968 | 0.42633
- 7 1] 1.0 | 0.5732 | 0.5732 | 0.46972
Hence, thex; can be computed by applying (11) to the four points 8 || 1.0 | 0.58213| 0.58213| 0.5
hj,1j, pandvj. The formula also holds in the case- 4 wherev; = 9 ] 10 ] 0.58834| 0.58834| 0.52180

lj+2. Such a virtual poinv; is defined for every edge and both of

its endpoints. Hence to refine an edge which connects two singular Table 2: Leading eigenvalues of the subdivision matrix
verticesp; andpy, we first compute the two virtual pointg and

vz and then apply (11) te, p1, p2 andvs. If all edge-points¢; are

known, the refinement operation can be completed by computing |, aqgition to a uniquely defined tangent plane we also have to
the face-pointy|. These are well defined since the auxillary edge- 56 ocal injectivity in order to guarantee the regularity of the sur-
point rule is constructed such that both possible ways lead to the tyce This can be checked by looking at the natural parametrization

same result. of the surface apg which is spanned by the eigenvectorsfo€or-
responding to the subdominant eigenvaldgesandA3. The injec-
3.4 Convergence Analysis tivity of this parametrization is a sufficient condition. The details

o ) o . can be found in [18]. Fig. 15 shows meshes of ‘isolines’ of these
The subdivision scheme proposed in the last section is a station-characteristic maps which are well-behaved.

ary scheme and thus the convergence criteria of [1] and [18] can be
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Figure 15: Sketch of the characteristic maps in the neighborhood of singular vertices-wal®b, ..., 9.

3.5 Boundary Curves pn., PA is defined analogously.

it bdivisi h . diob dqi ical mod This modification of the original scheme does not affect the con-
a subdivision scheme Is supposed to be used in practical mod-ergance to a continuously differentiable limit, because the esti-

eling or reconstruction applications, it must provide features that ates for the contraction rate of the maximum second forward dif-
allow the definition of creases and cusps [12]. These requirementSgarence ysed in the convergence proof of [6] remain valid. This
can be satisfied if the scheme includes special rules for the refine-,o ophvious since the extrapolation only adds the zero component
ment olfoper;]neés WhéCh ylelcli weII-befhr?ved boundary curves thath A2p™; to the sequence of second order forward differences. The
interpolate the boundary polygons of the given net. Having suc = o : :
S main convergence criterion of [13] also applies.

gi\igroimseljrgggs‘?a?oﬁanabgom?ndoeriegog?] d’g'rn'nc%rtvv;oai%p?{gtes srléb It remains to define refinement rules for inner edges of the net

| 1ong . L y ISP which have one endpoint on the boundary and for faces including
sult from a topological hole in the initial net which geometrically at least one boundary vertex. To obtain these rules we use the same

locationp; = p (cf. Fig. 16). When computing the egde- and face-points refining the original net
that their limiting boundary curves only depend on these common qjated.
four-point rule to boundary polygons. Thus, the boundary curve L

Sssary pri=2p—— ‘ZQL
only generatsmoothboundary curves but rather to allgiecewise =
cut the boundary polygon into several segments by marking some For every boundary edgeq we add the extrapolated fact =
polygon. face can be proved by the sufficient criteria of [1] and [18]. This
(11) requires a well-defined 2-neighborhood. Therefore, we have be rewritten as a set of stationary refinement rules which define
po'PT. We define arextrapolatedpoint p™, := 2pg' — pf". The no longer block-circulant,

shrinks to a single point, i.e., a fase= {p1,...,pn} Of a given net P : A )
: oo . o euristic as in the univariate case. We extrapolate the unrefined
is deleted to generate a hole and its vertices are moved to the sam et over every boundary edge to get an additional layer of faces.
0 - . P - .
. I-Iro allow aC 'Jho'n between two subdivision lpatche_s_whose IN" by the rules from Sect. 3.3, these additional points can be used.
tially given nets have a common boundary polygon, it is necessary 15 complete the refinement step, the extrapolated faces are finally
po;]nts, i.e., the%’. musth_nokt) de_penld on ?ny inLerior' poinlt. Forour ) atq, ..., qr be theinner points of the net which are connected
scheme, we achieve this by simply applying the original univariate 1 yne pnoundary poinp then the extrapolated point will be
of the limiting surface is exactly the four-point curve which is de-
fined by the initial boundary polygon. Further, itis necessary to not
smooth boundary curves, e.g., in cases where more than two subdf the boundary poinp belongs to the face= {p,q,u,v} and is
division patches meet at a common point. In this case we have tonot connected to any inner vertex then we defirie= 2p — u.
vertices on the boundary as beingrner vertices Each segment {p,q,9",p*}.
between two corner vertices is then treated separately as an open Again, the tangent-plane continuity of the resulting limiting sur-
When dealing with open polygons, it is not possible to refine the is obvious since for a fixed number of interior edges adjacent to
first or the last edge by the original four-point scheme since rule some boundary vertgx, the refinement of the extrapolated net can
to find another rule for the poim** which subdivides the edge  the new points in the vicinity op as linear combinations of points
from the non-extrapolated net. However the refinement matrix is
point p'l“Jrl then results from the application of (11) to the sub-
polygonp™,, pg', pT, p3'". Obviously, this additional rule can be ex-

At every surface point lying on the boundary of a tangent plane
continuous surface, one tangent direction is determined by the tan-

pressed as a stationary linear combination of points from the non- gent of the boundary curve (which in this case is a four-point curve

extrapolated open polygon:

_ 8=w o 8+2w
= 16 Po 16 P1 —
m+1

The rule to compute the point; ™

w m
162 (17)

subdividing the last edge

m+1 .
P1

that does not depend on inner vertices). On boundaries, we can
therefore drop the requirement of [18] that the leading eigenval-
ues of the refinement matrix have to be equal. This symmetry
is only a consequence of the assumption that the rules to com-
pute the new points around a singular vertex are identical modulo



s
IR
R
TN
DR
Y%
7%

TR XX
s
G 0':,,0,:0,0,‘:““\‘\\\\\\\

"I[,}'I]"',':o:é‘:‘::\“\\\\\\\

Figure 16: Modeling sharp features (piecewise smooth boundary, crease, cusp)

rotations (block-circulant refinement matrix). Although # A3 gions with high curvature while ‘flat’ regions may be approximated
causes an increasing local distortion of the net, the smoothness ofrather coarsely. Hence, in order to keep the amount of data reason-
the limiting surface is not affected. This effect can be viewed as able, the next step is to introduce adaptive refinement features.
a reparametrization in one direction. (Compare this to the distor- The decisionwhere high resolution refinement is needed,
tion of a regular net which is refined by binary subdivision in one strongly depends on the underlying application and is not discussed
direction and trinary in the other.) here. The major problem one always has to deal with when adap-
We summarize the different special cases which occur when re- tive refinement of nets is performed is to handle or elimii@ité-
fining an open net by the given rules. In Fig. 17 the net to be refined inconsistencies which occur when faces from different refinement
consists of the solid white faces while the extrapolated faces are levels meet. A simple trick to repair the resulting triangular holes
drawn transparently. The dark vertex is marked as a corner vertex.is to split the bigger face into three quadrilaterals in an Y-fashion
We have to distinguish five different cases: (cf. Fig 18). However this Y-split does not repair the hole. Instead
it shifts the hole to an adjacent edge. Only combining several Y-
elements such that they build a ‘chain’ connecting two inconsisten-
cies leads to an overall consistent net. The new vertices necessary
for the Y-splits are computed by the rules of Sect. 3.3. The fact
that every Y-element contains a singular= 3) vertex causes no
problems for further refinement because this Y-element is only of
temporary nature, i.e., if any of its three faces or any neighboring
face is to be split by a following local refinement adaption, then first
the Y-split is undone and a proper Catmull-Clark-type split is per-
formed before proceeding. While this simple technique seems to
be known in the engineering community, the author is not aware of
any reference where the theoretical background for this technique
is derived. Thus, we sketch a simple proof that shows under which
conditions this technique applies.

Figure 17: Occurences of the different special cases. P

A: Within boundary segments, we apply (11) to four succeeding
boundary vertices.

B: To the first and the last edge of an open boundary segment, we
apply the special rule (17).

C: Inner edge-points can be computed by application of (15).
necessary, extrapolated points are involved.

D: For every face-point of this class, at least one sequence of four  giret in order to apply the Y-technique we have to restrict the
C-points can be found to which (11) can be applied. If there are nqjgered nets toalancednets. These are adaptively refined nets
two possibilities for the choice of these points then both lead to the (yithout Y-elements) where the refinement levels of neighboring
same result which is guaranteed by the construction of (15). faces differ at most by one. Non-balanced inconsistencies can not
E: In this case no appropriate sequence of four C-points can be be handled by the Y-technique. Hence, looking at a particular face
found. Therefore, one has to apply (17) to a B-point and the two C- sfrom then-th refinement level, all faces having at least one vertex
points following on the opposite side of the corner face. In order to in common withs are from the levelgn— 1), n, or (n+1). For
achieve independence of the grid direction, even in case the cornerthe proof we can think of first repairing all inconsistencies between
vertex is not marked, we apply (17) in both directions and compute leveln— 1 andn and then proceed with higher levels. Thus, without
the average of the two results. loss of generality, we can restrict our considerations to a situation
where all relevant faces are from leyel— 1) or n.
3.6 Adaptive Refinement A critical eo_lge is an edge, Whe_re a triangular hole occurs due
to different refinement levels of adjacent faces. A sequence of Y-
In most numerical applications, the exponentially increasing num- elements can always be arranged such that two critical edges are
ber of vertices and faces during the iterative refinement only allows connected, e.g., by surrounding one endpoint of the critical edge
a small number of refinement steps to be computed. If high acuracywith a 'corona’ of Y-elements until another critical edge is reached
is needed, e.g., in finite element analysis or high quality rendering, (cf. Fig. 19). Hence, on closed nets, we have to require the number
it is usually sufficient to perform a high resolution refinement in re- of critical edges to be even. (On open nets, any boundary edge can

if Figure 18: A hole in an adaptively refined net and an Y-element to
fill it.



stop a chain of Y-elements.) We show that this is always satisfied, FacedTyp Face9Typ Face4Typ
by induction over the number of faces from theh level within

an environment ofn— 1)-faces. Faces from generationsn or

< (n—1) do not affect the situation since we assume the net to be
balanced.

Figure 21: References between different kinds of faces.

oriented as shown in Fig. 20 and if both are marked this face has to
be refined by a proper Catmull-Clark-type split.
The correctness of this algorithm is obvious since the vertices
which are marked in the first phase are those which are common to
The first adaptive Catmull-Clark-type split on a uniformly re-  faces of different levels. The second phase guarantees that a corona
fined net produces four critical edges. Every succeeding split of Y-elements is built around each such vertex (cf. Fig. 19).
changes the number of critical edges by an even number between
—4 and 4, depending on the number of direct neighbors that have .
been split before. Thus the number of critical edges is always even.3-/ Implementation and Examples

However, then-faces might form a ring having in total an even The described algorithm is designed to be useful in practical ap-
number of critical edges which are separated into an odd number pjications. Therefore, besides the features for creating creases and
inside’ and an odd number ‘outside’. It turns out that this can-  cysps and the ability to adaptively refine a given quadrilateral net,
not happen: Let the inner region surrounded by the ring-faices efficiency and compact implementation are also important. Both
consist ofr quadrilaterals having a total number afédges which -~ can pe achieved by this algorithm. The crucial point of the im-
are candidates for being critical. Every edge which is shared by plementation is the design of an appropriate data structure which
two such quadrilaterals reduces the number of candidates by twog,pports an efficient navigation through the neighborhood of the
and thus the number of boundary edges of this inner region is againyertices. The most frequently needed access operation to the data
even. L . . structure representing the balanced net, is to enumerate all faces
The only situation where the above argument is not valid, occurs yhich |ie around one vertex or to enumerate all the neighbors of
when the considered net is open and has a hole with an odd numbegne vertex. Thus every vertex should be associated with a linked
of boundary edges. In this case, every loomdaces enclosing  |ist of the objects that constitute its vicinity. We propose to do this
this hole will have an odd number of critical edges on each side. jmpicitely by storing the topological information in a data struc-
Hence, we have to further restrict the class of nets to which we y,re Face4Typ which contains all the information of one quadri-
can apply the Y-technique topen balanced nets which have no |aterg| face, i.e., references to its four corner points and references
hole with an odd number of edgeShis restriction is not serious g its four directly neighboring faces. By these references, a doubly
because one can transform any given net in order to satisfy this |inked list around every vertex is available.
requirement by applying amitial uniform refinement stepefore Since we have to maintain an adaptively refined net, we need
adaptive refinement is started. Such an initial step is needed anyway,n aqditional datatype to consistently store connections between
if a given arbitrary net has to be transformed into a quadrilateral one 5ces from different refinement levels. We define another struc-
(cf. Sect. 3.2). . ture Face9Typ which holds references to nine vertices and eight
It remains to find aralgorithm to place the Y-elements cor-  neighbors. Thesenulti-facescan be considered as ‘almost’ split
rectly, i.e., to decide which critical edges should be connected by faces, where the geometric information (the new edge- and face-
a corona. This problem is nf)t tr|V|a! becaus;_e |nterf,erence between points) is already computed but the topological split has not yet
_the Y-elements building the ‘shores’ of two |_slands ru}fac_es ly- _been performed. If, during adaptive refinement, sawface is
ing close to each other, can occur. We describe an algorithm which gp|it then all its neighbors which are from the same generation are
only uses Iocgl information anq decides the orientation separately converted intoFace9Typ ’s. Since these faces have pointers to
for each face instead of ‘marching’ around the islands. eight neighbors, they can mimic faces from different generations
The initially given net (level 0) has_ been uniformly refined once 54 therefore connect them correctly. TIRace9Typ ’s are the
before the adaptive refinement begins (level 1). Let every vertex cangidates for the placement of Y-elements in order to re-establish
of the adaptively refined net be associated with the generation in consistency. The various references between the different kinds of
which it was introduced. Since all faces of the net are the result t5ces are shown in Fig. 21.
of a Catmull-Clark-type split (no Y-elements have been placed so T rgjieve the application program which decides where to adap-
far), they all have. the property that three of its vertices belong to tively refine, from keeping track of the balance of the net, the im-
the same generatianand the fourth vertex belongs to a generation - plementation of the refinement algorithm should perform recursive
g<g This fact yields a unigue orientation for every face. The (gfinement operations when necessary, i.e.nffacesis to be re-
algorithm starts by marking all vertices of the net which are end- fined then first alf{n— 1)-neighbors which have at least one vertex
points of a critical edge, i.e. if n—1)-face{p,q,...} meets two in common withs must be split.
nfaces{p,r,s,...} and{q,r,s,...} thenp andq are marked (cf. The following pictures are generated by using our experimen-
Fig. 18). After themarking-phasgthe Y-elements are placed. Let 5] jimplementation. The criterion for adaptive refinement is a dis-
s={p,q,u,v} be a face of the net whegeis the unique vertex  crete approximation of the Gaussian curvature. The running time
which belongs to an elder generation than the other three. _If r_1e|th_erof the algorithm is directly proportional to the number of computed
g norv are marked then no Y-element has to be placed within this points, i.e., to the complexity of the output-net. Hence, since the
face. If only one of them is marked then the Y-element has to be nymper of regions where deep refinement is necessary usually is

Figure 19: Combination of Y-elements



Figure 20: The orientation of the Y-elements depends on whether the vereeks are marked (black) or not (white). The status of vertices

p andu does not matter (gray).

fixed, we can reduce the space- and time-complexity from expo-
nential to linear (as a function of the highest occurring refinement
level in the output).
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Variational Subdivision Schemes

Leif Kobbelt*
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Preface an energy minimization process but when proceeding Wijth,
the vertices oP,.1 are not adjusted.

The generic strategy of subdivision algorithms which is to define  In the bivariate setting, i.e., the subdivision and optimization of
smooth curves and surfacalkgorithmically by giving a set of sim- triangle meshes, we start with a given control mBgtwhose ver-
ple rules for refining control polygons or meshes is a powerful tech- tices are to be interpolated by the resulting mesh. In this case it
nique to overcome many of the mathematical difficulties emerging turns out that the mesh quality can be improved significantly if we
from (polynomial) spline-based surface representations. In this sec-use all the vertices frorPny, \ Py for the optimization in themth
tion we highlight another application of the subdivision paradigm subdivision step.
in the context of high quality surface generation. Hence the algorithmic structure of variational subdivision degen-

From CAGD it is known that the technical and esthetic quality erates to an alternating refinement and (constrained) global opti-
of a curve or a surface does not only depend on infinitesimal prop- mization. In fact, from a different viewing angle the resulting al-
erties like theCX differentiability. Much more important seems to ~ gorithms perform like a multi-grid solver for the discretized op-
be thefairnessof a geometric object which is usually measured by timization problem. This observation provides the mathematical
curvature based energy functionals. A surface is hence consideredustification for thediscrete fairing approach

optimal if it minimizes a given energy functional subject to auxil- For the efficient fairing of continuous parameteric surfaces, the

iary interpolation or approximation constraints. major difficulties arise from the fact that geometrically meaningful
Subdivision and fairing can be effectively combined into what is  energy functionals depend on the control vertices in a highly non-

often refered to asariational subdivisioror discrete fairing The linear fashion. As a consequence we have to either do non-linear

resulting algorithms inherit the simplicity and flexibility of subdi-  optimization or we have to approximate the true functional by a
vision schemes and the resulting curves and surfaces satisfy the solinearized version. The reliability of this approximation usually
phisticated requirements for high end design in geometric modeling depends on how close to isometric the surface’s parameterization
applications. is. Alas, spline-patch-based surface representations often do not

The basic idea that leads to variational subdivision schemes is provide enough flexibility for an appropriate re-parameterization
that one subdivision step can be considered axpalogical split which would enable a feasible linearization of the geometric en-
operationwhere new vertices are introduced to increase the number ergy functional. Figure 1 shows two surfaces which are both op-
of degrees of freedom, followed bysmoothing operatiomwhere timal with respect to the same energy functional but for different
the vertices are shifted in order to increase the overall smooth- parameterizations.
ness. From this point of view is is natural to ask for the maxi-
mum smoothness that can be achieved on a given level of refine-
ment while observing prescribed interpolation constraints.

We use an energy functional as a mathematical criterion to rate
the smoothness of a polygon or a mesh. In the continuous setting,

such scalar valued fairing functionals are typically defined as an i \\\v“ <K o,«,
integral over a combination of (squared) derivatives. In the discrete /f'//%mﬁ\\‘?\\\\\ gyAVXI!‘ vﬂ»’v 'h'; ‘{\‘x‘\?\%‘
setting, we approximate such functionals by a sum over (squared) 4%1%}&\&}\\\‘ ’ Uiy fj{""‘%{\‘*‘&\ﬁ"'
divided differences. ‘ VAVAVAV ' ,44 AVA \ V
. . \
In the following we reproduce a few papers where this approach A‘

is described in more detail. In the univariate setting we con-
sider interpolatory variational subdivision schemes which perform Figure 1: Optimal surfaces with respect to the same functional and
a greedy optimization in the sense that when computing the poly- interpolation constraints but for different parameterizations (iso-
gon P 1 from Py, the new vertices’ positions are determined by metric left, uniform right).

*Computer Graphics Group, Max-Planck-Institute for Computer Sci-
ences, Im Stadtwald, 66123 Saartkén, Germanykobbelt@mpi-
sb.mpg.de

With the discrete fairing approach, we can exploit the auxiliary
freedom to define an individual local parameterization for every
vertex in the mesh. By this we find an isometric parameterization
for each vertex and since the vertices are in fact the only points
where the surface is evaluated, the linearized energy functional is a
good approximation to the original one.

The discrete fairing machinery turns out to be a powerful tool
which can facilitate the solution of many problems in the area of
surface generation and modeling. The overall objective behind the
presented applications will be the attempt to avoid, bypass, or at
least delay the mathematically involved generation of spline CAD-
models whenever it is appropriate.



|  Univariate Variational Subdivision

In this paper a new class of interpolatory refinement schemes is  Appropriate formalisms have been developed in (Cavaretta et al.,
presented which in every refinement step determine the new pointsl991), (Dyn & Levin, 1990), (Dyn, 1991) and elsewhere that allow
by solving an optimization problem. In general, these schemes arean easy analysis of sushationary schemesghich compute the new
global, i.e., every new point depends on all points of the polygon points by applying fixed banded convolution operators to the orig-
to be refined. By choosing appropriate quadratic functionals to be inal polygon. In (Kobbelt, 1995b) simple criteria are given which
minimized iteratively during refinement, very efficient schemes pro- can be applied to convolution schemes without any band limitation
ducing limiting curves of high smoothness can be defined. The wellas well (cf. Theorem 2).
known class of stationary interpolatory refinement schemes turns  (Dyn et al., 1992) and (Le BHau€& & Utreras, 1994) propose
out to be a special case of these variational schemes. non-linear refinement schemes which produce smooth interpolating
(CL) curves and additionally preserve the convexity properties of
the initial data. Both of them introduce constraints which locally
define areas where the new points are restricted to lie in. Another
possibility to define interpolatory refinement schemes is to dualize
corner-cutting algorithms (Paluszny et al., 1994). This approach
leads to more general necessary and sufficient convergence criteria.

In this paper we want to define interpolatory refinement schemes
in a more systematic fashion. The major principle is the following:
We are looking for refinement schemes for which, given a polygon
Pm, the refined polygorPy1 is as smooth as possibldn order
Interpolatory refinement is a very intuitive concept for the construc- to be able to compare the “smoothness” of two polygons we de-
tion of interpolating curves or surfaces. Given a set of quﬁts fine functionalsE(Pnyy1) which measure the total amount of (dis-

RY which are to be interpolated by a smooth curve, the first step of a crete) strain energy d?m,.1. The refinement operator then simply
refinement scheme consists in connecting the points by a piecewisechooses the new poin@i‘ﬂ such that this functional becomes a
linear curve and thus defining a polygBg = (pS, ...,p% ;). minimum. o _ _ _ _
This initial polygon can be considered as a very coarse approx- An important motivation for this approach is that in practice
imation to the final interpolating curve. The approximation can be good approximations to the final interpolating curves should be
improved by inserting new points between the old ones, i.e., by sub- achieved with little computational effort, i.e., maximum smooth-
dividing the edges of the given polygon. The positions of the new ness after a minimal number of refinement steps is wanted. In non-

The original paper which also contains the omitted
proofs has been published in:

L. Kobbelt
A Variational Approach to Subdivision
CAGD 13 (1996) pp. 743761, Elsevier

1.1 Introduction

points p%i“ have to be chosen appropriately such that the result-

ing (refined) polygorPy = (p3, ..., p3, ;) lookssmoothetthan the
given one in some sense (cf. Fig. 2). Interpolation of the given
points is guaranteed since the old piniQi p%i still belong to the
finer approximation.

By iteratively applying this interpolatory refinement operation,
a sequence of polygor(®m) is generated with vertices becoming
more and more dense and which satisfy the interpolation condition
p"= pgi‘” for alli andm. This sequence may converge to a smooth
limit Pe.

Many authors have proposed different schemes by explicitly giv-
ing particular rules how to compute the new poipggﬁ as a func-
tion of the polygonPm to be refined. In (Dubuc, 1986) a simple
refinement scheme is proposed which uses four neighboring ver-
tices to compute the position of a new point. The position is de-
termined in terms of the unique cubic polynomial which uniformly
interpolates these four points. The limiting curves generated by this

scheme are smooth, i.e., they are differentiable with respect to an

equidistant parametrisation.

Figure 2: Interpolatory refinement

In (Dyn et al., 1987) this scheme is generalized by introducing
an additional design or tension parameter. Replacing the interpo-
lating cubic by interpolating polynomials of arbitrary degree leads
to theLagrange-schemgwoposed in (Deslauriers & Dubuc, 1989).
Raising the degree {@k+ 1), every new point depends ¢k + 2)
old points of its vicinity. In (Kobbelt, 1995a) it is shown that at least
for moderatek these schemes produck-curves.

discrete curve design based, e.g., on splines, the concept of defining
interpolating curves by the minimization of some energy functional
(fairing) is very familiar (Meier & Nowacki, 1987), (Sapidis, 1994).
This basic idea of making a variational approach to the defini-
tion of refinement schemes can also be used for the definition of
schemes which produce smooth surfaces by refining a given trian-
gular or quarilateral net. However, due to the global dependence
of the new points from the given net, the convergence analysis of
such schemes strongly depends on the topology of the net to be
refined and is still an open question. Numerical experiments with
such schemes show that this approach is very promising. In this
paper we will only address the analysis of univariate schemes.

1.2 Known results

Given an arbitrary (open/closed) polygBm = (p"), thedifference
polygonAKPy, denotes the polygon whose vertices are the vectors
K

5, (

In (Kobbelt, 1995b) the following characterization of sequences
of polygons(Pm) generated by the iterative application of an inter-
polatory refinement scheme is given:

k .
) (o,

AkpM: i

Lemmal Let (Py) be a sequence of polygons. The scheme by
which they are generated is an interpolatory refinement scheme

(e, p" = pgi‘*l for all i and m) if and only if for all mk € N

the condition

kam+1
P2it]

kam K k
Ap = <)A
"3 (]

holds for all indices i of the polygot\ kP,



Also in (Kobbelt, 1995b), the following sufficient convergence
criterion is proven which we will use in the convergence analysis in
the next sections.

Theorem 2 Let (Pm) be a sequence of polygons generated by
the iterative application of an arbitrary interpolatory refinement
scheme. If

S ([2TAH Pl < o
m=0
for some le N then the sequend®n) uniformly converges to a
k-times continuously differentiable curi?e.

This theorem holds for all kinds of interpolatory schemes on
open and closed polygons. However, in this paper we will only
apply it to linear schemes whose support is global.

1.3 A variational approach to interpolatory
refinement

In this and the next two sections we focus on the refinement of

closedpolygons, since this simplifies the description of the refine-
ment schemes. Open polygons will be considered in Section 1.6.
Let Pm=(pg,...,pp ;) be a given polygon. We watfty,1 =
(pEL,...,p3r™) to be the smoothest polygon for which the inter-
polation conditiorpgrrl = p{" holds. Since the roughness at some
vertexpierl is a local property we measure it by a an operator

k

K(pI") = 3 ajpllity.
]:

The coefficientsx; in this definition can be an arbitrary finite se-

quence of real numbers. The indices of the vertit8s! are taken
modulo2n according to the topological structure of the closed poly-
gonPm1. To achieve full generality we introduce the shifuch
that K (p™**) depends omp{™*,...,p™! . Every discrete mea-
sure of roughnesK is associated with a characteristic polynomial

k .

7
> a;2.
=

Our goal is to minimize the total strain energy over the whole
polygonPp,.1. Hence we define

a(z)

2n-1
E(Pmer) = 3 K(pM™?

to be the energy functional which should become minimal. Since
the pointsprz?+l of Pmy1 with even indices are fixed due to the in-
terpolation condition, the point%‘jj with odd indices are the only
free parameters of this optimization problem. The unique minimum
of the quadratic functional is attained at the common root of all par-
tial derivatives:

@)

] K 9
~— vt E(Pm+1) = —1 KPS L)
apngJ_rll i; 6pr2r|1-|JjL 214+1+4r—i

@)

. +1
. . nM
Z_Z)OH _ZOGJ Pait1-it
=l j=

m+1
Por 14

K
ZiZZkBi

with the coefficients

k—i

‘ZOGI‘ Ajti
]:

Hence, the strain enerdy(Pms1) becomes minimal if the new
pointspg?ﬂ are the solution of the linear system

Bi=Bi= i=0,...,k (3)

m+1
Bo B2 Pa B2 1
B2 Bo B2 Ba p3- _
P o)
—B1 —B1 —Bs —B3 BE
—Bs —B1 —B1 —Bs 1
: : : pnm-,l

which follows from (2) by separation of the fixed poirpi§+l =
p™ from the variables. Here, both matrices are circulant and (al-
most) symmetric. A consequence of this symmetry is that the new
points do not depend on the orientation by which the vertices are
numbered (left to right or vice versa).

To emphasize the analogy between curve fairing and interpola-
tory refinement by variational methods, we call the equation

=0,...,n-1 (5)

k
Z Bi pg?j—llﬁ =0, !
i=—k
the Euler-Lagrange-equatian

Theorem 3 The minimization of BP,;1) has a well-defined solu-
tion if and only if the characteristic polynomial(z) for the local
measure K has no diametric roots=z+w on the unit circle with
Arg(w) € TN /n. (Proof to be found in the original paper)

Remark The setnN /2™ becomes dense in R for increasing re-
finement depthm — . Since we are interested in the smoothness
properties of the limiting curv®., we should drop the restriction
that the diametric roots have to have fsg € TN /n. Forstability
reasons we requir(z) to have no diametric roots on the unit circle
atall.

The optimization by which the new points are determined is a
geometric process. In order to obtain meaningful schemes, we have
to introduce more restrictions on the energy functiolats on the
measures of roughneks

For the expressioK?(p;) to be valid,K has to be vector valued,
i.e., the sum of the coefficients has to be zero. This is equivalent
toa(1l) =0. Since

i—ikBi - iijiuiuj - <,—§oaj>2

the sum of the coefficienf§ also vanishes in this case aaffine
invariance of the (linear) scheme is guaranteed because constant
functions are reproduced.

1.4

In the last section we showed that the minimization of a quadratic
energy functional (1) leads to the conditions (5) which determine
the solution. Dropping the variational background, we can more
generally prescribe arbitrary real coefficierfisy,...,Bk (with

Implicit refinement schemes



B_i = Bi to establish symmetry arfgiB; = 0 for affine invariance) The partial derivatives take a very simple form in this case
and define an interpolatory refinement scheme which chooses the

new pointsp'z?ﬂ of the refined polygorPy1 such that the homo- k 0 Akgml (12
geneous constraints Jom L Ex(Pmi1) = Z} JomL 1A 1l
241 i=0 OP2141
k
S Bpyi; =0 1=0..,n-1 6)
iZ=k -

K P (K
2 -%(_1)k+l <I) Akpg?i]i_i
are satisfied. We call these schemewlicit refinement schemes 1=
to emphasize the important difference to other refinement schemes
where usually the new points are computed by one oreaicitly 2(—1)kA2k m+1
given rules (cf. the ternmplicit curvesfor curves represented by Pat1-k:
f(x,y) = 0). The stationary refinement schemes are a special case

of the implicit schemes wheig;; = ;0. In general, the implicit and the corresponding Euler-Lagrange-equation is
schemes are non-stationary since the resulting weight coefficients —
by which the new pointp+7 are computed depend on the number A%poty =0, I=0,...,n—1 (8)

of vertices inPn. ) o 1
In (Kobbelt, 1995b) a general technique is presented which al-  Where, again, the indices of tipf"* are takermodulo2n. The
lows to analyse the smoothness properties of the limiting curve gen- characteristic polynomial of the underlying roughness meakure
erated by a given implicit refinement scheme. isa(z) = (z— 1)k and thus solvability and affine invariance of the
The next theorem reveals that the class of implicit refinement refinement scheme are guaranteed. The solution of (8) only requires
scﬂemes is not essentially larger than the class of variational the inversion of a banded circulant matrix with bandwidugﬁl.
schemes.
_ ) Theorem 5 The refinement scheme based on the minimization of
Theorem 4 LetB_y,...,Bx be an arbitrary symmetric set of real g, in (7) produces at least Gcurves. (Proof to be found in the
coefficientsB_ = 3j). Then there always exists a (potentially com-  original paper)
plex valued) local roughness measure K such that (6) is the Euler-
Lagrange-equation corresponding to the minimization of the energy  |n order to prove even higher regularities of the limiting curve
functional (1). (Proof to be found in the original paper) one has to combine more refinement steps. In (Kobbelt, 1995b)
a simple technique is presented that allows to do the convergence
Remark We do not consider implicit refinement schemes with analysis of such multi-step schemes numerically. Table 1 shows
complex coefficient$; since then (6) in general has no real solu- some results where denotes the number of steps that have to be
tions. combined in order to obtain these differentiabilities.
In analogy to the non-discrete case where the minimization of the
Example To illustrate the statement of the last theorem we look '”zﬂf‘?zra' over the squa_rddth _dt_arlvatlve_ has pIECewISe _p_olynomlal
at the 4-point scheme of (Dubuc, 1986). This is a stationary re- ¢~ solutions (B-splines), itis very likely that the limiting curves

finement scheme where the new poipst! are computed by the generated by iterative minimization Bf are actually irC%~2 too.
rule +1 The results given in Table 1 can be improved by combining more

thanr steps. Fok = 2,3, however, sufficiently many steps have
already been combined to veriBg, ¢ C%~2,

9 1
przr:ﬂ =16 (p"+pit1) — 16 (P" 1 +Pit2)-

r [diffty [ k [r [diffty |
2 c? 7 16] c
1

The scheme can be written in implicit form (6) wikh= 3 and
Biz =1, B2 =0, P11 = -9, Bo = 16 since the common factor

k
2
Tle is not relevant. The roots @8(z) arez; = ... =z =1 and 3|11 C: 8 | 4 Ci;
= —2++/3. From the construction of the last proof we obtain 42 C 9 16 C
%8 P 57| ¢ |10|4] c¥
6| 3 (& 11| 6| CI®

a(z) = (2+V3)— (3+V12) 24+ V32 +2Z

as one possible solution. Hence, the quadratic strain energy Table 1: Lower bounds on the differentiability Bf, generated by
which is minimized by the 4-point scheme is based on the local iterative minimization oEy(Pn).
roughness estimate

K(pi) = (2+V3)pi — (3+V12)pis1+ V3pit2 + Piss- For illustration and to compare the quality of the curves gener-
ated by these schemes, some examples are given in Fig. 3. The
PR . curves result from applying different schemes to the initial data

1.5 Minimization of differences Po=(...,0,1,0,...). We only show the middle part of one peri-
Theorem 2 asserts that a fast contraction rate of some higher differ-odic interval ofP,. As expected, the decay of the function becomes
ences is sufficient for the convergence of a sequence of polygons toslower as the smoothness increases.
a (k times) continuously differentiable limit curve. Thus it is nat-
ural to look for refinement schemes with a maximum contraction Remark Considering Theorem 2 it would be more appropri-
of differences. This obviously is an application of the variational 5¢6 19 minimize the maximum differenqeﬁk Pm||e instead of
approach. For the quadratic energy functional we make the ansatz ||Ak Pl However, this leads to non-linear refinement schemes

on—1 which are both, hard to compute and difficult to analyse. More-
Ex(Pmy1) = Zo \|Akp{”+1||2. ) over, in (Kobbelt, 1995a) it is shown that a contraction rate of



% iﬂ@%\’*‘
Figure 3: Discrete curvature plots of finite approximations to the curves generated by the four-point Bcfiegne C1) and the iterative
minimization ofE, (Pe, € C?), Ez (P € C*) andEs (Pw € C7).

| APl = O(2-™K) implies || AK Pyl = O(2-™(k=8)) for ev- Let E be a given quadratic energy functional. The solution of
erye > 0. It is further shown thaf| AKPy| = O(2=™K) is the its minimization over the window," ,...,p"} ;,, is computed by
theoretical fastest contraction which can be achieved by interpola- solving an Euler-Lagrange-equation

tory refinement schemes. Hence, the minimization| &K Pr||e

cannot improve the asymptotic behavior of the contraction. B (przﬁlei)ir:fr =C (pmi)irir- )

The matrix ofB~1C can be computed explicitly and the weight
coefficients by which a new poirpﬂill is computed, can be read

The convergence analysis of variational schemes in the case of operoff from the corresponding row iB—1C. Since the coefficients
finite polygons is much more difficult than it is in the case of closed depend orE andr only, this construction yields a stationary refine-
polygons. The problems arise at both ends of the polyd&ns ment scheme.
where the regular topological structure is disturbed. Therefore, we  For such local schemes the convergence analysis is independent
can no longer describe the refinement operation in terms of Toeplitz from the topological structure (open/closed) of the polygons to be
matrices but we have to use matrices which are Toeplitz matrices al-refined. The formalisms of (Cavaretta et al., 1991), (Dyn & Levin,
most everywhere except for a finite number of rows, i.e., except for 1990) or (Kobbelt, 1995b) can be applied.
the first and the last few rows. Minimizing the special energy function&y(P) from (7) over
However, one can show that in a middle region of the polygon open polygons allows the interesting observation that the resulting
to be refined the smoothing properties of an implicit refinement refinement scheme has polynomial precision of degred. This
scheme applied to an open polygon do not differ very much from is obvious since for points lying equidistantly parameterized on a
the same scheme applied to a closed polygon. This is due to the factpolynomial curve of degrek — 1, all k-th differences vanish and
that in both cases the influence of the old pojujtson a new point Ex(P) = 0 clearly is the minimum of the quadratic functional.

prznjtrll decrease exponentially with increasing topological distance _Since the 2+ 2 points which form the subpolygon

li — j| for all asymptotically stable schemes (Kobbelt, 1995a). P sPhgy, Uniquely define an interpolating polynomial

For the refinement schemes which iteratively minimize forward Of degree 241, it follows that the local schemes based on
differences, we can at least prove the following. the minimization ofEy(P) are identical fork > 2r + 2. These

schemes coincide with the Lagrange-schemes of (Deslauriers &
Theorem 6 The interpolatory refinement of open polygons by it- Dubuc, 1989). Notice thdt < 4r 4 2 is necessary because higher
eratively minimizing th@k-th differences, generates at leadt¢- differences are not possible on the polygug?ﬁr),...,przn(ﬁyrr)
curves. (Proof to be found in the original paper) and minimizingEx(P) = 0 makes no sense.

The statement of this theorem only gives a lower bound for the _1he local variational schemes provide a nice feature for prac-
differentiability of the limiting curveP.,. However, the author con-  tical purposes. One can use the refinement rules defined by the
jects that the differentiabilities agree in the open and closed polygon Ccoefficients in the rows oB~*C in (9) to compute points which

case. For special cases we can prove better results. subdivide edges near the ends of open polygons. Pure stationary
refinement schemes do not have this option and one therefore has

Theorem 7 The interpolatory refinement of open polygons by it- to deal withshrinking ends This means one only subdivides those
eratively minimizing the second differences, generates at I¢ast C edges which allow the application of the given subdivision mask
curves. (Proof to be found in the original paper) and cuts off the remaining part of the unrefined polygon.

If k> 2r + 2 then the use of these auxiliary rules causes the lim-
iting curve to have a polynomial segment at both ends. This can
be seen as follows. L& = (pg,...,p3) be a given polygon and
By now we only considered refinement schemes which are baseddenote the polynomial of degree 21 < k— 1 uniformly interpo-
on aglobal optimization problem. In order to construct local re- lating the pointspg,...,pgurl by f(x).
finement schemes we can restrict the optimization to some local  The first vertex of the refined polygd®y which not necessarily
subpolygon. This means a new popﬁj‘ill is computed by mini- lies on f(x) is p%r+3. Applying the same refinement scheme itera-
mizing some energy functional ovemandowp(" ,...,p" ;. As tively, we see that it)g"m is the first vertex oPm which does not lie
the index varies, the window is shifted in the same way.

1.6 Interpolatory refinement of open polygons

1.7 Local refinement schemes



on f(x) thenpg“mti = przné-,'_“l—Zr—l is the first vertex oPp, 1 with this [Dyn etal., 1987] Dyn, N. and Gregory, J. and Levin, D. (1987),
property. LetS = 2r + 2 and consider the sequence A 4-point interpolatory subdivision scheme for curve de-
sign, CAGD 4, 257-268
m .
lim 6_m = (2r4+2)—(2r+1) lim lefl =1 [Dyn & Levin, 1990] Dyn, N. and Levin, D. (1990), Interpolating
Mmoo 2 M= subdivision schemes for the generation of curves and sur-
o _ faces, in: HauBmann W. and Jetter K. eddultivari-
Hence, the limiting curvé®, has a polynomial segmerit(x) ate Approximation and Interpolatioiirkhauser Verlag,

between the pointpg and p?. An analog statement holds at the Basel

opposite end betweepf_; andp®.

This feature also arises naturally in the context of Lagrange-
schemes where the new points near the ends of an open polygon
can be chosen to lie on the first or last well-defined polynomial. It

can be used to exactly compute the derivatives at the endpagnts [Dyn, 1991] Dyn, N. (1991), Subdivision schemes in computer

[Dyn etal., 1992] Dyn, N. and Levin, D. and Liu, D. (1992), Inter-
polatory convexity-preserving subdivision schemes for
curves and surfaces, CAD 24, 221-216

andp? of the limiting curve and it also provides the possibility to aided geometric design, in: Light, W. eddvances in

smoothly connect refinement curves and polynomial splines. Numerical Analysis Il, Wavelets, Subdivisions and Ra-
dial Functions Oxford University Press

1.8 Computational Aspects [Golub & Van Loan, 1989] Golub, G. and Van Loan, C. (1989),

Since for the variational refinement schemes the computation of the Matrix ComputationsJohn Hopkins University Press

new pointspy;}; involves the solution of a linear system, the algo- [Kobbelt, 1995a] Kobbelt, L. (1995a)terative Erzeugung glatter

rithmic structure of these schemes is slightly more complicated than Interpolanten Universitit Karlsruhe

itis in the case of stationary refinement schemes. However, for the
refinement of an open polygd#i the computational complexity is  [Kobbelt, 1995b] Kobbelt, L. (1995b), Using the Discrete Fourier-
still linear in the length oPy. The matrix of the system that has Transform to Analyze the Convergence of Subdivision
to be solved, is a banded Toeplitz-matrix with a small number of Schemes, Appl. Comp. Harmonic Anal. 5 (1998), pp. 68—
pertubations at the boundaries.

In the closed polygon case, the best we can do is to solve the
circulant system in the Fourier domain. In particular, we transform [Kobbelt, 1995c] Kobbelt, L. (1995c), Interpolatory Refinement is
the initial polygonPgy once and then performm refinement steps Low Pass Filtering, in Daehlen, M. and Lyche, T. and
in the Fourier domain where the convolution operator becomes a Schumaker, L. eds., Math. Meth in CAGD Il

diagonal operator. The refined spectrﬁ’m is finally transformed
back in order to obtain the resu,. The details can be found in
(Kobbelt, 1995c). For this algorithm, the computational costs are

dominated by the discrete Fourier transformatiorﬁ’.efwhich can

be done inO(nlog(n)) = O(2™m) steps. This is obvious since the  [Le Méhau& & Utreras, 1994] Le Mhau€ A. and Utreras, F.

numbern = 2™ng of points in the refined polygofm allows to (1994), Convexity-preserving interpolatory subdivision,
apply msteps of the fast Fourier transform algorithm. CAGD 11, 17-37

The costs for computin®n, are thereforéd(m) per point com-
pared toO(1) for stationary schemes. However, since in practice [Paluszny etal., 1994] Paluszny M. and Prautzsch H. andfSch”
only a small number of refinement steps are computed, the constant M. (1994), Corner cutting and interpolatory refinement,
factors which are hidden within these asymptotic estimates are rele- Preprint
vant. Thus, the fact that implicit schemes need a smaller bandwidth
than stationary schemes to obtain the same differentiability of the [Sapidis, 1994] Sapidis, N. (1994pesigning Fair Curves and
limiting curve (cf. Table 1) equalizes the performance of both. SurfacesSIAM, Philadelphia

In the implementation of these algorithms it turned out that all ) ) , . .
these computational costs are dominated by the ‘administrative’ [Widom, 1965] Widom, H. (1965), Toeplitz matrices, in:
overhead which is necessary, e.g., to build up the data structures. Hirschmann, ‘1. ed., Studies in Real and Complex
Hence, the differences in efficiency between stationary and implicit Analysis MAA Studies in Mathematics 3
refinement schemes can be neglected.

[Meier & Nowacki, 1987] Meier, H. and Nowacki, H. (1987), In-
terpolating curves with gradual changes in curvature,
CAGD 4, 297-305
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Il Discrete Fairing

Many mathematical problems in geometric modeling are merely stationary schemes that exploit the piecewise regular structure of
due to the difficulties of handling piecewise polynomial parameter- iteratively refined meshes [2, 4, 9], there are more complex geo-
izations of surfaces (e.g., smooth connection of patches, evaluationmetric schemes [15, 8] that combine the subdivision paradigm with
of geometric fairness measures). Dealing with polygonal meshes isthe concept of optimal design by energy minimizati€air(ng).
mathematically much easier although infinitesimal smoothness can  The technical and practical advantages provided by the repre-
no longer be achieved. However, transferring the notion of fairness sentation of surfaces in the form of polygonal meshes stem from
to the discrete setting of triangle meshes allows to develop very the fact that we do not have to worry about infinitesimal inter-patch
efficient algorithms for many specific tasks within the design pro- smoothness and the refinement rules do not have to rely on the ex-
cess of high quality surfaces. The use of discrete meshes insteadstence of a globally consistent parameterization of the surface. In
of continuous spline surfaces is tolerable in all applications where contrast to this, spline based approaches have to introduce com-
(on an intermediate stage) explicit parameterizations are not nec- plicated non-linear geometric continuity conditions to achieve the
essary. We explain the basic techniquealistrete fairingand give flexibility to model closed surfaces of arbitrary shape. This is due
a survey of possible applications of this approach. to the topologically rather rigid structure of patches with triangular
or quadrilateral parameter domain and fixed polynomial degree of
cross boundary derivatives. The non-linearity of such conditions
makes efficient optimization difficult if not practically impossible.

The original paper has been published in:

L. K_obbelt ' _ _ On discrete meshes however, we can deldaal interpolants ac-
Variational Design with Parametric Meshes cording to local parameterizationshart which gives the freedom
of Arbitrary Topology to adapt the parameterization individually to the local geometry and

in Creating fair and shape preserving curves

topology.
and surfaces, Teubner, 1998

In the following we will shortly describe the conceptditcrete
fairing which is an efficient way to characterize and compute dense
21 point sets on high quality surfaces that observe prescribed interpo-

lation or approximation constraints. We then show how this ap-
Piecewise polynomial spline surfaces have been the standard repreproach can be exploited in several relevant fields within the area of
sentation for free form surfaces in all areas of CAD/CAM over the free form surface modeling.
last decades (and still are). However, although B-splines are op- The overall objective behind all the applications will be the at-
timal with respect to certain desirable properties (differentiability, temptto avoid, bypass, or at least delay the mathematically involved
approximation order, locality,. . ), there are several tasks that can- generation of spline CAD-models whenever it is appropriate. Espe-
not be performed easily when surface parameterizations are basedially in the early design stages it is usually not necessary to have an
on piecewise polynomials. Such tasks include the construction of explicit parameterization of a surface. The focus on polygonal mesh
globally smooth closed surfaces and the shape optimization by min- representations might help to free the creative designer from being
imizing intrinsically geometric fairness functionals [5, 12]. confined by mathematical restrictions. In later stages the conver-

Whenever it comes to involved numerical computations on free sion into a spline model can be based on more reliable information
form surfaces — for instance in finite element analysis of shells — about the intended shape. Moreover, since technical engineers are
the geometry is usually sampled at discrete locations and convertedused to performing numerical simulations on polygonal approxima-

Introduction

into a piecewise linear approximation, i.e., into a polygonal mesh.
Between these two opposite poles, i.e.,¢batinuousepresen-
tation of geometric shapes by spline patches andlibereterep-

tions of the true model anyway, we also might find short-cuts that
allow to speed up the turn-around cycles in the design process, e.g.,
we could alter the shape of a mechanical part by modifying the FE-

resentation by polygonal meshes, there is a compromise emergingmesh directly without converting back and forth between different

from the theory ofubdivision surfacef®]. Those surfaces are de-
fined by abase meshoughly describing its shape, andedinement
rule that allows one to split the edges and faces in order to obtain a
finer and smoother version of the mesh.

Subdivision schemes started as a generalizatiGmaf insertion
for uniform B-splines [11]. Consider a control melgh;] and the
knot vectors[u;] = [ihy] and[vi] = [ihy] defining a tensor product
B-spline surfacé&. The same surface can be given with respect to
the refined knot vectorgl] = [ihy/2] and [Vi] = [ihy/2] by com-
puting the corresponding control verticis j], each¢; j being a
simple linear combination of original verticeg;. It is well known

that the iterative repetition of this process generates a sequence o

meshe<, which converges to the spline surfagétself.

The generic subdivision paradigm generalizes this concept by
allowing arbitrary rules for the computation of the new control ver-
ticesG; j from the givenc; ;. The generalization also includes that

we are no longer restricted to tensor product meshes but can usg,
rules that are adapted to the different topological special cases in
meshes with arbitrary connectivity. As a consequence, we can use
any (manifold) mesh for the base mesh and generate smooth sur

faces by iterative refinement.

The major challenge is to find appropriate rules that guarantee
the convergence of the mesh&s generated during the subdivision
process to a smooth limit surfaée= C.. Besides the classical

CAD-models.

2.2 Fairing triangular meshes

The observation that in many applications the global fairness of a

surface is much more important than infinitesimal smoothness mo-

tivates thediscrete fairingapproach [10]. Instead of requirir@!

or G2 continuity, we simply approximate a surface by a plain trian-

gularC%— mesh. On such a mesh we can think of the (discrete) cur-

vature being located at the vertices. The téairing in this context
eans to minimize these local contributions to the total (discrete)
urvature and to equalize their distribution across the mesh.

We approximate local curvatures at every venteky divided
differences with respect to a locally isometric parameterizatjon
This parameterization can be found by estimating a tangent plane
Tp (or the normal vectony) at p and projecting the neighboring
erticesp; into that plane. The projected points yield the parameter
values(u;,V;) if represented with respect to an orthonormal basis
{ey,&v} spanning the tangent plane

pi—p = Uiey+Vviey+dinp.

Another possibility is to assign parameter values according to the
lengths and the angles between adjacent edtissréte exponential



map [15, 10].

To obtain reliable curvature information jati.e., second order
partial derivatives with respect to the locally isometric parameteri-
zationpp, we solve the normal equation of the Vandermonde system

T
vTv % fuu, fuvs % fw] =V [di]i

with V = [uZ,uvi,V2]; by which we get the best approximating
guadratic polynomial in the least squares sense. The rows of the in-
verse matrixVT V)~V T =: [a; ;] by which the Taylor coefficients
f. of this polynomial are computed from the déti;, contain the
coefficients of the corresponding divided difference operdiors
Computing a weighted sum of the squared divided differences is
equivalent to the discrete sampling of the corresponding continuous
fairness functional. Consider for example

/SK§+Kgds

which is approximated by

> o

(Hruu<pj—pi>u2+
Pi

(10)
2[Fu(p; — PIP + [Tl —pi)uz).

Notice that the value of (10) is independent of the particular choices
{ey, e} for each vertex due to the rotational invariance of the func-
tional. The discrete fairing approach can be understood as a gen
eralization of the traditional finite difference method to parametric

When solving the sparse linear system by iterative methods we
observe rather slow convergence. This is due to the low-pass fil-
ter characteristics of the iteration steps in a Gau3-Seidel or Jacobi
scheme. However since the mesh on which the optimization is per-
formed came out of a uniform refinement of the given mesiodi-
vision connectivitywe can easily find nested grids which allow the
application of highly efficient multi-grid schemes [6].

Moreover, in our special situation we can generate sufficiently
smooth starting configurations by midpoint insertion which allows
us to neglect the pre-smoothing phase and to reduce the V-cycle of
the multi-grid scheme to the alternation of binary subdivision and
iterative smoothing. The resulting algorithm has linear complexity
in the number of generated triangles.

The advantage of this discrete approach compared to the classi-
cal fair surface generation based on spline surfaces is that we do not
have to approximate a geometric functional that uses true curvatures
by one which replaces those by second order partial derivatives with
respect to the fixed parameterization of the patches. Since we can
use a custom tailored parameterization for each point evaluation of
the second order derivatives, we can choose this parameterization
to be isometric — giving us access to the true geometric functional.

Figure 4 shows an example of a surface generated this way. The
implementation can be done very efficiently. The shown surface
consists of about 50K triangles and has been generated on a SGI
R10000 (195MHz) within 10 seconds. The scheme is capable of
generating an arbitrarily dense set of points on the surface of min-
imal energy. It is worth to point out that the scheme works com-
pletely automatic: no manual adaption of any parameters is nec-
essary, yet the scheme produces good surfaces for a wide range of
input data.

meshes where divided difference operators are defined with respec2 4 Applications to interactive modeling

to locally varying parameterizations. In order to make the weighted
sum (10) of local curvature values a valid quadrature formula, the
weightswy; have to reflect the local area element which can be ap-
proximated by observing the relative sizes of the parameter trian-
gles in the local chartgy : pi —p — (U, vi).

Since the objective functional (10) is made up of a sum over
squared local linear combinations of vertices (in fact, of vertices
being direct neighbors of one central vertex), the minimum is char-
acterized by the solution of a global but sparse linear system. The
rows of this system are the partial derivatives of (10) with respect
to the movable verticep;. Efficient algorithms are known for the
solution of such systems [6].

2.3 Applications to free form surface design

When generating fair surfaces from scratch we usually prescribe a
set of interpolation and approximation constraints and fix the re-
maining degrees of freedom by minimizing an energy functional.
In the context of discrete fairing the constraints are given by an ini-
tial triangular mesh whose vertices are to be approximated by a fair
surface being topologically equivalent. The necessary degrees of
freedom for the optimization are obtained by uniformly subdivid-
ing the mesh and thus introducing nevovablevertices.

The discrete fairing algorithm requires the definition of a local
parameterizatiopl, for each vertex including the newly inserted

For subdivision schemes we can use any triangular mesh as a con-
trol mesh roughly describing the shape of an object to be modeled.
The flexibility of the schemes with respect to the connectivity of the
underlying mesh allows very intuitive modifications of the mesh.
The designer can move the control vertices just like for Bezier-
patches but she is no longer tied to the common restrictions on the
connectivity which is merely a consequence of the use of tensor
product spline bases.

When modeling an object by Bezier-patches, the control vertices
are the handles to influence the shape and the de Casteljau algorithm
associates the control mesh with a smooth surface patch. In our
more general setting, the designer can work oaraitrary triangle
mesh and the connection to a smooth surface is provided by the
discrete fairing algorithm. The advantages are that control vertices
are interpolated which is a more intuitive interaction metaphor and
the topology of the control structure can adapt to the shape of the
object.

Figure 5 shows the model of a mannequin head. A rather coarse
triangular mesh allows already to define the global shape of the
head (left). If we add more control vertices in the areas where more
detail is needed, i.e., around the eyes, the mouth and the ears, we
can construct the complex surface at the far right. Notice how the
discrete fairing scheme does not generate any artifacts in regions
where the level of detail changes.

ones. However, projection into an estimated tangent plane does not

work here, because the final positions of the new vertices are ob-
viously not known a priori. In [10] it has been pointed out that
in order to ensure solvability and stability of the resulting linear
system, it is appropriate to define the local parameterizations (lo-
cal metrics) for the new vertices fendingthe metrics of nearby
vertices from the original mesh. Hence, we only have to estimate
the local charts covering the original vertices to set-up the linear

2.5 Applications to mesh smoothing

In the last sections we saw how the discrete fairing approach can be
used to generate fair surfaces that interpolate the vertices of a given
triangular mesh. A related problem is to smooth out high frequency
noise from a giveretailedmesh without further refinement. Con-
sider a triangulated surface emerging for example from 3D laser

system which characterizes the optimal surface. This can be doneScanning or iso-surface extraction out of CT volume data. Due to

prior to actually computing a solution and we omit an additional
optimization loop over the parameterization.

measurement errors, those surfaces usually show oscillations that
do not stem from the original geometry.



Figure 4: A fair surface generated by the discrete fairing scheme. The flexibility of the algorithm allows to interpolate rather complex data by
high quality surfaces. The process is completely automatic and it took about 10 sec to compute the refined mesh with 50K triangles. On the
right you see the reflection lines on the final surface.

.r-‘_rﬁ.-:llm
; L P

T

Figure 5: Control meshes with arbitrary connectivity allow to adapt the control structure to the geometry of the model. Notice that the
influence of one control vertex in a tensor product mesh is always rectangular which makes it difficult to model shapes with non-rectangular
features.

Constructing the above mentioned local parameterizations, we
are able to quantify the noise by evaluating the local curvature.
Shifting the vertices while observing a maximum tolerance can re-
duce the total curvature and hence smooth out the surface. From &
signal processing point of view, we can interpret the iterative solv-
ing steps for the global sparse system as the application of recursive
digital low-pass filters [13]. Hence it is obvious that the process
will reduce the high frequency noise while maintaining the low fre-
quency shape of the object.

Figure 6 shows an iso-surface extracted from a CT scan of an|
engine block. The noise is due to inexact measurement and insta-
bilities in the extraction algorithm. The smoothed surface remains
within a tolerance which is of the same order of magnitude as the
diagonal of one voxel in the CT data.

2.6 Applications to surface interrogation Figure 6: An iso-surface extracted from a CT scan of an engine
. ) . ) ) block. On the left, one can clearly see the noise artifacts due to
Deriving curvature information on a discrete mesh is not only use- measurement and rounding errors. The right object was smoothed
ful for fair mterpolatlon or post-processmg of measured data. It can by m|n|m|z|ng the discrete fairing energy. Constraints on the posi_
also be used to visualize artifacts on a surface by plotting the color tional delocation were imposed.
coded discrete curvature directly on the mesh. Given for example
the output of the numerical simulation of a physical process: since
deformation has occurred during the simulation, this output typi-

- : - Using classical techniques from differential geometry would re-
gg!ﬁﬁggg:}sf: ;?ggzlgf a discrete mesh and no continuous surface ive 16 fit an interpolating spline surface to the data and then vi-

sualize the surface quality by curvature plots. The availability of



samples of second order partial derivatives with respect to locally

isometric parameterizations at every vertex enables us to show this s

information directly without the need for a continuous surface. =iy
Figure 7 shows a mesh which came out of the FE-simulation of

a loaded cylindrical shell. The shell is clamped at the boundaries

and pushed down by a force in normal direction at the center. The

deformation induced by this load is rather small and cannot be de-

tected by looking, e.g., at the reflection lines. The discrete mean

curvature plot however clearly reveals the deformation. Notice that

histogram equalization has been used to optimize the color contrast

of the plot.

2.7 Applications to hole filling and blending ) - ) ) )
Figure 8: The original data on the left is very sparse in the mid-

Another area where the discrete fairing approach can help is thedle region of the object. Triangulating the points in space and dis-
filling of undefined regions in a CAD model or in a measured data cretely fairing the iteratively refined mesh recovers more informa-
set. Of course, all these problems can be solved by fairing schemesion which makes least squares approximation much easier. On the
based on spline surfaces as well. However, the discrete fairing ap-right, reflection lines on the resulting surface are shown.

proach allows one to split the overall (quite involved) task into sim-

ple steps: we always start by constructing a triangle mesh defining

the global topology. This is easy becauseGioor higher bound- 2.8 Conclusion

ary conditions have to be satisfied. Then we can apply the discrete

fairing algorithm to generate a sufficiently dense point set on the ob- In this paper we gave a survey of currently implemented applica-
jective surface. This part includes the refinement and energy mini- tions of the discrete fairing algorithm. This general technique can
mization but it is almost completely automatic and does not have to be used in all areas of CAD/CAM where an approximation of the
be adapted to the particular application. In a last step we fit poly- actual surface by a reasonably fine triangular mesh is a sufficient
nomial patches to the refined data. Here we can restrict ourselvesrepresentation. If compatibility to standard CAD formats matters, a
to pure fitting since the fairing part has already been taken care of spline fitting post-process can always conclude the discrete surface
during the generation of the dense data. In other words, the discretegeneration or modification. This fitting step can rely on more infor-
fairing has recovered enough information about an optimal surface mation about the intended shape than was available in the original
such that staying as close as possible to the generated points (in &etting since a@enseset of points has been generated.

least squares sense) is expected to lead to high quality surfaces. To Aswe showed in the previous sections, mesh smoothing and hole
demonstrate this methodology we give two simple examples. filling can be done on the discrete structirefore switching to a

First, consider the point data in Figure 8. The very sparsely continuous representation. Hence, the bottom line of this approach
scattered points in the middle region make the task of interpolation is to do most of the work in the discrete setting such that the math-
rather difficult since the least squares matrix for a locally supported ematically more involved algorithms to generate piecewise poly-
B-spline basis might become singular. To avoid this, fairing terms nomial surfaces can be applied to enhanced input data with most
would have to be included into the objective functional. This how- common artifacts removed.
ever brings back all the problems mentioned earlier concerning the  We do not claim that splines could ever be completely replaced
possibly poor quality of parameter dependent energy functionals by polygonal meshes but in our opinion we can save a considerable
and the prohibitive complexity of non-linear optimization. amount of effort if we use spline models only where it is really

Alternatively, we can connect the points to build a spatial tri- necessary and stick to meshes whenever it is possible. There seems
angulation. Uniform subdivision plus discrete fairing recovers the to be a huge potential of applications where meshes do the job if we
missing information under the assumption that the original surface find efficient algorithms.
was sufficiently fair. The un-equal distribution of the measured data ~ The major key to cope with the genuine complexity of highly
points and the strong distortion in the initial triangulation do not detailed triangle meshes is the introduction of a hierarchical struc-
cause severe instabilities since we can define individual parameteri-ture. Hierarchies could emerge from classical multi-resolution tech-
zations for every vertex. These allow one to take the local geometry niques like subdivision schemes but could also be a by-product of
into account. mesh simplification algorithms.

Another standard problem in CAD is th#ending or filleting An interesting issue for future research is to find efficient and
between surfaces. Consider the simple configuration in Figure 9 numerically stable methods to enforce convexity preservation in the
where several plane faces (dark grey) are to be connected smoothlyfairing scheme. At least local convexity can easily be maintained
We first close the gap by a simple coarse triangular mesh. Suchby introducing non-linear constraints at the vertices.

a mesh can easily be constructed for any reasonable configuration Prospective work also has to address the investigation of explicit
with much less effort than constructing a piecewise polynomial rep- and reliable techniques to exploit the discrete curvature information
resentation. The boundary of this initial mesh is obtained by sam- for the detection of feature lines in the geometry in order to split a

pling the surfaces to be joined. given mesh into geometrically coherent segments. Further, we can

We then refine the mesh and, again, apply the discrete fairing try to identify regions of a mesh where the value of the curvature
machinery. The smoothness of the connection to the predefinedis approximately constant — those regions correspond to special
parts of the geometry is guaranteed by letting the blend surface geometries like spheres, cylinders or planes. This will be the topic
mesh overlap with the given faces by one row of triangles (all nec- of a forthcoming paper.
essary information is obtained by sampling the given surfaces). The
vertices of the triangles belonging to the original geometry are not
allowed to move but since they participate in the global faimess References
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Figure 7: Visualizing the discrete curvature on a finite element mesh allows to detect artifacts without interpolating the data by a continuous
surface.

Figure 9: Creating a “monkey saddle“ blend surface to join six planes. Any blend surface can be generated by closing the gap with a triangular
mesh first and then applying discrete fairing.
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Abstract

These course notes will attempt to answer the following questidfigat is
subdivision? How can the rules for subdivision schemes be derived in a systematic
manner? How can these rules be extended to handle special topological features
such as extraordinary points or creased¥e will argue that most subdivision
schemes correspond to a special type oftignid method that generates shapes
which solve (or nearly solve) a variational problem. These subdivision schemes
are influenced by two factors: the variational functional and the local grid topol-
ogy. Using a recipe based on this observation, we will build subdivision schemes
for several interesting examples including B-splines, minimum energy curve net-
works, membrane splines and fluid flow.

1 Introduction

Computer graphics intrinsically depends on the mathematical and algorithmic repre-
sentation of shape. Traditionally, smooth shapes have been represented using para-
metric representations such as B-splines or implicit representations such as algebraic
surfaces. During the last two decadashdivision has evolved as a simple yet flexible
method for the modeling of geometric shapes. Starting with a coarse polyhedron, a
subdivision scheme defines a sequence of increasingly dense polyhedra that converge
to a smooth limit shape.

Modeling with subdivision is simple and easy to implement since only discrete
geometric entities such as points, edges and polygons are involved. Furthermore, the
transformation rules that yield the next finer shape are simple weighted averages of the
vertices of the coarser shape. Thus these transformations can be implemented easily
and computed very efficiently. Yet, subdivision schemes are flexible since the actual
subdivision rules can be chosen very generally. Subdivision schemes can be evaluated
locally, that is to say if only some part of the whole model shape is of interest, compu-
tational effort has only to be expended on the evaluation of the shape in that localized
area. Finally, modeling with subdivision gives us a multiresolution representation of
the shapes for granted: The control polyhedra at coarser levels approximate the limit
shape well and can be refined arbitrarily. Throughout the last few years, multiresolu-
tion surface modeling systems have been presented that exploit this idea (see [5], [13]).



With these systems the user is allowed to modify the polygonal shape at any level of
subdivision and therefore has control over the shape of the object at any scale.

Much work has been dedicated to analyzing a subdivision scheme given as a set
of known subdivision rules. However, relatively little work has been done on methods
for systematically generating interesting subdivision schemes. Two main techniques
for generating subdivision schemes are known: Box-splines (see deBoor et. al [2]) are
based on the idea of repeated convolution and possess relatively simple subdivision
schemes. Unfortunately, box-splines are restricted to uniform grids. Extensions of
box-splines to topologically non-uniform grids (i.e. polyhedra) has traditionally been
done in a somewhat ad-hoc manner that defies generalization (see Loop [7]).

Variational methods (Kobbelt [4], Mallet [8], Warren and Weimer [10],[11]) gener-
ate subdivision schemes as the solution process to certain types of variational problems.
Given an initial shape, the subdivision scheme generates a sequence of shapes converg-
ing to a limit shape that follows the initial shape and minimizes a functional associated
with the variational problem. These notes will show that the actual rules for these
variational subdivision schemes are determined by two factors:

¢ the variational functional, and,
¢ the local grid topology.

Variational methods have been verycesassful in Computer Aided Geometric De-
sign because these rhets yield fair, smooth shapes. The beauty of the variational
approach to subdivision is that the known box-splines can be subsumed as a special
case (see Warren and Weimer [11]) with non-uniform grids being handled in a system-
atic manner. In these notes, we will demonstrate a simple "recipe” that allows one to
systematically design customized subdivision schemes. This method can easily handle
special topological features such as extraordinary points and creases. First, we review
some common methods for solving variational problems. As we shall see, these meth-
ods are intrinsically related to variational subdivision.

2 Multigrid

At its most basic level, variational modeling entails finding a shape defined over a
given domain that minimizes a given continuous functional. Due to the difficulties of
manipulating continuous functionals, a standard approach is to discretize the domain
and to convert the problem into one of minimizing a corresponding discrete functional.
By splitting the problem domain into a discrete gfidthe corresponding variational
solution can be approximated by a discrete coefficient vgztaith one value per grid
point in T. The beauty of this approach is that many important variational problems
can now be expressed as the minimization of a quadratic forEip whereE is a
symmetric, positive definite matrix whose entries depend on the variational functional.
This matrixE is often referred to as thenergy matrixassociated with the vari-
ational problem.E expresses a discrete approximation to the continuous variational
functional overT. Using basic calculus, it is easy to show tipdE p is minimized
if and only if E p= 0. Based on this observation, the rowstoare often viewed as



discrete differences that approximate the partial differential equation associated with
the variational problem (via the Euler-Lagrange equations). Snéep is trivially
minimized by p = 0, extra conditions are imposed on the minimization to ensure a
non-trivial solution. As we shall see, the choice of these extra conditions is very im-
portant. For now, we simply consider systems of the form

Ep=Dh

where the entries df capture the associated boundary conditions.

This system of linear equations can be solved using a direct solver, such as Gaus-
sian elimination. However, in many cases, the gridnd its associated energy matrix
E is so large that using a direct solver is impractical due to running time and space
requirements. Fortunately, the matrid@sssociated with most variational problems
are very sparse. Traditional iterative solution methods such as the Jacobi or Gauss-
Seidel iteration can solve such systems of moderate size. Given an initial guess, these
methods produce increasinggcurate solutions using localized, iteratiyglate oper-
ations. See Varga [9] for an introduction to these techniques.

However, in practice, these iterative solution methods exhibit a very curious behav-
ior: high-frequency errors are eliminated very fast, within a few iterations. However,
low-frequency errors, governing the global appearance and nature of the solution, are
eliminated only very slowly. In fact, one often observes that iterative solvers of this
type "stall” after a certain number of iterations and the solution only improves very
marginally once high-frequency errors have been eliminated. Multigrid methods try to
circumvent this problem of "stalling”. Using a sequence of denser and denser grids,
multigrid computes solutions in a hierarchical fashion. If we denote the sequence of
domain grids byT; and the corresponding energy matricesepythen the multigrid
method attempts to find a sequence of vectpisatisfying the equation

Eipi =b; ()

for increasingi, i.e. for increasingly dense grids. Typically, the solution process at
leveli consists of three steps (see Briggs [1] for more details):

1. Prediction: Compute an initial guespi0 to the exact solutionp;. This initial
guess is derived from the solutigg.1 on the next coarser grid using some type
of linear prediction function. In terms of matrix notation, this prediction step can
be written as

p’ = S-1pi-1

whereS_1 is a matrix that maps vectors oVEL 1 to vectors oveff;. In multigrid
terminology,S-1 is a prolongation operator. A common choice for this predic-
tion operation in a typical multigrid method is piecewise linear interpolation.

2. Smoothing: Improve the guesp? usingk rounds of an iterative method such as
Jacobi or Gauss-Seidel iteration. These iterative methods have the form:

I = Apl +Bib )



whereA; andB; are matrices that depend Bpand the type of smoothing method
chosen. If we let! denote the residudip/ — bj, then this residual decreases
according to the equation: ' '

3. Coarse grid correction: Restrict the residuar to the next coarser grifi—; by
eliminating all entries imk which do not correspond to a gridpointin.;. Given
this restricted residual_1, solve the equatioBij_16_1 = ri—_1 onTi_1. Finally,
add the correction term = S_16_1 to the current approximatiogf‘.

Note the interaction of these three steps: At a given level of the multigrid process,
high frequency errors are eliminated very rapidly due to the smoothing in step two. Of
course, low frequency errors still remain after smoothing. However, restricting these
low frequency errors to coarser grids eventually turns the errors into high frequency
errors which are quickly eliminated by the smoothing operation on the coarse grid. In
practice, multigrid has proven very effective at solving systems of linear equations of
this type. As we shall see in the next section, multigrid and subdivision are intrinsically
related.

3 Subdivision

For those familiar with subdivision, it is clear that subdivision and multigrid share some
striking similarities. Each method produces a sequence of veptahst converge to
some "interesting” limit shape. In fact, if we closely examine the structure of multigrid,
we can express subdivision as a special case of multigrid. Consider a version of multi-
grid in which only the prediction step is carried out at each level (i.e. the smoothing
and coarse grid correction steps are omitted). This process would define a sequence of
vectorsp? satisfying

P =S-1p’ 1.

This process is exactly subdivision! The predic8r; is simply a subdivision
matrix. Of course, the limit shape produced by this process depends on the type of pre-
dictor chosen. For a typical multigrid predictor, such as piecewise linear interpolation,
the limit of the p? asi — o is just a piecewise linear shape. To have any hope that this
subdivision process might produce a reasonable solution to the actual variational prob-
lem, we must base the predic®very carefully on the particular variational problem.
Note that if the predicto§ happens to produce a solutigd whose corresponding
residualr? is always zero, then the smoothing and coarse grid correction steps could be
omitted without difficulty. Predictor§ which produce zero residual aperfect pre-
dictorsin the sense that they produce perfeetbcurate solutions. ubdivision using
perfect predictors produces shapes that exactly satisfy the variational problem. We next
give a simple characterization for a general class of perfect predgtiorserms of the
energy matriceg;.



3.1 Perfect predictors

By definition, the solution vectorp; satisfy the equatiok; p; = b; where the matrix

E; is a discrete version of the variational functionalnThe vector; characterized

the boundary conditions of the variational problemTanThe key in our derivation of
perfect predictors is the structure of the right-hand $ideln particular, we suggest

a specific structure for thi that results in a multigrid scheme with perfect predic-
tors whose rows are either locally supported or highly localized. In particular, this
choice replicates many known subdivision schemes such as those for B-splines and
box-splines.

Let U; be theupsampling matrixthat takes a vector ovék into a vector over the
next finer gridTi+1. U; maps the entries of these vectors as follows: entries correspond-
ing to grid points inT; are replicated; entries corresponding to grid point§in — T;
are set to zero. Thus, the upsampling matkixonsists of rows that are either zero (for
new grid points) or a standard unit vector (for old grid points). Now, if we chbpte
have the form

bi = Ui—1Ui—2...UoEg o,

then equation 1 becomes

Eipi = Ui—1...UoEopo. Q)

Standard interpolatory methods force minimization where the solugioimgerpolate
the values ofpg on the initial gridTp. Instead, equation 3 forces minimization where
the differencess; p; interpolate the differenceBppo at grid points ofTp. Repeated
upsampling forces the remaining difference&gdi at grid points inT; — Tp to be zero,
thus ensuring minimization gi' E p (see Warren and Weimer [11] for more details).
Given this framework, we can now characterize perfect predictors for the multigrid
scheme defined by equation 3.

Theorem: Given a solutiorp;_1 to equation 3, lep; be the guess produced by the
predictor§_1 (i.e. pi = S—1pi—1)- If S—1 satisfies the equation

ES-1=Ui—1E_1, (4)

thenS_; is a perfect predictor.

Proof: Multiply both sides of equation 4 bgi_1 from the right. Next, apply the
right-hand side of equation 3 #_1pi—1. Sincep; = S_1pi—1, we have shown thaj
also satisfies equation 3.

3.2 Example: Minimum energy curves

Historically, splines were a commonly used drafting tool in mechanical and engineer-
ing design, before the advent of computer aided design systems. Using a thin, flexible
strip of metal or wood a designer could draw smooth curves by first anchoring the strip
to a sequence of+ 1 points on the drafting table and then letting the strip slide freely
into a minimum energy configuration. Mathematically, this strip of metal or wood
could be modeled by a curny@t] wheret € [0,n] (as a convention throughout these



notes, continuous functions are denoted by bold face letters). The bending energy of
p[t] can be approximated by the continuous functional

Efpl)= | P2t ©

The associated variational problem is to minimEfgp[t]] subject top[j] interpolat-
ing the jth anchor point. The minimizing functions for this particular problem are
well-known: p[t] is a C? piecewise cubic function known asratural cubic spline
Cubic splines are one of the fundamental tools of geometric design. In particular, they
possess a locally supported basis, the B-spline basis, with a number of remarkable
properties including a particularly simple subdivision scheme. Our goal in this section
is to discretize cubic splines, convert the problem to the multigrid setting and then to
systematically derive the subdivision scheme for cubic B-splines as a consequence of
equation 3. Later throughout these notes we will generalize this methodology to derive
subdivision schemes for other interesting variational problems.

A typical discretization of the problem from equation 5 is to replgitEby a poly-
gon p = (po, P1,---P2n). The even index vertices gf are placed at the+ 1 anchor
points. The remaining, odd index vertices pfire positioned such that the discrete

bending energy op is minimized. Thus, the verteg; should approximatp B} In
this case, the discrete analogkip[t]] is the functional

2n—1
E[R=8Y (Pj-1—2pj+pj+1)> (6)
=1

The termpj_1— 2p; + pj+1 is a discrete approximation to the continuous expression
p@[t]. The summation is the discrete analog of integration. The constant 8 arises due
to the half integer grid spacing. This spacing causes the second difference term to be
normalized by a factor of 4. Squaring these terms raises this factor to 16. This spacing
also introduces an extra factorg)fnto the summation. Thus, the total effect of halving

the grid spacing is to multiply the energy functional by a factor of 8.

Moving this process into a multigrid setting, the polygprs replaced by a se-
quence of polygong; each of whom have 2 vertices. Each polygop; has those
vertices with indices that are multiples dffied at the anchor points. The remaining
vertices are positioned to minimize the functional

~ 2n-1
E[pi] =8+ Z ((pi)j—l_z(pi)j+(pi)j+l)2'
=1
Since these discrete functiondt$p;] converge to the continuous functior&g]p|t]]
asi — o, the polygonsp; converge tap[t] asi — . Using the energy matrices
associated with the discrete functional we can write

E[p] = p Epi

where, away from the boundary, the rows of the matrigeare all shifts of the single
sequence '& (1,—4,6,—4,1). Note that this sequence encodes the mask for a fourth
difference.



To employ equation 3, we distinguish two kinds of local grid configurations. The
interior of the polygor; is topologically uniform with all grid points looking similar.
Near the boundary of the grid, i.e. at the endpoint@ofwe distinguish among the
grid points based on their distance from the actual boundary. Our goal is now to find
two perfect predictors, one for the interior of the polygon and one for the endpoints
of the polygon. For the interior, we note that upsampling consists in splitting coarse
coefficients apart by inserting a 0 inbetween any two adjacent coefficients. In terms of
matrices, the conditioB;S_1 = Uj_1Ej_1 can be written as

—4 -4 1 0

1 6 0 0o 0.
0 1 -4 6 -4 1 0 0 0.
8 0 O 1 -4 6 -4 1 o 0 . S_1=
0 O 0 1 -4 6 -4 1 0.
0 O 0 0 1 -4 6 -4 1 .

[eNeNeNeNolt
[oNeNeNoll )
OO Fr oo
PO OOOoO"
[eNeNeolNoNe]

Here, the dots indicate that only a small portion of the matrices is shown. However,
since the rows in the system repeat, this portion is sufficient to determine a perfect
predictor for the interior of the grid. Since this system is rank deficient, there is more
than one possible solution to the system above. However, there is one particularly nice
solution with minimal support. This predictor has the form

[eNeNeoNeNoNoll i N0 BN
[oNeoNeNall o Y
oOCoORrRrh~MOMRLOO:"
PO PMARRPLPOOOO
O OOOOCOO

This matrix exactly encodes the subdivision scheme for uniform cubic B-splines due
to Lane and Riesenfeld [6]. Note the simple structur&§of: all columns contain the
same sequence of coefficierfis4, 6,4, 1) and the matrix has a 2-to-1-slant, i.e. as we
go over one column to the right, the column is shifted down by two. The action of
S-1 on a polygonp;_1 is as follows: vertices ofy are positioned to lie either on the
midpoint of edges ofj_1 or near vertices op;_1 (by takingg of a vertex plu% of

both of its neighbors).
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Figure 1: Subdivision for cubic B-splines.

The second type of subdivision rule arises at the endpoints of the polygons. There,
the matrices€s; have a slightly more complicated structure. Equation 4 has in this case

the form
1 -2 1 0 0

0
2 5 -4 1 0 0
-4 6 -4 1 0

R OoOooo

1
8l 0 1 -4 6 -4 1 S-1=
0 0 1 -4 6 -4

100 00 1 -2 1

0 00O0O 2 5 _4

01000 1 -4 6

0 00 0O 0 1 -4

00100 0 0 1

Itis now easy to verify tha§_1 has the form

8 0 0
4 4 0
1 6 1
11 0 4 4
S-1=g| 0 1 6
00 4
00 1

Again,S_1 has a simple structure. Its first row forces the endpoim; ob interpolate
the endpoint opi_1. The remaining rows agree with interior subdivision rules. In fact,
this rule produces cubic splines satisfying the natural boundary condition.

These predictors (subdivision ruleS)can easily generate arbitrarily dense poly-
gonsp;. Because these predictors are perfect (i.e. satisfy equation 4), trgopsp;
converge to the natural cubic splipé]. Figure 1 shows an example of three rounds



of prediction (i.e. subdivision) applied to the initial polygé(0,4), (1,12), (2,10),
(3,5), (4,8)}.

4 A recipe for variational subdivision

The previous section argued that subdivision can be viewed as a multigrid method that
employs a perfect predictor. In every round of the multigrid process, the predictor pro-
duces an error free guess for the next solution. Thus, smoothing and coarse grid error
correction are rendered unnecessary. As an example, we derived perfect predictors
for cubic B-splines and noted that the resulting matrices have a very simple structure
with local support. This section presents a general "recipe” for creating a variational
subdivision scheme based on these ideas. The recipe is outlined in figure 2 below.

1. Define a discrete variational functional,

2. Generate a catalog of simple mesh types arising in the
problem,

3. For each mesh type, solve for the locallpported pre-
dictor S that minimized |ES_1— Ui_1Ei_1]|.

Figure 2: A recipe for custom subdivision schemes.

The minimization process in step 3 is necessary because for many important prob-
lems a perfect predictor with local support does not exist. However, by restrigting
to have fixed support and minimizing the equatjf#S_1 — Ui_1Ei_1||, we can com-
pute predictors that produce a reasonaugurate approximation to the exact solution.
The corresponding subdivision schemes are locally supported and produce limit shapes
that are good qualitative approximations to the exact solution. In fact, by increasing
the support ofS_; the solution can be made arbitrarily precise. Of course, highly
local schemes cannot match taecuracy of a full mliigrid method. However, at a
minimum, they provide an excellent initial guess for the smoothing and coarse grid
correction portions of full multigrid.

4.1 Relation to other work

Subdivision has been studied significantly over the course of the ¢astdds. The
specific link between subdivision and variational problems has also been investigated
by Kobbelt [4] and Mallet [8]. Each proposes subdivision schemes consisting of a
simple predictor (perhaps piecewise linear interpolation or some known subdivision
scheme) followed by some number of smoothing steps. (In multigrid terminology, this
process is referred to as nested iteration.) Both authors neglect the possibility that
a predictor customized to the particular variational problem might produce superior
results.



Both Kobbelt [4] and Mallet [8] propose interpolatory schemes. The schemes pro-
posed here are approximating in the sense that the limit shape follows an initial shape
while minimizing the variational problem. Traditionally, approximating functions,
such as B-splines, have been more successful in geometric design applications than
their interpolating counterpartebause the refting solutions typically oscillate less
and have more localized support. In some cases (e.g. B-splines and box-splines), there
exist exact, approximating schemes with locally supported bases whose interpolating
counterparts have globally supported bases. Finally, there exist variational problems
whose interpolating schemes do not converge in any reasonable sense, while their ap-
proximating counterparts do. One such example are the membrane splines discussed
later in the paper.

5 Examples

This section applies the recipe of figure 2 to several interesting example problems.
First, we generalize the subdivision scheme for minimum energy curves (B-splines)
given in the previous section to a network of curves. Next, we derive a subdivision
scheme for surfaces that mimic an elastic membrane. Then, we combine these two
problems and produce a subdivision scheme for a minimum energy curve network
connected by elastic membranes. Finally, we conclude with some ideas on further
applications of the recipe.

5.1 Minimum energy curve networks

In the case of minimum energy curves, our analysis was carried out entirely in the
discrete domain using a sequence of polygons. Here, we take a similar approach for
curve networks. Apolygon networkconsists of a set of vertices connected by a set

of edges. Note that more than two edges in the network may be incident on a single
vertex of the network. Topologically, subdivision of a polygon network corresponds to
splittingeach edge into twoannected edges. In this framework, a curve network is the
limit of a sequence of increasingly dense polygonal networks produced by subdivision.
Our goal is to construct subdivision rules that position vertices on the polygon network
such that the limit of the process is a minimum energy curve network.

5.1.1 Define the energy functional

We first need to generalize the functional of equation 6 to the case of polygon net-
works. The crux of the functional in equation 6 was the tgim; — 2pj + pj41. This
expression measured the amount that the polygem, pj, pj+1) "bends”. In the case

of polygon networks, several curves may pass through a vertex. Thus, several terms
of this form may be necessary for each vertex. \Wggest tagging théth vertex of

the network with a lis[j] of neighbor pairs. This tagging scheme allows the user a
great deal of flexibility in creating interesting polygon networks. The discrete energy
functional for the polygon network can be written as:

10



pil [alj]]
Elp]=83 > ((Pi)ajxy— 2Pkt () 2)> (7)
J=1k=i
Inheritance of these tags during subdivision is straightforward. A new vertex is inserted
between a pair of adjacent old vertices and is assigned a single tag pair consisting of
the two old vertices. Neighbor tags for old vertices are updated by replacing an old
adjacent vertex with the vertex inserted on the cqoesling edge.

5.1.2 Generate a catalog of simple mesh types

We next identify the various types of local configurations that are possible in a poly-
gon network. In theory, there are an infinite number of possible configurations. For
example, any number of curves can pass through a common vertex! In practice, we
focus on a few canonical vertex configurations and analyze those. The simplest two
vertex configurations have already been identified and analyzed. For vertices on the
interior of a curve and at the isolated endpoint of a curve, the energy functional of
equation 7 degenerates into the energy functional of equation 6. Since the analysis of
the previous section was entirely local, the subdivision rules for these two vertex con-
figurations remain unchanged. Due to the interpolatory nature of the endpoint rule, the
rule for several curves terminating at a common vertex remains simple interpolation.
We now focus on three important types of vertex configurations. Other types of vertex
configurations can typically be expressed as variants or combinations of these three
configurations.

e X vertex: Two curves smoothly intersecting at a vertex.
¢ Y vertex: One curve smoothly branching into two curves at a vertex.

o T vertex: One curve terminating at a vertex on a smooth curve.

5.1.3 Solve for locally supported predictors

To apply equation 4 for a particular vertex configuration, we first construct the matrices
E; appropriate for the configuration. As in the previous case, all polygons incident
on the vertex are assumed to extend infinitely. Note that this assumption causes the
topology of the network to be locally invariant under subdivision. As a result, all
matricesk; are multiples of a single common, infinite matix Given this matrix
E, we next construct the predict& defining the subdivision scheme at the vertex.
First, we fixed the support of the rows 8fto have an appropriate size (in this case,
support equivalent to that of cubic splines). Next, we construct the nfatwixh non-
zero entries expressed as indeterminates. Extra conditions such as constant precision,
linear precision or symmetry can also be enforced in terms of constraints on these
indeterminates.

Given the matriceg andS, we are now ready to minimize the matrix expression
||8E S—U E||. This expression can be minimized with respect to a variety of norms.
In general, we recommend using teenorm (although we have also used the 2-norm).

11



Due to the repetition of rows i, minimizing this norm leads to a linear program

in a small number of variables that can be solved in a reasonably efficient manner
(see [10] for more details). Unfortunately, these vertex configurations do not admit
perfect predictors with local support, i.e. the matrix norm cannot be forced to zero.
However, they do have simple, locally supported rules that provide a quite reasonable
approximation to the true minimizer. Figure 3 summarizes these rules.

1 1 1 1 2 12 2
12 \12 (
2

Figure 3: Subdivision rules for various vertex configurations

Figure 4 shows three curve networks produced by these rules and compares them
to the true minimum energy curve networks. The top row shows an example using
the X rule. The middle row shows an example using the Y rule. Note that the locally
supported subdivision rule for a Y vertex fails to produce the smooth branching of the
exact minimum energy curve network because the exact solution is globpfipged.

The bottom row shows an example using the T rule. Based on experimentation with a
wide range of vertex configurations, we propose a general rule for subdivision at vertex
i of the original network. Le#g[i] be the list of neighbor pairs associated with vertex

i: weight vertexi by %; weight the remaining neighbors of verteky the number of
times that they appear ali] divided by 8« |a[i]|. Note that this general rule reproduces
the special rules given in figure 3.

5.2 Membrane splines

This section develops a subdivision scheme producing splinacagthat behave like

an elastic membrane. Given a triangulated polyhedron, the scheme produces a se-
guence of increasingly faceted polyhedra using the standard 4ntuiter face split.

The resulting sequence of triangulated polyhedra converges to a surface that follows
the initial polyhedron and approximately minimizes a simple notion of discrete elas-
tic energy. This scheme is essentially a generalization of the functional subdivision
scheme based on Laplace’s equation that appeared in Warren and Weimer [11].

5.2.1 Define the energy functional

Given a polyhedrom with triangular fices, lei] denote a list containing the indices
of those vertices adjacent to vertexOne reasonable measure of the elastic energy of

12
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Figure 4: Initial networks (left), minimum energy curve networks via subdivision (mid-
dle), and exact solutions (right).

p is the sum of the squares of the edge lengthg in

1 19l i .
Elp] = E-Z\ > (i — Pqij) " (8)

=1 ]=I

If E[p] is expressed in matrix form g8 E p, thenE is simply the Laplacian of the poly-
hedronp. In the case of polygon networks, a normalizing constant afe& necessary
when generalizing the functional to a sequence of polygon netwgrigsoduced by
subdivision. For membrane energy, this constant conveniently works out to be 1: The
factor 4 induced by doubling the edge length is canceled by the fédtmrsumming

over a two-dimensional mesh. Therefore, the functional of equation 8 can be applied
independent of the level of subdivision.

5.2.2 Generate a catalog of simple mesh types

Cataloging different types of local topologies for triangular meshes is straightforward.
The standard approach is to classify the mesh locally based on the valence of a vertex.
In the uniform case, all vertices of a triangular mesh have valence 6. Vertices with
valence other than 6 are classifiedeatraordinary points Since subdivision leaves

the valence of these vertices unchanged while introducing only new vertices of valence
six, the meshes in our catalog consist of a single extraordinary point surrounded by an
infinite uniform triangular mesh. Note that the infinite energy madiressociated with

such a mesh is again independent of the level of subdivision.

13



5.2.3 Solve for locally supported predictors

Our approach follows that for polygon networks. Each mesh type, construct the
associated energy matrixand fix a support for the predict& (For membranes, we
suggest the same supportas used in Loop’s scheme [7]). Then, minimize the expression
|[E S —U E|| where the entries d are treated as unknowns. Typically, the ruleSof
are first computed in the uniform case (i.e. valence 6). These uniform rules can then
be used to pad the matr8that expresses the subdivision rules at extraordinary points.
As in the case of minimum energy curve networks, it is impossible to satisfy
E S=U E exactly. Therefore, there does not exist a locally supported subdivision
scheme that behaves exactly like a membrane. However, there do exist simple, locally
supported subdivision rules that provide a reasonable approximation to the behavior of
a membrane. Figure 5 summarizes these rules. Note that these rules are not the exact
minimizer of ||E S — U E||, but have the property that they are simple and close to the
true minimizer.

Figure 5: Subdivision rules for membrane splines.

The figure 6 shows an example application of this subdivision scheme. A coarse
octahedron is shown on the top with increasing levels of subdivision below. Note
that the subdivision scheme produces a very "spiky” shape. This effect models the
behavior of an elastic membrane. The surface spikes at coarse vertices and stretches
into a narrow tube to produce low elastic energy. In general, the subdivision scheme
yields a good low frequency approximation of the exact minimizer, in the sense that the
overall shape of the resulting objectaicurate. However, there are also smaller spikes
scattered over the surfaces away from the original coarsest vertices. These extra spikes
are a result of the fact that the approxim&tased in the subdivision scheme does not
exactly satisffE S = U E. Specifically, those differences Bf Scorresponding to new
vertices are not exactly zero as required.bi.

At this point, we have two options. The first option is to increase the support
of the predictorS. This change will produce a better predictor and a nameurate
subdivision scheme. However, the resulting shapes will still exhibit the same problem
(although at a much reduced scale). Also, manipulating subdivision rules over larger

14
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Figure 6: Membrane spline defined via subdivision. Some of the large spikes were
truncated to focus on the interesting parts of the figure.

supports can be difficult due to the interactions of extraordinary points on the initial
coarse grid.

The second possibility is to employ several rounds of smoothing efteln ound
of subdivision (as proposed by Kobbelt [4] and Mallet [8]). Aféarch ound of subdi-
vision, we suggest running several rounds of smoothiitly one crucial modification
Recalling equation 2 (one round of subdivision with= U;_1E;_1pi—1), we can ex-
press standard smoothing as

/= Ap)+Bi(U1Ei_1pio) ©

whereA; andB; depend ork;. Sincep;—1 has been produced by an inexact subdivision
scheme, many of the differences i1 pj—1 that are zero for the exact scheme are
actually non-zero for the inexact scheme. Instead of propagating these non-zero dif-
ferences, we suggest modifying the upsampling matiix in equation 9 to upsample

only those differences whose corresponding exact differences are non-zero. Typically,
this change causes only differences corresponding to a subset of the vertige® in

be upsampled. (Some entriesbnpy may also be exactly zero.)
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Figure 7: Membrane spline defined via subdivision plus smoothing (3 rounds per level).
Some of the large spikes were truncated to focus on the interesting parts of the figure.

This modified smoothing effectively eliminates the extraneous spikes of figure 6
due to their high frequency nature. Combining the low frequency accuraSymith
the high frequency correction of smoothing yields a subdivision scheme that is visu-
ally accurate. Note that because the overall, low frequency shape yielded by the local
subdivision schem8is very close to the exact solution, only a few rounds of smooth-
ing are necessary to eliminate all high frequency noise. Figure 7 shows this combined
scheme (employing 3 rounds of Jacobi smoothing) applied to the coarse octahedron.
The surface at the bottom of figure 7 is the exact solution.

Note that this subdivision scheme for membrane splines is approximating, not in-
terpolating. In particular, the spikes pf do not interpolate the vertices of the coarse
polyhedronpg. Instead, the spikes are determined by the differenc&p @b. If one
of these initial differences is zero, then the corresponding limit surface is smooth at
this vertex. Figure 8 illustrates a modification of the octahedron in which the bottom
vertex has been pushed upward to form a square pyramid. Again, the exact solution
is on the bottom right. Since the base of this pyramid is now planar, the difference in

16



Ep po corresponding to this vertex is zero and, thus, the limit surface is smooth at this
vertex.

Figure 8: A membrane spline for a square pyramid (3 rounds of smoothing per level).

Finally, note that the lengths of the spikes in figures 7 and 8 diverge very gradually
as the number of rounds of subdivision increases. Fortunately, the exact scheme is
convergent everywhere except at the tips of these spikes. If instead one attempts to
force interpolation at the tips of the spikes, i.e. interpolation of the coarsest control
points pp, the resulting scheme converges to a limit surface consisting of a collection
of infinitesimally thin spikes joined at the centroid af.

5.3 Membrane splines and minimum energy curve networks

The final example combines the subdivision schemes for minimum energy curve net-
works and membrane splines. The resulting scheme producesssithat mimic an
elastic membrane connecting a network of minimum energy curves. The input to the
scheme is an initial triangulated polyhedrpmand a subsat[po] of the edges ofy

that forms a discrete polygon network. Subsequent polyhpdase defined by 4-1
triangular face splits with the polygon network tags being inherited as usual.

17



5.3.1 Define the energy functional

If En andE, are the energy functionals for curve networks and membranes respec-
tively, then the functional for the combined scheme can be written as:

E[p] = A En[n([pl] + Em[p]. (10)

As A increasesk[p| is dominated by the energy of the curve netwBgkn[p]]. In the
limit, as A — oo, the surface behaves like a minimum energy curve network[ph
and an elastic membrane that interpolates the curve network on the pedf &{p] is
written in matrix form, then

E[p]= p'(AEn+ Em)p.

If the rows of E,, andEp, are viewed as defining two sets of differences, one set char-
acterizing curve networks and the other one characterizing membranes, then these ma-
trices can be merged into a single difference malithat captures the behavior of

the functional a3\ — oo: For vertices im[p], place the corresponding rows Bf into

E. For the remaining vertices g, place the corresponding rows Bf, into E. The
resulting non-symmetric difference matiixcharacterizes surfaces consisting of a set

of elastic membranes interpolating a minimum energy curve network.

5.3.2 Generate a catalog of simple mesh types

For vertices on the curve network, no new cataloging is hecessary since the membrane
energy has no effect on the curve network. As a first attempt, we distinguish vertices
on the interior of the membrane by their valence. Later, we will see that this catalog is
insufficient.

5.3.3 Solve for locally supported predictors

Since the catalog of simple mesh types for this combined scheme is simply the union
of the two previous catalogs, the subdivision rules for minimum energy curve networks
and membrane splines can be reused. The middle portion of figure 9 depicts several
rounds of this combined subdivision scheme (without smoothing) applied to an initial
octahedron (left) with two red curve loops lying on its sud.

Figure 9: Base octahedron (left) basic subdivision scheme (center left) , augmented
subdivision scheme (center right) and subdivision with three rounds of smoothing at
every level (right).
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Note that the resulting surface fails to behave like a membrane away from the curve
network. In particular, it bulges outward and exhibits large spikes at grid points that
should actually be smooth. The reason for this bad behavior is that the subdivision
matricesS produced by the combined scheme are a poor solution to the equation
EiS_1 = Ui_1Ei—_1. The large residuals that result cause the spikes in the center left

—
> 9
e

Figure 10: Several curve loops on a octahedron connected by elastic membrane subdi-
vision (left) and exact solution (right).

There are two solutions to this problem. First, we could augment our catalog of
local mesh topologies and design specialized subdivision rules for membrane vertices
that are employed near the curve network. These rules can be derived using a straight-
forward application of our standard recipe. The center right portion of figure 9 shows
an example application of these custom rules (with the same support as before) applied
to the base octahedron. Note that the large spikes are absent and the surface behaves
more like a membrane. However, the smaller high frequency spikes that plagued the
pure membrane scheme are still present. Another obvious drawback of this solution is

19



Figure 11: A catenoid defined through subdivision and the exact solution (lower right).

that the resulting catalog of custom subdivision rules would be immense. The second
solution is more passable. We simply apply several rounds of the modified smooth-
ing used in conjunction with membrane splines. The smoothing eliminates the high
frequency spikes that result from the incompatibility of the membrane rules with the
curve network as shown in the right of figure 9.

Figure 10 shows an example of this scheme applied to an initial octahedron with
one, two and three minimum energy curve loops on itsssef The left column depicts
the result of subdivision combined with three rounds of smoothing per level; the right
column depicts the exact solution. Figure 11 shows a classical shape from surface
modeling, a catenoid. A cateniod is an elastic membrane that joins two parallel, circular
rings. The main characteristic of this shape is an inward pinching of the membrane to
minimize its elastic energy. The upper left portion of the figure depicts the initial
polygon pop for the cateniod. Vertices gy on the interior of the membrane were
positioned such thdypg is zero for these vertices, thus forcing the membrane to be
smooth on its interior. The remaining portions of the figure depict subdivision plus
smoothing. The resulting smooth subdivision surface is shown in the lower left and the
exact solution on the lower right.
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5.4 Other applications
5.4.1 Subdivision scheme for lofted curve networks

Given a curve network, one typical problem is lofting: produce a surface that inter-
polates the curve network smoothly. The beauty of equation 10 is that the surface
functional used in place dE, can be very general. If this functional penalizes sur-
face bending across edges in the curve network, the resultingcssriwill tend to
interpolate the curve network smoothly. The top row of figure 12 depicts an exam-
ple of a smooth subdivision scheme that interpolates the red minimum energy curve
network. Note that the surface has a discontinuous tangent plane across the upper red
curve. The bottom row depicts the same scheme adjusted to produce a surface that lofts
(i.e.smoothly interpolates) the curve network. The scheme is based on the following
discrete functional for triangulated polyhedra: edges oéealjt triangles contribute
energy based on their deviation from forming a parallelogram. An interesting prob-
lem for future work is developing a set of subdivision rules for a lofted version of the
scheme of Loop [7].

Figure 12: A subdivision surface smoothly interpolating a simple curve network

5.4.2 Subdivision scheme for fluid flow

Our last example does not involve modeling surfaces. Instead, we consider modeling
vector fields. In this case, the matridgsare derived from the Navier-Stokes equations

that characterize the behavior of a fluid. A discrete vector i(el@i ) satisfies these
|

equation ifE; ( \lj' ) = 0. Our approach is to use equation 4 to derive a set of sub-
1

division rulesS_; such that;S_1 ~ U;_1Ei_1. The resulting subdivision scheme for

vector fields has the form:
Ui _ Ui—1
(W)= (W)

Asi — oo, the limit of these discrete fields is a continuous vector field that follows the
initial vector field( 30 ) and nearly satisfies the underlying Navier-Stokes equations.
(o
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Weimer and Warren [12] describe this scheme in complete detail. Figure 13 gives an
example application of this scheme in three dimensions. Shown are a coarse, user-
defined vector field around a cylinder (left) and two rounds of subdivision (center left
and center right). The right portion of the figure depicts particles being tracedghr

the resulting smooth flow field.

Figure 13: Subdivision for fluid flow.

6 Summary

These course notes presented a recipe for the derivation of custom subdivision schemes.
Following a few simple steps, this recipes allows one to derive schemes that model a
range of interesting objects described in terms of discrete energy functionals. The
examples demonstrated how subdivision rules for cubic B-splines, minimum energy
curve networks and membrane splines can be derived using this recipe. Finally, a
combination of energy functionals was used to derive a scheme that merges minimum
energy curve networks with membranes.
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Subdivision Surfaces in Character Animation

Tony DeRose Michael Kass Tien Truong

Pixar Animation Studios

Figure 1: Geri.

Abstract ing provably smooth variable-radius fillets and blends. Second, we
developed methods for using subdivision surfaces in clothing sim-
The creation of believable and endearing characters in computerulation including a new algorithm for efficient collision detection.
graphics presents a number of technical challenges, including theThird, we developed a method for constructing smooth scalar fields
modeling, animation and rendering of complex shapes such ason subdivision surfaces, thereby enabling the use of a wider class
heads, hands, and clothing. Traditionally, these shapes have beewf programmable shaders. These developments, which were used
modeled with NURBS surfaces despite the severe topological re- extensively in our recently completed short fideri's game have
strictions that NURBS impose. In order to move beyond these re- become a highly valued feature of our production environment.
strictions, we have recently introduced subdivision surfaces into our ) ) )
production environment. Subdivision surfaces are not new, but their CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
use in high-end CG production has been limited. ometry and Object Modeling; 1.3.3 [Computer Graphics]: Pic-
Here we describe a series of developments that were requiredtUre/Image Generation.
in order for subdivision surfaces to meet the demands of high-end

production. First, we devised a practical technique for construct- 1 Motivation

The most common way to model complex smooth surfaces such
as those encountered in human character animation is by using a
patchwork of trimmed NURBS. Trimmed NURBS are used pri-
marily because they are readily available in existing commercial
systems such as Alias-Wavefront and Softimage. They do, how-
ever, suffer from at least two difficulties:

1. Trimming is expensive and prone to numerical error.

2. It is difficult to maintain smoothness, or even approximate
smoothness, at the seams of the patchwork as the model is



Figure 2: The control mesh for Geri’'s head, created by digitizing a
full-scale model sculpted out of clay.

(© (d)

animated. As a case in point, considerable manual effort was Figure 3: Recursive subdivision of a topologically complicated
required to hide the seams in the face of Woody, a principal mesh: (a) the control mesh:; (b) after one subdivision step; (c) after
character infoy Story two subdivision steps; (d) the limit surface.

Subdivision surfaces have the potential to overcome both of these

problems: they do not require trimming, and smoothness of the = | . ) N .

model is automatically guaranteed, even as the model animates. ~@nimation of clothing, however, poses its own difficulties which we
The use of subdivision in animation systems is not new, but for a @ddress in Section 4. First, it is necessary to express the energy

variety of reasons (several of which we address in this paper), their function of the clothing on subdivision meshes in such a way that

use has not been widespread. In the mid 1980s for instance, Sym the resultlng _m_otlon does not |nappropr|atgly reveal the struc'ture

bolics was possibly the first to use subdivision in their animation of the subdivision control mesh. Second, in order for a physical

system as a means of creating detailed polyhedra. The LightwaveSimulator to make use of subdivision surfaces it must compute col-

3D modeling and animation system from NewTek also uses subdi- liSions very efficiently. While collisions of NURBS surfaces have

vision in a similar fashion. been studied in great detail, little work has been done previously
This paper describes a number of issues that arose when weWith subdivision surfaces. o

added a variant of Catmull-Clark [2] subdivision surfaces to our  Having modeled and animated subdivision surfaces, some

animation and rendering systems, Marionette and RenderMan [17], formidable challenges remain before they can be rendered. The

respectively. The resulting extensions were used heavily in the cre- topological freedom that makes subdivision surfaces so attractive

ation of Geri (Figure 1), a human character in our recently com- for modeling and animation means that they generally do not

pleted short filmGeri's game Specifically, subdivision surfaces ~admit parametrizations suitable for texture mapping. Solid tex-

were used to model the skin of Geri’s head (see Figure 2), his hands,tures [12, 13] and projection textures [9] can address some pro-

and his clothing, including his jacket, pants, shirt, tie, and shoes. ~ duction needs, but Section 5.1 shows that it is possible to go a good
In contrast to previous systems such as those mentioned abovedeal further by using programmable shaders in combination with

that use subdivision as a means to embellish polygonal models, ourSmooth scalar fields defined over the surface.

system uses subdivision as a means to define piecewise smooth sur- The combination of semi-sharp creases for modeling, an appro-

faces. Since our system reasons about the limit surface itself, polyg-Priate and efficient interface to physical simulation for animation,

onal artifacts are never present, no matter how the surface animategnd the availability of scalar fields for shading and rendering have

or how closely it is viewed. made subdivision surfaces an extremely effective tool in our pro-
The use of subdivision surfaces posed new challenges through-duction environment.

out the production process, from modeling and animation to ren-

dering. In modeling, subdivision surfaces free the designer from

worrying about the topological restrictions that haunt NURBS mod- 2 Background

elers, but they simultaneously prevent the use of special tools that

have been developed over the years to add features such as variabla single NURBS surface, like any other parametric surface, is lim-

radius fillets to NURBS models. In Section 3, we describe an ap- ited to representing surfaces which are topologically equivalent to

proach for introducing similar capabilities into subdivision surface a sheet, a cylinder or a torus. This is a fundamental limitation for

models. The basic idea is to generalize the infinitely sharp creasesany surface that imposes a global planar parameterization. A single

of Hoppeet. al.[10] to obtain semi-sharp creases — that is, creases subdivision surface, by contrast, can represent surfaces of arbitrary

whose sharpness can vary from zero (meaning smooth) to infinite. topology. The basic idea is to construct a surface from an arbitrary
Once models have been constructed with subdivision surfaces,polyhedron by repeatedly subdividing each of the faces, as illus-

the problems of animation are generally easier than with corre- trated in Figure 3. If the subdivision is done appropriately, the limit

sponding NURBS surfaces because subdivision surface models aref this subdivision process will be a smooth surface.

seamless, so the surface is guaranteed to remain smooth as the Catmull and Clark [2] introduced one of the first subdivision

model is animated. Using subdivision surfaces for physically-based schemes. Their method begins with an arbitrary polyhedron called



the control mesh. The control mesh, dend#i(see Figure 3(a)),

is subdivided to produce the medit (shown in Figure 3(b)) by
splitting each face into a collection of quadrilateral subfaces. A
face havingn edges is split inta quadrilaterals. The vertices of
M1 are computed using certain weighted averages as detailed be
low. The same subdivision procedure is used agaiméno pro-
duce the mesM2 shown in Figure 3(c). The subdivision surface is
defined to be the limit of the sequence of mestésM?, ... created

by repeated application of the subdivision procedure.

To describe the weighted averages used by Catmull and Clark it
is convenient to observe that each vertestbf! can be associated
with either a face, an edge, or a vertex\bf, these are called face,
edge, and vertex points, respectively. This association is indicated
in Figure 4 for the situation around a vertékof M°. As indicated
in the figure, we usd’s to denote face point&'s to denote edge
points, andv's to denote vertex points. Face points are positioned Figure 5: Geri’s hand as a piecewise smooth Catmull-Clark surface.
at the centroid of the vertices of the corresponding face. An edge Infinitely sharp creases are used between the skin and the finger
point e'j“, as indicated in Figure 4 is computed as nails.

i i+1 , fitl
gt Ve
(. 4 ?
where subscripts are taken modulo the valence of the central vertex

V0. (The valence of a vertex is the number of edges incident to it.)
Finally, a vertex point/ is computed as

@)

it1_N-2 1oy Lcdin
V= - v'+?;e'j+?;fj ¥

Vertices of valence 4 are called ordinary; others are called extraor-
dinary.

Figure 6: A surface where boundary edges are tagged as sharp and
boundary vertices of valence two are tagged as corners. The control
mesh is yellow and the limit surface is cyan.

Following Hoppeet. al.[10] it is possible to modify the subdivi-
sion rules to create piecewise smooth surfaces containing infinitely
sharp features such as creases and corners. This is illustrated in
Figure 5 which shows a close-up shot of Geri's hand. Infinitely
sharp creases were used to separate the skin of the hand from the
Figure 4: The situation around a vertékof valencen. finger nails. Sharp creases can be modeled by marking a subset
of the edges of the control mesh as sharp and then using specially
These averaging rules — also called subdivision rules, masks, ordesigned rules in the neighborhood of sharp edges. Appendix A
stencils — are such that the limit surface can be shown to be tangentdescribes the necessary special rules and when to use them.
plane smooth no matter where the control vertices are placed [14, Again following Hoppeet. al, we deal with boundaries of the
1911 control mesh by tagging the boundary edges as sharp. We have also
Whereas Catmull-Clark subdivision is based on quadrilaterals, found it convenient to tag boundary vertices of valence 2 as corners,
Loop’s surfaces [11] and the Butterfly scheme [6] are based on tri- even though they would normally be treated as crease vertices since
angles. We chose to base our work on Catmull-Clark surfaces for they are incident to two sharp edges. We do this to mimic the behav-
two reasons: ior of endpoint interpolating tensor product uniform cubic B-spline

. . . . surfaces, as illustrated in Figure 6.
1. They strictly generalize uniform tensor product cubic B- 9

splines, making them easier to use in conjunction with exist-
ing in-house and commercial software systems such as Alias- 3 Modeling fillets and blends
Wavefront and Softimage.

2. Quadrilaterals are often better than triangles at capturing the AS mentioned in Section 1 and shown in Figure 5, infinitely sharp
symmetries of natural and man-made objects. Tube-like sur- CT€aS€S are very convenient for representing piecewise-smooth sur-
faces — such as arms, legs, and fingers — for example, canfaces. However, real-world surfaces are never infinitely sharp. The
be modeled much more naturally with quadrilaterals. corner of a tabletop, for instance, is smooth when viewed suffi-

ciently closely. For animation purposes it is often desirable to cap-
ITechnical caveat for the purist: The surface is guaranteed to be smoothture such tightly curved shapes.
except for control vertex positions in a set of measure zero. To this end we have developed a generalization of the Catmull-




Clark scheme to admit semi-sharp creases — that is, creases of conarbitrary number of subdivision steps, followed by another set of
trollable sharpness, a simple example of which is shown in Figure 7. rules that are applied to the limit. Smoothness therefore depends
only on the second set of rules. Hybrid subdivision can be used to
obtain semi-sharp creases by using infinitely sharp rules during the
first few subdivision steps, followed by use of the smooth rules for
subsequent subdivision steps. Intuitively this leads to surfaces that
are sharp at coarse scales, but smooth at finer scales.

Now the details. To set the stage for the general situation where
the sharpness can vary along a crease, we consider two illustrative
special cases.

Case 1: A constant integer sharpnessrease: We subdivide
s times using the infinitely sharp rules, then switch to the smooth
rules. In other words, an edge of sharpnessO is subdivided us-
ing the sharp edge rule. The two subedges created each have sharp-
() (b) nesss— 1. A sharpness = 0 edge is considered smooth, and it
stays smooth for remaining subdivisions. In the limit where
the sharp rules are used for all steps, leading to an infinitely sharp
crease. An example of integer sharpness creases is shown in Fig-
ure 7. A more complicated example where two creases of different
sharpnesses intersect is shown in Figure 8.

© (d)

(e)

Figure 7: An example of a semi-sharp crease. The control mesh for
each of these surfaces is the unit cube, drawn in wireframe, where
crease edges are red and smooth edges are yellow. In (a) the crease
sharpness is 0, meaning that all edges are smooth. The sharpnesse d
for (b), (c), (d), and (e) are 1, 2, 3, and infinite, respectively. © (@

One approach to achieve semi-sharp creases is to develop subdi
vision rules whose weights are parametrized by the sharpmfss
the crease. This approach is difficult because it can be quite hard

Figure 8: A pair of crossing semi-sharp creases. The control mesh

for all surfaces is the octahedron drawn in wire frame. Yellow de-

) ; . otes smooth edges, red denotes the edges of the first crease, and

to discover rules that lead to the desired smoothness properties of,55enta denotes the edges of the second crease. In (a) the crease

the limit surfaces. One of the roadblocks is that subdivision rules sharpnesses are both zero; in (b), (c), and (d) the sharpness of the

around a crease break a symmetry possessed by the smooth rulegay crease is 4. The sharpness of the magenta crease in (b), (c), and

typical smooth rules (such as the Catmull-Clark rules) are invariant (d)is 0, 2, and 4, respectively

under cyclic reindexing, meaning that discrete Fourier transforms T ' '

can be used to prove properties for vertices of arbitrary valence (cf.

Zorin [19]). In the absence of this invariance, each valence must Case 2:A constant, but not necessarily integer sharprsesise

currently be considered separately, as was done by Schweitzer [15]main idea here is to interpolate between adjacent integer sharp-

Another difficulty is that such an approach is likely to lead to a nesses. Led ands denote the floor and ceiling af respectively.

zoo of rules depending on the number and configuration of creasesimagine creating two versions of the crease: the first obtained by

through a vertex. For instance, a vertex with two semi-sharp creasessubdividingg. times using the sharp rules, then subdividing one ad-

passing through it would use a different set of rules than a vertex ditional time using the smooth rules. Call the vertices of this first

with just one crease through it. versionvg,\1,.... The second version, the vertices of which we
Our approach is to use a very simple process we call hybrid sub- denote by, VI'1, ..., is created by subdividing times using the

division. The general idea is to use one set of rules for a finite but sharp rules. We take th&-times subdivided semi-sharp crease to



Figure 9: A simple example of a variable sharpness crease. TheFigure 10: A more complex example of variable sharpness creases.

edges of the bottom face of the cubical control mesh are infinitely This model, inspired by an Edouard Lanteri sculpture, contains nu-

sharp. Three edges of the top face form a single variable sharpnessnerous variable sharpness creases to reduce the size of the control

crease with edge sharpnesses set to 2 (the two magenta edges), amdesh. The control mesh for the model made without variable sharp-

4 (the red edge). ness creases required 840 faces; with variable sharpness creases the
face count dropped to 627. Model courtesy of Jason Bickerstaff.

have vertex positionssgSr computed via simple linear interpolation:

v?r = (1=0)\i +oi ©) For physical simulation, the basic properties of a material are gen-
whereo = (s—9g.)/($ —4). Subsequent subdivisions are done us- erally specified by defining an energy functional to represent the
ing the smooth rules. In the case where all creases have the samattraction or resistance of the material to various possible deforma-
non-integer sharpnessthe surface produced by the above process tions. Typically, the energy is either specified as a surface integral
is identical to the one obtained by linearly interpolating between or as a discrete sum of terms which are functions of the positions of
the integer sharpness limit surfaces correspondimgands. Typ- surface samples or control vertices. The first type of specification
ically, however, crease sharpnesses will not all be equal, meaningtypically gives rise to a finite-element approach, while the second
that the limit surface is not a simple blend of integer sharpness sur-is associated more with finite-difference methods.
faces. Finite-element approaches are possible with subdivision sur-

The more general situation where crease sharpness is non-integefaces, and in fact some relevant surface integrals can be computed
and varies along a crease is presented in Appendix B. Figure 9 de-analytically [8]. In general, however, finite-element surface in-
picts a simple example. A more complex use of variable sharpnesstegrals must be estimated through numerical quadrature, and this
is shown in Figure 10. gives rise to a collection of special cases around extraordinary

points. We chose to avoid these special cases by adopting a finite-
. . difference approach, approximating the clothing with a mass-spring
4 Supporting cloth dynamics model [18] in which all the mass is concentrated at the control
. . ) ) ) points.
The use of simulated physics to animate clothing has been widely  away from extraordinary points, Catmull-Clark meshes under
discussed in the literature (cf. [1, 5, 16]). Here, we address the sybdivision become regular quadrilateral grids. This makes them
issues that arise when interfacing a physical simulator to a set of jdeally suited for representing woven fabrics which are also gen-
geometric models constructed out of subdivision surfaces. Itis not erally described locally by a gridded structure. In constructing the
our intent in this section to detail our cloth simulation system fully energy functions for clothing simulation, we use the edges of the
—that would require an entire paper of its own. Our goal is rather to supdivision mesh to correspond with the warp and weft directions
highlight issues related to the use of subdivision surfaces to model of the simulated woven fabrics.
both kinematic and dynamic objects. _ Since most popular fabrics stretch very little along the warp

In Section 4.1 we define the behavior of the cloth material by or weft directions, we introduce relatively strong fixed rest-length
constructing an energy functional on the subdivision control mesh. springs along each edge of the mesh. More precisely, for each edge
If the material properties such as the stiffness of the cloth vary over from p, to p,, we add an energy terkaEs(py, p2) Where
the surface, one or more scalar fields (see Section 5.1) must be de-
fined to modulate the local energy contributions. In Section 4.2 we 1/ |p1—p2
describe an algorithm for rapidly identifying potential collisions in- Es(p1,P2) = 5 (W - > : )
volving the cloth and/or kinematic obstacles. Rapid collision detec- 1o
tion is crucial to achieving acceptable performance. Here,p; and p; are the rest positions of the two vertices, &gk

4.1 Energy functional



the corresponding spring constant. Finally, very short edges in the surface need not give rise to deep
With only fixed-length springs along the mesh edges, the simu- branches in the tree, as they would using a volume-based method.
lated clothing can undergo arbitrary skew without penalty. One way
to prevent the skew is to introduce fixed-length springs along the It is a simple matter to construct a suitable surface-based data
diagonals. The problem with this approach is that strong diagonal structure for a NURBS surface. One method is to subdivide the
springs make the mesh too stiff, and weak diagonal springs allow (s,t) parameter plane recursively into an quadtree. Since each node
the mesh to skew excessively. We chose to address this problemin the quadtree represents a subsquare of the parameter plane, a
by introducing an energy term which is proportional to the product bounding box for the surface restricted to the subsquare can be
of the energies of two diagonal fixed-length springsp{fand p, constructed. An efficient method for constructing the hierarchy of
are vertices along one diagonal of a quadrilateral mesh facpand boxes is to compute bounding boxes for the children using the con-
and p4 are vertices along the other diagonal, the energy is given by vex hull property; parent bounding boxes can then be computed in a
kaEq(p1, P2, P3, Pa) Whereky is a scalar parameter that functions  bottom up fashion by unioning child boxes. Having constructed the

analagously to a spring constant, and where quadtree, we can find all patches withiof a point p as follows.
We start at the root of the quadtree and compare the bounding box
Eq(p1, P2, P3, P4) = Es(p1, p2)Es(Ps, Pa)- (5) of the root node with a box of sizeezentered orp. If there is

no intersection, then there are no patches withi p. If there is
The energyEq(p1, P2, P3, P4) reaches its minimum at zero when  an intersection, then we repeat the test on each of the children and
either of the diagonals of the quadrilateral face are of the original recurse. The recursion terminates at the leaf nodes of the quadtree,
rest length. Thus the material can fold freely along either diago- where bounding boxes of individual subpatches are tested against

nal, while resisting skew to a degree determinedkfqyWe some- the box around.
times use weak springs along the diagonals to keep the material
from wrinkling too much. Subdivision meshes have a natural hierarchy for levels finer than

With the fixed-length springs along the edges and the diagonal the original unsubdivided mesh, but this hierarchy is insufficient
contributions to the energy, the simulated material, unlike real cloth, because even the unsubdivided mesh may have too many faces to
can bend without penalty. To add greater realism to the simulated test exhaustively. Since there is there is no gldbgl plane from
cloth, we introduce an energy term that establishes a resistance tavhich to derive a hierarchy, we instead construct a hierarchy by
bending along virtual threads. Virtual threads are defined as a se-“unsubdividing” or “coarsening” the mesh: We begin by forming
quence of vertices. They follow grid lines in regular regions of the |eaf nodes of the hierarchy, each of which corresponds to a face
mesh, and when a thread passes through an extraordinary vertex obf the subdivision surface control mesh. We then hierarchically
valencen, it continues by exiting along the edge/2|-edges away merge faces level by level until we finish with a single merged face
in the clockwise direction. If1, p2, and p3 are three points along corresponding to the entire subdivision surface.

a virtual thread, the anti-bending component of the energy is given
by kpEp(p1, P2, p3) Where The process of merging faces proceeds as follows. In order to
create the’th level in the hierarchy, we first mark all non-boundary
edges in the — 1st level as candidates for merging. Then until all
candidates at théh level have been exhausted, we pick a candidate
edgee, and remove it from the mesh, thereby creating a “superface”
C(p1, P2, p3) = B @) f* by merging the two face§; and f, that share@. The hierarchy

e Ips—p5|  |P5—p5l is extended by creating a new node to represérand making its

- ) children be the nodes correspondingftoand f,. If f* were to

andpj, p;, and p; are the rest positions of the three points. participate immediately in another merge, the hierarchy could be-

By adjustingks, ky andkp both globally and locally, we have  come poorly balanced. To ensure against that possibility, we next
been able to simulate a reasonably wide variety of cloth behavior. In remove all edges of* from the candidate list. When all the candi-
the production oGeri's game we found that Geri’s jacket looked a  date edges at one level have been exhausted, we begin the next level
great deal more realistic when we modulakgaver the surface of  py marking non-boundary edges as candidates once again. Hierar-

the jacket in order to provide more stiffness on the shoulder pads, onchy construction halts when only a single superface remains in the
the lapels, and in an area under the armpits which is often reinforced yjesh.

in real jackets. Methods for specifying scalar fields Ikgeover a

1
Ep(P1, P2, P3) = 5 *[C(P1, P2, P3) ~C(PL, P, P3)>  (6)

P3 — P2 P2—p1

SUbdiViSion surface are discussed in more detall in Section 5.1. The Coarsening hierarchy is Constructed once in a preprocessing
phase. During each iteration of the simulation, control vertex posi-
4.2 Collisions tions change, so the bounding boxes stored in the hierarchy must be

updated. Updating the boxes is again a bottom up process: the cur-
The simplest approach to detecting collisions in a physical simula- rent control vertex positions are used to update the bounding boxes
tion is to test each geometric element (i.e. point, edge, face) againstat the leaves of the hierarchy. We do this efficiently by storing with
each other geometric element for a possible collision. \Niteo- each leaf in the hierarchy a set of pointers to the vertices used to
metric elements, this would také? time, which is prohibitive for construct its bounding box. Bounding boxes are then unioned up
largeN. To achieve practical running times for large simulations, the hierarchy. A point can be “tested against” a hierarchy to find
the number of possible collisions must be culled as rapidly as possi- all faces withine of the point by starting at the root of the hierar-
ble using some type of spatial data structure. While this can be donechy and recursively testing bounding boxes, just as is done with the
in a variety of different ways, there are two basic strategies: we NURBS quadtree.
can distribute the elements into a two-dimensional surface-based
data structure, or we can distribute them into a three-dimensional We build a coarsening hierarchy for each of the cloth meshes, as
volume-based data structure. Using a two-dimensional structurewell as for each of the kinematic obstacles. To determine collisions
has several advantages if the surface connectivity does not changebetween a cloth mesh and a kinematic obstacle, we test each vertex
First, the hierarchy can be fixed, and need not be regenerated eaclof the cloth mesh against the hierarchy for the obstacle. To deter-
time the geometry is moved. Second, the storage can all be stati-mine collisions between a cloth mesh and itself, we test each vertex
cally allocated. Third, there is never any need to rebalance the tree.of the mesh against the hierarchy for the same mesh.



5 Rendering subdivision surfaces Fortunately, the situation for subdivision surfaces is profoundly
better than for polygonal models. As we prove in Appendix C,

In this section, we introduce the idea of smoothly varying scalar smoothly varying texture coordinates result if the texture coordi-
fields defined over subdivision surfaces and show how they can benates(s,t) assigned to the control vertices are subdivided using
used to apply parametric textures to subdivision surfaces. We thenthe same subdivision rules as used for the geometric coordinates
describe a collection of implementation issues that arose when sub-(x,y, z). (In other words, control point positions and subdivision can
division surfaces and scalar fields were added to RenderMan. be thought of as taking place in a 5-space consisting,9f z, s, t)
coordinates.) This is illustrated in Figure 11(c), where the surface
is treated as a Catmull-Clark surface with infinitely sharp bound-
ary edges. A more complicated example of parametric texture on a

NURBS surfaces are textured using four principal methods: para- subdivision surface is shown in Figure 12.
metric texture mapping, procedural texture, 3D paint [9], and solid
texture [12, 13]. It is straightforward to apply 3D paint and solid
texturing to virtually any type of primitive, so these techniques
can readily be applied to texture subdivision surfaces. It is less
clear, however, how to apply parametric texture mapping, and more
generally, procedural texturing to subdivision surfaces since, unlike

5.1 Texturing using scalar fields

As is generally the case in real productions, we used a combi-
nation of texturing methods to create Geri: the flesh tones on his
head and hands were 3D-painted, solid textures were used to add
fine detail to his skin and jacket, and we used procedural texturing
(described more fully below) for the seams of his jacket.

NURBS, they are not defined parametrically. The texture coordinates andt mentioned above are each in-
With regard to texture mapping, subdivision surfaces are more stances of a scalar field; that is, a scalar-valued function that varies
akin to polygonal models since neither possesses a glslial over the surface. A scalar fielflis defined on the surface by as-

parameter plane. The now-standard method of texture mappingsigning a valuey to each of the control verticas The proof sketch
a polygonal model is to assign texture coordinates to each of thein Appendix C shows that the functiof( p) created through sub-
vertices. If the faces of the polygon consist only of triangles and division (wherep is a point on the limit surface) varies smoothly
quadrilaterals, the texture coordinates can be interpolated acrosswvherever the subdivision surface itself is smooth.

the face of the polygon during scan conversion using linear or bi-

linear interpolation. Faces with more than four sides pose a greater 3 X
challenge. One approach is to pre-process the model by spliting MaPPINg —they can be used more generally as arbitrary parameters

such faces into a collection of triangles and/or quadrilaterals, us- {© Procedural shaders. An example of this occurs on Geri's jacket.
ing some averaging scheme to invent texture coordinates at newaA s_calar field is defined on the jacket that takes on large values for
introduced vertices. One difficulty with this approach is that the -POINts on the surface near a seam, and small values elsewhere. The
texture coordinates are not differentiable across edges of the origi-Procedural jacket shader uses the value of the this field to add the
nal or pre-processed mesh. As illustrated in Figures 11(a) and (b),apparent seams to the jacket. We use other scalar fields to darken

these discontinuities can appear as visual artifacts in the texture, G€M'S nostril and ear cavities, and to modulate various physical
especially as the model is animated. parameters of the cloth in the cloth simulator.

Scalar fields can be used for more than just parametric texture

We assign scalar field values to the vertices of the control mesh
in a variety of ways, including direct manual assignment. In some
cases, we find it convenient to specify the value of the field directly
at a small number of control points, and then determine the rest by
interpolation using Laplacian smoothing. In other cases, we spec-
ify the scalar field values by painting an intensity map on one or
more rendered images of the surface. We then use a least squares
solver to determine the field values that best reproduce the painted
intensities.

(b)

Figure 12: Gridded textures mapped onto a bandanna modeled us-

(©) (d) ing two subdivision surfaces. One surface is used for the knot, the
other for the two flaps. In (a) texture coordinates are assigned uni-

Figure 11: (a) A texture mapped regular pentagon comprised of formly on the right flap and nonuniformly using smoothing on the

5 triangles; (b) the pentagonal model with its vertices moved; (€) left to reduce distortion. In (b) smoothing is used on both sides and

A subdivision surface whose control mesh is the same 5 triangles g more realistic texture is applied.

in (a), and where boundary edges are marked as creases; (d) the

subdivision surface with its vertices positioned as in (b).



5.2 Implementation issues we have removed two of the important obstacles to the use of subdi-
. . . ) vision surfaces in production. By developing an efficient data struc-
We have implemented subdivision surfaces, specifically semi-sharpyre for culling collisions with subdivisions, we have made subdi-
Catmull-Clark surfaces, as a new geometric primitive in Render- \isjon surfaces well suited to physical simulation. By developing a
Man. . . cloth energy function that takes advantage of Catmull-Clark mesh
Our renderer, built upon the REYES architecture [4], demands gty cture, we have made subdivision surfaces the surfaces of choice
that all primitives be convertible into grids of micropolygons (i.e.  for qur clothing simulations. Finally, by introducing Catmull-Clark
half-pixel wide quadrilaterals). Consequently, each type of prim- gpgivision surfaces into our RenderMan implementation, we have

itive must be capable of splitting itself into a collection of sub-  shown that subdivision surfaces are capable of meeting the demands
patches, bounding itself (for culling and bucketing purposes), and of high-end rendering.

dicing itself into a grid of micropolygons.
Each face of a Catmull-Clark control mesh can be associated
with a patch on the surface, so the first step in rendering a Catmull- A Infinitely Sharp Creases
Clark surface is to split it in into a collection of individual patches.
The control mesh for each patch consists of a face of the control Hoppe et. al. [10] introduced infinitely sharp features such as
mesh together with neighboring faces and their vertices. To bound creases and corners into Loop’s surfaces by modifying the subdi-
each patch, we use the knowledge that a Catmull-Clark surface liesvision rules in the neighborhood of a sharp feature. The same can
within the convex hull of its control mesh. We therefore take the be done for Catmull-Clark surfaces, as we now describe.
bounding box of the mesh points to be the bounding box for the  Face points are always positioned at face centroids, independent
patch. Once bounded, the primitive is tested to determine if it is of which edges are tagged as sharp. Referring to Figure 4, suppose
diceable; it is not diceable if dicing would produce a grid with too the edgeV' € has been tagged as sharp. The corresponding edge
many micropolygons or a wide range of micropolygon sizes. If pointis placed at the edge midpoint:
the patch is not diceable, then we split each patch by performing a
subdivision step to create four new subpatch primitives. If the patch i1 v+ ei]-
is diceable, it is repeatedly subdivided until it generates a grid with e'j+ = (8)
the required number of micropolygons. Finally, we move each of
the grid points to its limit position using the method described in The rule to use when placing vertex points depends on the number
Halsteacket. al.[8]. of sharp edges incident at the vertex. A vertex with one sharp edge
An important property of Catmull-Clark surfaces is that they is called a dart and is placed using the smooth vertex rule from
give rise to bicubic B-splines patches for all faces except those in Equation 2. A vertex! with two incident sharp edges is called a
the neighborhood of extraordinary points or sharp features. There-crease vertex. If these sharp edge@vbandv‘ €., the vertex point
fore, at each level of splitting, it is often possible to identify one or i+1 i positioned using the crease vertex rule:
more subpatches as B-spline patches. As splitting proceeds, more
of the surface can be covered with B-spline patches. Exploiting ) é +o6v +eL
this fact has three advantages. First, the fixed4size of a B- vti= X (9)
spline patch allows for efficiency in memory usage because there 8
is no need to store information about vertex connectivity. Second, The sharp edge and crease vertex rules are such that an isolated
the fact that a B-spline patch, unlike a Catmull-Clark patch, can be crease converges to a uniform cubic B-spline curve lying on the
split independently in either parametric direction makes it possible |imit surface. A vertex/ with three or more incident sharp edges
to reduce the total amount of splitting. Third, efficient and well s called a corner; the corresonding vertex point is positioned using
understood forward differencing algorithms are available to dice B- the corner rule
spline patches [7]. vl (10)
We quickly learned that an advantage of semi-sharp creases over . . o
infinitely sharp creases is that the former gives smoothly varying Meaning that comers do not move during subdivision. ~ See
normals across the crease, while the latter does not. This impliesHOPP€et. al.[10] and Schweitzer [15] for a more complete dis-
that if the surface is displaced in the normal direction in a creased cussion and rationale for these choices.

area, it will tear at an infinitely sharp crease but not at a semi-sharp . Hoppeet. al. found it necessary in proving smoothness proper-
one. ties of the limit surfaces in their Loop-based scheme to make further

distinctions between so-called regular and irregular vertices, and
they introduced additional rules to subdivide them. It may be nec-
6 Conclusion essary to do something similar to prove smoothness of our Catmull-
Clark based method, but empirically we have noticed no anamolies

Our experience using subdivision surfaces in production has beenUSing the simple strategy above.
extremely positive. The use of subdivision surfaces allows our
model builders to arrange control points in a way that is natural
to capture geometric features of the model (see Figure 2), without
concern for maintaining a regular gridded structure as required by
NURBS models. This freedom has two principal consequences.
First, it dramatically reduces the time needed to plan and build an
initial model. Second, and perhaps more importantly, it allows the
initial model to be refined locally. Local refinement is not possi-
ble with a NURBS surface, since an entire control point row, or
column, or both must be added to preserve the gridded structure.
Additionally, extreme care must be taken either to hide the seams
between NURBS patches, or to constrain control points near the
seam to create at least the illusion of smoothness.

By developing semi-sharp creases and scalar fields for shading, 2In our implementation we do not allow two creases to share an edge.

B General semi-sharp creases

Here we consider the general case where a crease sharpness is al-
lowed to be non-integer, and to vary along the crease. The follow-
ing procedure is relatively simple and strictly generalizes the two
special cases discussed in Section 3.

We specify a crease by a sequence of edges, ... in the con-
trol mesh, where each edgehas an associated sharpnegss We
associate a sharpness per edge rather than one per vertex since there
is no single sharpness that can be assigned to a vertex where two or
more creases cross.




exists a parametrizatiof(s,t) for the surface in the neighborhood

_O----- ef ----0, of psuch tha§(0,0) = p, and such that the functidis,t) is differ-
e - ~ e entiable and the derivative varies continuously in the neighborhood
a_ - W e TN C of (0,0).
-7 RN - The characteristic map, introduced by Reif [14] and extended by
o~ ~0 Zorin [19], provides such a parametrization: the characteristic map

allows a subdivision surfac8in three space in the neighborhood
of a pointp on the surface to be written as

S(Svt) = (X(S,t),y(S,t),Z(S,t))

Figure 13: Subedge labeling.
12)

During subdivision, face points are always placed at face cen- WhereS(0,0) = p and where each of(s;t), y(s,t), andz(s;t) is
troids. The rules used when placing edge and vertex points areonce differentiable if the surface is smoothpatSince scalar fields

determined by examining edge sharpnesses as follows:

are subdivided according to the same rules ag,fyeandz coordi-
nates of the control points, the functié(s,t) must also be smooth.
An edge point corresponding to a smooth edge éis+ 0) is

computed using the smooth edge rule (Equation 1).
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