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Chapter 1

Introduction

Twenty years ago the publication of the papers by Catmull and Clark [3] and Doo and Sabin [4] marked

the beginning of subdivision for surface modeling. This year, another milestone occurred when subdivi-

sion hit the big screen in Pixar’s short “Geri’s Game,” for which Pixar received an Academy award for

“Best Animated Short Film.” The basic ideas behind subdivision are very old indeed and can be traced

as far back as the late 40s and early 50s when G. de Rham used “corner cutting” to describe smooth

curves. It was only recently though that subdivision surfaces have found their way into wide application

in computer graphics and computer assisted geometric design (CAGD). One reason for this develop-

ment is the importance of multiresolution techniques to address the challenges of ever larger and more

complex geometry: subdivision is intricately linked to multiresolution and traditional mathematical tools

such as wavelets.

Constructing surfaces through subdivision elegantly addresses many issues that computer graphics

practitioners are confronted with

� Arbitrary Topology: Subdivision generalizes classical spline patch approaches to arbitrary topol-

ogy. This implies that there is no need for trim curves or awkward constraint management between

patches.

� Scalability: Because of its recursive structure, subdivision naturally accommodates level-of-detail

rendering and adaptive approximation with error bounds. The result are algorithms which can

make the best of limited hardware resources, such as those found on low end PCs.

� Uniformity of Representation: Much of traditional modeling uses either polygonal meshes or

spline patches. Subdivision spans the spectrum between these two extremes. Surfaces can behave
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as if they are made of patches, or they can be treated as if consisting of many small polygons.

� Numerical Stability: The meshes produced by subdivision have many of the nice properties fi-

nite element solvers require. As a result subdivision representations are also highly suitable for

many numerical simulation tasks which are of importance in engineering and computer animation

settings.

� Code Simplicity: Last but not least the basic ideas behind subdivision are simple to implement and

execute very efficiently. While some of the deeper mathematical analyses can get quite involved

this is of little concern for the final implementation and runtime performance.

In this course and its accompanying notes we hope to convince you, the reader, that in fact the above

claims are true!

The main focus or our notes will be on covering the basic principles behind subdivision; how subdivi-

sion rules are constructed; to indicate how their analysis is approached; and, most importantly, to address

some of the practical issues in turning these ideas and techniques into real applications.

The following 2 chapters will be devoted to understanding the basic principles. We begin with some

examples in the curve, i.e., 1D setting. This simplifies the exposition considerably, but still allows us to

introduce all the basic ideas which are equally applicable in the surface setting. Proceeding to the surface

setting we cover a variety of different subdivision schemes and their properties.

With these basics in place we proceed to the second, applications oriented part, covering algorithms

and implementations addressing

� Interactive Multiresolution Mesh Editing: This section discusses many of the data structure

and algorithmic issues which need to be addressed to realize high performance. The result is a

system which allows for interactive, multiresolution editing of fairly complex geometry on PC

class machines with little hardware graphics support.

� Subdivision Surfaces and Wavelets:This section shows how subdivision is the key element in

generalizing the traditional wavelet machinery to arbitrary topology surfaces. The result are a

class of algorithms which open up applications such as compression for subdivision surfaces, for

example.

� A Variational Approach to Subdivision: Most subdivision methods are stationary, i.e., they use a

fixed set of rules. They are generally designed to exhibit some order of differentiability. In practice

it is often much more important to consider the fairness of the resulting surfaces. Variational

subdivision incorporates fairness measures into the subdivision process.

12



� Exploiting Subdivision in Modeling and Animation: One reason subdivision is becoming very

popular is that it supports hierarchical editing and animation semantics. This was discovered

originally in the traditional spline setup and lead to the development of hierarchical splines. From

that technique it is only a small step to multiresolution modeling using subdivision. This section

discusses some of the issues in controlling animation hierarchically.

� Subdivision Surfaces in the Making of Geri’s Game:This section discusses how subdivision

surfaces successfully address the needs of very high end production environments. in the process

new techniques had to be developed which are detailed in this part of the notes.

Beyond these Notes

One of the reasons that subdivision is enjoying so much interest right now is that it is very easy to

implement and very efficient. In fact it is used in many computer graphics courses at universities as a

homework exercise. The mathematical theory behind it is very beautiful, but also very subtle and at times

technical. We are not treating the mathematical details in these notes, which are primarily intended for

the computer graphics practitioners. However, for those interested in the theory there are many pointers

to the literature.

These notes as well as other materials such as presentation slides, applets and snippets of code are

available on the web athttp://www.multires.caltech.edu/teaching/courses/subdivision/

and all readers are encouraged to explore the online resources. A repository of additional information

beyond this course is maintained athttp://www.mrl.nyu.edu/dzorin/subdivision .
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Chapter 2

Foundations I: Basic Ideas

Peter Schr¨oder, Caltech

In this chapter we focus on the 1D case to introduce all the basic ideas and concepts before going

on to the 2D setting. Examples will be used throughout to motivate these ideas and concepts. We

begin initially with an example from interpolating subdivision, before talking about splines and their

subdivision generalizations.

Figure 2.1: Example of subdivision for curves in the plane. On the left 4 points connected with straight

line segments. To the right of it a refined version: 3 new points have been inserted “inbetween” the old

points and again a piecewise linear curve connecting them is drawn. After two more steps of subdivision

the curve starts to become rather smooth.
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2.1 The Idea of Subdivision

We can summarize the basic idea of subdivision as follows:

Subdivision defines a smooth curve or surface as the limit of a sequence of successive re-

finements.

Of course this is a rather loose description with many details as yet undetermined, but it captures the

essence.

Figure 2.1 shows an example in the case of a curve connecting some number of initial points in the

plane. On the left we begin with 4 points connected through straight line segments. Next to it is a refined

version. This time we have the original 4 points and additionally 3 more points “inbetween” the old

points. Repeating the process we get a smoother looking piecewise linear curve. Repeating once more

the curve starts to look quite nice already. It is easy to see that after a few more steps of this procedure

the resulting curve would be as well resolved as one could hope when using finite resolution such as that

offered by a computer monitor or a laser printer.

Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left

an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular

subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.
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An example of subdivision for surfaces is shown in Figure 2.2. In this case each triangle in the original

mesh on the left is split into 4 new triangles quadrupling the number of triangles in the mesh. Applying

the same subdivision rule once again gives the mesh on the right.

Both of these examples show what is known as interpolating subdivision. The original points remain

undisturbed while new points are inserted. We will see below that splines, which are generally not

interpolating, can also be generated through subdivision. Albeit in that case new points are insertedand

old points are moved in each step of subdivision.

How were the new points determined? One could imagine many ways to decide where the new points

should go. Clearly, the shape and smoothness of the resulting curve or surface depends on the chosen

rule. Here we list a number of properties that we might look for in such rules:

� Efficiency: the location of new points should be computed with a small number of floating point

operations;

� Compact support: the region over which a point influences the shape of the final curve or surface

should be small and finite;

� Local definition: the rules used to determine where new points go should not depend on “far

away” places;

� Affine invariance: if the original set of points is transformed, e.g., translated, scaled, or rotated,

the resulting shape should undergo the same transformation;

� Simplicity: determining the rules themselves should preferably be an offline process and there

should only be a small number of rules;

� Continuity: what kind of properties can we prove about the resulting curves and surfaces, for

example, are they differentiable?

For example, the rule used to construct the curve in Figure 2.1 computed new points by taking a weighted

average of nearby old points: two to the left and two to the right with weights 1=16(�1;9;9;�1) respec-

tively (we are ignoring the boundaries for the moment). It is very efficient since it only involves 4

multiplies and 3 adds (per coordinate); has compact support since only 2 neighbors on either side are

involved; its definition is local since the weights do not depend on anything in the arrangement of the

points; the rule is affinely invariant since the weights used sum to 1; it is very simple since only 1 rule is

used (there is one more rule if one wants to account for the boundaries); finally the limit curves one gets

by repeating this process ad infinitum areC1.
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Before delving into the details of how these rules are derived we quickly compare subdivision to other

possible modeling approaches for smooth surfaces: traditional splines, implicit surfaces, and variational

surfaces.

1. Efficiency: Computational cost is an important aspect of a modeling method. Subdivision is

easy to implement and is computationally efficient. Only a small number of neighboring old

points are used in the computation of the new points. This is similar to knot insertion methods

found in spline modeling, and in fact many subdivision methods are simply generalization of knot

insertion. On the other hand implicit surfaces, for example, are much more costly. An algorithm

such as marching cubes is required to generate the polygonal approximation needed for rendering.

Variational surfaces can be even worse: a global optimization problem has to be solved each time

the surface is changed.

2. Arbitrary topology: It is desirable to build surfaces of arbitrary topology. This is a great strength

of implicit modeling methods. They can even deal withchangingtopology during a modeling

session. Classic spline approaches on the other hand have great difficulty with control meshes of

arbitrary topology. Here, “arbitrary topology” captures two properties. First, the topological genus

of the mesh and associated surface can be arbitrary. Second, the structure of the graph formed by

the edges and vertices of the mesh can be arbitrary; specifically, each vertex may be of arbitrary

degree.

These last two aspects are related: if we insist on all vertices having degree 4 (for quadrilateral)

control meshes, or having degree 6 (for triangular) control meshes, the Euler characteristic for a

planar graph tells us that such meshes can only be constructed if the overall topology of the shape

is that of the infinite plane, the infinite cylinder, or the torus. Any other shape, for example a

sphere, cannot be built from a quadrilateral (triangular) control mesh having vertices of degree 4

(6).

When rectangular spline patches are used in arbitrary control meshes, enforcing higher order con-

tinuity at extraordinary vertices becomes difficult and considerably increases the complexity of the

representation (see Figure 2.3 for an example of points not having valence 4). Implicit surfaces

can be of arbitrary topological genus, but the genus, precise location, and connectivity of a surface

are typically difficult to control. Variational surfaces can handle arbitrary topology better than

any other representation, but the computational cost can be high. Subdivision can handle arbitrary

topology quite well without losing efficiency; this is one of its key advantages. Historically sub-

division arose when researchers were looking for ways to address the arbitrary topology modeling
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Figure 2.3: A mesh with two extraordinary vertices, one with valence 6 the other with valence 3. In

the case of quadrilateral patches the standard valence is 4. Special efforts are required to guarantee high

order of continuity between spline patches meeting at the extraordinary points; subdivision handles such

situations in a natural way.

challenge for splines.

3. Surface features:Often it is desirable to control the shape and size of features, such as creases,

grooves, or sharp edges. Variational surfaces provide the most flexibility and exact control for cre-

ating features. Implicit surfaces, on the other hand, are very difficult to control, since all modeling

is performed indirectly and there is much potential for undesirable interactions between different

parts of the surface. Spline surfaces allow very precise control, but it is computationally expen-

sive and awkward to incorporate features, in particular if one wants to do so in arbitrary locations.

Subdivision allows more flexible controls than is possible with splines. In addition to choosing

locations of control points, one can manipulate the coefficients of subdivision to achieve effects

such as sharp creases or control the behavior of the boundary curves.

4. Complex geometry:For interactive applications, efficiency is of paramount importance. Because

subdivision is based on repeated refinement it is very straightforward to incorporate ideas such

as level-of-detail rendering and compression for the internet. During interactive editing locally

adaptive subdivision can generate just enough refinement based on geometric criteria, for example.
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For applications that only require the visualization of fixed geometry, other representations, such

as progressive meshes, are likely to be more suitable.

Since most subdivision techniques used today are based upon and generalize splines we begin with

a quick review of some basic facts of splines which we will need to understand the connection between

splines and subdivision.

2.2 Review of Splines

2.2.1 Piecewise Polynomial Curves

Splines are piecewise polynomial curves of some chosen degree. In the case of cubic splines, for exam-

ple, each polynomial segment of the curve can be written as

x(t) = ai
3t

3+ai
2t

2+ai
1t +ai

0

y(t) = bi
3t

3+bi
2t

2+bi
1t +bi

0;

where(a;b) are constant coefficients which control the shape of the curve over the associated segment.

This representation uses monomials (t3; t2; t1; t0), which are restricted to the given segment, as basis

functions.

-4 -3 -2 -1 0 1 2 3 4
-0.5

0.0

0.5

1.0

Figure 2.4: Graph of the cubic B-spline. It is zero for the independent parameter outside the interval

[�2;2].

Typically one wants the curve to have some order of continuity along its entire length. In the case of

cubic splines one would typically wantC2 continuity. This places constraints on the coefficients(a;b)

of neighboring curve segments. Manipulating the shape of the desired curves through these coefficients,
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while maintaining the constraints, is very awkward and difficult. Instead of using monomials as the basic

building blocks, we can write the spline curve as a linear combination of shiftedB-splines, each with a

coefficient known as acontrol point

x(t) = ∑xiB(t� i)

y(t) = ∑yiB(t� i):

The new basis functionB(t) is chosen in such a way that the resulting curves are always continuous and

that the influence of a control point is local. One way to ensure higher order continuity is to use basis

functions which are differentiable of the appropriate order. Since polynomials themselves are inifinitely

smooth, we only have to make sure that derivatives match at the points where two polynomial segments

meet. The higher the degree of the polynomial, the more derivatives we are able to match. We also

want the influence of a control point to be maximal over a region of the curve which is close to the

control point. Its influence should decrease as we move away along the curve and disappear entirely at

some distance. Finally, we want the basis functions to be piecewise polynomial so that we can represent

any piecewise polynomial curve of a given degree with the associated basis functions. B-splines are

constructed to exactly satisfy these requirements (for a cubic B-spline see Figure 2.4) and in a moment

we will show how they are constructed.

The advantage of using this representation rather than the earlier one of monomials, is that the conti-

nuity conditions at the segment boundaries are already “hardwired” into the basis functions. No matter

how we move the control points, the spline curve will always maintain its continuity, for example,C2 in

the case of cubic B-splines.1 Furthermore, moving a control point has the greatest effect on the part of

the curve near that control point, and no effect whatsoever beyond a certain range. These features make

B-splines a much more appropriate tool for modeling piecewise polynomial curves.

Note: When we talk about curves, it is important to distinguish the curve itself and the graphs of the

coordinate functions of the curve, which can also be thought of as curves. For example, a curve can

be described by equationsx(t) = sin(t), y(t) = cos(t). The curve itself is a circle, but the coordinate

functions are sinusoids. For the moment, we are going to concentrate on representing the coordinate

functions.

1The differentiability of the basis functions guarantees the differentiability of the coordinate functions of the curve. How-

ever, it does not guarantee the geometric smoothness of the curve. We will return to this distinction in our discussion of

subdivision surfaces.
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2.2.2 Definition of B-Splines

There are many ways to derive B-splines. Here we choose repeated convolution, since we can see from

it directly how splines can be generated through subdivision.

We start with the simplest case: piecewise constant coordinate functions. Any piecewise constant

function can be written as

x(t) =∑xiB
i
0(t);

whereB0(t) is the box function defined as

B0(t) = 1 if 0� t < 1

= 0 otherwise;

and the functionsBi
0(t) = B0(t� i) are translates ofB0(t). Furthermore, let us represent the continuous

convolution of two functionsf (t)andg(t) with

( f 
g)(t) =
Z

f (s)g(t�s)ds:

A B-spline basis function of degreen can be obtained by convolving the basis function of degreen�1

with the boxB0(t).2 For example, the B-spline of degree 1 is defined as the convolution ofB0(t) with

itself

B1(t) =
Z

B0(s)B0(t�s)ds:

Graphically (see Figure 2.5), this convolution can be evaluated by sliding one box function along the

coordinate axis from minus to plus infinity while keeping the second box fixed. The value of the con-

volution for a given position of the moving box is the area under the product of the boxes, which is just

the length of the interval where both boxes are non-zero. At first the two boxes do not have common

support. Once the moving box reaches 0, there is a growing overlap between the supports of the graphs.

The value of the convolution grows witht until t = 1. Then the overlap starts decreasing, and the value

of the convolution decreases down to zero att = 2. The functionB1(t) is the linear hat function as shown

in Figure 2.5.

We can compute the B-spline of degree 2 convolvingB1(t) with the boxB0(t) again

B2(t) =
Z

B1(s)B0(t�s)ds:

2Thedegreeof a polynomial is the highest order exponent which occurs, while theorder counts the number of coefficients

and is 1 larger. For example, a cubic curve is of degree 3 and order 4.
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Figure 2.5: The definition of degree 1 B-SplineB1(t) (right side) through convolution ofB0(t) with itself

(left side).

In this case, the resulting curve consists of three quadratic segments defined on intervals(0;1), (1;2) and

(2;3). In general, by convolvingl times, we can get a B-spline of degreel

Bl (t) =
Z

Bl�1(s)B0(t�s)ds:

Defining B-splines in this way a number of important properties immediately follow. The first concerns

the continuity of splines

Theorem 1 If f (t) is Ck-continuous, then(B0
 f )(t) is Ck+1-continuous.
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This is a direct consequence of convolution with a box function. From this it follows that the B-spline of

degreen isCn�1 continuous because the B-spline of degree 1 isC0-continuous.

2.2.3 Refinability of B-splines

Another remarkable property of B-splines is that they obey arefinement equation. This is the key

observation to connect splines and subdivision. The refinement equation for B-splines of degreel is

given by

Bl(t) =
1
2l

l+1

∑
k=0

�
l +1

k

�
Bl (2t�k): (2.1)

In other words, the B-spline of degreel can be written as a linear combination oftranslated(k) and

dilated (2t) copies of itself. For a function to be refineable in this way is a rather special property. As an

example of the above equation at work consider the hat function shown in Figure 2.5. It is easy to see that

it can be written as a linear combination of dilated hat functions with weights(1=2;1;1=2) respectively.

The property of refinability is the key to subdivision and so we will take a moment to prove it. We

start by observing that the box function, i.e., the B-spline of degree 0 can be written in terms of dilates

and translates of itself

B0(t) = B0(2t)+B0(2t�1); (2.2)

which is easily checked by direct inspection. Recall that we defined the B-spline of degreel as

Bl(t) =
lO

i=0

B0(t) =
lO

i=0

(B0(2t)+B0(2t�1)) (2.3)

This expression can be “multiplied” out by using the following properties of convolution for functions

f (t), g(t), andh(t)

f (t)
 (g(t)+h(t)) = f (t)
g(t)+ f (t)
h(t) linearity

f (t� i)
g(t�k) = m(t� i�k) time shift

f (2t)
g(2t) = 1
2m(2t) time scaling

wherem(t) = f (t)
g(t). These properties are easy to check by substituting the definition of convolution

and amount to simple change of variables in the integration.
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For example, in the case ofB1 we get

B1(t) = B0(t)
B0(t)

= (B0(2t)+B0(2t�1))
 (B0(2t)+B0(2t�1))

= B0(2t)
B0(2t)+B0(2t)
B0(2t�1)+B0(2t�1)
B0(2t)+B0(2t�1)
B0(2t�1)

=
1
2

B1(2t)+
1
2

B1(2t�1)+
1
2

B1(2t�1)+
1
2

B1(2t�1�1)

=
1
2
(B1(2t)+2B1(2t�1)+B1(2t�2))

=
1
21

2

∑
k=0

�
2
k

�
B1(2t�k):

The general statement for B-splines of degreel now follows from the binomial theorem

(x+y)l+1 =
l+1

∑
k=0

�
l +1

k

�
xl+1�kyk;

with B0(2t) in place ofx andB0(2t�1) in place ofy.

2.2.4 Refinement for Spline Curves

With this machinery in hand let’s revisit spline curves. Let

γ(t) =

"
x(t)

y(t)

#
=∑

i
piB

i
l(t)

be such a spline curve of degreel with control points(xi ;yi)
T = pi 2 R2. Since we don’t want to worry

about boundaries for now we leave the index seti unspecified. We will also drop the subscriptl since the

degree, whatever it might be, is fixed for all our examples. Due to the definition ofBi(t) = B(t� i) each

control point exerts influence over a small part of the curve with parameter valuest 2 [i; i + l ].

Now considerp, the vector of control points of a given curve:

p =

2
6666666666664

...

p�2

p�1

p0

p1

p2
...

3
7777777777775

25



and the vectorB(t), which has as its elements the translates of the functionB as defined above

B(t) =
h
: : : B(t +2) B(t +1) B(t) B(t�1) B(t�2) : : :

i
:

In this notation we can denote our curve asB(t)p.

Using the refinement relation derived earlier, we can rewrite each of the elements ofB in terms of its

dilates

B(2t) =
h
: : : B(2t +2) B(2t +1) B(2t) B(2t�1) B(2t�2) : : :

i
;

using a matrixS to encode the refinement equations

B(t) = B(2t)S:

The entries ofSare given by Equation 2.1

S2i+k;i = sk =
1
2l

�
l +1

k

�
:

The only non-zero entries in each column are the weights of the refinement equation, while successive

columns are copies of one another save for a shift down by two rows.

We can use this relation to rewriteγ(t)

γ(t) = B(t)p = B(2t)Sp:

It is still the same curve, but desribed with respect to dilated B-splines, i.e., B-splines whose support is

half as wide and which are spaced twice as dense. We performed a change from the old basisB(t) to the

new basisB(2t) and concurrently changed the old control pointsp to the appropriate new control points

Sp. This process can be repeated

γ(t) = B(t)p0

= B(2t)p1 = B(2t)Sp0

...

= B(2j t)p j = B(2j t)Sjp0;

from which we can define the relationship between control points at different levels of subdivision

p j+1 = Sp j ;

whereS is our infinite subdivision matrix.
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Looking more closely at one component,i, of our control points we see that

pj+1
i = ∑

l

Si;l pj
l :

To find out exactly whichsk is affecting which term, we can divide the above into odd and even entries.

For the odd entries we have

pj+1
2i+1 = ∑

l

S2i+1;l pj
l = ∑

l

s2(i�l)+1 pj
l

and for the even entries we have

pj+1
2i = ∑

l

S2i;l pj
l = ∑

l

s2(i�l) pj
l :

From which we essentially get two different subdivision rules one for the newevencontrol points of the

curve and one for the newodd control points. As examples of the above, let us consider two concrete

cases. For piecewise linear subdivision, the basis functions are hat functions. The odd coefficients are1
2

and 1
2, and a lone 1 for the even point. For cubic splines the odd coefficients turn out to be1

2 and 1
2, while

the even coefficients are18, 6
8, and1

8.

Another way to look at the distinction between even and odd is to notice that odd points at levelj +1

are newly inserted, while even points at levelj +1 correspond directly to the old points from levelj.

In the case of linear splines the even points are in fact thesameat level j +1 as they were at levelj.

Subdivision schemes that have this property will later be calledinterpolating, since points, once they

have been computed, will never move again. In contrast to this consider cubic splines. In that case even

points at levelj +1 are local averages of points at levelj so thatpj+1
2i 6= pj

i . Schemes of this type will

later be calledapproximating.

2.2.5 Subdivision for Spline Curves

In the previous section we saw that we can refine the control point sequence for a given spline by multi-

plying the control point vectorp by the matrixS, which encodes the refinement equation for the B-spline

used in the definition of the curve. What happens if we keep repeating this process over and over, gen-

erating ever denser sets of control points? It turns out the control point sequence converges to the actual

spline curve. The speed of convergence is geometric, which is to say that the difference between the

curve and its control points decreases by a constant factor on every subdivision step. Loosely speaking

this means that the actual curve is hard to distinguish from the sequence of control points after only a

few subdivision steps.
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We can turn this last observation into an algorithm and the core of the subdivision paradigm. Instead

of drawing the curve itself on the screen we draw the control polygon, i.e., the piecewise linear curve

through the control points. Applying the subdivision matrix to the control points defines a sequence of

piecewise linear curves which quickly converge to the spline curve itself.

In order to make these observations more precise we need to introduce a little more machinery in the

next section.

2.3 Subdivision as Repeated Refinement

2.3.1 Discrete Convolution

The coefficientssk of the B-spline refinement equation can also be derived from another perspective,

namely discrete convolution. This approach mimics closely the definition of B-splines through continu-

ous convolution. Using this machinery we can derive and check many useful properties of subdivision

by looking at simple polynomials.

Recall that the generating function of a sequenceak is defined as

A(z) = ∑
k

akz
k;

whereA(z) is thez-transform of the sequenceak. This representation is closely related to the discrete

Fourier transform of a sequence by restricting the argumentz to the unit circle,z= exp(iθ). For the case

of two coefficient sequencesak andbk their convolution is defined as

ck = (a
b)k = ∑
n

ak�nbn:

In terms of generating functions this can be stated succinctly as

C(z) = A(z)B(z);

which comes as no surprise since convolution in the time domain is multiplication in the Fourier domain.

The main advantage of generating functions, and the reason why we use them here, is that manip-

ulations of sequences can be turned into simple operations on the generating functions. A very useful

example of this is the next observation. Suppose we have two functions that each satisfy a refinement

equation

f (t) = ∑
k

ak f (2t�k)

g(t) = ∑
k

bk g(2t�k):
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In that case the convolutionh= f 
g of f andg also satisfies a refinement equation

h(t) = ∑
k

ck h(2t�k);

whose coefficientsck are given by the convolution of the coefficients of the individual refinement equa-

tions

ck =
1
2∑

i

ak�i bi :

With this little observation we can quickly find the refinement equation, and thus the coefficients of the

subdivision matrixS, by repeated multiplication of generating functions. Recall that the box function

B0(t) satisfies the refinement equationB0(t) = B0(2t) +B0(2t � 1). The generating function of this

refinement equation isA(z) = (1+z) since the only non-zero terms of the refinement equation are those

belonging to indices 0 and 1. Now recall the definition of B-splines of degreel

Bl (t) =
lO

k=0

B0(t);

from which we immediately get the associated generating function

S(z) =
1
2l (1+z)l+1:

The valuessk used for the definition of the subdivision matrix are simply the coefficients of the various

powers ofz in the polynomialS(z)

S(z) =
1
2l

l+1

∑
k=0

�
l +1

k

�
zk;

where we used the binomial theorem to expandS(z). Note how this matches the definition ofsk in

Equation 2.1.

Recall Theorem 1, which we used to argue that B-splines of degreen areCn�1 continuous. That same

theorem can now be expressed in terms of generating functions as follows

Theorem 2 If S(z) defines a convergent subdivision scheme yielding a Ck-continuous limit function then
1
2(1+z)S(z) defines a convergent subdivision scheme with Ck+1-continuous limit functions.

We will put this theorem to work in analyzing a given subdivision scheme by peeling off as many fac-

tors of 1
2(1+z) as possible, while still being able to prove that the remainder converges to a continuous
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limit function. With this trick in hand all we have left to do is establish criteria for the convergence of

a subdivision scheme to a continuous function. Once we can verify such a condition for the subdivi-

sion scheme associated with B-spline control points we will be justified in drawing the piecewise linear

approximations of control polygons as approximations for the spline curve itself. We now turn to this

task.

2.3.2 Convergence of Subdivision

There are many ways to talk about the convergence of a sequence of functions to a limit. One can use

different norms and different notions of convergence. For our purposes the simplest form will suffice,

uniform convergence.

We say that a sequence of functionsfi defined on some interval[a;b] � R converges uniformlyto a

limit function f if for all ε > 0 there exists ann0 > 0 such that for alln> n0

max
t2[a;b]

j f (t)� fn(t)j< ε:

Or in words, as of a certain index (n0) all functions in the sequence “live” within anε sized tube around

the limit function f . This form of convergence is sufficient for our purposes and it has the nice prop-

erty that if a sequence of continuous functions converges uniformly to some limit functionf , that limit

function is itself continuous.

For later use we introduce some norm symbols

k f (t)k = sup
t
j f (t)j

kpk = sup
i
jpi j

kSk = sup
i

∑
k

jSikj;

which are compatible in the sense that, for example,kSpk � kSkkpk.
The sequence of functions we want to analyze now are the control polygons as we refine them with

the subdivision ruleS. Recall that the control polygon is the piecewise linear curve through the control

pointsp j at level j. Independent of the subdivision ruleSwe can use the linear B-splines to define the

piecewise linear curve through the control points asPj(t) = B1(2j t)p j .

One way to show that a given subdivision schemeS converges to a continuous limit function is to

prove that (1) the limit

P∞(t) = lim
j!∞

Pj(t)
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exists for allt and (2) that the sequencePj(t) converges uniformly. In order to show this property we

need to make the assumption that all rows of the matrixSsum to 1, i.e., the odd and even coefficients of

the refinement relation separately sum to 1. This is a reasonable requirement since it is needed to ensure

the affine invariance of the subdivision process, as we will later see. In matrix notation this meansS1= 1,

or in other words, the vector of all 1’s is an eigenvector of the subdivision matrix with eigenvalue 1. In

terms of generating functions this meansS(�1) = 0, which is easily verified for the generating functions

we have seen so far.

Recall that the definition of continuity in the function setting is based on differences. We sayf (t)

is continuous att0 if for any ε > 0 there exists aδ > 0 so thatj f (t0)� f (t)j < ε as long asjt0� tj < δ.

The corresponding tool in the subdivision setting is the difference between two adjacent control points

pj
i+1� pj

i = (∆p j)i . We will show that if the differences between neighboring control points shrink fast

enough, the limit curve will exist and be continuous:

Lemma 3 If k∆p jk < cγ j for some constant c> 0 and a shrinkage factor0< γ < 1 for all j > j0 � 0

then Pj(t) converges to a continuous limit function P∞(t).

Proof: Let S be the subdivision rule at hand,p1 = Sp0 andS1 be the subdivision rule for B-splines of

degree 1. Notice that the rows ofS�S1 sum to 0

(S�S1)1= S1�S11= 1�1= 0:

This implies that there exists a matrixD such thatS�S1 = D∆, where∆ computes the difference of

adjacent elements(∆)ii = �1, (∆)i;i+1 = 1, and zero otherwise. The entries ofD are given asDi j =

�∑ j
k=i(S�S1)ik. Now consider the difference between two successive piecewise linear approximations

of the control points

kPj+1(t)�Pj(t)k = kB1(2
j+1t)p j+1�B1(2

j t)p jk
= kB1(2

j+1t)Sp j �B1(2
j+1t)S1p jk

= kB1(2
j+1t)(S�S1)p jk

� kB1(2
j+1t)kkD∆p jk

� kDkk∆p jk
� kDkcγ j :

This implies that the telescoping sumP0(t)+∑ j
k=0(P

k+1�Pk)(t) converges to a well defined limit func-

tion since the norms of each summand are bounded by a constant times a geometric termγ j . Let P∞(t)
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as j ! ∞, then

kP∞(t)�Pj(t)k< kDkc
1� γ

γ j ;

since the latter is the tail of a geometric series. This implies uniform convergence and thus continuity of

P∞(t) as claimed.

How do we check such a condition for a given subdivision scheme? Suppose we had a derived

subdivision schemeD for the differences themselves

∆p j+1 = D∆p j ;

defined as the scheme that satisfies

∆S= D∆:

Or in words, we are looking for adifference scheme Dsuch that taking differences after subdivision is

the same as applying the difference scheme to the differences. DoesD always exist? The answer is yes

if S is affinely invariant, i.e.,S(�1) = 0. This follows from the following argument. MultiplyingSby ∆
computes a matrix whose rows are differences of adjacent rows inS. Since odd and even numbered rows

of Seach sum to one, the rows of∆Smust each sum to zero. Now the existence of a matrixD such that

∆S= D∆ follows as in the argument above.

Given this difference schemeD all we would have to show is that some powerm> 0 of D has norm

less than 1,kDmk= γ < 1. In that casek∆p jk< c(γ1=m) j . (We will see in a moment that the extra degree

of freedom provided by the parameterm is needed in some cases.)

As an example, let us check this condition for cubic B-splines. Recall thatB3(z) = 1
8(1+z)4, i.e.,

pj+1
2i+1 =

1
8
(4pj

i +4pj
i+1)

pj+1
2i =

1
8
(pj

i�1+6pj
i + pj

i+1):

Taking differences we have

(∆p j+1)2i = pj+1
2i+1� pj+1

2i =
1
8
(�pj

i�1�2pj
i +3pj

i+1)

=
1
8
(3(pj

i+1� pj
i )+1(pj

i � pj
i�1)) =

1
8
(3(∆p j)i +1(∆p j)i�1);

and similarly for the odd entries so thatD(z) = 1
8(1+z)3, from which we conclude thatkDk= 1

2, and that

the subdivision scheme for cubic B-splines converges uniformly to a continuous limit function, namely

the B-spline itself.
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Another example, which is not a spline, is the so called 4 point scheme [5]. It was used to create

the curve in Figure 2.1, which is interpolating rather than approximating as is the case with splines. The

generating function for the 4 point scheme is

S(z) =
1
16

(�z�3+4z�2�z�1)(1+z)4

Recall that each additional factor of1
2(1+z) in the generating function increases the order of continuity of

the subdivision scheme. If we want to show that the limit function of the 4 point scheme is differentiable

we need to show that18(�z�3+4z�2� z�1)(1+ z)3 converges to a continuous limit function. This in

turn requires thatD(z) = 1
8(�z�3+4z�2�z�1)(1+z)2 satisfy a norm estimate as before. The rows ofD

have non-zero entries of(1
4;

1
4), and(�1

8 ; 6
8;
�1
8 ) respectively. ThuskDk= 1, which is not strong enough.

However, with a little bit more work one can show thatkD2k = 3
4, so that indeed the 4 point scheme is

C1.

In general, the difficult part is to find a set of coefficients for which subdivision converges. There

is no general method to achieve this. Once a convergent subdivision scheme is found, one can always

obtain a desired order of continuity by convolving with the box function.

2.3.3 Summary

So far we have considered subdivision only in the context of splines where the subdivision rule, i.e., the

coefficients used to compute a refined set of control points, was fixed and everywhere the same. There

is no pressing reason for this to be so. We can create a variety of different curves by manipulating the

coefficients of the subdivision matrix. This could be done globally or locally. I.e., we could change the

coefficients within a subdivision level and/or between subdivision levels. In this regard, splines are just

a special case of the more general class of curves, subdivision curves. For example, at the beginning of

this chapter we briefly outlined an interpolating subdivision method, while spline based subdivision is

approximating rather than interpolating.

Why would one want to draw a spline curve by means of subdivision? In fact there is no sufficiently

strong reason for using subdivision in one dimension and none of the commercial line drawing packages

do so, but the argument becomes much more compelling in higher dimensions as we will see in later

chapters.

In the next section we use the subdivision matrix to study the behavior of the resulting curve at a point

or in the neighborhood of a point. We will see that it is quite easy, for example, to evaluate the curve

exactly at a point, or to compute a tangent vector, simply from a deeper understanding of the subdivision

matrix.
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2.4 Analysis of Subdivision

In the previous section we have shown that uniform spline curves can be thought of as a special case of

subdivision curves. So far, we have seen only examples for which we use a fixed set of coefficients to

compute the control points everywhere. The coefficients define the appearance of the curve, for example,

whether it is differentiable or has sharp corners. Consequently it is possible to control the appearance of

the curve by modifying the subdivision coefficients locally. So far we have not seen a compelling reason

to do so in the 1D setting. However, in the surface setting it will be essential to change the subdivision

rule locally around extraordinary vertices to ensure maximal order of continuity. But before studying this

question we once again look at the curve setting first since the treatment is considerably easier to follow

in that setting.

To study properties such as differentiability of the curve (or surface) we need to understand which

of the control points influences the neighborhood of the point of interest. This notion is captured by the

concept of invariant neighborhoods to which we turn now.

2.4.1 Invariant Neighborhoods

Suppose we want to study the limit curve of a given subdivision scheme in the vicinity of a particular

control point.3 To determinelocal properties of a subdivision curve, we do not need the whole infinite

vector of control points or the infinite matrix describing subdivision of the entire curve. Differentiability,

for example, is a local property of a curve. To study it we need consider only an arbitrarily small piece

of the curve around the origin. This leads to the question of which control points influence the curve in

the neighborhood of the origin?

As a first example consider cubic B-spline subdivision. There is one cubic segment to the left of the

origin with parameter valuest 2 [�1;0] and one segment to the right with parameter ranget 2 [0;1].

Figure 2.6 illustrates that we need 5 control points at the coarsest level to reach any point of the limit

curve which is associated with a parameter value between�1 and 1, no matter how close it is to the

origin. We say that theinvariant neighborhoodhas size 5. This size depends on the number of non-zero

entries in each row of the subdivision matrix, which is 2 for odd points and 3 for even points. The latter

implies that we need one extra control point to the left of�1 and one to the right of 1.

Another way to see this argument is to consider the basis functions associated with a given subdivision

scheme. Once those are found we can find all basis functions overlapping a region of interest and

3Here and in the following we assume that the point of interest is the origin. This can always be achieved through renum-

bering of the control points.
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Figure 2.6: In the case of cubic B-spline subdivision the invariant neighborhood is of size 5. It takes

5 control points at the coarsest level to determine the behavior of the subdivision limit curve over the

two segments adjacent to the origin. At each level we need one more control point on the outside of

the intervalt 2 [�1;1] in order to continue on to the next subdivision level. 3 initial control points for

example would not be enough.

their control points will give us the control set for that region. How do we find these basis functions

in the setting when we don’t neccessarily produce B-splines through subdivision? The argument is
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straightforward and also applies to surfaces. Recall that the subdivision operator is linear, i.e.,

Pj(t) = B1(2
j t)Sjp0

= B1(2
j t)Sj

 
∑
i

p0
i (ei)

0

!

= ∑
i

p0
i B1(2

j t)Sj(ei)
0

= ∑
i

p0
i ϕ j

i (t)

In this expressionei
0 stands for the vector consisting of all 0s except a single 1 in positioni. In other

words the final curve is always a linear combination with weightsp0
i of fundamental solutions

lim
j!∞

ϕ j
i (t) = ϕi(t):

If we used the same subdivision weights throughout the domain it is easy to see thatϕi(t) = ϕ(t �
i), i.e., there is a single functionϕ(t) such that all curves produced through subdivision from some

initial sequence of pointsp0 are linear combinations of translates ofϕ(t). This function is called the

fundamental solution of the subdivision scheme. Questions such as differentiability of the limit curve

can now be studied by examining this one function

ϕ(t) = lim
j!∞

Sj(e0)
0:

For example, we can read off from the support of this function how far the influence of a control point

will be felt. Similarly, the shape of this function tells us something about how the curve (or surface) will

change when we pull on a control point. Note that in the surface case the rules we apply will depend on

the valence of the vertex in question. In that case we won’t get only a single fundamental solution, but a

different one for each valence. More on this later.

With this we can revisit the argument for the size of the invariant neighborhood. The basis functions

of cubic B-spline subdivision have support width of 4 intervals. If we are interested in a small open

neighborhood of the origin we notice that 5 basis functions will overlap that small neighborhood. The

fact that the central 5 control points control the behavior of the limit curve at the origin holds independent

of the level. With the central 5 control points at levelj we can compute the central 5 control points at

level j +1. This implies that in order to study the behavior of the curve at the origin all we have to
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analyze is a small 5�5 subblock of the subdivision matrix0
BBBBBB@

pj+1
�2

pj+1
�1

pj+1
0

pj+1
1

pj+1
2

1
CCCCCCA

=
1
8

0
BBBBBB@

1 6 1 0 0

0 4 4 0 0

0 1 6 1 0

0 0 4 4 0

0 0 1 6 1

1
CCCCCCA

0
BBBBBB@

pj
�2

pj
�1

pj
0

pj
1

pj
2

1
CCCCCCA
:

-2-3 -1 0 321

1

-1 9 -1
16

0-1

9

Figure 2.7: In the case of the 4 point subdivision rule the invariant neighborhood is of size 7. It takes 7

control points at the coarsest level to determine the behavior of the subdivision limit curve over the two

segments adjacent to the origin. One extra point atpj
2 is needed to computepj+1

1 . The other is needed

to computepj+1
3 , which requirespj

3. Two extra points on the left and right result in a total of 7 in the

invariant neighborhood.

The 4 point subdivision scheme provides another example. This time we do not have recourse to
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splines to argue the properties of the limit curve. In this case each basis function has a support ranging

over 6 intervals. An easy way to see this is to start with the sequencee0
0, i.e., a single 1 at the origin

surrounded by zeros. Repeatedly applying subdivision we can see that no points outside the original

[�3;3] interval will become non-zero. Consequently for the invariant neighborhood of the origin we

need to consider 3 basis functions to the left, the center function, and 3 basis functions to the right. The

4 point scheme has an invariant neighborhood of 7 (see Figure 2.7). In this case the local subdivision

matrix is given by

0
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Since the local subdivision matrix controls the behavior of the curve in a neighborhood of the origin,

it comes as no surprise that many properties of curves generated by subdivision can be inferred from

the properties of the local subdivision matrix. In particular, differentiability properties of the curve are

related to the eigenstructure of the local subdivision matrix to which we now turn. From now on the

symbolSwill denote thelocal subdivision matrix.

2.4.2 Eigen Analysis

Recall from linear algebra that aneigenvectorx of the matrixM is a non-zero vector such thatMx = λx,

whereλ is a scalar. We say thatλ is theeigenvaluecorresponding to the right eigenvectorx.

Assume the local subdivision matrixShas sizen�n and has real eigenvectorsx0;x1; : : : ;xn�1, which

form a basis, with corresponding real eigenvaluesλ0 � λ1 � : : : � λn�1. For example, in the case of
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cubic splinesn= 5 and

(λ0;λ1;λ2;λ3;λ4) = (1;
1
2
;
1
4
;
1
8
;
1
8
)

(x0;x1;x2;x3;x4) =

0
BBBBBB@

1 �1 1 1 0

1 �1
2

2
11 0 0

1 0 � 1
11 0 0

1 1
2

2
11 0 0

1 1 1 0 1

1
CCCCCCA
:

Given these eigenvectors we have

S(x0;x1;x2;x3;x4) = (x0;x1;x2;x3;x4)

0
BBBBBB@

λ0 0 0 0 0

0 λ1 0 0 0

0 0 λ2 0 0

0 0 0 λ3 0

0 0 0 0 λ4

1
CCCCCCA

SX = XD

X�1SX = D:

The rowsx̃i of X�1 are called left eigenvectors since they satisfyx̃iS= λi x̃i , which can be seen by

multiplying the last equality withX�1 on the right.

Note: not all subdivision schemes have only real eigenvalues or a complete set of eigenvectors. For

example, the 4 point scheme has eigenvalues

(λ0;λ1;λ2;λ3;λ4;λ5;λ6) = (1;
1
2
;
1
4
;
1
4
;
1
8
;� 1

16
;� 1

16
);

but it does not have a complete set of eigenvectors. These degeneracies are the cause of much technical

difficulty in the theory of subdivision. To keep our exposition simple and communicate the essential

ideas we will ignore these cases and assume from now on that we have a complete set of eigenvectors.

In this setting we can write any vectorp of lengthn as a linear combination of eigenvectors:

p =
n�1

∑
i=0

aixi ;

where theai are given by the inner productsai = x̃i � p. This decomposition works also when the entries

of p aren 2-D points(or 3-D points in the case of surfaces) rather than single numbers. In this case each

“coefficient” ai is a 2-D (3-D) point. The eigenvectorsx0; : : : ;xn�1 are simply vectors ofn real numbers.
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In the basis of eigenvectors we can easily compute the result of application of the subdivision matrix

to a vector of control points, that is, the control points on the next level

Sp0 = S
n�1

∑
i=0

aixi

=
n�1

∑
i=0

aiSxi by linearity ofS

=
n�1

∑
i=0

aiλixi

Applying S j times, we obtain

p j = Sjp0 =
n�1

∑
i=0

aiλ
j
i xi :

2.4.3 Convergence of Subdivision

If λ0 > 1, thenSjx0 would grow without bound asj increased and subdivision would not be convergent.

Hence, we can see that in order for the sequenceSjp0 to converge at all, it is necessary that all eigenvalues

are at most 1. It is also possible to show that only a single eigenvalue may have magnitude 1 [25].

A simple consequence of this analysis is that we can compute the limit position directly in the eigen-

basis

P∞(0) = lim
j!∞

Sjp0 = lim
j!∞

n�1

∑
i=0

aiλ
j
i xi = a0;

since all eigen componentsjλij< 1 decay to zero. For example, in the case of cubic B-spline subdivision

we can compute the limit position ofpj
i asa0 = x̃0 �p j , which amounts to

p∞
i = a0 =

1
6
(pj

i�1+4pj
i + pj

i+1):

Note that this expression is completely independent of the levelj at which it is computed.

2.4.4 Invariance under Affine Transformations

If we moved all the control points simultaneously by the same amount, we would expect the curve defined

by these control points to move in the same way as a rigid object. In other words, the curve should be

invariant under distance-preserving transformations, such as translation and rotation. It follows from
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linearity of subdivision that if subdivision is invariant with respect to distance-preserving transforma-

tions, it also should be invariant under any affine transformations. The family of affine transformations

in addition to distance-preserving transformations, contains shears.

a

Figure 2.8: Invariance under translation.

Let 1 be ann-vector of 1’s anda2R2 a displacement in the plane (see Figure 2.8) Then1�a represents

a displacement of our seven points by a vectora. Applying subdivision to the transformed points, we get

S(p j +1�a) = Sp j +S(1�a) by linearity ofS

= p j+1+S(1�a):

From this we see that for translational invariance we need

S(1�a) = 1�a

Therefore,1 should be the eigenvector ofSwith eigenvalueλ0 = 1.

Recall that when proving convergence of subdivision we assumed that1 is an eigenvector with eigen-

value 1. We now see that this assumption is satisfied by any reasonable subdivision scheme. It would be

rather unnatural if the shape of the curve changed as we translate control points.
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2.4.5 Geometric Behavior of Repeated Subdivision

If we assume thatλ0 is 1, and all other eigenvalues are less than 1, we can choose our coordinate system

in such a way thata0 is the origin inR2. In that case we have

p j =
n�1

∑
i=1

aiλ j
i xi

Dividing both sides byλ j
1, we obtain

1

λ j
1

p j = a1x1+
n�1

∑
i=2

ai

�
λi

λ1

� j

xi :

If we assume thatjλ2j; : : : ; jλn�1j< jλ1j, the sum on the right approaches zero asj ! ∞. In other words

the term corresponding toλ1 will “dominate” the behavior of the vector of control points. In the limit,

we get a set ofn points arranged along the vectora1. Geometrically, this is a vector tangent to our curve

at the center point (see Figure 2.9).

Just as in the case of computing the limit point of cubic B-spline subdivision by computinga0 we can

compute the tangent vector atpj
i by computinga1 = x̃1 �p j

t∞
i = a1 = pj

i+1� pj
i�1:

If there were two equal eigenvalues, sayλ1 = λ2, as j increases, the points in the limit configuration

will be linear combinations of two vectorsa1 anda2, and in general would not be on the same line. This

indicates that there will be no tangent vector at the central point. This leads us to the following condition,

that, under some additional assumptions, is necessary for the existence of a tangent

All eigenvalues of S exceptλ0 = 1 should be less thanλ1.

2.4.6 Size of the Invariant Neighborhood

We have argued above that the size of the invariant neighborhood for cubic splines is 5 (7 for the 4pt

scheme). This was motivated by the question of which basis functions overlap a finite sized, however

small, neighborhood of the origin. Yet, when we computed the limit position as well as the tangent

vector for the cubic spline subdivision we used left eigenvectors, whose non-zero entries did not extend

beyond the immediate neighbors of the vertex at the origin. This turns out to be a general observation.

While the larger invariant neighborhood is needed foranalysis, we can actually get away with a smaller

neighborhood if we are only interested incomputationof point positions and tangents at those points
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Figure 2.9: Repeatedly applying the subdivision matrix to our set ofn control points results in the control

points converging to a configuration aligned with the tangent vector. The various subdivision levels have

been offset vertically for clarity.

corresponding to one of the original vertices. The value of the subdivision curve at the center point only

depends on those basis functions which are non-zero at that point. In the case of cubic spline subdivision

there are only 3 basis functions with this property. Similarly the first derivatives at the origin of the basis

functions centered at -2 and +2 are zero as well. Hence the derivative only depends on the immediate

neighbors as well. This must be so since the subdivision scheme isC1. The basis functions have zero

derivative at the edge of their support byC1-continuity assumption, because outside of the support the

derivative is identically zero.

For curves this distinction does not make too much of a difference in terms of computations, but

in the case of surfaces life will be much easier if we can use a smaller invariant neighborhood for the

computation of limit positions and tangents. For example, for Loop’s scheme we will be able to use

a 1-ring (only immediate neighbors) rather than a 2-ring. For the Butterfly scheme we will find that a

2-ring, rather than a 3-ring is sufficient to compute tangents.
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2.4.7 Summary

For our subdivision matrixSwe desire the following characteristics

� the eigenvectors should form a basis;

� the first eigenvalueλ0 should be 1;

� the second eigenvalueλ1 should be less than 1;

� all other eigenvalues should be less thanλ1.
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Chapter 3

Subdivision Surfaces

Denis Zorin, New York University

In this chapter we review the basic principles of subdivision surfaces. These principles can be applied

to a variety of subdivision schemes described in Chapter 4: Doo-Sabin, Catmull-Clark, Loop, Modified

Butterfly, Kobbelt, Midedge.

Some of these schemes were around for a while: the 1978 papers of Doo and Sabin and Catmull and

Clark were the first papers describing subdivision algorithms for surfaces. Other schemes are relatively

new. Remarkably, during the period from 1978 until 1995 little progress was made in the area. In

fact, until Reif’s work [23] onC1-continuity of subdivision most basic questions about the behavior

of subdivision surfaces near extraordinary vertices were not answered. Since then there was a steady

stream of new theoretical and practical results: classical subdivision schemes were analyzed [24, 16],

new schemes were proposed [30, 10, 8, 17], and general theory was developed forC1 andCk-continuity

of subdivision [23, 18, 26, 28]. Smoothness analysis was performed in some form for allmost all known

schemes, for all of them, definitive results were obtained during the last 2 years only.

One of the goals of this chapter is to provide an accessible introduction to the mathematics of subdi-

vision surfaces (Sections 3.4 and 3.5). Building on the material of the first chapter, we concentrate on

the few general concepts that we believe to be of primary importance: subdivision surfaces as parametric

surfaces,C1-continuity, eigenstructure of subdivision matrices, characteristic maps.

The developments of recent years have convinced us of the importance of understanding the mathe-

matical foundations of subdivision. A Computer Graphics professional who wishes to use subdivision,

probably is not interested in the subtle points of a theoretical argument. However, understanding the
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general concepts that are used to construct and analyze subdivision schemes allows one to choose the

most appropriate subdivision algorithm or customize one for a specific application.

3.1 Subdivision Surfaces: an Example

One of the simplest subdivision schemes is theLoop scheme, invented by Charles Loop [14]. We will

use this scheme as an example to introduce some basic features of subdivision for surfaces.

The Loop scheme is defined for triangular meshes. The general pattern of refinement, which we call

vertex insertion, is shown in Figure 3.1.

Figure 3.1: Refinement of a triangular mesh. New vertices are shown as black dots. Each edge of the

control mesh is split into two, and new vertices are reconnected to form 4 new triangles, replacing each

triangle of the mesh.

Like most (but not all) other subdivision schemes, this scheme is based on a spline basis function,

called the three-directional quartic box spline. Unlike more conventional splines, such as the bicubic

spline, the three-directional box spline is defined on the regulartriangular grid; the generating polyno-

mial for this spline is

S(z1;z2) =
1
16

(1+z1)
2 (1+z2)

2 (1+z1z2)
2 :

Note that the generating polynomial for surfaces has two variables, while the generating polynomials for

curves descibed in Chapter 2, had only one. This spline basis function isC2-continuous. Subdivision

rules for it are shown in Figure 3.2.
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Figure 3.2: Subdivision coefficients for a three directional box spline.

In one dimension, once a spline basis is chosen, all the coefficients of the subdivision rules that are

needed to generate a curve are completely determined. The situation is radically different and more

complex for surfaces. The structure of the control polygon for curves is always very simple: the vertices

are arranged into a chain, and any two pieces of the chain of the same length always have identical

structure. For two-dimensional meshes, the local structure of the mesh may vary: the number of edges

connected to a vertex may be different from vertex to vertex. As a result the rules derived from the spline

basis function may be applied only to parts of the mesh that are locally regular; that is, only to those

vertices that have a valence of 6 (in the case of triangular schemes). In other cases, we have to design

new rules for vertices with different valences. Such vertices are calledextraordinary.

For the time being, we consider only meshes without a boundary. Note that the quartic box spline

rule used to compute the control point inserted at an edge (Figure 3.2,left) can be applied anywhere. The

only rule that needs modification is the rule used to compute new positions of control points inherited

from the previous level.

Loop proposed to use coefficients shown in Figure 3.3. It turns out that this choice of coefficients

guarantees that the limit surface of the scheme is “smooth.”

Note that these new rules only influence local behavior of the surface near extraordinary vertices. All

vertices inserted in the course of subdivision are always regular, i.e., have valence 6.

This example demonstrates the main challenge in the design of subdivision schemes for surfaces:

one has to define additional rules for irregular parts of the mesh in such a way that the limit surfaces
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Figure 3.3: Loop scheme: coefficients for extraordinary vertices. The choice ofβ is not unique;

Loop [14] suggests1k(5=8� (3
8 +

1
4 cos2π

k )2).

have desired properties, in particular, are smooth. In this chapter one of our main goals is to describe

the conditions that guarantee that a subdivision scheme produces smooth surfaces. We start with defin-

ing subdivision surfaces more rigorously (Section 3.2), and defining subdivision matrices (Section 3.3).

Subdivision matrices have many applications, including computing limit positions of the points on the

surface, normals, and explicit evaluation of the surface (Chapter 4). Next, we define more precisely what

a smooth surface is (Section 3.4), introducing two concepts of geometric smoothness—tangent plane

continuityandC1-continuity. Then we explain how it is possible to understand local behavior of sub-

division near extraordinary vertices using characteristic maps (Section 3.5). In Chapter 4 we discuss a

variety of subdivision rules in a systematic way.

3.2 Natural Parameterization of Subdivision Surfaces

The subdivision process produces a sequence of polyhedra with increasing numbers of faces and vertices.

Intuitively, the subdivision surface is the limit of this sequence. The problem is that we have to define

what we mean by the limit more precisely. For this, and many other purposes, it is convenient to represent

subdivision surfaces as functions defined on some parametric domain with values inR3. In the regular

case, the plane or a part of the plane is the domain. However, for arbitrary control meshes, it might be

impossible to parameterize the surface continuously over a planar domain.
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Fortunately, there is a simple construction that allows one to use theinitial control mesh, or more

precisely, the corresponding polygonal complex, as the domain for the surface.

Parameterization over the initial control mesh. We start with the simplest case: suppose the initial

control mesh is a simple polyhedron, i.e., it does not have self-intersections.

Suppose each time we apply the subdivision rules to compute the finer control mesh, we also apply

midpoint subdivision to a copy of the initial control polyhedron (see Figure 3.4). This means that we

leave the old vertices where they are, and insert new vertices splitting each edge in two. Note that

each control point that we insert in the mesh using subdivision corresponds to a point in the midpoint-

subdivided polyhedron. Another important fact is that midpoint subdivision does not alter the control

polyhedron regarded as a set of points; and no new vertices inserted by midpoint subdivision can possibly

coincide.

Figure 3.4: Natural parameterization of the subdivision surface

We will use the second copy of the control polyhedron as our domain. We denote it asK, when it is
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regarded as a polyhedron with identified vertices, edges and faces, andjKj when it is regarded simply as

a subset ofR3.

Important remark on notation: we will refer to the points computed by subdivision ascontrol

points; the wordvertex is reserved for the vertices of the polyhedron that serves as the domain and

new vertices added to it by midpoint subdivision. We will use the letterv to denote vertices, andpj(v) to

denote the control point corresponding tov after j subdivision steps.

As we repeatedly subdivide, we get a mapping from a denser and denser subset of the domain to the

control points of a finer and finer control mesh. At each step, we linearly interpolate between control

vertices, and regard the mesh generated by subdivision as a piecewise linear function on the domainK.

Now we have the same situation that we had for curves: a sequence of piecewise linear functions defined

on a common domain. If this sequence of functions converges uniformly, the limit is a mapf from jKj
into R3. This is the limit surface of subdivision.

An important fact about the parameterization that we have just constructed is that for a regular mesh

the domain can be taken to be the plane with a regular triangular grid. If in the regular case the subdivision

scheme reduces to spline subdivision, our parameterization is precisely the standard(u;v) parameteriza-

tion of the spline, which is guaranteed to be smooth.

To understand the general idea, this definition is sufficient, and a reader not interested in the sub-

tle details can proceed to the next section and assume from now on that the initial mesh has no self-

intersections.

General case. The crucial fact that we needed to parameterize the surface over its control polyhedron

was the absence of self-intersections. Otherwise, it could happen that a vertex on the control polyhedron

has more than one control point associated with it.

In general, we cannot rely on this assumption: quite often control meshes have self-intersections or

coinciding control points. We can observe though that the positions of vertices of the control polyhedron

are of no importance for our purposes: we can deform it in any way we want. In many cases, this

is sufficient to eliminate the problem with self intersections; however, there are cases when the self-

intersection cannot be removed by any deformation (example: Klein bottle, Figure 3.5). It is always

possible to do that if we place our mesh in a higher-dimensional space; in fact, 4 dimensions are always

enough.

This leads us to the following general choice of the domain: a polyhedron with no self-intersections,

possibly in four-dimensional space. The polyhedron has to have the same structure as the initial control
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Figure 3.5: The surface (Klein bottle) has an intersection that cannot be removed in 3D.

mesh of the surface, that is, there is a one-to-one correspondence between vertices, edges and faces of

the domain and the initial control mesh. Note that now we are completely free to chose the control points

of the initial mesh any way we like.

3.3 Subdivision Matrix

An important tool both for understanding and using subdivision is thesubdivision matrix, similar to

the subdivision matrix for the curves introduced in Chapter 2. In this section we define the subdivision

matrix and discuss how it can be used to compute tangent vectors and limit positions of points. Another

application of subdivision matrices is explicit evaluation of subdivision surfaces described in Chapter 4.

Subdivision matrix. Similarly to the one-dimensional case, the subdivision matrix relates the con-

trol points in a fixed neighborhood of a vertex on two sequential subdivision levels. Unlike the one-

dimensional case, there is not a single subdivision matrix for a given surface subdivision scheme: a

separate matrix is defined for each valence.

For the Loop scheme control points for only two rings of vertices around an extraordinary vertexB

define f (U) completely. We will call the set of vertices in these two rings thecontrol setof U .

Let pj
0 be the value at levelj of the control point corresponding toB. Assign numbers to the vertices

in the two rings (there are 3k vertices). Note thatU j andU j+1 are similar: one can establish a one-to-one

correspondence between the vertices simply by shrinkingU j by a factor of 2. Enumerate the vertices

51



5

3 9

41

6

8

7

5

6

7

8

2

2

04

93

0 1

Figure 3.6: The Loop subdivision scheme near a vertex of degree 3. Note that 3�3+1= 10 points in

two rings are required.

in the rings; there are 3k vertices, plus the vertex in the center. Letpj
i , i = 1: : :3k be the corresponding

control points.

By definition of the control set, we can compute all valuespj+1
i from the valuespj

i . Because we only

consider subdivision which computes finer levels by linear combination of points from the coarser level,

the relation between the vectors of pointsp j+1 andp j is given by a(3k+1)� (3k+1) matrix:0
BB@

pj+1
0
...

pj+1
3k

1
CCA = S

0
BB@

pj
0
...

pj
3k

1
CCA :

It is important to remember that each component ofpj is a point in the three-dimensional space. The

matrix S is the subdivision matrix, which, in general, can change from level to level. We consider only

schemes for which it is fixed. Such schemes are calledstationary.

We can now rewrite each of the coordinate vectors in terms of the eigenvectors of the matrixS(com-

pare to the use of eigen vectors in the 1D setting). Thus,

p0 = ∑
i

aixi

and

p j = (S) jp0 = ∑
i

(λi)
jaixi
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where thexi are the eigenvectors ofS, and theλi are the corresponding eigenvalues, arranged in nonin-

creasing order. As discussed for the one-dimensional case,λ0 has to be 1 for all subdivision schemes, in

order to guarantee invariance with respect to translations and rotations. Furthermore, all stable, converg-

ing subdivision schemes will have all the remainingλi less than 1.

Subdominant eigenvalues and eigenvectorsIt is clear that as we subdivide, the behavior ofp j , which

determines the behavior of the surface in the immediate vicinity of our point of interest, will depend only

on the eigenvectors corresponding to the largest eigenvalues ofS.

To proceed with the derivation, we will assume for simplicity thatλ = λ1 = λ2 > λ3. We will call

λ1 andλ2 subdominant eigenvalues. Furthermore, we leta0 = 0; this corresponds to choosing the origin

of our coordinate system in the limit position of the vertex of interest (just as we did in the 1D setting).

Then we can write

p j

(λ) j = a1x1+a2x2+a3

�
λ3

λ

� j

x3 : : : (3.1)

where the higher-order terms disappear in the limit.

This formula is very important, and deserves careful consideration. Recall thatp j is a vector of 3k+1

3D points, whilexi are vectors of 3k+1 numbers. Hence the coefficientsai in the decomposition above

have to be 3D points.

This means that, up to a scaling by(λ) j , the control set forf (U) approaches a fixed configuration.

This configuration is determined byx1 andx2, which depend only on the subdivision scheme, and ona1

anda2 which depend on the initial control mesh.

Each vertex inp j for sufficiently largej is a linear combination ofa1 anda2, up to a vanishing term.

This indicates thata1 anda2 span the tangent plane. Also note that if we apply an affine transformA,

taking a1 anda2 to coordinate vectorse1 ande2 in the plane, then, up to a vanishing term, the scaled

configuration will be independent of the initial control mesh. The transformed configuration consists of

2D points with coordinates(x1i ;x2i), i = 0: : :3k, which depend on the subdivision matrix.

Informally, this indicates that up to a vanishing term, all subdivision surfaces generated by a scheme

differ near an extraordinary point only by an affine transform. In fact, this is not quite true: it may happen

that a particular configuration(x1;i ;x2;i), i = 0: : :3k does not generate a surface patch, but, say, a curve.

In that case, the vanishing terms will have influence on the smoothness of the surface.

53



Tangents and limit positions. We have observed that similar to the one-dimensional case, the coef-

ficientsa0 a1 anda2 in the decomposition 3.1 are the limit position of the control point for the central

vertex v0, and two tangents respectively. To compute these coefficients, we need corresponding left

eigenvectors:

a0 = (l0;p); a1 = (l1;p); a0 = (l2;p)

Similarly to the one-dimensional case, the left eigenvectors can be computed using only a smaller

submatrix of the full subdivision matrix. For example, for the Loop scheme we need to consider the

k+ 1� k+ 1 matrix acting on the control points of 1-neighborhood of the central vertex, not on the

points of the 2-neighborhood.

In the descriptions of subdivision schemes in the next section we describe these left eigenvectors

whenever information is available.

3.4 Smoothness of Surfaces

Intuitively, we call a surface smooth, if, at a close distance, it becomes indistinguishable from a plane.

Before discussing smoothness of subdivision surfaces in greater detail, we have to define more precisely

what we mean by a surface, in a way that is convenient for analysis of subdivision.

The discussion in the section is somewhat informal; for a more rigorous treatment, see [23, 22, 26],

3.4.1 C1-continuity and Tangent Plane Continuity

Recall that we have defined the subdivision surface as a functionf : jKj ! R3 on a polyhedron. Now

we can formalize our intuitive notion of smoothness, namely local similarity to a piece of the plane. A

surface is smooth at a pointx of its domainjKj, if for a sufficiently small neighborhoodUx of that point

the imagef (Ux) can be smoothly deformed into a planar disk. More precisely,

Definition 1 A surface f: jKj ! R3 is C1-continuous, if for every point x2 jKj there exists a regular

parameterizationπ : D! f (Ux) of f(Ux) over a unit disk D in the plane, where Ux is the neighborhood

in jKj of x. Aregular parameterizationπ is one that is continuously differentiable, one-to-one, and has

a Jacobi matrix of maximum rank.

The condition that the Jacobi matrix ofp has maximum rank is necessary to make sure that we have no

degeneracies, i.e., that we really do have a surface, not a curve or point. Ifp= (p1; p2; p3) and the disc
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is parameterized byx1 andx2, the condition is that the matrix0
BBB@

∂p1
∂x1

∂p1
∂x2

∂p2
∂x1

∂p2
∂x2

∂p3
∂x1

∂p3
∂x2

1
CCCA

have maximal rank (2).

There is another, weaker, definition of smoothness, which is often useful. This definition captures the

intuitive idea that the tangent plane to a surface changes continuously near a smooth point. Recall that a

tangent plane is unquely characterized by its normal. This leads us to the following definition:

Definition 2 A surface f: jKj!R3 is tangent plane continuousat x2 jKj if and only if surface normals

are defined in a neighborhood around x and there exists a limit of normals at x.

This is a useful definition, since it is easier to prove surfaces are tangent plane continuous. Tangent

plane continuity, however, is weaker thanC1-continuity.

As a simple example of a surface that is tangent plane continuous but notC1-continuous, consider the

shape in Figure 3.7. Points in the vicinity of the central point are “wrapped around twice.” There exists a

tangent plane at that point, but the surface does not “locally look like a plane.” Formally speaking, there

is no regular parameterization of the neighborhood of the central point, even though it has a well-defined

tangent plane.

From the previous example, we see how the definition of tangent plane continuity must be strength-

ened to becomeC1:

Lemma 4 If a surface is tangent plane continuous at a point and the projection of the surface onto the

tangent plane at that point is one-to-one, the surface is C1.

The proof can be found in [26].

3.5 Analysis of Subdivision Surfaces

In this section we discuss how to determine if a subdivision scheme produces smooth surfaces. Typically,

it is known in advance that a scheme producesC1-continuous (or better) surfaces in the regular setting.

For local schemes this means that the surfaces generated on arbitrary meshes areC1-continuous away

from the extraordinary vertices. We start with a brief discussion of this fact, and then concentrate on
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Figure 3.7: Example of a surface that is tangent plane continuous but notC1-continous.

analysis of the behavior of the schemes near extraordinary vertices. Our goal is to formulate and provide

some motivation for Reif’s sufficient condition forC1-continuity of subdivision.

We assume a subdivision scheme defined on a triangular mesh, with certain restrictions on the struc-

ture of the subdivision matrix, defined in Section 3.5.2. Similar derivations can be performed without
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these assumptions, but they become significantly more complicated. We consider the simplest case so as

not to obscure the main ideas of the analysis.

3.5.1 C1-continuity of Subdivision away from Extraordinary Vertices

Most subdivision schemes are constructed from regular schemes, which are known to produce at least

C1-continuous surfaces in the regular setting for almost any initial configuration of control points. If our

subdivision rules are local, we can take advantage of this knowledge to show that the surfaces generated

by the scheme areC1-continuous for almost any choice of control points anywhereaway from extraor-

dinary vertices. We call a subdivision scheme local, if only a finite number of control points is used to

compute any new control point, and does not exceed a fixed number for all subdivision levels and all

control points.

One can demonstrate, as we did for the curves, that for any triangleT of the domain the surfacef (T)

is completely determined by only a finite number of control points corresponding to vertices around

T. For example, for the Loop scheme, we need only control points for vertices that are adjacent to the

triangle. (see Figure 3.8). This is true for triangles at any subdivision level.

Figure 3.8: Control set for a triangle for the three-directional box spline.

To show this, fix a pointx of the domainjKj (not necessarily a vertex). For any levelj, x is contained

in a face of the domain; ifx is a vertex, it is shared by several faces. LetU j(x) be the collection of faces

on level j containingx, the1-neighborhoodof x. The 1-neighborhood of a vertex can be identified with a

k-gon in the plane, wherek is the valence. We needj to be large enough so that all neighbors of triangles

in U j(x) are free of extraordinary vertices. Unlessx is an extraordinary vertex, this is easily achieved.

f (U j(x)) will be regular (see Figure 3.9).

This means thatf (U j(x)) is identical to a part of the surface corresponding to a regular mesh, and

is thereforeC1-continuous for almost any choice of control points, because we have assumed that our
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A B

C

Figure 3.9: 2-neighborhoods (1-neighborhood of 1-neighborhood) of verticesA, C contain only regular

vertices; this is not the case forB, which is an extraordinary vertex.

scheme generatesC1-continuous surfaces over regular meshes.1

3.5.2 Smoothness Near Extraordinary Vertices

Now that we know that surfaces generated by our scheme are (at least)C1-continuous away from the

extraordinary vertices, all we have to do is find a a smooth parameterization near each extraordinary

vertex, or establish that no such parameterization exists.

Consider the extraordinary vertexB in Figure 3.9. After sufficient number of subdivision steps, we

will get a 1-neighborhoodU j of B, such that all control points definingf (U j) are regular, exceptB itself.

This demonstrates that it is sufficient to determine if the scheme generatesC1-continuous surfaces for

a very specific type of domainsK: triangulations of the plane which have a single extraordinary vertex

in their center, surrounded by regular vertices. We can assume all triangles of these triangulations to be

identical (see Figure 3.10) and call such triangulationsk-regular.

At first, the task still seems to be very difficult: for any configuration of control vertices, we have to

find a parameterization off (U j). However, it turns out that the problem can be further simplified.

We outline the idea behind asufficientcondition forC1-continuity proposed by Reif [23]. This cri-

terion tells us when the scheme is guaranteed to produceC1-continuous surfaces, but if it fails, it is still

possible that the scheme might beC1-continuous.

In addition to the subdivision matrix described in Section 3.3 , we need one more tool to formulate

the criterion: thecharacteristic map. It turns out that rather than trying to consider all possible surfaces

generated by subdivision, it is typically sufficient to look at a single map—the characteristic map.

1Our argument is informal, and there are certain unusual cases when it fails; see [26] for details.
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Figure 3.10:k-regular triangulation fork= 9.

3.5.3 Characteristic Map

Our observations made in Section 3.3 motivate the definition of thecharacteristic map. Recall that the

control points near a vertex converge to a limit configuration independent, up to an affine transformation,

from the control points of the original mesh. This limit configuration defines a map. Informally speaking,

any subdivision surface generated by a scheme looks near an extraordinary vertex of valencek like the

characteristic map of that scheme for valencek.

Figure 3.11: Control set of the characteristic map fork= 9.

Note that when we described subdivision as a function from the plane toR3, we may use control

vertices not fromR3, but fromR2; clearly, subdivision rules can be applied in the plane rather then in
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space. Then in the limit we obtain a map from the plane into the plane. The characteristic map is a map

of this type.

As we have seen, the configuration of control points near an extraordinary vertex approachesa1x1+

a2x2, up to a scaling transformation. This means that the part of the surface defined on thek-gonU j

as j ! ∞, and scaled by the factor 1=λ j , approaches the surface defined by the vector of control points

a1x1+a2x2. Let f [p] : U ! R3 be the limit surface generated by subdivision onU from the control set

p.

Definition 3 The characteristic map of a subdivision scheme for a valence k is the mapΦ : U ! R2

generated by the vector of 2D control points e1x1+e2x2: Φ = f [e1x1+e2x2], where e1 and e2 are unit

coordinate vectors, and x1 and x2 are subdominant eigenvectors.

Regularity of the characteristic map Inside each triangle of thek-gonU , the map isC1: the argu-

ment of Section 3.5.1 can be used to show this. Moreover, the map has one-sided derivatives on the

boundaries of the triangles, except at the extraordinary vertex, so we can define one-sided Jacobians on

the boundaries of triangles too. We will say that the characteristic map isregular if its Jacobian is not

zero anywhere onU excluding the extraordinary vertex but including the boundaries between triangles.

The regularity of the characteristic map has a geometric meaning: any subdivision surface can be

written, up to a scale factorλ j , as

f [p j ](t) = AΦ(t)+a(t)O
�
(λ3=λ) j� ;

t 2U j , a(t) a bounded functionU j ! R3, andA is a linear transform taking the unit coordinate vectors

in the plane toa1 anda2. Differentiating along the two coordinate directionst1 andt2 in the parametric

domainU j , and taking a cross product, after some calculations, we get the expression for the normal to

the surface:

n(t) = (a1�a2)J[Φ(t)]+O
�
(λ3=λ)2 j� ã(t)

whereJ[Φ] is the Jacobian, and ˜a(t) some bounded vector function onU j .

The fact that the Jacobian does not vanish forΦ means that the normal is guaranteed to converge to

a1�a2; therefore, the surface is tangent plane continuous.

Now we need to take only one more step. If, in addition to regularity, we assume thatΦ is injective,

we can invert it and parameterize any surface asf (Φ�1(s)), wheres2 Φ(U). Intuitively, it is clear that

up to a vanishing term this map is just an affine map, and is differentiable. We omit a rigorous proof

here. For a complete treatment see [23]; for more recent developments, see [26] and [28].
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We arrive at the following condition, which is the basis of smoothness analysis of all subdivision

schemes considered in these notes.

Reif’s sufficient condition for smoothness.Suppose the eigenvectors of a subdivision matrix form a

basis, the largest three eigenvalues are real and satisfy

λ0 = 1> λ1 = λ2 > jλ3j

If the characteristic map is regular, then almost all surfaces generated by subdivision are tangent

plane continuous; if the characteristic map is also injective, then almost all surfaces generated by

subdivision areC1-continuous.

Note: Reif’s original condition is somewhat different, because he defines the characteristic map on an

annular region, rather than on ak-gon. This is necessary for applications, but makes it somewhat more

difficult to understand.

In Chapter 4, we will discuss the most popular stationary subdivision schemes, all of which have

been proved to beC1-continuous at extraordinary vertices. These proofs are far from trivial: checking

the conditions of Reif’s criterion is quite difficult, especially checking for injectivity. In most cases

calculations are done in symbolic form and use closed-form expressions for the limit surfaces of subdivi-

sion [24, 8, 16, 17]. In [27] an interval-based approach is described, which does not rely on closed-form

expressions for limit surfaces, and can be applied, for example, to interpolating schemes.

3.6 Piecewise-smooth surfaces and subdivision

Piecewise smooth surfaces.So far, we have assumed that we consider only closed smooth surfaces.

However, in reality we typically need to model more general classes of surfaces: surfaces with bound-

aries, which may have corners, creases, cusps and other features. One of the significant advantages of

subdivision is that it is possible to introduce features into surfaces using simple modifications of rules.

Here we briefly describe a class of surfaces (piecewise smooth surfaces) which appears to be adequate

for many applications. This is the class of surfaces that includes, for example, quadrilateral free-form

patches, and other common modeling primitives. At the same time, we have excluded from considera-

tion surfaces with various other types of singularities. To generate surfaces from this class, in addition to

vertex and edge rules such as the Loop rules (Section 3.1), we need to define several other types of rules.

To define piecewise smooth surfaces, we start with smooth surfaces that have a piecewise-smooth

boundary. For simplicity, assume that our surfaces do not have self-intersections. Recall that for closed
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D H Q1 Q3 Q0

Figure 3.12: The charts for a surface with piecewise smooth boundary.

C1-continuous surfaceM in R3 each point has a neighborhood that can be smoothly deformed into an

open planar diskD.

A surface with a smooth boundaryis defined in a similar way, but the neighborhoods of points on the

boundary can be smoothly deformed into a half-diskH, with closed boundary. To define a surface with

piecewise smooth boundaries, we introduce two additional types of local charts: concave and convex

corner charts,Q3 andQ1 (Figure 3.12). Thus, aC1-continuous surface with piecewise smooth boundary

locally looks like one of the domainsD, H, Q1 andQ3.

Piecewise-smooth surfacesare the surfaces that can be constructed out of surfaces with piecewise

smooth boundaries joined together.

If the resulting surface is notC1-continuous at the common boundary of two pieces, this common

boundary is a crease. We allow two adjacent smooth segments of a boundary to be joined, producing a

crease ending in adart (cf. [9]). For dart vertices an additional chartQ0 is required; the surface near a

dart can be deformed into this chart smoothly everywhere except at an open edge starting at the center of

the disk.

Subdivision schemes for piecewise smooth surfaces.An important observation for constructing sub-

division rules for the boundary is that the last two corner types are not equivalent, that is, there is no

smoothnondegeneratemap fromQ1 to Q3. It follows from the theory of subdivision [26], that a single

subdivision rule cannot produce both types of corners. In general, any complete set of subdivision rules

should contain separate rules for all chart types. Most, if not all, known schemes provide rules for charts

of type D andH (smooth boundary and interior vertices); rules for charts of typeQ1 andQ0 (convex

corners and darts) are typically easy to construct; however,Q3 (concave corner) is more of a challenge,

and no rules were known until recently.

In Chapter 4 we present descriptions of various rules for smooth (not piecewise smooth) surfaces with

boundary. For extensions of the Loop and Catmull-Clark schemes including concave corner rules, see

62



[2].

Interpolating boundaries. Quite often our goal is not just to generate a smooth surface of a given

topological type approximating or interpolating an initial mesh with boundary, but to interpolate a given

set of boundary or even an arbitrary set of curves. In this case, one can use a technique developed

by A. Levin [11, 12, 13]. The advantage of this approach is that the interpolated curves need not

be generated by subdivision; one can easily create blend subdivision surfaces with different types of

parametric surfaces (for a example, NURBS).
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Chapter 4

Subdivision Zoo

Denis Zorin, New York University

4.1 Overview of Subdivision Schemes

In this section we describe most known stationary subdivision schemes generatingC1-continuous sur-

faces on arbitrary meshes. Without doubt, our discussion is not exhaustive even as far as stationary

schemes are concerned. There are even wholly different classes of subdivision schemes, most impor-

tantly variational schemes, that we do not discuss here. Different approaches to variational subdivision

are described in the parts of the notes written by Joe Warren and Leif Kobbelt.

At a first glance, the variety of existing schemes might appear chaotic. However, there is a straight-

forward way to classify most of the schemes based on three criteria:

� the type of refinement rule (vertex insertion or corner-cutting);

� the type of generated mesh (triangular or quadrilateral);

� whether the scheme is approximating or interpolating.

The following table shows this classification:

Vertex insertion

Triangular meshes Quadrilateral meshes

Approximating Loop Catmull-Clark

Interpolating Modified Butterfly Kobbelt

Corner-cutting

Doo-Sabin

Midedge
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It can be seen from this table that there is little replication in functionality: most schemes produce

substantially different types of surfaces. Now we consider our classification criteria in greater detail.

First, we note that each subdivision scheme defined on meshes of arbitrary topology is based on a

regular subdivision schemesuch as a subdivision schemes for splines, for example. Our classification is

primarily a classification of regular subdivision schemes—once such a scheme is fixed, additional rules

have to be specified only for extraordinary vertices or faces that cannot be part of a regular mesh.

Mesh type. Regular subdivision schemes act on regular control meshes, that is, vertices of the mesh

correspond to regularly spaced points in the plane. However, the faces of the mesh can be formed in

different ways. For a regular mesh, it is natural to use faces that are identical. If, in addition, we assume

that the faces are regular polygons, it turns out that there are only three ways to choose the face polygons:

we can use only squares, equilateral triangles and regular hexagons. Meshes consisting of hexagons are

not very common, and the first two types of tiling are the most convenient for practical purposes. These

leads to two types of regular subdivision schemes: those defined for quadrilateral tilings, and those

defined for triangular tilings.

Vertex insertion and corner-cutting. Once the tiling of the plane is fixed, we have to define how a

refined tiling generated by the scheme is related to the original tiling. There are two main approaches

that are used to generate a refined tiling: one isvertex insertionand the other iscorner cutting(see

Figure 4.1). The schemes using the first method are often calledprimal, and the schemes using the

second method are calleddual. In the first case, each edge of a triangular or a quadrilateral mesh is split

into two, old vertices of the mesh are retained, and new vertices inserted on edges are connected. For

quadrilaterals, an additional vertex is inserted for each face.

In the second case, for each old face, a new similar face is created inside of it and the newly created

faces are connected. As a result, we get two new vertices for each old edge, a new face for each edge

and each vertex. The old vertices are discarded. Geometrically, one can think about this process as first

cutting off the vertices, and then cutting off the edges of a polyhedron. For quadrilateral tilings, this can

be done in such a way that the refined tiling has only quadrilateral faces. For triangles, we can get only a

hexagonal tiling. Thus, a regular corner-cutting algorithm for triangles would have to alternate between

triangular and hexagonal tilings.

Approximation vs. Interpolation. Vertex insertion schemes can be interpolating or approximating: as

the vertices of the coarser tiling are also vertices of the refined tiling, for each vertex a sequence of control
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Vertex insertion for quadrilaterals

Corner-cutting for quadrilaterals

Vertex insertion for triangles

Figure 4.1: Different refinement rules.

points, corresponding to different subdivision levels, is defined. If all points in the sequence are the same,

we say that the scheme is interpolating. Otherwise, we call it approximating. Interpolation is an attractive

feature in more than one way. First, the original control points defining the surface are also points of the

limit surface, which allows one to control it in a more intuitive manner. Second, many algorithms can be

considerably simplified, and many calculations can be performed “in place.” Unfortunately, the quality

of these surfaces is not as high as the quality of surfaces produced by approximating schemes, and the

schemes do not converge as fast to the limit surface as the approximating schemes.

We concentrate primarily on vertex insertion schemes; we briefly discuss two corner-cutting schemes,
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Doo-Sabin and the Midedge subdivision scheme, proposed by Habib and Warren [7], and independently

discovered by Peters and Reif [17].

4.1.1 Notation and Terminology

Here we summarize the notation that we use in subsequent sections. Some of it was already introduced

earlier.

Regular and extraordinary vertices. We have already seen that subdivision schemes defined on trian-

gular meshes create new vertices only of valence 6 in the interior. On the boundary, the newly

created vertices have valence 4. Similarly, on quadrilateral meshes both vertex-insertion and

corner-cutting schemes create only vertices of valence 4 in the interior, and 3 on the boundary.

Hence, after several subdivision steps, most vertices in a mesh will have one of these valences (6

in the interior, 4 on the boundary for triangular meshes, 4 in the interior, 3 on the boundary for

quadrilateral). The vertices with these valences are calledregular, and vertices of other valences

extraordinary.

Notation for vertices near a fixed vertex. In Figure 4.2 we show the notation that we use for vertices

of quadrilateral and triangular subdivision schemes near a fixed vertex. Typically, we need it for

extraordinary vertices; we also use it for regular vertices, to describe calculations of limit positions

and tangent vectors. Note that this notation is for a fixed level; the names of vertices changes from

one level to the next. For brevity, we denote the valuepj(vj
i;l ) by pj

i;l .

Odd and even vertices.For vertex insertion (primal) schemes, the vertices of the coarser mesh are also

vertices of the refined mesh. For any subdivision level, we call all new vertices that are created

at that level,odd vertices. This term comes from the one-dimensional case, when vertices of the

control polygons can be enumerated sequentially and on any level the newly inserted vertices are

assigned odd numbers. The vertices inherited from the previous level are calledeven. (See also

Chapter 2).

Face and edge vertices.For triangular schemes (Loop and Modified Butterfly), there is only one type

of odd vertex. For quadrilateral schemes, some vertices are inserted when edges of the coarser

mesh are split, other vertices are inserted for a face. These two types of odd vertices are called

edgeandfacevertices respectively.

Boundaries and creases.Typically, special rules have to be specified on the boundary of a mesh. These

rules are commonly chosen in such a way that the boundary curve of the limit surface does not
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Figure 4.2: Enumeration of vertices of a mesh near an extraordinary vertex; for a boundary vertex, the

0� th sector is adjacent to the boundary.

depend on any interior control vertices, and is smooth or piecewise smooth (C1 orC2-continuous).

The same rules can be used to introduce sharp features intoC1-surfaces: some interior edges can

be taggedas crease edges, and boundary rules are applied for all vertices that are inserted on such

edges.

Masks. We often specify a subdivision rule by providing itsmask. The mask is a picture showing which

control points are used to compute a new control point, which we denote with a black dot. The

numbers are the coefficients of the subdivision rule. For example, ifp1, p2 are vertices of an

edge, andv3 andv4 are the other two vertices of the triangles that share this edge, then the Loop

subdivision rule for an interior odd vertexv depicted in Figure 4.3, can be written as

pj+1(v) =
3
8

pj(v1)+
3
8

pj(v2)+
1
8

pj(v3)+
1
8

pj(v4)
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4.2 Loop Scheme

The Loop scheme is a simple approximating vertex insertion scheme for triangular meshes proposed by

Charles Loop [14].C1-continuity of this scheme for valences up to 100, including the boundary case,

was proved by Schweitzer [24]. The proof for all valences can be found in [26].

The scheme is based on thethree-directional box spline, which producesC2-continuous surfaces on

the regular meshes. The Loop scheme produces surfaces that areC2-continuous everywhere except at

extraordinary vertices, where they areC1-continuous. Hoppe, DeRose, Duchamp et al. [9] proposed a

piecewiseC1-continuous extension of the Loop scheme, with special rules defined for edges; in [2], the

boundary rules are further improved, and new rules for concave corners and normal modification are

proposed.

The scheme can be applied to arbitrary polygonal meshes, after the mesh is converted to a triangular

mesh, for example, by triangulating each polygonal face.

Subdivision rules The masks for the Loop scheme are shown in Figure 4.3. For boundaries and edges

tagged ascreaseedges, special rules are used. These rules produce a cubic spline curve along the

boundary/crease. The curve only depends on control points on the boundary/crease.

In [9], the rules for extraordinary crease vertices and their neighbors on the crease were modified to

produce tangent plane continuous surfaces on either side of the crease (or on one side of the boundary).

In practice, for reasons discussed in [29], this modification does not lead to a significant difference in

the appearance of the surface. At the same time, as a result of this modification, the boundary curve

becomes dependent on the valences of vertices on the curve. This is a disadvantage in situations when

two surfaces have to be joined together along a boundary. It appears that in practically all cases it is

safe to use the rules shown in Figure 4.3. Although the surface will not be formallyC1-continuous near

vertices of valence greater than 7, the result will be visually indistinguishable from aC1-surface obtained

with modified rules, with the additional advantage of independence of the boundary from the interior.

If it is necessary to ensureC1-continuity, we propose a different modification. Rather than modifying

the rules for the boundary curve, and making it dependent on the valence of vertices, we modify rules

for interior odd vertices adjacent to an extraordinary vertex. Forn < 7, no modification is necessary.

For n> 7, it is sufficient to use the mask shown in Figure 4.4. Then the limit surface can be shown to

beC1-continuous on the boundary. A better, although slightly more complex modification can be found

in [2]: instead of12 and 1
4 we can use14 +

1
4 cos 2π

k�1 and 1
2� 1

4 cos 2π
k�1 respectively, wherek is the valence

of the boundary vertex.
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Figure 4.3: Loop subdivision: in the picture above,β can be chosen to be either1
n(5=8� (3

8 +
1
4 cos2π

n )2)

(original choice of Loop [14]), or, forn> 3, β = 3
8n as proposed by Warren [25]. Forn= 3, β = 3=16

can be used.

Tangent vectors. The rules for computing tangent vectors for the Loop scheme are especially simple.

To compute a pair of tangent vectors at an interior vertex, use

t1 =
k�1

∑
i=0

cos
2πi
k

p(vi;1)

t2 =
k�1

∑
i=0

sin
2πi
k

p(vi;1):

(4.1)

These formulas can be applied to the control points at any subdivision level.

Quite often, the tangent vectors are used to compute a normal. The normal obtained as the cross

productt1� t2 can be interpreted geometrically. This cross product can be written as a weighted sum of

normals to all possible triangles with verticesp(v), p(vi;1), p(vl ;1), i; l = 0: : :k�1, i 6= l . The standard

way of obtaining vertex normals for a mesh by averaging the normals of triangles adjacent to a vertex,

71



1

8

1

4

1

1

8

1

2
extraordinary

vertex

Figure 4.4: Modified rule for odd vertices adjacent to a boundary extraordinary vertex (Loop scheme).

can be regarded as a first approximation to the normals given by the formulas above. At the same time,

it is worth observing that computing normals ast1� t2 is less expensive than averaging the normals of

triangles. The geometric nature of the normals obtained in this way suggests that they can be used to

compute approximate normals for other schemes, even if the precise normals require more complicated

expressions.

At a boundary vertex, the tangent along the curve is computed usingtalong= p(v0;1)� p(vk�1;1). The

tangent across the boundary/crease is computed as follows [9]:

tacross= p(v0;1)+ p(v1;1)�2p(v0) for k= 2

tacross= p(v2;1)� p(v0) for k= 3

tacross= sinθ(p(v0;1)+ p(vk�1;1))+(2cosθ�2)
k�2

∑
i=1

siniθ p(vi;1) for k� 4

(4.2)

whereθ = π=(k�1). These formulas apply whenever the scheme is tangent plane continuous at the

boundary; it does not matter which method was used to ensure tangent plane continuity.

Limit positions Another set of simple formulas allows one to compute limit positions of control points

for a fixed vertex, that is, the limit limj!∞ pj(v) for a fixedv. For interior vertices, the mask for computing

the limit value at an interior vertex is the same as the mask for computing the value on the next level,

with β replaced byχ = 1
3=8β+n.
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For boundary vertices, the formula is always

p∞(v0) =
1
5

p(v0;1)+
3
5

p(v0)+
1
5

p(v1;k�1)

This expression is similar to the rule for even boundary vertices, but with different coefficients. However,

different formulas have to be used if the rules on the boundary are modified as in [9].

4.3 Modified Butterfly Scheme

The Butterfly scheme was proposed by Dyn, Gregory and Levin in [6]. However, although the original

Butterfly scheme is defined on arbitrary triangular meshes, the limit surface is notC1-continuous at

extraordinary points of valencek= 3 andk> 7 [26]. It isC1 on regular meshes.

Unlike approximating schemes based on splines, this scheme does not produce piecewise polynomial

surfaces in the limit. In [30] a modification of the Butterfly scheme was proposed, which guarantees that

the scheme producesC1-continuous surfaces for arbitrary meshes (for a proof see [26]). The scheme is

known to beC1 but notC2 on regular meshes. The masks for the the scheme are shown in Figure 4.5.

The tangent vectors at extraordinary interior vertices can be computed using the same rules as for

the Loop scheme. For regular vertices, the formulas are more complex: in this case, we have to use

control points in a 2-neighborhood of a vertex. If the control points are arranged into a vectorp =

[p0; p0;1; p1;1; : : : ; p5;1; p0;2; p1;2; p2;2; : : : p5;3] of length 19, then the tangents are given by scalar products

(l1 � p) and(l2 � p), where the vectorsl1 andl2 are

l1 =

�
0;16;8;�8;�16;�8;8;�4;0;4;4;0;�4;1;

1
2
;�1

2
;�1;�1

2
;
1
2

�

l2 =
p

3

�
0;0;8;8;0;�8;�8;�4

3
;�8

3
;�4

3
;
4
3
;
8
3
;
4
3
;0;

1
2
;
1
2
;0;�1

2
;�1

2

� (4.3)

Because the scheme is interpolating, no formulas are needed to compute the limit positions: all control

points are on the surface. On the boundary, the four point subdivision scheme is used [5]. To achieve

C1-continuity on the boundary, special coefficients have to be used (see [29] for details).

4.4 Catmull-Clark Scheme

The Catmull-Clark scheme was described in [3]. It is based on the tensor product bicubic spline. The

masks are shown in Figure 4.6. The scheme produces surfaces that areC2 everywhere except at extraor-

dinary vertices, where they areC1. The tangent plane continuity of the scheme was analyzed by Ball and
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Storry [1], andC1-continuity by Peters and Reif [16]. The values ofα andβ can be chosen from a wide

range (see Figure 4.8). On the boundary, using the coefficients for the cubic spline produces acceptable

results, however, the resulting surface formally is notC1-continuous. A modification similar to the one

performed in the case of Loop subdivision makes the schemeC1-continuous (Figure 4.7). Again, a bet-

ter, although a bit more complicated choice of coefficients is3
8 +

1
4 cos 2π

k�1 instead of58 and 3
8� 1

4 cos 2π
k�1

instead of18. See [29] for further details about the behavior on the boundary.

The rules of Catmull-Clark scheme are defined for meshes with quadrilateral faces. Arbitrary polygo-

nal meshes can be reduced to a quadrilateral mesh using a more general form of Catmull-Clark rules [3]:
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Figure 4.6: Catmull-Clark subdivision. Catmull and Clark [3] suggest the following coefficients for rules

at extraordinary vertices:β = 3
2k andγ = 1

4k

� a face control point for ann-gon is computed as the average of the corners of the polygon;

� an edge control point as the average of the endpoints of the edge and newly computed face control

points of adjacent faces;

� the formula for even control points can be chosen in different ways; the original formula is

pj+1(v) =
k�2

k
pj(v)+

1
k2

k�1

∑
i=0

pj(vi)+
1
k2

k�1

∑
i=0

pj+1(vf
i )
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Figure 4.7: Modified rule for odd vertices adjacent to a boundary extraordinary vertex (Catmull-Clark

scheme).

Figure 4.8: Ranges for coefficientsα andβ of the Catmull-Clark scheme;α = 1�γ�β is the coefficient

of the central vertex.

wherevi are the vertices adjacent tov on level j, andvf
i are face vertices on levelj +1 correspond-

ing to faces adjacent tov.

4.5 Kobbelt Scheme

This interpolating scheme was described by Kobbelt in [10]. For regular meshes, it reduces to the tensor

product of four point schemes.C1-continuity of this scheme for interior vertices for all valences is proven
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in [27].
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Figure 4.9: Kobbelt subdivision.

Crucial for the construction of this scheme is the observation (valid for any tensor-product scheme)

that the face control points can be computed in two steps: first, all edge control points are computed.

Next, face vertices are computed using theedge ruleapplied to a sequence of edge control points on the

same level. As shown in Figure 4.9, there are two ways to compute a face vertex in this way. In the

regular case, the result is the same. Assuming this method of computing all face control points, only one

rule of the regular scheme is modified: the edge odd control points adjacent to an extraordinary vertex
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are computed differently. Specifically,

pj+1
i;1 = (

1
2
�w)pj

0+(
1
2
�w)pj

i;1+wpj
i +wpj

i;3

vj
i =

4
k

k�1

∑
i=0

pj
i;1� (pj

i�1;1+ pj
i;1+ pj

i+1;1)�
w

1=2�w
(pj

i�2;2+ pj
i�1;2+ pj

i;2+ pj
i+1;2)+

4w
(1=2�w)k

k�1

∑
i=0

pj
i;2

(4.4)

wherew = �1=16 (also, see Figure 4.2 for notation). On the boundaries and creases, the four point

subdivision rule is used.

Unlike other schemes, eigenvectors of the subdivision matrix cannot be computed explicitly; hence,

there are no precise expressions for tangents. In any case, the effective support of this scheme is too large

for such formulas to be of practical use: typically, it is sufficient to subdivide several times and then use,

for example, the formulas for the Loop scheme (see discussion in the section on the Loop scheme).

For more details on this scheme, see the part of the notes written by Leif Kobbelt.

4.6 Doo-Sabin and Midedge Schemes

The Doo-Sabin subdivision is quite simple conceptually: there is no distinction between odd and even

vertices, and a single mask is sufficient to define the scheme. A special rule is required only for the

boundaries, where the limit curve is a quadratic spline. It was observed by Doo that this can also be

achieved by replicating the boundary edge, i.e., creating a quadrilateral with two coinciding pairs of

vertices. Nasri [15] describes other ways of defining rules for boundaries. The rules for the Doo-Sabin

scheme are shown in Figure 4.10.C1-continuity for schemes similar to the Doo-Sabin schemes was

analyzed by Peters and Reif [16].

An even simpler scheme was proposed by Habib and Warren [8] and by Peters and Reif [17]: this

scheme uses even smaller stencils than the Doo-Sabin scheme; for regular vertices, only three control

points are used (Figure 4.11).

The disadvantage of all dual schemes is that the mesh hierarchy associated with this schemes is

somewhat less natural: the vertices of coarser meshes cannot be identified with vertices of finer meshes.

4.7 Limitations of Stationary Subdivision

Stationary subdivision, while overcoming certain problems inherent in spline representations, still has

a number of limitations. Most problems are much more apparent for interpolating schemes than for
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Figure 4.10: The Doo-Sabin subdivision. The coefficients are defined by the formulasα0 = 1=4+5=4k

andαi = (3+2cos(2iπ=k))=4k, for i = 1: : :k�1

approximating schemes. In this section we briefly discuss a number of these problems.

Problems with curvature continuity While it is possible to obtain subdivision schemes which are

C2-continuous, there are indications that such schemes either have very large support [21, 19], or nec-

essarily have zero curvature at extraordinary vertices. A compromise solution was recently proposed by

Umlauf [20]. Nevertheless, this limitation is quite fundamental: degeneracy or discontinuity of curvature

typically leads to visible defects of the surface.

Decrease of smoothness with valenceFor some schemes, as the valence increases, the magnitude of

the third largest eigenvalue approaches the magnitude of the subdominant eigenvalues. As an example

we consider surfaces generated by the Loop scheme near vertices of high valence.

In Figure 4.12 (right side), one can see a typical problem that occurs because of “eigenvalue clus-

tering:” a crease might appear, abruptly terminating at the vertex. In some cases this behavior may be
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Figure 4.11: The Midedge subdivision. The coefficients are defined by the formulasαi =

2∑n̄
j=02� ji cos2πi j

k , n̄=
�

n�1
2

�
for i = 0: : :k�1

desirable, but our goal is to make it controllable rather than let the artifacts appear by chance.

Ripples Another problem, presence of ripples in the surface close to an extraordinary point, is also

shown in Figure 4.12. It is not clear whether this artifact can be eliminated. It is closely related to the

curvature problem.

Uneven structure of the mesh On regular meshes, subdivision matrices ofC1-continuous schemes

always have subdominant eigenvalue 1=2. When the eigenvalues of subdivision matrices near extraordi-

nary vertices significantly differ from 1=2, the structure of the mesh becomes uneven: the ratio of the size

of triangles on finer and coarser levels adjacent to a given vertex is roughly proportional to the magnitude

of the subdominant eigenvalue. This effect can be seen clearly in Figure 4.14.
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Figure 4.12: Left: ripples on a surface generated by the Loop scheme near a vertex of large valence;

Right: mesh structure for the Loop scheme near an extraordinary vertex with a significant “high-

frequency” component; a crease starting at the extraordinary vertex appears.

Optimization of subdivision rules It is possible to eliminate eigenvalue clustering, as well as the

difference in eigenvalues of the regular and extraordinary case by prescribing the eigenvalues of the

subdivision matrix and deriving suitable subdivision coefficients. This approach was used to derive

coefficients of the Butterfly scheme.

As expected, the meshes generated by the modified scheme have better structure near extraordinary

points (Figure 4.13). However, the ripples become larger, so one kind of artifact is traded for another. It

is, however, possible to seek an optimal solution or one close to optimal; alternatively, one may resort to

a family of schemes that would provide for a controlled tradeoff between the two artifacts.
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Figure 4.13: Left: mesh structure for the Loop scheme and the modified Loop scheme near an extraor-

dinary vertex; a crease does not appear for the modified Loop. Right: shaded images of the surfaces for

Loop and modified Loop; ripples are more apparent for modified Loop.

82



7 9 16

Loop

Modified
Loop

Loop

Modified
Loop

3 4 5

Figure 4.14: Comparison of control nets for Loop scheme and modified Loop scheme. Note that for

Loop scheme the size of the hole in the ring (1-neighborhood removed) is very small relatively to the

surrounding triangles for valence 3 and becomes larger ask grows. For modified Loop scheme this size

remains constant.
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Abstract

In this paper we disprove the belief widespread within the computer graphics community that
Catmull-Clark subdivision surfaces cannot be evaluated directly without explicitly subdividing.
We show that the surface and all its derivatives can be evaluated in terms of a set ofeigenbasis
functions which depend only on the subdivision scheme and we derive analytical expressions for
these basis functions. In particular, on the regular part of the control mesh where Catmull-Clark
surfaces are bi-cubic B-splines, the eigenbasis is equal to the power basis. Also, our technique is
both efficient and easy to implement. We have used our implementation to compute high quality
curvature plots of subdivision surfaces. The cost of our evaluation scheme is comparable to that
of a bi-cubic spline. Therefore, our method allows many algorithms developed for parametric
surfaces to be applied to Catmull-Clark subdivision surfaces. This makes subdivision surfaces an
even more attractive tool for free-form surface modeling.

1 Introduction

Subdivision surfaces have emerged recently as a powerful and useful technique in modeling free-
form surfaces. However, although in theory subdivision surfaces admit local parametrizations,
there is a strong belief within the computer graphics community that these parametrizations can-
not be evaluated exactly for arbitrary parameter values. In this paper we disprove this belief and
provide a non-iterative technique that efficiently evaluates Catmull-Clark subdivision surfaces and
their derivatives up to any order. The cost of our technique is comparable to the evaluation of a
bi-cubic surface spline. The rapid and precise evaluation of surface parametrizations is crucial for
many standard operations on surfaces such as picking, rendering and texture mapping. Our evalu-
ation technique allows a large body of useful techniques from parametric surfaces to be transferred
to subdivision surfaces, making them even more attractive as a free-form surface modeling tool.
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Our evaluation is based on techniques first developed to prove smoothness theorems for subdi-
vision schemes [3, 5, 1, 4, 8, 6]. These proofs are constructed by transforming the subdivision into
its eigenspace1. In its eigenspace, the subdivision is equivalent to a simple scaling of each of its
eigenvectors by their eigenvalue. These techniques allow us to compute limit points and limit nor-
mals at the vertices of the mesh, for example. Most of the proofs, however, consider only a subset
of the entire eigenspace and do not address the problem of evaluating the surface everywhere. We,
on the other hand, use the entire eigenspace to derive an efficiently evaluated analytical form of the
subdivision surface everywhere, even in the neighborhood of extraordinary vertices. In this way,
we have extended a theoretical tool into a very practical one.

In this paper we present an evaluation scheme for Catmull-Clark subdivision surfaces [2]. How-
ever, our methodology is not limited to these surfaces. Whenever subdivision on the regular part
of the mesh coincides with a known parametric representation [8], our approach should be appli-
cable. We have decided to present the technique for the special case of Catmull-Clark subdivision
surfaces in order to show a particular example fully worked out. In fact, we have implemented
a similar technique for Loop’s triangular subdivision scheme [5]. The details of that scheme are
given in another paper in these course notes. We believe that Catmull-Clark surfaces have many
properties which make them attractive as a free-form surface design tool. For example, after one
subdivision step each face of the initial mesh is a quadrilateral, and on the regular part of the mesh
the surface is equivalent to a piecewise uniform B-spline. Also, algorithms have been written to
fair these surfaces [4] and to dynamically animate them [7].

In order to define a parametrization, we introduce a new set ofeigenbasis functions. These
functions were first introduced by Warren in a theoretical setting for curves [10] and used in a
more general setting by Zorin [11]. In this paper, we show that the eigenbasis of the Catmull-
Clark subdivision scheme can be computed analytically. Also, we show that in the regular case
the eigenbasis is equal to the power basis and that the eigenvectors then correspond to the “change
of basis matrix” from the power basis to the bi-cubic B-spline basis. The eigenbasis introduced in
this paper can thus be thought of as a generalization of the power basis at extraordinary vertices.
Since our eigenbasis functions are analytical, the evaluation of Catmull-Clark subdivision surfaces
can be expressed analytically. As shown in the results section of this paper, we have implemented
our evaluation scheme and used it in many practical applications. In particular, we show for the
first time high resolution curvature plots of Catmull-Clark surfaces precisely computed around the
irregular parts of the mesh.

The paper is organized as follows. Section 2 is a brief review of the Catmull-Clark subdivision
scheme. In Section 3 we cast this subdivision scheme into a mathematical setting suitable for anal-
ysis. In Section 4 we compute the eigenstructure to derive our evaluation. Section 5 is a discussion
of implementation issues. In Section 6 we exhibit results created using our technique, comparing it
to straightforward subdivision. Finally in Section 7 we conclude, mentioning promising directions
for future research.

This paper is almost equivalent to our SIGGRAPH’98 paper [9]. We have corrected two errors
in the Appendices and added a small section devoted to stability issues in Section 5. Also we have
included on the CDROM course notes a data file which contains the eigenstructures up to valence
50.

1To be defined precisely below.
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Figure 1: A bi-cubic B-spline is defined by 16 control vertices. The numbers on the right show the
ordering of the corresponding B-spline basis functions in the vectorb(u; v).
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Figure 2: Initial mesh and two levels of subdivision. The shaded faces correspond to regular
bi-cubic B-spline patches. The dots are extraordinary vertices.

1.1 Notations

In order to make the derivations below as clear and compact as possible we adopt the following
notational conventions. All vectors are assumed to be columns and are denoted by boldface lower
case roman characters, e.g.,v. The components of the vector are denoted by the corresponding
italicized character: thei-th component of a vectorv is thus denotedvi. The component of a vector
should not be confused with an indexed vector such asvk. Matrices are denoted by uppercase
boldface characters, e.g.,M. The transpose of a vectorv (resp. matrixM) is denoted byvT (resp.
MT ). The transpose of a vector is simply the same vector written row-wise. Therefore the dot
product between two vectorsu andv is written “uTv”. The vector or matrix having only zero
elements is denoted by0. The size of this vector (matrix) should be obvious from the context.

2 Catmull-Clark Subdivision Surfaces

The Catmull-Clark subdivision scheme was designed to generalize uniform B-spline knot insertion
to meshes of arbitrary topology [2]. An arbitrary mesh such as the one shown on the upper left
hand side of Figure 2 is used to define a smooth surface. The surface is defined as the limit of a
sequence of subdivision steps. At each step the vertices of the mesh are updated and new vertices
are introduced. Figure 2 illustrates this process. On each vertex of the initial mesh, thevalenceis
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Figure 3: Surface patch near an extraordinary vertex with its control vertices. The ordering of the
control vertices is shown on the bottom. Vertex 1 is an extraordinary vertex of valenceN = 5.

the number of edges that meet at the vertex. A vertex having a valence not equal to four is called
anextraordinary vertex. The mesh on the upper left hand side of Figure 2 has two extraordinary
vertices of valence three and one of valence five. Away from extraordinary vertices, the Catmull-
Clark subdivision is equivalent to midpoint uniform B-spline knot insertion. Therefore, the16
vertices surrounding a face that contains no extraordinary vertices are the control vertices of a
uniform bi-cubic B-spline patch (shown schematically in Figure 1). The faces which correspond to
a regular patch are shaded in Figure 2. This figure shows how the portion of the surface comprised
of regular patches grows with each subdivision step. In principle, the surface can thus be evaluated
whenever the holes surrounding the extraordinary vertices are sufficiently small. Unfortunately,
this iterative approach is too expensive near extraordinary vertices and does not provide exact
higher derivatives.

Because the control vertex structure near an extraordinary vertex is not a simple rectangular
grid, all faces that contain extraordinary vertices cannot be evaluated as uniform B-splines. We
assume that the initial mesh has been subdivided at least twice, isolating the extraordinary vertices
so that each face is a quadrilateral and contains at most one extraordinary vertex. In the rest of
the paper, we need to demonstrate only how to evaluate a patch corresponding to a face with just
one extraordinary vertex, such as the region near vertex 1 in Figure 3. Let us denote the valence
of that extraordinary vertex byN . Our task is then to find a surface patchs(u; v) defined over the
unit square
 = [0; 1]� [0; 1] that can be evaluated directly in terms of theK = 2N + 8 vertices
that influence the shape of the patch corresponding to the face. We assume in the following that
the surface point corresponding to the extraordinary vertex iss(0; 0) and that the orientation of

is chosen such thatsu � sv points outside of the surface.

A simple argument shows that the influence on the limit surface of the seven “outer control
vertices” numbered2N + 2 through2N + 8 in Figure 3 can be accounted for directly. Indeed,
consider the situation depicted in Figure 4 where we show a mesh containing a vertex of valence5
and a regular mesh side by side. Let us assume that all the control vertices are set to zero except for
the seven control vertices highlighted in Figure 4. If we repeat the Catmull-Clark subdivision rules
for both meshes we actually obtain the same limit surface, since the exceptional control vertex
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Figure 4: The effect of the seven outer control vertices does not depend on the valence of the
extraordinary vertex. When the2N + 1 control vertices in the center are set to zero the same limit
surface is obtained.

at the center of the patch remains equal to zero after each subdivision step. Therefore, the effect
of the seven outer control vertices is simply each control vertex multiplied by its corresponding
bi-cubic B-spline tensor product basis function. In the derivation of our evaluation technique we
do not need to make use of this fact. However, it explains the simplifications which occur at the
end of the derivation.
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Figure 5: Addition of new vertices by applying the Catmull-Clark subdivision rule to the vertices
in Figure 3.
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3 Mathematical Setting

In this section we cast the informal description of the previous section into a rigorous mathematical
setting. We denote by

CT
0 = (c0;1; � � � ; c0;K) ;

the initial control vertices defining the surface patch shown in Figure 3. The ordering of these
vertices is defined on the bottom of Figure 3. This peculiar ordering is chosen so that later com-
putations become more tractable. Note that the vertices do not result in the16 control vertices of a
uniform bi-cubic B-spline patch, except whenN = 4.

Through subdivision we can generate a new set ofM = K +9 vertices shown as circles super-
imposed on the initial vertices in Figure 5. Subsets of these new vertices are the control vertices
of three uniform B-spline patches. Therefore, three-quarters of our surface patch is parametrized,
and could be evaluated as simple bi-cubic B-splines (see top left of Figure 6). We denote this new
set of vertices by

CT
1 = (c1;1; � � � ; c1;K) and �CT

1 =
�
CT

1 ; c1;K+1; � � � ; c1;M
�
:

With these matrices, the subdivision step is a multiplication by anK � K (extended) subdivision
matrixA:

C1 = AC0: (1)

Due to the peculiar ordering that we have chosen for the vertices, the extended subdivision matrix
has the following block structure:

A =

 
S 0

S11 S12

!
; (2)

whereS is the2N+1�2N+1 subdivision matrix usually found in the literature [4]. The remaining
two matrices correspond to the regular midpoint knot insertion rules for B-splines. Their exact
definition can be found in Appendix A. The additional points needed to evaluate the three B-spline
patches are defined using a bigger matrix�A of sizeM �K:

�C1 = �AC0;

where

�A =

0
B@

S 0

S11 S12
S21 S22

1
CA : (3)

The matricesS21 andS22 are defined in Appendix A. The subdivision step of Equation 1 can be
repeated to create an infinite sequence of control vertices:

Cn = ACn�1 = AnC0 and
�Cn = �ACn�1 = �AAn�1C0; n � 1:

As noted above, for each leveln � 1, a subset of the vertices of�Cn becomes the control vertices
of three B-spline patches. These control vertices can be defined by selecting16 control vertices
from �Cn and storing them in16� 3 matrices:

Bk;n = Pk
�Cn;
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Figure 6: Indices of the control vertices of the three bi-cubic B-spline patches obtained from�Cn.

wherePk is a16 �M “picking” matrix andk = 1; 2; 3. Let b(u; v) be the vector containing the
16 cubic B-spline basis functions (see Appendix B). If the control vertices are ordered as shown
on the left of Figure 1, then the surface patch corresponding to each matrix of control vertices is
defined as

sk;n(u; v) = BT
k;nb(u; v) = �CT

nP
T
kb(u; v); (4)

where(u; v) 2 
, n � 1 andk = 1; 2; 3. Using the ordering convention for the B-spline control
vertices of Figure 1, the definition of the picking matrices is shown in Figure 6. Each row ofPk

is filled with zeros except for a one in the column corresponding to the index shown in Figure 6
(see Appendix B for more details). The infinite sequence of uniform B-spline patches defined by
Equation 4 form our surfaces(u; v), when “stitched together”. More formally, let us partition the
unit square
 into an infinite set of tilesf
n

kg, n � 1; k = 1; 2; 3, as shown in Figure 7. Each tile
with indexn is four times smaller than the tiles with indexn� 1. More precisely:


n
1 =

�
1

2n
;

1

2n�1

�
�
�
0;

1

2n

�
;


n
2 =

�
1

2n
;

1

2n�1

�
�
�
1

2n
;

1

2n�1

�
; (5)


n
3 =

�
0;

1

2n

�
�
�
1

2n
;

1

2n�1

�
:

A parametrization fors(u; v) is constructed by defining its restriction to each tile
n
k to be equal to

the B-spline patch defined by the control verticesBk;n:

s(u; v) 
n
k
= sk;n(tk;n(u; v)): (6)

The transformationtk;n maps the tile
n
k onto the unit square
:

t1;n(u; v) = (2nu� 1; 2nv); (7)

t2;n(u; v) = (2nu� 1; 2nv � 1) and (8)

t3;n(u; v) = (2nu; 2nv � 1): (9)
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Figure 7: Partition of the unit square into an infinite family of tiles.

Equation 6 gives an actual parametrization for the surface. However, it is very costly to evaluate,
since it involvesn � 1 multiplications of theK �K matrixA. The evaluation can be simplified
considerably by computing the eigenstructure ofA. This is the key idea behind our new evaluation
technique and is the topic of the next section.

4 Eigenstructure, Eigenbases and Evaluation

The eigenstructure of the subdivision matrixA is defined as the set of its eigenvalues and eigen-
vectors. In our case the matrixA is non-defective for any valence. Consequently, there always ex-
istsK linearly independent eigenvectors [4]. Therefore we denote this eigenstructure by(�;V),
where� is the diagonal matrix containing the eigenvalues ofA, andV is an invertible matrix
whose columns are the corresponding eigenvectors. The computation of the eigenstructure is then
equivalent to the solution of the following matrix equation:

AV = V�; (10)

where thei-th diagonal element of� is an eigenvalue with a corresponding eigenvector equal to
thei-th column of the matrixV (i = 1; � � � ; K). There are many numerical algorithms which can
compute solutions for such equations. Unfortunately for our purposes, these numerical routines do
not always return the correct eigenstructure. For example, in some cases the solver returns complex
eigenvalues. For this reason, we must explicitly compute the eigenstructure. Since the subdivision
matrix has a definite block structure, our computation can be done in several steps. In Appendix
A we analytically compute the eigenstructure(�;U0) (resp. (�;W1)) of the diagonal blockS
(resp. S12) of the subdivision matrix defined in Equation 2. The eigenvalues of the subdivision
matrix are the union of the eigenvalues of its diagonal blocks:

� =

 
� 0

0 �

!
:
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Using the eigenvectors ofS andS12, it can be proven that the eigenvectors for the subdivision
matrix must have the following form:

V =

 
U0 0

U1 W1

!
:

The matrixU1 is unknown and is determined from Equation 10. If we replace the matrices�, V
andA by their block representations, we obtain the following matrix equation:

S11U0 + S12U1 = U1�: (11)

SinceU0 is known,U1 is computed by solving the2N + 1 linear systems of Equation 11. In
principle, this equation could be solved symbolically. In practice, however, because of the small
sizes of the linear systems (7 � 7) we can compute the solution up to machine accuracy (see the
next section for details). The inverse of our eigenvector matrix is equal to

V�1 =

 
U�1

0 0

�W�1
1 U1U

�1
0 W�1

1

!
; (12)

where bothU0 andW1 can be inverted exactly (see Appendix A). This fact allows us to rewrite
Equation 10:

A = V�V�1:

This decomposition is the crucial result that we use in constructing a fast evaluation scheme of the
surface patch. Indeed, the subdivided control vertices at leveln are now equal to

�Cn = �AAn�1C0 = �AV�n�1V�1C0 = �AV�n�1Ĉ0;

whereĈ0 = V�1C0 is the projection of theK control vertices into the eigenspace of the subdi-
vision matrix. Using this new expression for the control vertices at then-th level of subdivision,
Equation 4 can be rewritten in the following form:

sk;n(u; v) = ĈT
0�

n�1
�
Pk

�AV
�T
b(u; v):

We observe that the right most terms in this equation are independent of the control vertices and
the powern. Therefore, we can precompute this expression and define the following three vectors:

x(u; v; k) =
�
Pk

�AV
�T
b(u; v) k = 1; 2; 3: (13)

The components of these three vectors correspond to a set ofK bi-cubic splines. In Appendix
B we show how to compute these splines. Notice that the splinesxi(u; v; k) depend only on the
valence of the extraordinary vertex. Consequently, we can rewrite the equation for each patch more
compactly as:

sk;n(u; v) = ĈT
0�

n�1x(u; v; k) k = 1; 2; 3: (14)

To make the expression for the evaluation of the surface patch more concrete, letpTi denote the
rows ofĈ0. Then the surface patch can be evaluated as:

s(u; v) 
n
k
=

KX
i=1

(�i)
n�1 xi(tk;n(u; v); k)pi: (15)
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Therefore, in order to evaluate the surface patch, we must first compute the new verticespi (only
once for a given mesh). Next, for each evaluation we determinen and then scale the contribution
from each of the splines by the relevant eigenvalue to the powern� 1. Since all but the first of the
eigenvalues are smaller than one, their contribution decreases asn increases. Thus, for largen, i.e.,
for surface-points near the extraordinary vertex, only a few terms make a significant contribution.
In fact for (u; v) = (0; 0) the surface point isp1, which agrees with the definition of a limit point
in [4].

Alternatively, the bi-cubic spline functionsx(u; v; k) can be used to define a set ofeigenbasis
functionsfor the subdivision. For a given eigenvalue�i we define the function'i by its restrictions
on the domains
n

k as follows:

'i(u; v) 
n
k
= (�i)

n�1xi(tk;n(u; v); k);

with i = 1; � � � ; K. By the above definition these functions satisfy the following scaling relation:

'i(u=2; v=2) = �i'i(u; v):

The importance of these functions was first noted by Warren in the context of subdivision curves
[10]. More recently, Zorin has defined and used eigenbasis functions to prove smoothness condi-
tions for very general classes of subdivision schemes [11]. However, explicit analytical expressions
for particular eigenbases have never appeared before. On the other hand, we can compute these
bases analytically. Figures 8 and 9 show the complete sets of eigenbasis functions for valences 3
and 5. In the figures we have normalized each function such that its range is bounded within�1
and1. In particular, the first eigenbasis corresponding to an eigenvalue of one is always a constant
function for any valence. A closer look at Figures 8 and 9 reveals that they share seven identical
functions. In fact as shown in Appendix B, the last seven eigenbasis functions for any valence are
always equal to �

1

36
u3v3;

1

6
u3;

1

6
u3v;

1

2
u3v2;

1

6
v3;

1

6
uv3;

1

2
u2v3

�
:

Furthermore, by transforming these functions back from the eigenspace usingW�1
1 we obtain the

seven tensor B-spline basis functions

b4(u; v); b8(u; v); b12(u; v); � � � ; b16(u; v);
i.e., the basis functions corresponding to the “outer layer” of control vertices of Figure 3. This
should not come as a surprise since as we noted above, the influence of the outer layer does not
depend on the valence of the extraordinary vertex (see Figure 4).

In the regular bi-cubic B-spline case (N = 4), the remaining eigenbasis can be chosen to be
equal to the power basis

f1; u; v; u2; uv; v2; u2v; uv2; u2v2g:
The scaling property of the power basis is obvious. For example, the basis functionu2v corre-
sponds to the eigenvalue1=8:

(u=2)2(v=2) = (1=2)2(1=2)u2v =
1

8
u2v:

This relationship between the Catmull-Clark subdivision and the power basis in the regular case
does not seem to have been noted before. Note also that the eigenvectors in this case correspond
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to the “change of basis matrix” from the bi-cubic B-spline basis to the power basis. The eigen-
basis functions at extraordinary vertices can thus be interpreted as a generalization of the power
basis. However, the eigenbases are in general not polynomials. In the case of the Catmull-Clark
subdivision they are piece-wise bi-cubic polynomials. The evaluation of the surface patch given
by Equation 15 can now be rewritten exactly as:

s(u; v) =
KX
i=1

'i(u; v)pi: (16)

This is the key result of our paper, since this equation gives a parametrization for the surface
corresponding to any face of the control mesh, no matter what the valence is. There is no need to
subdivide. Equation 16 also allows us to compute derivatives of the surface up to any order. Only
the corresponding derivatives of the basis functions appearing in Equation 16 are required. For
example, the partial derivative of thei-th eigenbasis with respect tou is:

@

@u
'i(u; v) 
n

k
= 2n(�i)

n�1 @

@u
xi(tk;n(u; v); k);

where the factor2n is equal to the derivative of the affine transformationtk;n. Generally a factor
2pn will be present when the order of differentiation isp.

5 Implementation

Although the derivation of our evaluation technique is mathematically involved, its implementation
is straightforward. The tedious task of computing the eigenstructure of the subdivision matrix only
has to be performed once and is provided in Appendix A. In practice, we have precomputed these
eigenstructures up to some maximum valence, sayNMAX=50, and have stored them in a file. The
file and some C code that reads in the data can be found on the course CDROM. Any program using
our evaluation technique can read in these precomputed eigenstructures. In our implementation the
eigenstructure for each valenceN is stored internally as

typedef
struct f

double L[K]; /* eigenvalues*/
double iV[K][K]; /* inv of the eigenvectors*/
double x[K][3][16]; /* coeffs of the splines*/

g EIGENSTRUCT;
EIGENSTRUCT eigen[NMAX]; ,

whereK=2*N+8 . At the end of this section we describe how we computed these eigenstructures.
We emphasize that this step has to be performed only once and that its computational cost is
irrelevant to the efficiency of our evaluation scheme.

Given that the eigenstructures have been precomputed and read in from a file, we evaluate a
surface patch around an extraordinary vertex in two steps. First, we project the control vertices
surrounding the patch into the eigenspace of the subdivision matrix. Let the control vertices be
ordered as shown in Figure 3 and stored in an arrayC[K] . The projected verticesCp[K] are then
easily computed by using the precomputed inverse of the eigenvectors:
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ProjectPoints(point *Cp,point *C,int N) f
for ( i=0 ; i<2*N+8 ; i++ ) f

Cp[i] = (0,0,0);
for ( j=0 ; j<2*N+8 ; j++ ) f

Cp[i] += eigen[N].iV[i][j] * C[j];
g

g
g
This routine is called only whenever one of the patches is evaluated for the first time or after an
update of the mesh. This step is, therefore, called at most once per surface patch. The second
step of our evaluation, on the other hand, is called whenever the surface has to be evaluated at a
particular parameter value(u,v) . The second step is a straightforward implementation of the
sum appearing in Equation 15. The following routine computes the surface patch at any parameter
value.

EvalSurf ( point P, double u, double v,
point *Cp, int N ) f

/* determine in which domain
n
k the parameter lies*/

n = floor(min(-log2(u),-log2(v)))+1;
pow2 = pow(2,n-1);
u *= pow2; v *= pow2;
if ( v < 0.5 ) f

k=0; u=2*u-1; v=2*v;
g
else if ( u < 0.5 ) f

k=2; u=2*u; v=2*v-1;
g
else f

k=1; u=2*u-1; v=2*v-1;
g
/* Now evaluate the surface */
P = (0,0,0);
for ( i=0 ; i<2*N+8 ; i++ ) f

P += pow(eigen[N].L[i],n-1) *
EvalSpline(eigen[N].x[i][k],u,v)*Cp[i];

g
g
The functionEvalSpline computes the bi-cubic B-spline polynomial whose coefficients are
given by its first argument at the parameter value(u,v) . When either one of the parameter values
u or v is zero, we set it to a sufficiently small value near the precision of the machine, to avoid
an overflow that would be caused by thelog2 function. BecauseEvalSpline evaluates a bi-
cubic polynomial, the cost ofEvalSurf is comparable to that of a bi-cubic surface spline. The
extra cost due to the logarithm and the elevation to an integer power is minimal, because these
operations are efficiently implemented on most current hardware. Since the projection step is only
called when the mesh is updated, the cost of our evaluation depends predominantly onEvalSurf .
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The computation of thep-th derivative is entirely analogous. Instead of using the routine
EvalSpline we employ a routine that returns thep-th derivative of the bi-cubic B-spline. In
addition, the final result is scaled by a factorpow(2,n*p) . The evaluation of derivatives is
essential in applications that require precise surface normals and curvature. For example, Newton
iteration schemes used in ray surface computations require higher derivatives of the surface at
arbitrary parameter values.

We now describe how we compute the eigenstructure of the subdivision matrix. This step
only has to be performed once for a given set of valences. The efficiency of this step is not
crucial. Accuracy is what matters here. As shown in the appendix, the eigenstructure of the
two matricesS andS12 can be computed analytically. The corresponding eigenstructure of the
extended subdivision matrixA requires the solution of the2N + 1 linear systems of Equation 11.
We did not solve these analytically because these systems are only of size7 � 7. Consequently,
these systems can be solved up to machine accuracy using standard linear solvers. We used the
dgesv routine from LINPACK to perform the task. The inverse of the eigenvectors is computed
by carrying out the matrix products appearing in Equation 12. Using the eigenvectors, we also
precompute the coefficients of the bi-cubic splinesx(u; v; k) as explained in Appendix B. For each
valenceN we stored the results in the data structureeigen[NMAX] and saved them in a file to be
read in at the start of any application which uses the routinesProjectPoints andEvalSurf
described above. This data is provided in the fileccdata50.dat on the CDROM for valences
uptoNMAX=50. The C programcctest.c demonstrates how to read in that data.

5.1 Some Remarks on Stability

As noted previously there is a problem when evaluating the surface at the extraordinary point
usingEvalSurf since thelog is ill-defined at(0; 0). One option as mentioned above is to clamp
the (u; v) values below a certain threshold. A better option is to return the limit pointCp[0]
directly. When computing derivatives other instabilities can occur, although in practice we have
not encountered them in our implementation using the clamping of theu � v values. However,
instabilities could be a nuisance in other applications of the evaluation method. The problem is
that we have to multiply the derivative by a factorpow(2,n*p) which diverges for largen. One
possible solution is to include this factor when taking powers of the eigenvalues, i.e., line

P += pow(eigen[N].L[i],n-1) *

should be replaced by

P += p2*pow(p2*eigen[N].L[i],n-1) * ,

wherep2=pow(2,p) . Although this simple modification reduces instabilities it is not completely
satisfactory. The problem is that the inverse of the eigenvalues� are not always powers of two so
that the products(2p�)n either converge to zero or diverge.

The cleanest solution is to reparametrize the surface using the characteristic map introduced in
[8]. The characteristic map is simply the mapping defined by the eigenbasis functions'2(u; v) and
'3(u; v). Let

�(u; v) = (x(u; v); y(u; v)) = ('2(u; v); '3(u; v));
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be the characteristic map. A more stable implementation would be to evaluate:

s�(x; y) = s
�
��1(u; v)

�
:

This reparametrization requires the inversion of the two eigenbasis functions'2 and'3. Note
also that the evaluation of the derivatives requires the computation of the derivatives of the inverse
of the characteristic map as well. Also we point out that the evaluation of the curvature near
the extraordinary point is inherently unstable since the the curvature at these points is known not
to exist (diverge) for Catmull-Clark surfaces. In particular, this implies that Catmull-Clark are in
general notC2 surfaces. As a corollary, for example, a perfect sphere cannot be represented exactly
by a Catmull-Clark surface.

6 Results

In Figure 10 we depict several Catmull-Clark subdivision surfaces. The extraordinary vertex whose
valenceN is given in the figure is located in the center of each surface. The position information
within the blue patches surrounding the extraordinary vertex is computed using our new evaluation
technique. The remaining patches are evaluated as bi-cubic B-splines. Next to each surface we also
depict the curvature of the surface. We map the value of the Gaussian curvature onto a hue angle.
Red corresponds to a flat surface, while green indicates high curvature. We have purposely made
the curvature plot discontinuous in order to emphasize the iso-contour lines. Both the shaded
surface and the curvature plot illustrate the accuracy of our method. Notice especially how the
curvature varies smoothly across the boundary between the patches evaluated using our technique
and the regular bi-cubic B-spline patches. The curvature plots also indicate that forN 6= 4 the
Gaussian curvature takes on arbitrarily large values near the extraordinary vertex. The curvature at
the extraordinary vertex is in fact infinite, which explains the diverging energy functionals in [4].

Figure 11 depicts more complex surfaces. The blue patches are evaluated using our technique.

7 Conclusion and Future Work

In this paper we have presented a technique to evaluate Catmull-Clark subdivision surfaces. This is
an important contribution since the lack of such an evaluation schemes has been sited as the chief
argument against the use of subdivision scheme in free-form surface modelers. Our evaluation
scheme permits many algorithms and analysis techniques developed for parametric surfaces to be
extended to Catmull-Clark surfaces. The cost of our algorithm is comparable to the evaluation
of a bi-cubic spline. The implementation of our evaluation is straightforward and we have used
it to plot the curvature near extraordinary vertices. We believe that the same methodology can
be applied to many other subdivision schemes sharing the features of Catmull-Clark subdivision:
regular parametrization away from extraordinary vertices. We have worked out the details for
Loop’s triangular scheme, and the derivation can be found in the accompanying paper in these
course notes. Catmull-Clark surfaces and Loop surfaces (when the valence6= 3) share the property
that their extended subdivision matrices are non-defective. In general, this isnot the case. For
example, the extended subdivision matrix of Doo-Sabin surfaces cannot generally be diagonalized.
In that case, however, we can use the Jordan normal form of the extended subdivision matrix and
employ Zorin’s general scaling relations [11].
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A Subdivision Matrices and Their Eigenstructures

The matrixS corresponds to the extraordinary rules around the extraordinary vertex. With our
choice of ordering of the control vertices the matrix is:

S =

0
BBBBBBBBBBBBBB@

aN bN cN bN cN bN � � � bN cN bN cN
d d e e 0 0 � � � 0 0 e e
f f f f 0 0 � � � 0 0 0 0
d e e d e e � � � 0 0 0 0
f 0 0 f f f � � � 0 0 0 0
...

...
...

...
d e 0 0 0 0 � � � e e d e
f f 0 0 0 0 � � � 0 0 f f

1
CCCCCCCCCCCCCCA

where

aN = 1� 7

4N
; bN =

3

2N2
; cN =

1

4N2
; d =

3

8
; e =

1

16
; f =

1

4
:

Since the lower right2N � 2N block ofS has a cyclical structure, we can use the discrete Fourier
transform to compute the eigenstructure ofS. This was first used in the context of subdivision
surfaces by Doo and Sabin [3]. The discrete Fourier transform can be written compactly by intro-
ducing the following2N � 2N “Fourier matrix”;

F =

0
BBBBBBBBBBBB@

1 0 1 0 � � � 1 0
0 1 0 1 � � � 0 1
1 0 !�1 0 � � � !�(N�1) 0
0 1 0 !�1 � � � 0 !�(N�1)

...
...

...
1 0 !�(N�1) 0 � � � !�(N�1)2 0

0 1 0 !�(N�1) � � � 0 !�(N�1)
2

1
CCCCCCCCCCCCA
;

where! = exp(i2�=N). Using these notations we can write down the “Fourier transform” of the
matrixS compactly as:

Ŝ =

0
BBBBB@

Ŝ0 0 0 0

0 Ŝ1 0 0
... 0

... 0

0 0 0 ŜN�1

1
CCCCCA = T S T�1;
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where

T =

 
1 0

0 1
N
F

!
; T�1 =

 
1 0

0 F�

!
;

Ŝ0 =

0
B@

aN NbN NcN
d 2f 2e
f 2f f

1
CA and

Ŝl =

0
@ e

�
!�l + !l

�
+ d e

�
1 + !�l

�
f
�
1 + !l

�
f

1
A ;

l = 1; � � � ; N � 1. The eigenstructure of the Fourier transformŜ is computed from the eigenstruc-
tures of its diagonal blocks. The first blockŜ0 has eigenvalues

�1 = 1; �2; �3 =
1

8N

�
�7 + 3N �

p
49� 30N + 5N2

�

and eigenvectors

K̂0 =

0
B@ 1 16�22 � 12�2 + 1 16�23 � 12�3 + 1

1 6�2 � 1 6�3 � 1
1 4�2 + 1 4�3 + 1

1
CA :

Similarly, the two eigenvalues of each blockŜl (l = 1; � � � ; N � 1) are equal to:

��l =
1

16

0
@5+cos

 
2�l

N

!
� cos

 
�l

N

!vuut18 + 2 cos

 
2�l

N

!1
A ;

where we have used some trigonometric relations to simplify the resulting expressions. The corre-
sponding eigenvectors of each block are

K̂l =

 
4��l � 1 4�+l � 1
1 + !l 1 + !l

!
:

We have to single out the special case whenN is even andl = N=2. In this case the corresponding
block is

K̂N=2 =

 
1 0
0 1

!
:

The eigenvalues of the matrix̂S are the union of the eigenvalues of its blocks and the eigenvectors
are

K̂ =

0
BBBBB@

K̂0 0 0 0

0 K̂1 0 0
... 0

... 0

0 0 0 K̂N�1

1
CCCCCA :

Since the subdivision matrixS and its Fourier transform̂S are similar, they have the same eigen-
values. The eigenvectors are computed by inverse Fourier transforming these eigenvectors:

K = T�1 K̂:
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Consequently, we have computed the eigenvalues and eigenvectors ofS. However, in this form
the eigenvectors are complex valued and most of the eigenvalues are actually of multiplicity two,
since��l = �+N�l and�+l = ��N�l. We relabel these eigenvalues as follows:

�4 = ��1 ; �5 = �+1 ; �6 = ��2 ; �7 = �+2 ; � � �

Since we have rearranged the eigenvalues, we have to rearrange the eigenvectors. At the same time
we make these eigenvectors real. Letk1; � � � ;k2N+1 be the columns ofK, then we can construct
the columns of a matrixU0 as follows:

u1 = k1; u2 = k2; u3 = k3;

u2l+2 =
1

2
(kl+3 + k2N�l+2) and

u2l+3 =
1

2i
(kl+3 � k2N�l+2) :

More preciselyu1, u2, u3, u2l+2 andu2l+3 are equal to

0
BBBBBBBBB@

1
1
1
...
1
1

1
CCCCCCCCCA
;

0
BBBBBBBBB@

16�22 � 12�2 + 1
6�2 � 1
4�2 + 1

...
6�2 � 1
4�2 + 1

1
CCCCCCCCCA
;

0
BBBBBBBBB@

16�23 � 12�3 + 1
6�3 � 1
4�3 + 1

...
6�3 � 1
4�3 + 1

1
CCCCCCCCCA
;

0
BBBBBBBBBBBBBB@

0
4�l+3 � 1
1 + C
(l)

(4�l+3 � 1)C
(l)

C
(l) + C2
(l)
...

(4�l+3 � 1)C(N�1)
(l)

C(N�1)
(l) + 1

1
CCCCCCCCCCCCCCA

and

0
BBBBBBBBBBBBBB@

0
0

S
(l)
(4�l+3 � 1)S
(l)
S
(l) + S2
(l)

...
(4�l+3 � 1)S(N�1)
(l)

S(N�1)
(l)

1
CCCCCCCCCCCCCCA

;

respectively, wherel = 1; � � � ; N2, N2 = N � 1 whenN is odd andN2 = N � 2 whenN is even,

(l) = (l + 1)=2 whenl is odd and
(l) = l=2 whenl is even, and

Ck = cos

 
2�k

N

!
and Sk = sin

 
2�k

N

!
:

WhenN is even the last two eigenvectors are

uT2N = (0; 1; 0;�1; 0; 1; 0; � � � ;�1; 0) and

uT2N+1 = (0; 0; 1; 0;�1; 0; 1; � � � ; 0;�1) :

Finally, the diagonal matrix of eigenvalues is

� = diag (1; �2; �3; �4; �4; � � � ; �N+2; �N+2) :
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The inverse of the eigenvectorsU0 can be computed likewise by first computing the inverses of
each blockK̂l in the Fourier domain and then setting

K�1 = K̂�1 T:

With the same reshuffling as above we can then computeU�1
0 . The resulting expressions are,

however, rather ugly and are not reproduced in this paper.
The remaining blocks of the subdivision matrixA directly follow from the usual B-spline

knot-insertion rules.

S12 =

0
BBBBBBBBBBB@

c b c 0 b c 0
0 e e 0 0 0 0
0 c b c 0 0 0
0 0 e e 0 0 0
0 0 0 0 e e 0
0 0 0 0 c b c
0 0 0 0 0 e e

1
CCCCCCCCCCCA
; S11 =

0
BBBBBBBBBBB@

c 0 0 b a b 0 0 0

e 0 0 e d d 0 0 0

b 0 0 c b a b c 0

e 0 0 0 0 d d e 0

e 0 0 d d e 0 0 0

b c b a b c 0 0 0

e e d d 0 0 0 0 0

1
CCCCCCCCCCCA
;

where

a =
9

16
; b =

3

32
and c =

1

64
:

For the caseN = 3, there is no control vertexc8 (c8 = c2) and the second column of the matrix
S11 is equal to(0; 0; c; e; 0; c; e)T .

The eigenstructure of the matrixS12 can be computed manually, since this matrix has a simple
form. Its eigenvalues are:

� = diag
�
1

64
;
1

8
;
1

16
;
1

32
;
1

8
;
1

16
;
1

32

�
;

with corresponding eigenvectors:

W1 =

0
BBBBBBBBBBB@

1 1 2 11 1 2 11
0 1 1 2 0 0 0
0 1 0 �1 0 0 0
0 1 �1 2 0 0 0
0 0 0 0 1 1 2
0 0 0 0 1 0 �1
0 0 0 0 1 �1 2

1
CCCCCCCCCCCA
:

The inverseW�1
1 of this matrix is easily computed manually.

The other two matrices appearing in�A are:

S21 =

0
BBBBBBBBBBBBBBB@

0 0 0 0 f 0 0 0

0 0 0 0 d e 0 0

0 0 0 0 f f 0 0

0 0 0 0 e d e 0

0 0 0 0 0 f f 0

0 0 0 e d 0 0 0

0 0 0 f f 0 0 0

0 0 e d e 0 0 0

0 0 f f 0 0 0 0

1
CCCCCCCCCCCCCCCA

;S22 =

0
BBBBBBBBBBBBBBB@

f f 0 0 f 0 0
e d e 0 e 0 0
0 f f 0 0 0 0
0 e d e 0 0 0
0 0 f f 0 0 0
e e 0 0 d e 0
0 0 0 0 f f 0
0 0 0 0 e d e
0 0 0 0 0 f f

1
CCCCCCCCCCCCCCCA

:
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B Eigenbasis Functions

In this appendix we compute the bi-cubic spline piecesx(u; v; k) of the eigenbasis defined in
Equation 13. The vectorb(u; v) contains the16 tensor B-spline basis functions (i = 1; � � � ; 16):

bi(u; v) = N(i�1)%4(u)N(i�1)=4(v);

where “%” and “=” stand for the remainder and the division respectively. The functionsNi(t) are
the uniform B-spline basis functions:

6N0(t) = 1� 3t+ 3t2 � t3;

6N1(t) = 4� 6t2 + 3t3;

6N2(t) = 1 + 3t + 3t2 � 3t3 and

6N3(t) = t3:

The projection matricesP1,P2 andP3 are defined by introducing the following three permutation
vectors (see Figure 6):

q1 = (8; 7; 2N + 5; 2N + 13; 1; 6; 2N + 4; 2N + 12;

4; 5; 2N + 3; 2N + 11; 2N + 7; 2N + 6; 2N + 2;

2N + 10);

q2 = (1; 6; 2N + 4; 2N + 12; 4; 5; 2N + 3; 2N + 11;

2N + 7; 2N + 6; 2N + 2; 2N + 10; 2N + 16;

2N + 15; 2N + 14; 2N + 9);

q3 = (2; 1; 6; 2N + 4; 3; 4; 5; 2N + 3; 2N + 8; 2N + 7;

2N + 6; 2N + 2; 2N + 17; 2N + 16; 2N + 15;

2N + 14):

Since for the caseN = 3 the verticesc2 andc8 are the same vertex,q11 = 2 instead of8 for N = 3.
Using these permutation vectors we can compute each bi-cubic spline as follows:

xi(u; v; k) =
16X
j=1

�Vqk
j
;i bj(u; v);

wherei = 1; � � � ; K and �V = �AV.
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Figure 9: The complete set of18 eigenbasis functions for extraordinary vertices of valenceN = 5.

N=3 N=5

N=8 N=30

Figure 10: Surfaces having an extraordinary vertex in the center. For each surface we depict
the patches evaluated using our technique in blue. Next to them is a curvature plot. Derivative
information for curvature is also computed near the center vertex using our technique.
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Figure 11: More complex surfaces rendered using our evaluation technique (in blue).
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Abstract

This paper describes a technique to evaluate Loop subdivision surfaces at arbitrary parame-
ter values. The method is a straightforward extension of our evaluation work for Catmull-Clark
surfaces. The same ideas are applied here, with the differences being in the details only.

1 Introduction

Triangular meshes arise in many applications, such as solid modelling and finite element simula-
tions. The ability to define a smooth surface from a given triangular mesh is therefore an important
problem. For topologically regular meshes a smooth triangular surface can be defined using box
splines [1]. In 1987 Loop generalized the recurrence relations for box splines to irregular meshes
[3]. Using his subdivision rules any triangular mesh can be refined. In the limit of an infinite
number of subdivisions a smooth surface is obtained. Away fromextraordinary vertices(whose
valenceN 6= 6) the surface can be parametrized using triangular Bezier patches derived from the
box splines [2]. Until recently it was believed that no parametrizations that lend themselves to
efficient evaluation existed at the extraordinary points. This paper disproves this belief. We define
parametrizations near extraordinary points and show how to evaluate them efficiently. The tech-
niques are identical to those used in our previous work on evaluating Catmull-Clark subdivision
surfaces [5]. The differences are in the details only: different parameter domain, different subdivi-
sion rules and consequently a different eigenanalysis. We assume that the reader is familiar with
the content of [5].

The remainder of this short paper is organized as follows. The next section briefly reviews trian-
gular Loop subdivision surfaces. Section 3 summarizes how we define and evaluate a parametriza-
tion for such surfaces. Section 4 discusses implementation details while Section 5 depicts some
results obtained using our scheme. Finally, some conclusions and possible extensions of this work
are given in Section 6. Material which is of a rather technical nature is explained in the appendices.
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Figure 1: A single regular triangular patch defined by12 control vertices.

2 Loop Subdivision Surfaces

Loop triangular splines generalize the box spline subdivision rules to meshes of arbitrary topology.
On a regular part of the mesh each triangular patch can be defined by12 control vertices as shown
in Fig. 1. The basis functions corresponding to each of the control vertices are given in Appendix
A. We obtained these basis functions by using a conversion from box splines to triangular Bezier
patches developed by Lai [2]. This (regular) triangular patch can be denoted compactly as:

s(v; w) = CT
b(v; w); (v; w) 2 
;

whereC is a12 � 3 matrix containing the control vertices of the patch ordered as in Fig. 1 and
b(v; w) is the vector of basis functions (see Appendix A). The surface is defined over the “unit
triangle”:


 = f (v; w) j v 2 [0; 1] and w 2 [0; 1� v] g:

The parameter domain is a subset of the plane such thatv = 1 corresponds to the point(1; 0) and
w = 1 corresponds to the point(0; 1). We introduce the third parameteru = 1 � v � w such
that (u; v; w) forms a barycentric system of coordinates for the unit triangle. The valueu = 1
corresponds to the origin(0; 0). The degree of the basis function is at most4 in each parameter
and our surface patch is therefore a quartic spline.

The situation around an extraordinary vertex of valenceN is depicted in Fig. 2. The shaded
triangle in this figure is defined by theK = N + 6 control vertices surrounding the patch. The
extraordinary vertex corresponds to the parameter valueu = 1. Since the valence of the extraor-
dinary vertex in the middle of the figure isN = 7, there areK = 13 control vertices in this case.
The figure also provides the labelling of the control vertices. We store the initialK control vertices
in aK � 3 matrix

C
T
0 = (c0;1; � � � ; c0;K) :
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Figure 2: An irregular triangular patch defined byK = N + 6 = 13 control vertices. The vertex
labelled “1” in the middle of the figure is extraordinary of valence7.
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Figure 3: The mesh of Fig. 2 after one Loop subdivision step. Notice that three-quarters of the
triangular patch can be evaluated.
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Figure 4: Three regular meshes corresponding to the three shaded patches. The labelling of the
control vertices defines the picking matrices.
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3 Method of Evaluation

3.1 Setup

Through subdivision we can generate a new set ofM = K + 6 = N + 12 control vertices as
shown in Fig. 3. Notice that we now have enough control vertices to evaluate three-quarters of the
triangular patch. We denote the new set of control vertices by:

C
T
1 = (c1;1; � � � ; c1;K) and

�CT
1 = (c1;1; � � � ; c1;K; c1;K+1; � � � ; c1;M) :

The subdivision step in terms of these matrices is entirely described by anK �K extended subdi-
vision matrixA:

C1 = AC0;

where

A =

 
S 0

S11 S12

!
; (1)

and the blocks are defined in Appendix B. The additional vertices needed to evaluate the surface
are obtained from a bigger subdivision matrix�A:

�C1 = �AC0;

where

�A =

0
B@

S 0

S11 S12

S21 S22

1
CA ;

andS21 andS22 are defined in Appendix B. Three subsets of12 control vertices from�C1 define
three regular triangular patches which can now be evaluated. If we repeat the subdivision step, we
generate an infinite sequence of control vertices:

�Cn = �ACn�1 = �AAn�1
C0; n � 1:

For eachn � 1 subsets of12 vertices from�Cn form the control vertices of a regular triangular
patch. Let us denote these three sets of control vertices by the following three12�3 matricesBn;k,
with k = 1; 2; 3. To compute these control vertices we introduce the12 �M “picking matrices”
Pk:

Bn;k = Pk
�Cn; k = 1; 2; 3:

Each row of the picking matrixPk is filled with zeros except for a one in the column corresponding
to the index shown in Fig. 4. Each surface patch is then defined as follows:

sn;k(v; w) = B
T
n;kb(v; w) = �CT

nP
T
kb(v; w):

We seek a parametrizations(v; w) for our triangular surface for all(v; w) 2 
. As shown in Fig.
5 we can partition the parameter domain into an infinite set of tiles
n

k , with n � 1 andk = 1; 2; 3.
These subdomains are defined forn � 1 more precisely as:


n
1 =

n
(v; w) j v 2

h
2�n; 2�n+1

i
and w 2

h
0; 2�n+1 � v

i o

n
2 =

n
(v; w) j v 2

h
0; 2�n

i
and w 2 [0; v]

o

n
3 =

n
(v; w) j v 2

h
0; 2�n

i
and w 2

h
2�n; 2�n+1 � v

i o
:
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Figure 5: The parameter domain is partitioned into an infinite set of triangular tiles.

The surface patch is then defined by its restriction to each of these triangles:

s(v; w) 
n
k
= sn;k(tn;k(v; w)) = C

T
0

�
Pk

�AAn�1
�T
b(tn;k(v; w)); (2)

where the transformationtn;k maps the tile
n
k onto the unit tile
 (with the correct orientation of

Fig. 1):

tn;1(v; w) = (2nv � 1; 2nw);

tn;2(v; w) = (1� 2nv; 1� 2nw) and

tn;3(v; w) = (2nv; 2nw � 1):

Eq. 2 actually defines a parametrization for the surface patch. However, it is expensive to evaluate
since it involves taking powers of a certain matrix to any numbern � 1. To make the parametriza-
tion more efficient, we eigenanalyze.

3.2 Eigenstructure

When the valenceN > 3, the extended subdivision matrixA is non-defective1. Consequently,A
can be diagonalized:

A = V�V�1; (3)

where� is the diagonal matrix which contains the eigenvalues andV contains the eigenvectors.
These matrices have the following block structure:

� =

 
� 0

0 �

!
and V =

 
U0 0

U1 W1

!
:

The diagonal blocks� and� correspond to the eigenvalues ofS andS12, respectively, and their
corresponding eigenvectors are stored inU0 andW1, respectively. The matrixU1 is computed by
extending the eigenvectors ofS, i.e., by solving the following linear systems:

U1�� S12U1 = S11U0: (4)

1The caseN = 3 has a non-trivial Jordan block and is treated in Appendix C.
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In Appendix B we compute the entire eigenstructure for Loop’s scheme precisely. LetĈ0 =
V
�1
C0 be the projection of the initial control vertices onto the eigenspace ofA and let�(v; w) be

theK-dimensional vector ofeigenbasisfunctions defined by:

�(v; w) 
n
k
= �n�1

�
Pk

�AV
�T
b(tn;k(v; w)) n � 1 and k = 1; 2; 3: (5)

The eigenbasis functions for valencesN = 5 andN = 7 are depicted in Fig. 6. Each function of
the eigenbasis corresponds to one of the eigenvectors of the matrixA. Each eigenbasis function
is entirely defined by its restriction on the unit triangles
1

1, 

1
2 and
1

3. On each of these domains
the eigenbasis is a quartic spline. The basis functions can be evaluated elsewhere since they satisfy
the following scaling relation:

�(v=2; w=2) = ��(v; w):

The triangular surface patch can now be written solely in terms of the eigenbasis:

s(v; w) = ĈT
0�(v; w): (6)

In the next section we show how to implement this equation.

4 Implementation

The eigenstructures of the subdivision matrices for a meaningful range of valences have to be com-
puted once only. LetNMAXbe the maximum valence, then each eigenstructure is stored internally
in the following data structure:

typedef
struct f

double L[K]; /* eigenvalues*/
double iV[K][K]; /* inverse of the eigenvectors*/
double Phi[K][3][12]; /* Coefficients of the eigenbasis*/

g EIGENSTRUCT;
EIGENSTRUCT eigen[NMAX]; ,

whereK=N+6. The coefficients of the eigenbasis functions are given in the basis of Appendix A.
There are three sets of control vertices, one for each of the fundamental domains of the eigenbasis.
These control vertices are simply equal toPk

�AV. The eigenstructure was computed from the
results of Appendix B and by solving the linear system defined by Eq. 4 numerically. Also, we
numerically inverted the eigenvectors without encountering any numerical instabilities. We have
included a data file calledlpdata50.dat on the CDROM which contains these eigenstructures
up toNMAX=50. Also included on the CDROM is a C program which reads in and prints out the
data.

Using this eigenstructure the surface for any patch can be evaluated by first projecting theK
control vertices defining the patch into the eigenspace of the subdivision matrix with the following
routine.

ProjectPoints ( point *Cp, point *C, int N ) f
for ( i=0 ; i<N+6 ; i++ ) f

Cp[i]=(0,0,0);

6



for ( j=0 ; j<N+6 ; j++ ) f
Cp[i] += eigen[N].iV[i][j] * C[j];

g
g

g

This routine has to be called only once for a particular set of control vertices.
The evaluation at a parameter value(v,w) is performed by computing the product given in

Eq. 6.

EvalSurf ( point P, double v, double w, point *Cp, int N ) f
/* determine in which domain
n

k the parameter lies*/
n = floor(1-log2(v+w));
pow2 = pow(2,n-1);
v *= pow2; w *= pow2;
if ( v > 0.5 ) f

k=0; v=2*v-1; w=2*w;
g
else if ( w > 0.5 ) f

k=2; v=2*v; w=2*w-1;
g
else f

k=1; v=1-2*v; w=1-2*w;
g
/* Now evaluate the surface */
P = (0,0,0);
for ( i=0 ; i<N+6 ; i++ ) f

P += pow(eigen[N].L[i],n-1) *
EvalBasis(eigen[N].Phi[i][k],v,w) * Cp[i];

g
g

where the routineEvalBasis evaluates a regular triangular patch using the basis of Appendix
A. To evaluate higher order derivatives, we replaceEvalBasis with a function that evaluates a
derivative of the basis. In this case, the end result also must be multiplied by two to the power
n*p , wherep is the order of differentiation. Therefore, the following line should be added at the
end ofEvalSurf :

P = k==1 ? pow(-2,n*p)*P : pow(2,n*p)*P;

5 Results

We have implemented our evaluation technique and have used it to compute the eigenbases for
different valences. Fig. 6 depicts the entire set of eigenbasis for valences5 and7. Notice that the
last 6 eigenbasis functions are the same regardless of the valence, since they depend only on the
eigenvectors ofS21, which are the same for any valence. In fact, as for Catmull-Clark surfaces,
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(a)

(b)

Figure 6: Complete set of eigenbasis function for a patch of valence (a)N = 5 and (b)N = 7.
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(c)                                                                                                         (d)

(a)                                                                                                         (b)

Figure 7: Results created using our evaluation scheme: (a) The base mesh which contains vertices
with valences ranging from3 to 9, (b) Isoparameter lines, (c) shaded surface and (d) Gaussian
curvature plot.
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these eigenbasis functions are equal to simple monomials (see [5]). The eigenbasis functions
contain all the information necessary to analyze Loop subdivision surfaces.

To test our code we created the mesh shown in Figure 7.(a) which contains vertices of valence
3 to 9. Figure 7.(b) shows a closeup of the isoparameter lines generated by Loop subdivision and
evaluated using our technique. In Figure 7.(c) we evaluated both the surface and the normal. Figure
7.(d) shows a Gaussian curvature plot, where red denotes positive curvature, green flat curvature
and blue negative curvature.

6 Conclusions and Future Work

In this paper we have shown that our evaluation technique first developed for Catmull-Clark sur-
faces can be extended to the class of Loop subdivision surfaces. Our next step will be to present
these results in a more general setting in which Catmull-Clark and Loop are regarded as special
cases. The class of polynomial surfaces defined by Reif would be a good candidate [4].

Acknowledgments
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A Regular Triangular Spline Basis Functions

The triangular surface defined by the control vertices shown in Fig. 1 can be expressed in terms of
12 basis functions. Since Loop’s scheme on the regular part of the mesh is a box spline, we can
find the corresponding Bezier patch control vertices of the triangle. Lai has developed FORTRAN
code which provides the conversion to the control vertices for the quartic triangular Bezier patches
corresponding to the box spline [2]. We have used his code (withL=2 , M=2andN=2) to get a
12 � 15 matrixM which converts from the Bezier control vertices of the patch to the12 control
vertices shown in Fig. 1. We get the12 basis functions for our triangular patch by multiplying the
15 multivariate Bernstein polynomials by the matrixM. Carrying out this multiplication leads to
the following result (thanks to Maple’s built in feature which converts to LaTeX):

b
T (v; w) =

1

12

�
u4 + 2 u3v; u4 + 2 u3w;

u4 + 2 u3w + 6 u3v + 6 u2vw + 12 u2v2 + 6 uv2w + 6 uv3 + 2 v3w + v4;

6 u4 + 24 u3w + 24 u2w2 + 8 uw3 + w4 + 24 u3v + 60 u2vw + 36 uvw2 +

6 vw3 + 24 u2v2 + 36 uv2w + 12 v2w2 + 8 uv3 + 6 v3w + v4;

u4 + 6u3w + 12 u2w2 + 6 uw3 + w4 + 2 u3v + 6 u2vw + 6 uvw2 + 2 vw3;

2 uv3 + v4; u4 + 6 u3w + 12 u2w2 + 6 uw3 + w4 + 8 u3v + 36 u2vw +

36 uvw2 + 8 vw3 + 24 u2v2 + 60 uv2w + 24 v2w2 + 24 uv3 + 24 v3w + 6 v4;

u4 + 8 u3w + 24 u2w2 + 24 uw3 + 6w4 + 6 u3v + 36 u2vw + 60 uvw2 +

24 vw3 + 12 u2v2 + 36 uv2w + 24 v2w2 + 6 uv3 + 8 v3w + v4;

2 uw3 + w4; 2 v3w + v4;
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2 uw3 + w4 + 6 uvw2 + 6 vw3 + 6 uv2w + 12 v2w2 + 2 uv3 + 6 v3w + v4;

w4 + 2 vw3
�
;

whereu = 1� v � w.

B Eigenstructure of the Subdivision Matrix

The subdivision matrixA is composed of three blocks. The upper left block contains the “extraor-
dinary rules” of Loop’s scheme. It is equal to

S =

0
BBBBBBB@

aN bN bN bN bN � � � bN bN bN
c c d 0 0 � � � 0 0 d
c d c d 0 � � � 0 0 0

...
...

...
c d 0 0 0 � � � 0 d c

1
CCCCCCCA
;

where
aN = 1� �(N); bN = �(N)=N; c = 3=8 and d = 1=8:

We have used the shorthand notation

�(N) =
5

8
�

(3 + 2 cos (2�=N))2

64
:

If we Fourier transform the matrix we get:

Ŝ =

0
BBBBBBBBB@

aN NbN 0 0 � � � 0
c c + 2d 0 0 � � � 0
0 0 f(1) 0 � � � 0
0 0 0 f(2) � � � 0

� � �
... � � �

0 0 0 0 � � � f(N � 1)

1
CCCCCCCCCA
;

where

f(k) =
3

8
+

2

8
cos (2�k=N) :

The eigenvalues and the eigenvectors of the transformed matrix are trivial to compute because of
the almost-diagonal structure. They are

�1 = 1; �2 =
5

8
� �(N); �3 = f(1); � � � ; �N+1 = f(N � 1):

Notice that we have�23 = �2. This is not surprising since Loop constructed his scheme from this
relation [3]. The eigenvalues�3 to �N�1 are of multiplicity two, sincef(k) = f(N � k), except
of course for the case whenN is even, then�2+N=2 is only of multiplicity one. The corresponding
eigenvectors are (when stored column wise):

Û0 =

0
BBBBBBBBB@

1 �8
3
�N 0 0 � � � 0

1 1 0 0 � � � 0
0 0 1 0 � � � 0
0 0 0 1 � � � 0

...
...

...
0 0 0 0 � � � 1

1
CCCCCCCCCA
:
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By Fourier transforming these vectors back, we can compute the eigenvectors of the matrixS. The
result is

U0 =

0
BBBBBBBBB@

1 �8
3
�N 0 0 � � � 0

1 1 1 1 � � � 1
1 1 E(1) E(2) � � � E(N � 1)
1 1 E(2) E(4) � � � E(2(N � 1))

...
...

...
1 1 E(N � 1) E(2(N � 1)) � � � E((N � 1)(N � 1))

1
CCCCCCCCCA
;

whereE(k) = exp (2�ik=N). These are complex valued vectors. To get real-valued vectors we
just combine the two columns of each eigenvalue to obtain two corresponding real eigenvalues.
For example, the two real eigenvectors for the eigenvalue�3+k, k = 0; � � � ; N � 1 are:

v
T
k = (0; C(0); C(k); C(2k); � � � ; C((N � 1)k)) and

w
T
k = (0; S(0); S(k); S(2k); � � � ; S((N � 1)k)) ;

where
C(k) = cos (2�k=N) and S(k) = sin (2�k=N) :

The corresponding matrix of diagonal vectors is equal to

� = diag
�
1; �2; �3; �3; � � � ; �(N�1)=2; �(N�1)=2

�
;

whenN is odd, and is equal to

� = diag
�
1; �2; �3; �3; � � � ; �N=2�1; �N=2�1;

1

8

�
;

whenN is even. This completes the eigenanalysis of the matrixS. Let us now turn to the remainder
of the matrixA.

The remaining blocks of the matrixA are now given.

S12 =
1

16

0
BBBBBB@

2 0 0 0 0
1 1 1 0 0
0 0 2 0 0
1 0 0 1 1
0 0 0 0 2

1
CCCCCCA

and S11 =
1

16

0
BBBBBB@

2 6 0 0 � � � 0 0 6
1 10 1 0 � � � 0 0 1
2 6 6 0 � � � 0 0 0
1 1 0 0 � � � 0 1 10
2 0 0 0 � � � 0 6 6

1
CCCCCCA
:

The matrixS12 has the following eigenvalues:

�1 = �2 = �3 =
1

8
; and �4 = �5 =

1

16
;

i.e.,

� = diag
�
1

8
;
1

8
;
1

8
;
1

16
;
1

16

�
:

And the corresponding eigenvectors are:

W1 =

0
BBBBBB@

0 �1 1 0 0
1 �1 1 0 1
1 0 0 0 0
0 0 1 1 0
0 1 0 0 0

1
CCCCCCA
:
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We point out that the following problem might occur when trying to solve Eq. 4. WhenN
is even, the column corresponding to the last eigenvector ofS gives rise to a degenerate linear
system, since the eigenvalue is1=8. Fortunately, the system can be solved manually, and in this
case the last column ofU1 is given by:

u
T
1;N+1 = (0; 8; 0;�8; 0) :

The remaining two blocks of the matrix�A are

S21 =
1

8

0
BBBBBBBB@

0 3 0 0 � � � 0 0 1
0 3 0 0 � � � 0 0 0
0 3 1 0 � � � 0 0 0
0 1 0 0 � � � 0 0 3
0 0 0 0 � � � 0 0 3
0 0 0 0 � � � 0 1 3

1
CCCCCCCCA

and S22 =
1

8

0
BBBBBBBB@

3 1 0 0 0
1 3 1 0 0
0 1 3 0 0
3 0 0 1 0
1 0 0 3 1
0 0 0 1 3

1
CCCCCCCCA
:

C ValenceN = 3

When the valence of the extraordinary point is equal to three, the analysis of Section 3 breaks
down since, in that case, the extended subdivision matrix has a non-trivial Jordan block. This
means that the eigenvectors do not form a basis and the subdivision matrix cannot be diagonalized.
Fortunately, this case can be dealt with quite easily since the matrices involved are only of size
9� 9. Most of the computations reported in this appendix were computed using Maple’sjordan
command. In this case the Jordan decomposition of the subdivision matrix is

A = VJV�1;

where

J =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0

0 1=4 0 0 0 0 0 0 0

0 0 1=4 0 0 0 0 0 0

0 0 0 1=8 0 0 0 0 0

0 0 0 0 1=8 0 0 0 0

0 0 0 0 0 1=8 0 0 0

0 0 0 0 0 0 1=16 0 0

0 0 0 0 0 0 0 1=16 1

0 0 0 0 0 0 0 0 1=16

1
CCCCCCCCCCCCCCCCCCCCCCCA

;
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V =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 33

1 0 1 0 0 0 0 0 �22

1 �1 �1 0 0 0 0 0 �22

1 1 0 0 0 0 0 0 �22

1 3 3 1 �1 0 0 0 198

1 0 4 1 0 0 0 165
16

473

1 �3 0 0 1 0 0 0 198

1 4 0 0 0 1 1 165
16

438

1 0 �3 �1 1 1 0 0 198

1
CCCCCCCCCCCCCCCCCCCCCCCA

and

V
�1 =

0
BBBBBBBBBBBBBBBBBBBBBBB@

2=5 1=5 1=5 1=5 0 0 0 0 0

0 �1=3 �1=3 2=3 0 0 0 0 0

0 2=3 �1=3 �1=3 0 0 0 0 0

�8 0 3 3 1 0 1 0 0

�4 0 0 3 0 0 1 0 0

�8 3 3 0 1 0 0 0 1

7
11

26
33

� 7
33

�40
33

0 �1 1 1 �1

� 16
165

0 16
165

16
165

� 16
165

16
165

� 16
165

0 0

1
55

� 1
165

� 1
165

� 1
165

0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCA

:

Using these matrices the surface can now be evaluated as in the other cases. Only the evaluation
routine has to be modified to account for the additional Jordan block. The modification relies on
the fact that powers of the Jordan block have a simple analytical expression:

 
1=16 1
0 1=16

!n
=

 
1=16n n=16n�1

0 1=16n

!
:

With this in mind the last lines of routineEvalSurf should read:

/* Now evaluate the surface */
P = (0,0,0);
for ( i=0 ; i<N+6 ; i++ ) f

P += pow(eigen[N].L[i],n-1) *
EvalBasis(eigen[N].Phi[i][k],v,w) * Cp[i];

if ( i==N+4 && N==3 )
P += (n-1) * pow(eigen[N].L[i],n-2) *

EvalBasis(eigen[N].Phi[i][k],v,w) * Cp[i+1];
g

g
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Data structures for subdivision

In this section we briefly describe some considerations that we found useful when choosing appropri-

ate data structures for implementing subdivision surfaces. We will consider only primal subdivision

schemes, such as Loop, Catmull-Clark or Butterly.

Representing meshes. In all cases, we need to start with data structures representing the top-level

mesh. For subdivision schemes we typically assume that the top level mesh satisfies several requirements

that allow us to apply the subdivision rules everywhere. These requirements are

� no more than two triangles share an edge;

� all triangles sharing a vertex form an open or closed neighborhood of the vertex; in other words,

can be arranged in such order that two sequential triangles always share an edge.

A variety of representations were proposed in the past for general meshes of this type, sometimes

with some of the assumptions relaxed, sometimes with more assumptions added, such as orientability of

the surface represented by the mesh. These representations include winged edge, quad edge, half edge

end other data structures. The most common one is the winged edge. However, this data structure is

far from being the most space efficient and convenient for subdivision. First, most data that we need to

store in a mesh, is naturally associated with vertices and polygons, not edges. Edge-based data structures

are more appropriate in the context of edge-collapse-based simplification. For subdivision, it is more

natural to consider data structures with explicit representations for faces and vertices, not for edges. One

possible and relatively simple data structure for polygons is

struct Polygon {

vector<Vertex*> vertices;

vector<Polygon*> neighbors;

vector<short> neighborEdges;

...

};

For each polygon, we store an array of pointers to vertices, an array of adjacent polygons (neighbors)

across corresponding edge numbers; and an array of adjacent edge numbers in neighbors. In addition,

if we allow nonorientable surfaces, we need to keep track of the orientation of the neighbors, which

1



can be achieved by using signed edge numbers in the arrayneighorEdges . To complete the mesh

representation, we add a data structure for vertices to the polygon data structure.

Let us compare this data structure to the winged edge. LetP be the number of polygons in the

mesh,V the number of vertices andE the number of edges. The storage required for the polygon-based

data structure is approximately 2:5 �P �VP 32-bit words, whereVP is the average number of vertices per

polygon. Here we assuming that all polygons have fewer than 216 edges, so only 2 bytes are required to

store the edge number. Note that we disregard the geometric and other information stored in vertices and

polygons, counting only the memory used to maintain the data structure.

To estimate the value of 2:5 �P �VP in terms ofV, we use the Euler formula. Recall that any mesh

satisfiesV �E+P= g, whereg is the genus, the number of “holes” in the surface. Assuming genus

small compared to the number of vertices, we get an approximate equationV �E+P = 0; we also

assume that the boundary vertices are a negligible fraction of the total number of vertices. Each polygon

on the average hasVP vertices and the same number of edges. Each edge is shared by two polygons

which results inE =VP �P=2. Let PV be the number of polygons per vertex. ThenP= PV �V=VP, and

E =V PV=2. This leads to

1
PV

+
1

VP
=

1
2

(1)

In addition, we know thatVP, the average number of vertices per polygon, is at least 3. It follows

from (1) thatPV � 6. Therefore, the total memory spent in the polygon data structure is 2:5PV �V � 15V .

For the winged edge data structure, for each edge we use 8 pointers (4 pointers to adjacent edges, 2

pointers to adjacent faces, and two pointers to vertices); given that the total number of edgesE is greater

than 3V, the total memory consumption is greater than 24V , significantly worse than the polygon data

structure.

One of the commonly mentioned advantages of the winged edge data structure is its constant size. It

is unclear if this has any consequence in the context of C++: it is relatively easy to create structures with

variable size. However, having a variety of dynamically allocated data of different small sizes may have

a negative impact on performance. We observe that after the first subdivision step all polygons will be

either triangles or quadrilaterals for all schemes that we have considered, so most of the data items will

have fixed size and the memory allocation can be easily optimized.

Hierarchical meshes: arrays vs. trees. Once a mesh is subdivided, we need to represent all the

polygons generated by subdivision. The choice of representation depends on many factors. One of the
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important decisions to make is whether adaptive subdivision is necessary for a particular application or

not. For simplicity, lets assume that we have performed one subdivision step on an arbitrary polygonal

mesh, so we always start with a mesh consisting only of quads or triangles. If we assume that we

need only uniform subdivision, all vertices and polygons of each subdivided top-level quad or triangle

can be represented as a two-dimensional array. Thus, the complete data structure would consist of a

representation of a top level mesh, with each top level face containing a 2D array of vertex pointers.

The pointers on the border between two top-level neighbors point pairwise to the same vertices. The

advantage of this data structure is that it has practically no pointer overhead. The disadvantage is that

even though it is possible to do adaptive subdivision on this structure, a lot of space will be wasted.

If we do want adaptive subdivision and maintain efficient storage, the alternative is to use a tree

structure; each non-leaf polygon becomes a node in the tree, containing a pointer to a block of N children,

with N being 4 for non-top-level polygons (both for triangular and quadrilateral schemes). Similarly, the

number of vertices M is 3 or 4:

struct PolygonNode {

Vertex* v[M];

PolygonNode* ptr;

...

};

To compare the two approaches to organizing the hierarchies (arrays and trees), we need to compare

the representation overhead in these two cases. In the first case (arrays) all adjacency relations are

implicit, and there is no overhead. In the second case, there is overhead in the form of pointers to children

and vertices. For a given number of subdivision stepsn the total overhead can be easily estimated. We

will consider triangular meshes; the estimates will be similar for quadrilateral meshes. For the purposes

of the estimate we can assume that the genus is 0, so the number of trianglesP, the number of edges

E and the number of verticesV in the initial mesh are related byP�E+V = 0. The total number of

triangles in a complete treeP(4n+1�1)=3. For the triangular meshVP = 3, and (1) yieldsPV = 6; thus,

the total number of triangles isP= 2V, and the total number of edges isE = 3V.

For each leaf and non-leaf node we need 4 words (1 pointer to the block of children and three

pointers to vertices). The total cost of the structure is 4P(4n+1�1)=3= 8V(4n+1�1)=3 words, which is

approximately 11�V �4n.

To estimate when a tree is spatially more efficient than an array, we determine how many nodes have

to be removed from the tree for the gain from the adaptivity to exceed the loss from the overhead. For
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this, we need a reasonable estimate of the size of the useful data stored in the structures – otherwise, the

array will always win.

The number of vertices inserted on subdivision stepi is approximately 3�4i�1V. Assuming that for

each vertex we store all control points on all subdivision levels, and each control point takes 3 words, we

get the following estimate for the control point storage

3V
�
(n+1)+3n+3�42(n�1)+ : : :4n

�
=V

�
4n+1

�1
�

The total number of vertices isV �4n; assuming that at each vertex we store the normal vector, the

limit position vector (3 words), color (3 words) and some extra information, such as subdivision tags (1

word), we get 7V4n more words. The total useful storage is approximately 11�V �4n, the same as the

cost of the structure.

Thus for our example the tree introduces a 100% overhead, which implies that it has an advantage

over the array if at least half of the nodes are absent. Wether this will happen, depends on the criterion

for adaptation. If the criterion attempts to measure how well the surface approximates the geometry,

and if only 3 or 4 subdivision levels are used, we have observed that fewer than 50% of the nodes were

removed. However, if different criteria are used (e.g. distance to the camera) the situation is likely to

be radically different. If more subdivision levels are used it is likely that almost all nodes on the bottom

level are absent.
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Abstract
We describe a multiresolution representation for meshes based on
subdivision, which is a natural extension of the existing patch-based
surface representations. Combining subdivision and the smooth-
ing algorithms of Taubin [26] allows us to construct a set of algo-
rithms for interactive multiresolution editing of complex hierarchi-
cal meshes of arbitrary topology. The simplicity of the underly-
ing algorithms for refinement and coarsification enables us to make
them local and adaptive, thereby considerably improving their effi-
ciency. We have built a scalable interactive multiresolution editing
system based on such algorithms.

1 Introduction
Applications such as special effects and animation require creation
and manipulation of complex geometric models of arbitrary topol-
ogy. Like real world geometry, these models often carry detail at
many scales (cf. Fig. 1). The model might be constructed from
scratch (ab initio design) in an interactive modeling environment or
be scanned-in either by hand or with automatic digitizing methods.
The latter is a common source of data particularly in the entertain-
ment industry. When using laser range scanners, for example, indi-
vidual models are often composed of high resolution meshes with
hundreds of thousands to millions of triangles.

Manipulating such fine meshes can be difficult, especially when
they are to be edited or animated. Interactivity, which is crucial in
these cases, is challenging to achieve. Even without accounting for
any computation on the mesh itself, available rendering resources
alone, may not be able to cope with the sheer size of the data. Pos-
sible approaches include mesh optimization [15, 13] to reduce the
size of the meshes.

Aside from considerations of economy, the choice of represen-
tation is also guided by the need for multiresolution editing se-
mantics. The representation of the mesh needs to provide con-
trol at a large scale, so that one can change the mesh in a broad,
smooth manner, for example. Additionally designers will typi-
cally also want control over the minute features of the model (cf.
Fig. 1). Smoother approximations can be built through the use of
patches [14], though at the cost of loosing the high frequency de-
tails. Such detail can be reintroduced by combining patches with
displacement maps [17]. However, this is difficult to manage in the

�dzorin@gg.caltech.edu
yps@cs.caltech.edu
zwim@bell-labs.com

arbitrary topology setting and across a continuous range of scales
and hardware resources.

Figure 1: Before the Armadillo started working out he was flabby,
complete with a double chin. Now he exercises regularly. The orig-
inal is on the right (courtesy Venkat Krischnamurthy). The edited
version on the left illustrates large scale edits, such as his belly, and
smaller scale edits such as his double chin; all edits were performed
at about 5 frames per second on an Indigo R10000 Solid Impact.

For reasons of efficiency the algorithms should be highly adap-
tive and dynamically adjust to available resources. Our goal is to
have a single, simple, uniform representation with scalable algo-
rithms. The system should be capable of delivering multiple frames
per second update rates even on small workstations taking advan-
tage of lower resolution representations.

In this paper we present a system which possesses these proper-
ties

� Multiresolution control: Both broad and general handles, as
well as small knobs to tweak minute detail are available.

� Speed/fidelity tradeoff: All algorithms dynamically adapt to
available resources to maintain interactivity.

� Simplicity/uniformity: A single primitive, triangular mesh, is
used to represent the surface across all levels of resolution.

Our system is inspired by a number of earlier approaches. We
mention multiresolution editing [11, 9, 12], arbitrary topology sub-
division [6, 2, 19, 7, 28, 16], wavelet representations [21, 24, 8, 3],
and mesh simplification [13, 17]. Independently an approach simi-
lar to ours was developed by Pulli and Lounsbery [23].

It should be noted that our methods rely on the finest level mesh
having subdivision connectivity. This requires a remeshing step be-
fore external high resolution geometry can be imported into the ed-
itor. Eck et al. [8] have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method
that relies on a user's expertise was developed by Krishnamurthy
and Levoy [17].

1.1 Earlier Editing Approaches
H-splines were presented in pioneering work on hierarchical
editing by Forsey and Bartels [11]. Briefly, H-splines are obtained
by adding finer resolution B-splines onto an existing coarser resolu-
tion B-spline patch relative to the coordinate frame induced by the



coarser patch. Repeating this process, one can build very compli-
cated shapes which are entirely parameterized over the unit square.
Forsey and Bartels observed that the hierarchy induced coordinate
frame for the offsets is essential to achieve correct editing seman-
tics.

H-splines provide a uniform framework for representing both the
coarse and fine level details. Note however, that as more detail
is added to such a model the internal control mesh data structures
more and more resemble a fine polyhedral mesh.

While their original implementation allowed only for regular
topologies their approach could be extended to the general setting
by using surface splines or one of the spline derived general topol-
ogy subdivision schemes [18]. However, these schemes have not
yet been made to work adaptively.

Forsey and Bartels' original work focused on the ab initio de-
sign setting. There the user's help is enlisted in defining what is
meant by different levels of resolution. The user decides where to
add detail and manipulates the corresponding controls. This way
the levels of the hierarchy are hand built by a human user and the
representation of the final object is a function of its editing history.

To edit an a priori given model it is crucial to have a general pro-
cedure to define coarser levels and compute details between levels.
We refer to this as theanalysisalgorithm. An H-spline analysis al-
gorithm based on weighted least squares was introduced [10], but
is too expensive to run interactively. Note that even in an ab initio
design setting online analysis is needed, since after a long sequence
of editing steps the H-spline is likely to be overly refined and needs
to be consolidated.

Wavelets provide a framework in which to rigorously de-
fine multiresolution approximations and fast analysis algorithms.
Finkelstein and Salesin [9], for example, used B-spline wavelets
to describe multiresolution editing of curves. As in H-splines, pa-
rameterization of details with respect to a coordinate frame induced
by the coarser level approximation is required to get correct edit-
ing semantics. Gortler and Cohen [12], pointed out that wavelet
representations of detail tend to behave in undesirable ways during
editing and returned to a pure B-spline representation as used in
H-splines.

Carrying these constructions over into the arbitrary topology sur-
face framework is not straightforward. In the work by Lounsbery et
al. [21] the connection between wavelets and subdivision was used
to define the different levels of resolution. The original construc-
tions were limited to piecewise linear subdivision, but smoother
constructions are possible [24, 28].

An approach to surface modeling based on variational methods
was proposed by Welch and Witkin [27]. An attractive character-
istic of their method is flexibility in the choice of control points.
However, they use a global optimization procedure to compute the
surface which is not suitable for interactive manipulation of com-
plex surfaces.

Before we proceed to a more detailed discussion of editing we
first discuss different surface representations to motivate our choice
of synthesis (refinement) algorithm.

1.2 Surface Representations
There are many possible choices for surface representations.
Among the most popular are polynomial patches and polygons.

Patches are a powerful primitive for the construction of coarse
grain, smooth models using a small number of control parameters.
Combined with hardware support relatively fast implementations
are possible. However, when building complex models with many
patches the preservation of smoothness across patch boundaries can
be quite cumbersome and expensive. These difficulties are com-
pounded in the arbitrary topology setting when polynomial param-
eterizations cease to exist everywhere. Surface splines [4, 20, 22]
provide one way to address the arbitrary topology challenge.

As more fine level detail is needed the proliferation of control
points and patches can quickly overwhelm both the user and the
most powerful hardware. With detail at finer levels, patches become
less suited and polygonal meshes are more appropriate.

Polygonal Meshes can represent arbitrary topology and re-
solve fine detail as found in laser scanned models, for example.
Given that most hardware rendering ultimately resolves to triangle
scan-conversion even for patches, polygonal meshes are a very ba-
sic primitive. Because of sheer size, polygonal meshes are difficult
to manipulate interactively. Mesh simplification algorithms [13]
provide one possible answer. However, we need a mesh simpli-
fication approach, that is hierarchical and gives us shape handles
for smooth changes over larger regions while maintaining high fre-
quency details.

Patches and fine polygonal meshes represent two ends of a spec-
trum. Patches efficiently describe large smooth sections of a surface
but cannot model fine detail very well. Polygonal meshes are good
at describing very fine detail accurately using dense meshes, but do
not provide coarser manipulation semantics.

Subdivisionconnects and unifies these two extremes.

Figure 2: Subdivision describes a smooth surface as the limit of a
sequence of refined polyhedra. The meshes show several levels of
an adaptive Loop surface generated by our system (dataset courtesy
Hugues Hoppe, University of Washington).

Subdivision defines a smooth surface as the limit of a sequence
of successively refined polyhedral meshes (cf. Fig. 2). In the reg-
ular patch based setting, for example, this sequence can be defined
through well known knot insertion algorithms [5]. Some subdi-
vision methods generalize spline based knot insertion to irregular
topology control meshes [2, 6, 19] while other subdivision schemes
are independent of splines and include a number of interpolating
schemes [7, 28, 16].

Since subdivision provides a path from patches to meshes, it can
serve as a good foundation for the unified infrastructure that we
seek. A single representation (hierarchical polyhedral meshes) sup-
ports the patch-type semantics of manipulationandfinest level de-
tail polyhedral edits equally well. The main challenge is to make
the basic algorithms fast enough to escape the exponential time and
space growth of naive subdivision. This is the core of our contribu-
tion.

We summarize the main features of subdivision important in our
context
� Topological Generality: Vertices in a triangular (resp. quadri-

lateral) mesh need not have valence 6 (resp. 4). Generated sur-
faces are smooth everywhere, and efficient algorithms exist for
computing normals and limit positions of points on the surface.

� Multiresolution: becausethey are the limit of successiverefine-
ment, subdivision surfaces support multiresolution algorithms,
such as level-of-detail rendering, multiresolution editing, com-
pression, wavelets, and numerical multigrid.



� Simplicity: subdivision algorithms are simple: the finer mesh
is built through insertion of new vertices followed bylocal
smoothing.

� Uniformity of Representation: subdivision provides a single
representation of a surface at all resolution levels. Boundaries
and features such as creases can be resolved through modified
rules [14, 25], reducing the need for trim curves, for example.

1.3 Our Contribution
Aside from our perspective, which unifies the earlier approaches,
our major contribution—and the main challenge in this program—
is the design of highly adaptive and dynamic data structures and
algorithms, which allow the system to function across a range of
computational resources from PCs to workstations, delivering as
much interactive fidelity as possible with a given polygon render-
ing performance. Our algorithms work for the class of 1-ring sub-
division schemes (definition see below) and we demonstrate their
performance for the concrete case of Loop's subdivision scheme.

The particulars of those algorithms will be given later, but Fig. 3
already gives a preview of how the different algorithms make up
the editing system. In the next sections we first talk in more detail
about subdivision, smoothing, and multiresolution transforms.

Adaptive render

Initial mesh

Render

Select group of vertices
at level i

Adaptive analysis

Begin dragging

Create dependent
submesh

DragRelease selection

Local analysis Local synthesis

Render

Adaptive synthesis

Figure 3: The relationship between various procedures as the user
moves a set of vertices.

2 Subdivision
We begin by defining subdivision and fixing our notation. There are
2 points of view that we must distinguish. On the one hand we are
dealing with an abstractgraphand perform topological operations
on it. On the other hand we have ameshwhich is the geometric
object in 3-space. The mesh is the image of a map defined on the
graph: it associates apoint in 3D with everyvertex in the graph
(cf. Fig. 4). A triangledenotes a face in the graph or the associated
polygon in 3-space.

Initially we have a triangular graphT 0 with verticesV 0. By
recursivelyrefiningeach triangle into 4 subtriangles we can build
a sequence of finer triangulationsT i with verticesV i, i > 0
(cf. Fig. 4). The superscripti indicates thelevel of triangles and
vertices respectively. A trianglet 2 T i is a triple of indices
t = fva; vb; vcg � V i.

The vertex sets are nested asV j � V i if j < i. We define
oddvertices on leveli asM i = V i+1 n V i. V i+1 consists of two
disjoint sets:evenvertices (V i) andoddvertices (M i). We define
the levelof a vertexv as the smallesti for whichv 2 V i. The level
of v is i+ 1 if and only if v 2M i.
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Figure 4: Left: the abstract graph. Vertices and triangles are mem-
bers of setsV i andT i respectively. Their index indicates the level
of refinement when they first appeared. Right: the mapping to the
mesh and its subdivision in 3-space.

With each setV i we associate a map, i.e., for each vertexv and
each leveli we have a 3D pointsi(v) 2 R3. The setsi contains
all points on leveli, si = fsi(v) j v 2 V ig. Finally, asubdivision
schemeis a linear operatorS which takes the points from leveli to
points on thefiner level i+ 1: si+1 = S si

Assuming that the subdivision converges, we can define a limit
surface� as

� = lim
k!1

S
k
s
0
:

�(v) 2 R3 denotes the point on the limit surface associated with
vertexv.

In order to define our offsets with respect to a local frame we also
need tangent vectors and a normal. For the subdivision schemes
that we use, such vectors can be defined through the application of
linear operatorsQ andR acting onsi so thatqi(v) = (Qsi)(v)
andri(v) = (Rsi)(v) are linearly independent tangent vectors at
�(v). Together with an orientation they define a local orthonormal
frameF i(v) = (ni(v); qi(v); ri(v)). It is important to note that
in general it is not necessary to use precise normals and tangents
during editing; as long as the frame vectors are affinely related to
the positions of vertices of the mesh, we can expect intuitive editing
behavior.

1-ring at level i 1-ring at level i+1

Figure 5: An even vertex has a 1-ring of neighbors at each level of
refinement (left/middle). Odd vertices—in the middle of edges—
have 1-rings around each of the vertices at either end of their edge
(right).

Next we discuss two common subdivision schemes, both of
which belong to the class of1-ring schemes. In these schemes
points at leveli+1 depend only on 1-ring neighborhoods of points



at leveli. Let v 2 V i (v even) then the pointsi+1(v) is a function
of only thosesi(vn), vn 2 V i, which are immediate neighbors
of v (cf. Fig. 5 left/middle). Ifm 2 M i (m odd), it is the vertex
inserted when splitting an edge of the graph; we call such vertices
middle verticesof edges. In this case the pointsi+1(m) is a func-
tion of the 1-rings around the vertices at the ends of the edge (cf.
Fig. 5 right).
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Figure 6: Stencils for Loop subdivision with unnormalized weights
for even and odd vertices.

Loop is a non-interpolating subdivision scheme based on a gen-
eralization of quartic triangular box splines [19]. For a given even
vertex v 2 V i, let vk 2 V i with 1 � k � K be itsK 1-
ring neighbors. The new pointsi+1(v) is defined assi+1(v) =

(a(K)+K)�1(a(K) si(v) +
PK

k=1
si(vk)) (cf. Fig. 6),a(K) =

K(1��(K))=�(K),and�(K) = 5=8�(3+2 cos(2�=K))2=64.
For odd v the weights shown in Fig. 6 are used. Two inde-
pendent tangent vectorst1(v) and t2(v) are given bytp(v) =PK

k=1
cos(2�(k + p)=K) si(vk).

Features such as boundaries and cusps can be accommodated
through simple modifications of the stencil weights [14, 25, 29].

Butterfly is an interpolating scheme, first proposed by Dyn et
al. [7] in the topologically regular setting and recently general-
ized to arbitrary topologies [28]. Since it is interpolating we have
si(v) = �(v) for v 2 V i even. The exact expressions for odd
vertices depend on the valenceK and the reader is referred to the
original paper for the exact values [28].

For our implementation we have chosen the Loop scheme, since
more performance optimizations are possible in it. However, the
algorithms we discuss later work for any 1-ring scheme.

3 Multiresolution Transforms
So far we only discussed subdivision, i.e., how to go from coarse to
fine meshes. In this section we describe analysis which goes from
fine to coarse.

We first needsmoothing, i.e., a linear operationH to build a
smooth coarse mesh at leveli� 1 from a fine mesh at leveli:

si�1 = H si:

Several options are available here:
� Least squares:One could define analysis to be optimal in the

least squares sense,

min
si�1

ksi � S si�1k2:

The solution may have unwanted undulations and is too expen-
sive to compute interactively [10].

� Fairing: A coarse surface could be obtained as the solution to
a global variational problem. This is too expensive as well. An
alternative is presented by Taubin [26], who uses alocal non-
shrinking smoothing approach.

Because of its computational simplicity we decided to use a version
of Taubin smoothing. As before letv 2 V i haveK neighbors
vk 2 V i. Use the average,si(v) = K�1

PK

k=1
si(vk), to define

the discrete LaplacianL(v) = si(v)� si(v). On this basis Taubin
gives a Gaussian-like smoother which does not exhibit shrinkage

H := (I + �L) (I + �L):

With subdivision and smoothing in place, we can describe the
transform needed to support multiresolution editing. Recall that
for multiresolution editing we want the difference between succes-
sive levels expressed with respect to a frame induced by the coarser
level, i.e., the offsets are relative to the smoother level.

With each vertexv and each leveli > 0 we associate adetail
vector,di(v) 2 R3. The setdi contains all detail vectors on leveli,
di = fdi(v) j v 2 V ig. As indicated in Fig. 7 the detail vectors
are defined as

di = (F i)t (si � S si�1) = (F i)t (I � S H) si;

i.e., the detail vectors at leveli record how much the points at level
i differ from the result of subdividing the points at leveli� 1. This
difference is then represented with respect to the local frameF i to
obtain coordinate independence.

Since detail vectors are sampled on the fine level meshV i, this
transformation yields an overrepresentation in the spirit of the Burt-
Adelson Laplacian pyramid [1]. The only difference is that the
smoothing filters (Taubin) are not the dual of the subdivision filter
(Loop). Theoretically it would be possible to subsample the detail
vectors and only record a detail per odd vertex ofM i�1. This is
what happens in the wavelet transform. However, subsampling the
details severely restricts the family of smoothing operators that can
be used.

t
(F  )
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SubdivisionSmoothing
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Figure 7: Wiring diagram of the multiresolution transform.

4 Algorithms and Implementation
Before we describe the algorithms in detail let us recall the overall
structure of the mesh editor (cf. Fig 3). The analysis stage builds
a succession of coarser approximations to the surface, each with
fewer control parameters. Details or offsets between successive
levels are also computed. In general, the coarser approximations
are not visible; only their control points are rendered. These con-
trol points give rise to avirtual surfacewith respect to which the
remaining details are given. Figure 8 shows wireframe representa-
tions of virtual surfaces corresponding to control points on levels 0,
1, and 2.

When an edit level is selected, the surface is represented inter-
nally as an approximation at this level, plus the set of all finer level
details. The user can freely manipulate degrees of freedom at the
edit level, while the finer level details remain unchanged relative
to the coarser level. Meanwhile, the system will use the synthesis
algorithm to render the modified edit level with all the finer details
added in. In between edits, analysis enforces consistency on the
internal representation of coarser levels and details (cf. Fig. 9).

The basic algorithmsAnalysis and Synthesis are very
simple and we begin with their description.

Let i = 0 be the coarsest andi = n the finest level withN
vertices. For each vertexv and all levelsi finer than the first level



Figure 8: Wireframe renderings of virtual surfaces representing the
first three levels of control points.

Figure 9: Analysis propagates the changes on finer levels to coarser
levels, keeping the magnitude of details under control. Left: The
initial mesh. Center: A simple edit on level 3. Right: The effect of
the edit on level 2. A significant part of the change was absorbed
by higher level details.

where the vertexv appears, there are storage locationsv:s[i] and
v:d[i], each with 3 floats. With this the total storage adds to2 � 3 �
(4N=3) floats. In general,v:s[i] holdssi(v) andv:d[i] holdsdi(v);
temporarily, these locations can be used to store other quantities.
The local frame is computed by callingv:F (i).

Global analysis and synthesis are performed level wise:

Analysis

for i = n downto 1
Analysis( i)

Synthesis

for i = 1 to n
Synthesis( i)

With the action at each level described by

Analysis( i)

8v 2 V i�1 : v:s[i� 1] := smooth (v; i)
8v 2 V i : v:d[i] := v:F (i)t � (v:s[i]� subd (v; i� 1))

and

Synthesis( i)

8v 2 V i : s:v[i] := v:F (i) � v:d[i] + subd (v; i� 1)

Analysis computes points on the coarser leveli� 1 using smooth-
ing (smooth ), subdividessi�1 (subd ), and computes the detail
vectorsdi (cf. Fig. 7). Synthesis reconstructs leveli by subdividing
level i� 1 and adding the details.

So far we have assumed that all levels are uniformly refined, i.e.,
all neighbors at all levels exist. Since time and storage costs grow
exponentially with the number of levels, this approach is unsuitable
for an interactive implementation. In the next sections we explain
how these basic algorithms can be made memory and time efficient.

Adaptiveand local versions of these generic algorithms (cf.
Fig. 3 for an overview of their use) are the key to these savings.
The underlying idea is to use lazy evaluation and pruning based on

thresholds. Three thresholds control this pruning:�A for adaptive
analysis,�S for adaptive synthesis, and�R for adaptive rendering.
To make lazy evaluation fast enough several caches are maintained
explicitly and the order of computations is carefully staged to avoid
recomputation.

4.1 Adaptive Analysis
The generic version of analysis traverses entire levels of the hierar-
chy starting at some finest level. Recall that the purpose of analysis
is to compute coarser approximations and detail offsets. In many
regions of a mesh, for example, if it is flat, no significant details
will be found.Adaptive analysisavoids the storage cost associated
with detail vectors below some threshold�A by observing that small
detail vectors imply that the finer level almost coincides with the
subdivided coarser level. The storage savings are realized through
tree pruning.

For this purpose we need an integerv:�nest :=
maxifkv:d[i]k � �Ag. Initially v:�nest = n and the fol-
lowing precondition holds before callingAnalysis(i) :
� The surface is uniformly subdivided to leveli,
� 8v 2 V i : v:s[i] = si(v),

� 8v 2 V i j i < j � v:�nest : v:d[j] = dj(v).
Now Analysis(i) becomes:

Analysis( i)

8v 2 V i�1 : v:s[i� 1] := smooth (v; i)
8v 2 V i :
v:d[i] := v:s[i]� subd (v; i� 1)
if v:�nest > i or kv:d[i]k � �A then
v:d[i] := v:F (i)t � v:d[i]

else
v:�nest := i� 1

Prune( i � 1)

Triangles that do not contain details above the threshold are unre-
fined:

Prune( i)

8t 2 T i : If all middle verticesm havem:�nest = i� 1
and all children are leaves, delete children.

This results in an adaptive mesh structure for the surface with
v:d[i] = di(v) for all v 2 V i, i � v:�nest. Note that the re-
sulting mesh is not restricted, i.e., two triangles that share a vertex
can differ in more than one level. Initial analysis has to be followed
by a synthesis pass which enforces restriction.

4.2 Adaptive Synthesis
The main purpose of the general synthesis algorithm is to rebuild
the finest level of a mesh from its hierarchical representation. Just
as in the case of analysis we can get savings from noticing that in
flat regions, for example, little is gained from synthesis and one
might as well save the time and storage associated with synthe-
sis. This is the basic idea behindadaptive synthesis, which has two
main purposes. First, ensure the mesh is restricted on each level,
(cf. Fig. 10). Second, refine triangles and recompute points until
the mesh has reached a certain measure of local flatness compared
against the threshold�S.

The algorithm recomputes the pointssi(v) starting from the
coarsest level. Not all neighbors needed in the subdivision stencil
of a given point necessarily exist. Consequently adaptive synthesis
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Figure 10: A restricted mesh: the center triangle is inT i and its
vertices inV i. To subdivide it we need the 1-rings indicated by the
circular arrows. If these are present the graph is restricted and we
can computesi+1 for all vertices and middle vertices of the center
triangle.

lazily creates all triangles needed for subdivision by temporarily re-
fining their parents, then computes subdivision, and finally deletes
the newly created triangles unless they are needed to satisfy the
restriction criterion. The following precondition holds before en-
teringAdaptiveSynthesis :

� 8t 2 T j j 0 � j � i : t is restricted

� 8v 2 V j j 0 � j � v:depth : v:s[j] = sj(v)

wherev:depth := maxifs
i(v)has been recomputedg.

AdaptiveSynthesis

8v 2 V 0 : v:depth := 0
for i = 0 to n � 1
temptri := fg
8t 2 T i :
current := fg
Refine (t; i; true )

8t 2 temptri : if not t:restrict then
Delete children oft

The list temptri serves as a cache holding triangles from levels
j < i which are temporarily refined. A triangle is appended to the
list if it was refined to compute a value at a vertex. After processing
level i these triangles are unrefined unless theirt:restrict flag is
set, indicating that a temporarily created triangle was later found
to be needed permanently to ensure restriction. Since triangles are
appended totemptri, parents precede children. Deallocating the
list tail first guarantees that all unnecessary triangles are erased.

The functionRefine (t; i;dir ) (see below) creates children of
t 2 T i and computes the valuesSsi(v) for the vertices and mid-
dle vertices oft. The results are stored inv:s[i+ 1]. The boolean
argumentdir indicates whether the call was made directly or recur-
sively.

Refine (t; i;dir)

if t:leaf then Create children fort
8v 2 t : if v:depth < i+ 1 then

GetRing (v; i)
Update (v; i)
8m 2 N(v; i+ 1; 1) :

Update (m; i)
if m:�nest � i+ 1 then
forced := true

if dir and Flat (t) < �S and not forced then
Delete children oft

else
8t 2 current : t:restrict := true

Update (v; i)
v:s[i+ 1] := subd (v; i)
v:depth := i+ 1
if v:�nest � i+ 1 then
v:s[i+ 1] += v:F (i+ 1) � v:d[i+ 1]

The conditionv:depth = i+ 1 indicates whether an earlier call to
Refine already recomputedsi+1(v). If not, call GetRing (v; i)
andUpdate (v; i) to do so. In case a detail vector lives atv at level
i (v:�nest � i + 1) add it in. Next computesi+1(m) for mid-
dle vertices on leveli + 1 aroundv (m 2 N(v; i + 1; 1), where
N(v; i; l) is the l-ring neighborhood of vertexv at level i). If m
has to be calculated, computesubd (m; i) and add in the detail if it
exists and record this fact in the flagforced which will prevent unre-
finement later. At this point, allsi+1 have been recomputed for the
vertices and middle vertices oft. Unrefinet and delete its children
if Refine was called directly, the triangle is sufficiently flat, and
none of the middle vertices contain details (i.e.,forced = false ).
The listcurrent functions as a cache holding triangles from level
i � 1 which are temporarily refined to build a 1-ring around the
vertices oft. If after processing all vertices and middle vertices of
t it is decided thatt will remain refined, none of the coarser-level
triangles fromcurrent can be unrefined without violating restric-
tion. Thust:restrict is set for all of them. The functionFlat (t)
measures how close to planar the corners and edge middle vertices
of t are.

Finally, GetRing (v; i) ensures that a complete ring of triangles
on leveli adjacent to the vertexv exists. Because triangles on level
i are restricted triangles all triangles on leveli � 1 that containv
exist (precondition). At least one of them is refined, since other-
wise there would be no reason to callGetRing (v; i). All other
triangles could be leaves or temporarily refined. Any triangle that
was already temporarily refined may become permanently refined
to enforce restriction. Record such candidates in thecurrent cache
for fast access later.

GetRing (v; i)

8t 2 T i�1 with v 2 t :
if t:leaf then

Refine (t; i� 1; false ); temptri:append(t)
t:restrict := false ; t:temp := true

if t:temp then
current:append(t)



4.3 Local Synthesis
Even though the above algorithms are adaptive, they are still run ev-
erywhere. During an edit, however, not all of the surface changes.
The most significant economy can be gained from performing anal-
ysis and synthesis only over submeshes which require it.

Assume the user edits levell and modifies the pointssl(v) for
v 2 V �l � V l. This invalidates coarser level valuessi anddi for
certain subsetsV �i � V i, i � l, and finer level pointssi for subsets
V �i � V i for i > l. Finer level detail vectorsdi for i > l remain
correct by definition. Recomputing the coarser levels is done by
local incremental analysisdescribed in Section 4.4, recomputing
the finer level is done bylocal synthesisdescribed in this section.

The set of verticesV �i which are affected depends on the support
of the subdivision scheme. If the support fits into anm-ring around
the computed vertex, then all modified vertices on leveli + 1 can
be found recursively as

V �i+1 =
[

v2V �i

N(v; i+ 1;m):

We assume thatm = 2 (Loop-like schemes) orm = 3 (Butterfly
type schemes). We define thesubtriangulationT �i to be the subset
of triangles ofT i with vertices inV �i.

LocalSynthesis is only slightly modified from
AdaptiveSynthesis : iteration starts at levell and iter-
ates only over the submeshT �i.

4.4 Local Incremental Analysis
After an edit on levell local incremental analysiswill recompute
si(v) anddi(v) locally for coarser level vertices (i � l) which are
affected by the edit. As in the previous section, we assume that
the user edited a set of verticesv on levell and callV �i the set of
vertices affected on leveli. For a given vertexv 2 V �i we define
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Figure 11: Sets of even vertices affected through smoothing by ei-
ther an evenv or oddm vertex.

Ri�1(v) � V i�1 to be the set of vertices on leveli � 1 affected
by v through the smoothing operatorH. The setsV �i can now be
defined recursively starting from leveli = l to i = 0:

V �i�1 =
[

v2V �i

Ri�1(v):

The setRi�1(v) depends on the size of the smoothing stencil and
whetherv is even or odd (cf. Fig. 11). If the smoothing filter
is 1-ring, e.g., Gaussian, thenRi�1(v) = fvg if v is even and
Ri�1(m) = fve1; ve2g if m is odd. If the smoothing filter is 2-
ring, e.g., Taubin, thenRi�1(v) = fvg [ fvk j 1 � k � Kg
if v is even andRi�1(m) = fve1; ve2; vf1; vf2g if v is odd. Be-
cause of restriction, these vertices always exist. Forv 2 V i and
v0 2 Ri�1(v) we letc(v; v0) be the coefficient in the analysis sten-
cil. Thus

(H si)(v0) =
X

vjv02Ri�1(v)

c(v; v0)si(v):

This could be implemented by running over thev0 and each time
computing the above sum. Instead we use the dual implementation,
iterate over allv, accumulating (+=) the right amount tosi(v0) for
v0 2 Ri�1(v). In case of a 2-ring Taubin smoother the coefficients
are given by

c(v; v) = (1� �) (1� �) + ��=6

c(v; vk) = � �=6K

c(m;ve1) = ((1� �)�+ (1� �)� + ��=3)=K

c(m;vf1) = � �=3K;

where for eachc(v; v0), K is the outdegree ofv0.
The algorithm first copies the old pointssi(v) for v 2 V �i and

i � l into the storage location for the detail. If then propagates
the incremental changes of the modified points from levell to the
coarser levels and adds them to the old points (saved in the detail
locations) to find the new points. Then it recomputes the detail
vectors that depend on the modified points.

We assume that before the edit, the old pointssl(v) for v 2

V �l were saved in the detail locations. The algorithm starts out by
building V �i�1 and saving the pointssi�1(v) for v 2 V �i�1 in
the detail locations. Then the changes resulting from the edit are
propagated to leveli � 1. Finally S si�1 is computed and used to
update the detail vectors on leveli.

LocalAnalysis( i)

8v 2 V �i : 8v0 2 Ri�1(v) :
V �i�1 [= fv0g
v0:d[i� 1] := v0:s[i� 1]

8v 2 V �i : 8v0 2 Ri�1(v) :
v0:s[i� 1] += c(v; v0) � (v:s[i]� v:d[i])

8v 2 V �i�1 :
v:d[i] = v:F (i)t � (v:s[i]� subd (v; i� 1))
8m 2 N(v; i; 1) :
m:d[i] = m:F (i)t � (m:s[i]� subd (m;i� 1))

Note that the odd points are actually computed twice. For the Loop
scheme this is less expensive than trying to compute a predicate to
avoid this. For Butterfly type schemes this is not true and one can
avoid double computation by imposing an ordering on the triangles.
The top level code is straightforward:

LocalAnalysis

8v 2 V �l : v:d[l] := v:s[l]
for i := l downto 0

LocalAnalysis( i)

It is difficult to make incremental local analysis adaptive, as it is
formulated purely in terms of vertices. It is, however, possible to
adaptively clean up the triangles affected by the edit and (un)refine
them if needed.

4.5 Adaptive Rendering
Theadaptive renderingalgorithm decides which triangles will be
drawn depending on the rendering performance available and level
of detail needed.

The algorithm uses a flagt:draw which is initialized tofalse ,
but set totrue as soon as the area corresponding tot is drawn.
This can happen either whent itself gets drawn, or when a set of
its descendents, which covert, is drawn. The top level algorithm
loops through the triangles starting from the leveln� 1. A triangle



is always responsible for drawing its children, never itself, unless it
is a coarsest-level triangle.

AdaptiveRender

for i = n� 1 downto 0
8t 2 T

i : if not t:leaf then
Render (t)

8t 2 T
0 : if not t:draw then

displaylist:append(t)

T-vertex

Figure 12: Adaptive rendering: On the left 6 triangles from leveli,
one has a covered child from leveli + 1, and one has a T-vertex.
On the right the result from applyingRender to all six.

TheRender (t) routine decides whether the children oft have to be
drawn or not (cf. Fig.12). It uses a functionedist (m)which mea-
sures the distance between the point corresponding to the edge's
middle vertexm, and the edge itself. In the when case any of the
children oft are already drawn or any of its middle vertices are far
enough from the plane of the triangle, the routine will draw the rest
of the children and set the draw flag for all their vertices andt. It
also might be necessary to draw a triangle if some of its middle
vertices are drawn because the triangle on the other side decided
to draw its children. To avoid cracks, the routinecut (t) will cut
t into 2, 3, or 4, triangles depending on how many middle vertices
are drawn.

Render (t)

if (9 c 2 t:child j c:draw = true
or 9m 2 t:mid vertex j edist (m) > �D) then
8c 2 t:child :

if not c:draw then
displaylist:append(c)
8v 2 c : v:draw := true

t:draw := true
else if 9m 2 t:mid vertex j m:draw = true
8t0 2 cut (t) : displaylist:append(t0)
t:draw := true

4.6 Data Structures and Code
The main data structure in our implementation is a forest of trian-
gular quadtrees. Neighborhood relations within a single quadtree
can be resolved in the standard way by ascending the tree to the
least common parent when attempting to find the neighbor across a
given edge. Neighbor relations between adjacent trees are resolved
explicitly at the level of a collection of roots, i.e., triangles of a
coarsest level graph. This structure also maintains an explicit rep-
resentation of the boundary (if any). Submeshes rooted at any level
can be created on the fly by assembling a new graph with some set
of triangles as roots of their child quadtrees. It is here that the ex-
plicit representation of the boundary comes in, since the actual trees

are never copied, and a boundary is needed to delineate the actual
submesh.

The algorithms we have described above make heavy use of
container classes. Efficient support for sets is essential for a fast
implementation and we have used the C++ Standard Template Li-
brary. The mesh editor was implemented using OpenInventor and
OpenGL and currently runs on both SGI and Intel PentiumPro
workstations.

Figure 13: On the left are two meshes which are uniformly sub-
divided and consist of 11k (upper) and 9k (lower) triangles. On
the right another pair of meshes mesh with approximately the same
numbers of triangles. Upper and lower pairs of meshes are gen-
erated from the same original data but the right meshes were op-
timized through suitable choice of�S. See the color plates for a
comparison between the two under shading.

5 Results
In this section we show some example images to demonstrate vari-
ous features of our system and give performance measures.

Figure 13 shows two triangle mesh approximations of the Ar-
madillo head and leg. Approximately the same number of triangles
are used for both adaptive and uniform meshes. The meshes on the
left were rendered uniformly, the meshes on the right were rendered
adaptively. (See also color plate 15.)

Locally changing threshold parameters can be used to resolve an
area of interest particularly well, while leaving the rest of the mesh
at a coarse level. An example of this “lens” effect is demonstrated
in Figure 14 around the right eye of the Mannequin head. (See also
color plate 16.)

We have measured the performance of our code on two plat-
forms: an Indigo R10000@175MHz with Solid Impact graphics,
and a PentiumPro@200MHz with an Intergraph Intense 3D board.



We used the Armadillo head as a test case. It has approximately
172000 triangles on 6 levels of subdivision. Display list creation
took 2 seconds on the SGI and 3 seconds on the PC for the full
model. We adjusted�R so that both machines rendered models at
5 frames per second. In the case of the SGI approximately 113,000
triangles were rendered at that rate. On the PC we achieved 5
frames per second when the rendering threshold had been raised
enough so that an approximation consisting of 35000 polygons was
used.

The other important performance number is the time it takes to
recompute and re-render the region of the mesh which is changing
as the user moves a set of control points. This submesh is rendered
in immediate mode, while the rest of the surface continues to be
rendered as a display list. Grabbing a submesh of 20-30 faces (a
typical case) at level 0 added 250 mS of time per redraw, at level 1
it added 110 mS and at level 2 it added 30 mS in case of the SGI.
The corresponding timings for the PC were 500 mS, 200 mS and
60 mS respectively.

Figure 14: It is easy to change�S locally. Here a “lens” was applied
to the right eye of the Mannequin head with decreasing�S to force
very fine resolution of the mesh around the eye.

6 Conclusion and Future Research
We have built a scalable system for interactive multiresolution edit-
ing of arbitrary topology meshes. The user can either start from
scratch or from a given fine detail meshwith subdivision connec-
tivity. We use smooth subdivision combined with details at each
level as a uniform surface representation across scales and argue
that this forms a natural connection between fine polygonal meshes
and patches. Interactivity is obtained by building both local and
adaptive variants of the basic analysis, synthesis, and rendering al-
gorithms, which rely on fast lazy evaluation and tree pruning. The
system allows interactive manipulation of meshes according to the
polygon performance of the workstation or PC used.

There are several avenues for future research:
� Multiresolution transforms readily connect with compression.

We want to be able to store the models in a compressed format
and use progressive transmission.

� Features such as creases, corners, and tension controls can easily
be added into our system and expand the users' editing toolbox.

� Presently no real time fairing techniques, which lead to more
intuitive coarse levels, exist.

� In our system coarse level edits can only be made by dragging
coarse level vertices. Which vertices live on coarse levels is
currently fixed because of subdivision connectivity. Ideally the
user should be able to dynamically adjust this to make coarse
level edits centered at arbitrary locations.

� The system allows topological edits on the coarsest level. Algo-
rithms that allow topological edits on all levels are needed.

� An important area of research relevant for this work is genera-
tion of meshes with subdivision connectivity from scanned data
or from existing models in other representations.
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   Interpolatory Subdivison for Quad-Meshes

A simple interpolatory subdivision scheme for quadrilateral nets
with arbitrary topology is presented which generates C1 surfaces
in the limit. The scheme satisfies important requirements for prac-
tical applications in computer graphics and engineering. These re-
quirements include the necessity to generate smooth surfaces with
local creases and cusps. The scheme can be applied to open nets
in which case it generates boundary curves that allow a C0-join of
several subdivision patches. Due to the local support of the scheme,
adaptive refinement strategies can be applied. We present a simple
device to preserve the consistency of such adaptively refined nets.

The original paper has been published in:

L. Kobbelt
Interpolatory Subdivision on Open Quadri-
lateral Nets with Arbitrary Topology,
Computer Graphics Forum 15 (1996), Eu-
rographics ’96 issue, pp. 409–420

3.1 Introduction

The problem we address in this paper is the generation of smooth
interpolating surfaces of arbitrary topological type in the context of
practical applications. Such applications range from the design of
free-form surfaces and scattered data interpolation to high quality
rendering and mesh generation, e.g., in finite element analysis. The
standard set-up for this problem is usually given in a form equiva-
lent to the following:

A net N= (V;F) representing the input is to be mapped to are-
fined net N0 = (V 0;F 0) which is required to be a sufficiently close
approximation of a smooth surface. In this notation the setsV and
V 0 contain thedata pointspi;p0i 2 IR3 of the input or output respec-
tively. The setsF andF 0 represent thetopological informationof
the nets. The elements ofF andF 0 are finite sequences of points
sk �V or s0k �V 0 each of which enumerates the corners of one not
necessarily planarfaceof a net.

If all elementssk 2 F have length four thenN is called aquadri-
lateral net. To achieve interpolation of the given data,V � V 0 is
required. Due to the geometric background of the problem we as-
sumeN to befeasible, i.e., at each pointpi there exists a planeTi
such that the projection of the faces meeting atpi ontoTi is injec-
tive. A net isclosedif every edge is part of exactly two faces. In
opennets, boundary edges occur which belong to one face only.

There are two major ‘schools’ for computingN0 from a givenN.
The first or classic way of doing this is to explicitely find a collec-
tion of local (piecewise polynomial) parametrizations (patches) cor-
responding to the faces ofN. If these patches smoothly join at com-
mon boundaries they form an overall smooth patch complex. The
netN0 is then obtained by sampling each patch on a sufficiently fine
grid. The most important step in this approach is to find smoothly
joining patches which represent a surface of arbitrary topology. A
lot of work has been done in this field, e.g., [16], [15], [17] . . .

Another way to generateN0 is to define arefinement operator
S which directly maps nets to nets without constructing an explicit
parametrization of a surface. Such an operator performs both, a
topological refinement of the net by splitting the faces and age-
ometric refinement by determining the position of the new points
in order to reduce the angles between adjacent faces (smoothing).
By iteratively applyingS one produces a sequence of netsNi with
N0 = N andNi+1 = S Ni . If S has certain properties then the se-
quenceS i N converges to a smooth limiting surface and we can set
N0 := Sk N for some sufficiently largek. Algorithms of this kind
are proposed in [2], [4], [14], [7], [10], and [11]. All these schemes

are either non-interpolatory or defined ontriangular nets which is
not appropriate for some engineering applications.

The scheme which we present here is astationary refinement
scheme[9], [3], i.e., the rules to compute the positions of the new
points use simple affine combinations of points from the unrefined
net. The termstationaryimplies that these rules are the same on
every refinement level. They are derived from a modification of the
well-known four-point scheme [6]. This scheme refines polgons by
S : (pi) 7! (p0i) with

p02i := pi

p02i+1 :=
8+ω

16
(pi +pi+1)� ω

16
(pi�1+pi+2)

(11)

where 0< ω < 2(
p

5�1) is sufficient to ensure convergence to a
smooth limiting curve [8]. The standard value isω = 1 for which
the scheme has cubic precision. In order to minimize the number of
special cases, we restrict ourselves to the refinement of quadrilateral
nets. The faces are split as shown in Fig. 10 and hence, to complete
the definition of the operatorS , we need rules for new points corre-
sponding to edges and/or faces of the unrefined net. To generalize
the algorithm for interpolating arbitrary nets, a precomputing step
is needed (cf. Sect. 3.2).

Figure 10: The refinement operator splits one quadrilateral face into
four. The new vertices can be associated with the edges and faces
of the unrefined net. All new vertices have valency four.

The major advantages that this scheme offers, are that it has the
interpolation propertyandworks on quadrilateral nets. This seems
to be most appropriate for engineering applications (compared to
non-interpolatory schemes or triangular nets), e.g., in finite element
analysis since quadrilateral (bilinear) elements are less stiff than tri-
angular (linear) elements [19]. The scheme provides the maximum
flexibility since it can be applied toopennets witharbitrary topol-
ogy. It produces smooth surfaces and yields the possibility to gener-
ate local creases and cusps. Since the support of the scheme is local,
adaptive refinement strategies can be applied. We present a tech-
nique to keep adaptively refined netsC0-consistent (cf. Sect. 3.6)
and shortly describe an appropriate data structure for the implemen-
tation of the algorithm.

3.2 Precomputing: Conversion to Quadrilateral
Nets

It is a fairly simple task to convert a given arbitrary netÑ into a
quadrilateral netN. One straightforward solution is to apply one
singleCatmull-Clark-typesplit C [2] to every face (cf. Fig. 11).
This split operation divides everyn-sided face inton quadrilaterals
and needs the position of newly computedface-pointsand edge-
points to be well-defined. The vertices of̃N remain unchanged.



The number of faces in the modified netN equals the sum of the
lengths of all sequencessk 2 eF .

The number of faces in the quadrilateralized netN can be re-
duced by half if the netÑ is closed, by not applyingC but
rather its (topological) square root

p
C , i.e., a refinement operator

whose double application is equivalent to one application ofC (cf.
Fig. 11). For this split, only newface-pointshave to be computed.
For open nets, the

p
C -split modifies the boundary polygon in a

non-intuitive way. Hence, one would have to handle several special
cases with boundary triangles if one is interested in a well-behaved
boundary curve of the resulting surface.

3.3 Subdivision Rules for Closed Nets with Arbi-
trary Topology

The topological structure of any quadrilateral net after several ap-
plications of a uniform refinement operator consists of large regu-
lar regions with isolated singularities which correspond to the non-
regular vertices of the initial net (cf. Fig. 12). Bytopological reg-
ularity we mean a tensor product structure with four faces meeting
at every vertex. The natural way to define refinement operators for
quadrilateral nets is therefore to modify a tensor product scheme
such that special rules for the vicinity of non-regular vertices are
found. In this paper we will use the interpolatory four-point scheme
[6] in its tensor product version as the basis for the modification.

Figure 12: Isolated singularities in the refined net.

Consider a portion of a regular quadrilateral net with vertices
pi; j . The vertices can be indexed locally such that each face is rep-
resented by a sequencesi; j = fpi; j ;pi+1; j ;pi+1; j+1;pi; j+1g. The
points p0i; j of the refined net can be classified into three disjunct
groups. Thevertex-pointsp02i;2 j := pi; j are fixed due to the interpo-
lation requirement. Theedge-pointsp02i+1;2 j andp02 j;2i+1 are com-
puted by applying the four-point rule (11) in the corresponding grid
direction, e.g.,

p02i+1;2 j :=
8+ω

16
(pi; j +pi+1; j )� ω

16
(pi�1; j +pi+2; j ): (12)

Finally, the face-points p02i+1;2 j+1 are computed by apply-
ing the four-point rule to either four consecutive edge-points
p02i+1;2 j�2; : : : ;p

0
2i+1;2 j+4 or to p02i�2;2 j+1; : : : ;p

0
2i+4;2 j+1. The re-

sulting weight coefficient masks for these rules are shown in
Fig. 13. The symmetry of theface-mask proves the equivalence
of both alternatives to compute the face-points. From the differen-
tiability of the limiting curves generated by the four-point scheme,
the smoothness of the limiting surfaces generated by infinitely re-
fining a regular quadrilateral net, follows immediately. This is a
simple tensor product argument.

For the refinement of irregular quadrilateral nets, i.e., nets which
include some vertices where other than four faces meet, a consistent
indexing which allows the application of the above rules is impos-
sible. If other than four edges meet at one vertex, it is not clear how
to choose the four points to which one can apply the above rule
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Figure 13: Subdivision masks for regular regions withα =� ω
16,

β = 8+ω
16 andσ = α2, µ= αβ, ν = β2.

for computing the edge-points. However, once all the edge-points
are known, there always are exactly two possibilities to choose four
consecutive edge-points when computing a certain face-point since
the net is quadrilateral. It is an important property of tensor product
schemes on regular nets that both possibilities lead to the same re-
sult (commuting univariant refinement operators). In order to mod-
ify the tensor product scheme as little as possible while generalizing
it to be applicable for nets with arbitrary topology, we want to con-
serve this property. Hence, we will propose a subdivision scheme
which only needsoneadditional rule: the one for computing edge-
points corresponding to edges adjacent to a non-regular vertex. All
other edge-points and all face-points are computed by the applica-
tion of the original four-point scheme and the additional rule will be
such that both possibilities for the face-points yield the same result.

We use the notation of Fig. 14 for points in the neighborhood of
a singular vertexp. The indexi is taken to bemodulo nwheren is
the number of edges meeting atp. Applying the original four-point
rule wherever possible leaves only the pointsxi andyi undefined.
If we require that both possible ways to computeyi by applying the
standard four-point rule to succeeding edge-points lead to the same
result, we get a dependence relatingxi+1 to xi

xi+1 = xi +
w
8
(hi�hi+1)+

w2

8(4+w)
(k i�2�k i+2)+

w
8
(l i+2� l i�1)+

4+w
8

(l i+1� l i);

which can be considered as compatibility condition. In the regular
case, this condition is satisfied for any tensor product rule. The
compatibility uniquely defines the cyclic differences4xi = xi+1�
xi which sum to zero (telescoping sums). Hence, there always exists
a solution and even one degree of freedom is left for the definition
of thexi .
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Figure 14: Notation for vertices around a singular vertexP.

The pointsxi will be computed by rotated versions of the same
subdivision mask. Thus, the vicinity ofp will become more and
more symmetric while refinement proceeds. Hence, the distance
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Figure 11: Transformation of an arbitrary netÑ into a quadrilateral netN by one Catmull-Clark-splitC (middle) or by its square root (right,
for closed nets).

betweenp and the center of gravity of thexi will be a good mea-
sure for the roughness of the net nearp and the rate by which this
distance tends to zero can be understood as the ‘smoothing rate’.
The center of gravity in the regular (n= 4) case is:

1
n

n�1

∑
i=0

xi =
4+w

8
p+

1
2n

n�1

∑
i=0

l i � w
8n

n�1

∑
i=0

hi : (13)

In the non-regular case, we have

1
n

n�1

∑
i=0

xi = x j +
1
n

n�2

∑
i=0

(n�1� i)4xi+ j ;

j 2 f0; : : : ;n�1g:
(14)

Combining common terms in the telescoping sum and equating the
right hand sides of (13) and (14) leads to

x j =�w
8

h j +
4+w

8
l j +

4+w
8

p� w
8

v j ; (15)

where we define thevirtual point

v j :=
4
n

n�1

∑
i=0

l i� (l j�1+ l j + l j+1)+

w
4+w

(k j�2+k j�1+k j +k j+1)�

4w
(4+w)n

n�1

∑
i=0

k i :

(16)

Hence, thex j can be computed by applying (11) to the four points
h j , l j , p andv j . The formula also holds in the casen= 4 wherev j =
l j+2. Such a virtual pointv j is defined for every edge and both of
its endpoints. Hence to refine an edge which connects two singular
verticesp1 andp2, we first compute the two virtual pointsv1 and
v2 and then apply (11) tov1, p1, p2 andv2. If all edge-pointsx j are
known, the refinement operation can be completed by computing
the face-pointsy j . These are well defined since the auxillary edge-
point rule is constructed such that both possible ways lead to the
same result.

3.4 Convergence Analysis

The subdivision scheme proposed in the last section is a station-
ary scheme and thus the convergence criteria of [1] and [18] can be

applied. In the regular regions of the net (which enlarge during re-
finement), the smoothness of the limiting surface immediately fol-
lows from the smoothness of the curves generated by the univariate
four-point scheme. Hence to complete the convergence analysis,
it is sufficient to look at the vicinities of the finitely many isolated
singular vertices (cf. Fig. 12).

Let p0; : : : ;pk be the points from a fixed neighborhood of the sin-
gular vertexp0. The size of the considered neighborhood depends
on the support of the underlying tensor product scheme and con-
tains 5 ‘rings’ of faces aroundp0 in our case. The collection of
all rules to compute the new pointsp00; : : : ;p

0
k of the same ‘scaled’

(5-layer-) neighborhood ofp0 = p00 in the refined net can be repre-
sented by a block-circulant matrixA such that(p0i)i = A (pi)i . This
matrix is called therefinement matrix. After [1] and [18] the conver-
gence analysis can be reduced to the analysis of the eigenstructure
of A. For the limiting surface to have a unique tangent plane atp0
it is sufficient that the leading eigenvalues ofA satisfy

λ1 = 1; 1> λ2 = λ3; jλ2j> jλi j;8i � 4:

Table 2 shows theses eigenvalues of the refinement matrixA for ver-
tices withn adjacent edges in the standard caseω = 1. The compu-
tation of the spectrum can be done by exploiting the block-circulant
structure ofA. We omit the details here, because the dimension of
A is k�k with k= 30n+1.

n λ1 λ2 λ3 λi�4 �
3 1:0 0.42633 0.42633 0.25
4 1:0 0.5 0.5 0.25
5 1:0 0.53794 0.53794 0.36193
6 1:0 0.55968 0.55968 0.42633
7 1:0 0.5732 0.5732 0.46972
8 1:0 0.58213 0.58213 0.5
9 1:0 0.58834 0.58834 0.52180

Table 2: Leading eigenvalues of the subdivision matrix

In addition to a uniquely defined tangent plane we also have to
have local injectivity in order to guarantee the regularity of the sur-
face. This can be checked by looking at the natural parametrization
of the surface atp0 which is spanned by the eigenvectors ofA cor-
responding to the subdominant eigenvaluesλ2 andλ3. The injec-
tivity of this parametrization is a sufficient condition. The details
can be found in [18]. Fig. 15 shows meshes of ‘isolines’ of these
characteristic maps which are well-behaved.



Figure 15: Sketch of the characteristic maps in the neighborhood of singular vertices withn= 3;5; : : : ;9.

3.5 Boundary Curves

If a subdivision scheme is supposed to be used in practical mod-
eling or reconstruction applications, it must provide features that
allow the definition of creases and cusps [12]. These requirements
can be satisfied if the scheme includes special rules for the refine-
ment ofopennets which yield well-behaved boundary curves that
interpolate the boundary polygons of the given net. Having such
a scheme, creases can be modeled by joining two separate sub-
division surfaces along a common boundary curve and cusps re-
sult from a topological hole in the initial net which geometrically
shrinks to a single point, i.e., a faces= fp1; : : : ;png of a given net
is deleted to generate a hole and its vertices are moved to the same
locationpi = p (cf. Fig. 16).

To allow aC0-join between two subdivision patches whose ini-
tially given nets have a common boundary polygon, it is necessary
that their limiting boundary curves only depend on these common
points, i.e., they must not depend on any interior point. For our
scheme, we achieve this by simply applying the original univariate
four-point rule to boundary polygons. Thus, the boundary curve
of the limiting surface is exactly the four-point curve which is de-
fined by the initial boundary polygon. Further, it is necessary to not
only generatesmoothboundary curves but rather to allowpiecewise
smooth boundary curves, e.g., in cases where more than two sub-
division patches meet at a common point. In this case we have to
cut the boundary polygon into several segments by marking some
vertices on the boundary as beingcorner vertices. Each segment
between two corner vertices is then treated separately as an open
polygon.

When dealing with open polygons, it is not possible to refine the
first or the last edge by the original four-point scheme since rule
(11) requires a well-defined 2-neighborhood. Therefore, we have
to find another rule for the pointpm+1

1 which subdivides the edge
pm

0 pm
1 . We define anextrapolatedpoint pm

�1 := 2pm
0 � pm

1 . The

point pm+1
1 then results from the application of (11) to the sub-

polygonpm
�1;p

m
0 ;p

m
1 ;p

m
2 . Obviously, this additional rule can be ex-

pressed as a stationary linear combination of points from the non-
extrapolated open polygon:

pm+1
1 :=

8�w
16

pm
0 +

8+2w
16

pm
1 �

w
16

pm
2 (17)

The rule to compute the pointpm+1
2n�1 subdividing the last edge

pm
n�1pm

n is defined analogously.
This modification of the original scheme does not affect the con-

vergence to a continuously differentiable limit, because the esti-
mates for the contraction rate of the maximum second forward dif-
ference used in the convergence proof of [6] remain valid. This
is obvious since the extrapolation only adds the zero component
42pm

�1 to the sequence of second order forward differences. The
main convergence criterion of [13] also applies.

It remains to define refinement rules for inner edges of the net
which have one endpoint on the boundary and for faces including
at least one boundary vertex. To obtain these rules we use the same
heuristic as in the univariate case. We extrapolate the unrefined
net over every boundary edge to get an additional layer of faces.
When computing the egde- and face-points refining the original net
by the rules from Sect. 3.3, these additional points can be used.
To complete the refinement step, the extrapolated faces are finally
deleted.

Let q1; : : : ;qr be theinner points of the net which are connected
to the boundary pointp then the extrapolated point will be

p� := 2p� 1
r

r

∑
i=1

qi :

If the boundary pointp belongs to the faces= fp;q;u;vg and is
not connected to any inner vertex then we definep� := 2p� u.
For every boundary edgepq we add the extrapolated faces� =
fp;q;q�;p�g.

Again, the tangent-plane continuity of the resulting limiting sur-
face can be proved by the sufficient criteria of [1] and [18]. This
is obvious since for a fixed number of interior edges adjacent to
some boundary vertexp, the refinement of the extrapolated net can
be rewritten as a set of stationary refinement rules which define
the new points in the vicinity ofp as linear combinations of points
from the non-extrapolated net. However the refinement matrix is
no longer block-circulant.

At every surface point lying on the boundary of a tangent plane
continuous surface, one tangent direction is determined by the tan-
gent of the boundary curve (which in this case is a four-point curve
that does not depend on inner vertices). On boundaries, we can
therefore drop the requirement of [18] that the leading eigenval-
ues of the refinement matrix have to be equal. This symmetry
is only a consequence of the assumption that the rules to com-
pute the new points around a singular vertex are identical modulo



Figure 16: Modeling sharp features (piecewise smooth boundary, crease, cusp)

rotations (block-circulant refinement matrix). Althoughλ2 6= λ3
causes an increasing local distortion of the net, the smoothness of
the limiting surface is not affected. This effect can be viewed as
a reparametrization in one direction. (Compare this to the distor-
tion of a regular net which is refined by binary subdivision in one
direction and trinary in the other.)

We summarize the different special cases which occur when re-
fining an open net by the given rules. In Fig. 17 the net to be refined
consists of the solid white faces while the extrapolated faces are
drawn transparently. The dark vertex is marked as a corner vertex.
We have to distinguish five different cases:
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Figure 17: Occurences of the different special cases.

A: Within boundary segments, we apply (11) to four succeeding
boundary vertices.

B: To the first and the last edge of an open boundary segment, we
apply the special rule (17).
C: Inner edge-points can be computed by application of (15). If
necessary, extrapolated points are involved.

D: For every face-point of this class, at least one sequence of four
C-points can be found to which (11) can be applied. If there are
two possibilities for the choice of these points then both lead to the
same result which is guaranteed by the construction of (15).
E: In this case no appropriate sequence of four C-points can be
found. Therefore, one has to apply (17) to a B-point and the two C-
points following on the opposite side of the corner face. In order to
achieve independence of the grid direction, even in case the corner
vertex is not marked, we apply (17) in both directions and compute
the average of the two results.

3.6 Adaptive Refinement

In most numerical applications, the exponentially increasing num-
ber of vertices and faces during the iterative refinement only allows
a small number of refinement steps to be computed. If high acuracy
is needed, e.g., in finite element analysis or high quality rendering,
it is usually sufficient to perform a high resolution refinement in re-

gions with high curvature while ‘flat’ regions may be approximated
rather coarsely. Hence, in order to keep the amount of data reason-
able, the next step is to introduce adaptive refinement features.

The decision where high resolution refinement is needed,
strongly depends on the underlying application and is not discussed
here. The major problem one always has to deal with when adap-
tive refinement of nets is performed is to handle or eliminateC�1-
inconsistencies which occur when faces from different refinement
levels meet. A simple trick to repair the resulting triangular holes
is to split the bigger face into three quadrilaterals in an Y-fashion
(cf. Fig 18). However this Y-split does not repair the hole. Instead
it shifts the hole to an adjacent edge. Only combining several Y-
elements such that they build a ‘chain’ connecting two inconsisten-
cies leads to an overall consistent net. The new vertices necessary
for the Y-splits are computed by the rules of Sect. 3.3. The fact
that every Y-element contains a singular (n= 3) vertex causes no
problems for further refinement because this Y-element is only of
temporary nature, i.e., if any of its three faces or any neighboring
face is to be split by a following local refinement adaption, then first
the Y-split is undone and a proper Catmull-Clark-type split is per-
formed before proceeding. While this simple technique seems to
be known in the engineering community, the author is not aware of
any reference where the theoretical background for this technique
is derived. Thus, we sketch a simple proof that shows under which
conditions this technique applies.

p

q

r

s

Figure 18: A hole in an adaptively refined net and an Y-element to
fill it.

First, in order to apply the Y-technique we have to restrict the
considered nets tobalancednets. These are adaptively refined nets
(without Y-elements) where the refinement levels of neighboring
faces differ at most by one. Non-balanced inconsistencies can not
be handled by the Y-technique. Hence, looking at a particular face
s from then-th refinement level, all faces having at least one vertex
in common withs are from the levels(n� 1), n, or (n+ 1). For
the proof we can think of first repairing all inconsistencies between
leveln�1 andn and then proceed with higher levels. Thus, without
loss of generality, we can restrict our considerations to a situation
where all relevant faces are from level(n�1) or n.

A critical edge is an edge, where a triangular hole occurs due
to different refinement levels of adjacent faces. A sequence of Y-
elements can always be arranged such that two critical edges are
connected, e.g., by surrounding one endpoint of the critical edge
with a ’corona’ of Y-elements until another critical edge is reached
(cf. Fig. 19). Hence, on closed nets, we have to require the number
of critical edges to be even. (On open nets, any boundary edge can



stop a chain of Y-elements.) We show that this is always satisfied,
by induction over the number of faces from then-th level within
an environment of(n� 1)-faces. Faces from generations> n or
< (n�1) do not affect the situation since we assume the net to be
balanced.

Figure 19: Combination of Y-elements

The first adaptive Catmull-Clark-type split on a uniformly re-
fined net produces four critical edges. Every succeeding split
changes the number of critical edges by an even number between
�4 and 4, depending on the number of direct neighbors that have
been split before. Thus the number of critical edges is always even.
However, then-faces might form a ring having in total an even
number of critical edges which are separated into an odd number
‘inside’ and an odd number ‘outside’. It turns out that this can-
not happen: Let the inner region surrounded by the ring ofn-faces
consist ofr quadrilaterals having a total number of 4r edges which
are candidates for being critical. Every edge which is shared by
two such quadrilaterals reduces the number of candidates by two
and thus the number of boundary edges of this inner region is again
even.

The only situation where the above argument is not valid, occurs
when the considered net is open and has a hole with an odd number
of boundary edges. In this case, every loop ofn-faces enclosing
this hole will have an odd number of critical edges on each side.
Hence, we have to further restrict the class of nets to which we
can apply the Y-technique toopen balanced nets which have no
hole with an odd number of edges. This restriction is not serious
because one can transform any given net in order to satisfy this
requirement by applying aninitial uniform refinement stepbefore
adaptive refinement is started. Such an initial step is needed anyway
if a given arbitrary net has to be transformed into a quadrilateral one
(cf. Sect. 3.2).

It remains to find analgorithm to place the Y-elements cor-
rectly, i.e., to decide which critical edges should be connected by
a corona. This problem is not trivial because interference between
the Y-elements building the ‘shores’ of two ‘islands’ ofn-faces ly-
ing close to each other, can occur. We describe an algorithm which
only uses local information and decides the orientation separately
for each face instead of ‘marching’ around the islands.

The initially given net (level 0) has been uniformly refined once
before the adaptive refinement begins (level 1). Let every vertex
of the adaptively refined net be associated with the generation in
which it was introduced. Since all faces of the net are the result
of a Catmull-Clark-type split (no Y-elements have been placed so
far), they all have the property that three of its vertices belong to
the same generationg and the fourth vertex belongs to a generation
g0 < g. This fact yields a unique orientation for every face. The
algorithm starts by marking all vertices of the net which are end-
points of a critical edge, i.e. if a(n�1)-facefp;q; : : :g meets two
n-facesfp; r ;s; : : :g andfq; r ;s; : : :g thenp andq are marked (cf.
Fig. 18). After themarking-phase, the Y-elements are placed. Let
s= fp;q;u;vg be a face of the net wherep is the unique vertex
which belongs to an elder generation than the other three. If neither
q nor v are marked then no Y-element has to be placed within this
face. If only one of them is marked then the Y-element has to be

Face4Typ Face9Typ Face4Typ

Figure 21: References between different kinds of faces.

oriented as shown in Fig. 20 and if both are marked this face has to
be refined by a proper Catmull-Clark-type split.

The correctness of this algorithm is obvious since the vertices
which are marked in the first phase are those which are common to
faces of different levels. The second phase guarantees that a corona
of Y-elements is built around each such vertex (cf. Fig. 19).

3.7 Implementation and Examples

The described algorithm is designed to be useful in practical ap-
plications. Therefore, besides the features for creating creases and
cusps and the ability to adaptively refine a given quadrilateral net,
efficiency and compact implementation are also important. Both
can be achieved by this algorithm. The crucial point of the im-
plementation is the design of an appropriate data structure which
supports an efficient navigation through the neighborhood of the
vertices. The most frequently needed access operation to the data
structure representing the balanced net, is to enumerate all faces
which lie around one vertex or to enumerate all the neighbors of
one vertex. Thus every vertex should be associated with a linked
list of the objects that constitute its vicinity. We propose to do this
implicitely by storing the topological information in a data struc-
tureFace4Typ which contains all the information of one quadri-
lateral face, i.e., references to its four corner points and references
to its four directly neighboring faces. By these references, a doubly
linked list around every vertex is available.

Since we have to maintain an adaptively refined net, we need
an additional datatype to consistently store connections between
faces from different refinement levels. We define another struc-
tureFace9Typ which holds references to nine vertices and eight
neighbors. Thesemulti-facescan be considered as ‘almost’ split
faces, where the geometric information (the new edge- and face-
points) is already computed but the topological split has not yet
been performed. If, during adaptive refinement, somen-face is
split then all its neighbors which are from the same generation are
converted intoFace9Typ ’s. Since these faces have pointers to
eight neighbors, they can mimic faces from different generations
and therefore connect them correctly. TheFace9Typ ’s are the
candidates for the placement of Y-elements in order to re-establish
consistency. The various references between the different kinds of
faces are shown in Fig. 21.

To relieve the application program which decides where to adap-
tively refine, from keeping track of the balance of the net, the im-
plementation of the refinement algorithm should perform recursive
refinement operations when necessary, i.e., if an-faces is to be re-
fined then first all(n�1)-neighbors which have at least one vertex
in common withs must be split.

The following pictures are generated by using our experimen-
tal implementation. The criterion for adaptive refinement is a dis-
crete approximation of the Gaussian curvature. The running time
of the algorithm is directly proportional to the number of computed
points, i.e., to the complexity of the output-net. Hence, since the
number of regions where deep refinement is necessary usually is
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Figure 20: The orientation of the Y-elements depends on whether the verticesq andv are marked (black) or not (white). The status of vertices
p andu does not matter (gray).

fixed, we can reduce the space- and time-complexity from expo-
nential to linear (as a function of the highest occurring refinement
level in the output).
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Figure 22: Examples for adaptively refined nets.
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Variational Subdivision Schemes
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Preface

The generic strategy of subdivision algorithms which is to define
smooth curves and surfacesalgorithmicallyby giving a set of sim-
ple rules for refining control polygons or meshes is a powerful tech-
nique to overcome many of the mathematical difficulties emerging
from (polynomial) spline-based surface representations. In this sec-
tion we highlight another application of the subdivision paradigm
in the context of high quality surface generation.

From CAGD it is known that the technical and esthetic quality
of a curve or a surface does not only depend on infinitesimal prop-
erties like theCk differentiability. Much more important seems to
be thefairnessof a geometric object which is usually measured by
curvature based energy functionals. A surface is hence considered
optimal if it minimizes a given energy functional subject to auxil-
iary interpolation or approximation constraints.

Subdivision and fairing can be effectively combined into what is
often refered to asvariational subdivisionor discrete fairing. The
resulting algorithms inherit the simplicity and flexibility of subdi-
vision schemes and the resulting curves and surfaces satisfy the so-
phisticated requirements for high end design in geometric modeling
applications.

The basic idea that leads to variational subdivision schemes is
that one subdivision step can be considered as atopological split
operationwhere new vertices are introduced to increase the number
of degrees of freedom, followed by asmoothing operationwhere
the vertices are shifted in order to increase the overall smooth-
ness. From this point of view is is natural to ask for the maxi-
mum smoothness that can be achieved on a given level of refine-
ment while observing prescribed interpolation constraints.

We use an energy functional as a mathematical criterion to rate
the smoothness of a polygon or a mesh. In the continuous setting,
such scalar valued fairing functionals are typically defined as an
integral over a combination of (squared) derivatives. In the discrete
setting, we approximate such functionals by a sum over (squared)
divided differences.

In the following we reproduce a few papers where this approach
is described in more detail. In the univariate setting we con-
sider interpolatory variational subdivision schemes which perform
a greedy optimization in the sense that when computing the poly-
gon Pm+1 from Pm the new vertices’ positions are determined by

�Computer Graphics Group, Max-Planck-Institute for Computer Sci-
ences, Im Stadtwald, 66123 Saarbr¨ucken, Germany,kobbelt@mpi-
sb.mpg.de

an energy minimization process but when proceeding withPm+2
the vertices ofPm+1 are not adjusted.

In the bivariate setting, i.e., the subdivision and optimization of
triangle meshes, we start with a given control meshP0 whose ver-
tices are to be interpolated by the resulting mesh. In this case it
turns out that the mesh quality can be improved significantly if we
use all the vertices fromPm nP0 for the optimization in themth
subdivision step.

Hence the algorithmic structure of variational subdivision degen-
erates to an alternating refinement and (constrained) global opti-
mization. In fact, from a different viewing angle the resulting al-
gorithms perform like a multi-grid solver for the discretized op-
timization problem. This observation provides the mathematical
justification for thediscrete fairing approach.

For the efficient fairing of continuous parameteric surfaces, the
major difficulties arise from the fact that geometrically meaningful
energy functionals depend on the control vertices in a highly non-
linear fashion. As a consequence we have to either do non-linear
optimization or we have to approximate the true functional by a
linearized version. The reliability of this approximation usually
depends on how close to isometric the surface’s parameterization
is. Alas, spline-patch-based surface representations often do not
provide enough flexibility for an appropriate re-parameterization
which would enable a feasible linearization of the geometric en-
ergy functional. Figure 1 shows two surfaces which are both op-
timal with respect to the same energy functional but for different
parameterizations.

Figure 1: Optimal surfaces with respect to the same functional and
interpolation constraints but for different parameterizations (iso-
metric left, uniform right).

With the discrete fairing approach, we can exploit the auxiliary
freedom to define an individual local parameterization for every
vertex in the mesh. By this we find an isometric parameterization
for each vertex and since the vertices are in fact the only points
where the surface is evaluated, the linearized energy functional is a
good approximation to the original one.

The discrete fairing machinery turns out to be a powerful tool
which can facilitate the solution of many problems in the area of
surface generation and modeling. The overall objective behind the
presented applications will be the attempt to avoid, bypass, or at
least delay the mathematically involved generation of spline CAD-
models whenever it is appropriate.



I Univariate Variational Subdivision

In this paper a new class of interpolatory refinement schemes is
presented which in every refinement step determine the new points
by solving an optimization problem. In general, these schemes are
global, i.e., every new point depends on all points of the polygon
to be refined. By choosing appropriate quadratic functionals to be
minimized iteratively during refinement, very efficient schemes pro-
ducing limiting curves of high smoothness can be defined. The well
known class of stationary interpolatory refinement schemes turns
out to be a special case of these variational schemes.

The original paper which also contains the omitted
proofs has been published in:

L. Kobbelt
A Variational Approach to Subdivision,
CAGD 13 (1996) pp. 743–761, Elsevier

1.1 Introduction

Interpolatory refinement is a very intuitive concept for the construc-
tion of interpolating curves or surfaces. Given a set of pointsp0

i 2
IRd which are to be interpolated by a smooth curve, the first step of a
refinement scheme consists in connecting the points by a piecewise
linear curve and thus defining a polygonP0 = (p0

0; : : : ;p
0
n�1).

This initial polygon can be considered as a very coarse approx-
imation to the final interpolating curve. The approximation can be
improved by inserting new points between the old ones, i.e., by sub-
dividing the edges of the given polygon. The positions of the new
pointsp1

2i+1 have to be chosen appropriately such that the result-
ing (refined) polygonP1 = (p1

0; : : : ;p
1
2n�1) lookssmootherthan the

given one in some sense (cf. Fig. 2). Interpolation of the given
points is guaranteed since the old pointsp0

i = p1
2i still belong to the

finer approximation.
By iteratively applying this interpolatory refinement operation,

a sequence of polygons(Pm) is generated with vertices becoming
more and more dense and which satisfy the interpolation condition
pm

i = pm+1
2i for all i andm. This sequence may converge to a smooth

limit P∞.
Many authors have proposed different schemes by explicitly giv-

ing particular rules how to compute the new pointspm+1
2i+1 as a func-

tion of the polygonPm to be refined. In (Dubuc, 1986) a simple
refinement scheme is proposed which uses four neighboring ver-
tices to compute the position of a new point. The position is de-
termined in terms of the unique cubic polynomial which uniformly
interpolates these four points. The limiting curves generated by this
scheme are smooth, i.e., they are differentiable with respect to an
equidistant parametrisation.

Figure 2: Interpolatory refinement

In (Dyn et al., 1987) this scheme is generalized by introducing
an additional design or tension parameter. Replacing the interpo-
lating cubic by interpolating polynomials of arbitrary degree leads
to theLagrange-schemesproposed in (Deslauriers & Dubuc, 1989).
Raising the degree to(2k+1), every new point depends on(2k+2)
old points of its vicinity. In (Kobbelt, 1995a) it is shown that at least
for moderatek these schemes produceCk-curves.

Appropriate formalisms have been developed in (Cavaretta et al.,
1991), (Dyn & Levin, 1990), (Dyn, 1991) and elsewhere that allow
an easy analysis of suchstationary schemeswhich compute the new
points by applying fixed banded convolution operators to the orig-
inal polygon. In (Kobbelt, 1995b) simple criteria are given which
can be applied to convolution schemes without any band limitation
as well (cf. Theorem 2).

(Dyn et al., 1992) and (Le M´ehauté & Utreras, 1994) propose
non-linear refinement schemes which produce smooth interpolating
(C1-) curves and additionally preserve the convexity properties of
the initial data. Both of them introduce constraints which locally
define areas where the new points are restricted to lie in. Another
possibility to define interpolatory refinement schemes is to dualize
corner-cutting algorithms (Paluszny et al., 1994). This approach
leads to more general necessary and sufficient convergence criteria.

In this paper we want to define interpolatory refinement schemes
in a more systematic fashion. The major principle is the following:
We are looking for refinement schemes for which, given a polygon
Pm, the refined polygonPm+1 is as smooth as possible. In order
to be able to compare the “smoothness” of two polygons we de-
fine functionalsE(Pm+1) which measure the total amount of (dis-
crete) strain energy ofPm+1. The refinement operator then simply
chooses the new pointspm+1

2i+1 such that this functional becomes a
minimum.

An important motivation for this approach is that in practice
good approximations to the final interpolating curves should be
achieved with little computational effort, i.e., maximum smooth-
ness after a minimal number of refinement steps is wanted. In non-
discrete curve design based, e.g., on splines, the concept of defining
interpolating curves by the minimization of some energy functional
(fairing) is very familiar (Meier & Nowacki, 1987), (Sapidis, 1994).

This basic idea of making a variational approach to the defini-
tion of refinement schemes can also be used for the definition of
schemes which produce smooth surfaces by refining a given trian-
gular or quarilateral net. However, due to the global dependence
of the new points from the given net, the convergence analysis of
such schemes strongly depends on the topology of the net to be
refined and is still an open question. Numerical experiments with
such schemes show that this approach is very promising. In this
paper we will only address the analysis of univariate schemes.

1.2 Known results

Given an arbitrary (open/closed) polygonPm= (pm
i ), thedifference

polygon4kPm denotes the polygon whose vertices are the vectors

4kpm
i :=

k

∑
j=0

�
k
j

�
(�1)k+ j pm

i+ j :

In (Kobbelt, 1995b) the following characterization of sequences
of polygons(Pm) generated by the iterative application of an inter-
polatory refinement scheme is given:

Lemma 1 Let (Pm) be a sequence of polygons. The scheme by
which they are generated is an interpolatory refinement scheme
(i.e., pm

i = pm+1
2i for all i and m) if and only if for all m;k 2 IN

the condition

4kpm
i =

k

∑
j=0

�
k
j

�
4kpm+1

2i+ j

holds for all indices i of the polygon4kPm.



Also in (Kobbelt, 1995b), the following sufficient convergence
criterion is proven which we will use in the convergence analysis in
the next sections.

Theorem 2 Let (Pm) be a sequence of polygons generated by
the iterative application of an arbitrary interpolatory refinement
scheme. If

∞

∑
m=0

k2km4k+l Pmk∞ < ∞

for some l2 IN then the sequence(Pm) uniformly converges to a
k-times continuously differentiable curveP∞.

This theorem holds for all kinds of interpolatory schemes on
open and closed polygons. However, in this paper we will only
apply it to linear schemes whose support is global.

1.3 A variational approach to interpolatory
refinement

In this and the next two sections we focus on the refinement of
closedpolygons, since this simplifies the description of the refine-
ment schemes. Open polygons will be considered in Section 1.6.

Let Pm = (pm
0 ; : : : ;p

m
n�1) be a given polygon. We wantPm+1 =

(pm+1
0 ; : : : ;pm+1

2n�1) to be the smoothest polygon for which the inter-

polation conditionpm+1
2i = pm

i holds. Since the roughness at some
vertexpm+1

i is a local property we measure it by a an operator

K(pm+1
i ) :=

k

∑
j=0

α j pm+1
i+ j�r :

The coefficientsα j in this definition can be an arbitrary finite se-
quence of real numbers. The indices of the verticespm+1

i are taken
modulo2n according to the topological structure of the closed poly-
gonPm+1. To achieve full generality we introduce the shiftr such
that K(pm+1

i ) depends onpm+1
i�r ; : : : ;pm+1

i+k�r . Every discrete mea-
sure of roughnessK is associated with a characteristic polynomial

α(z) =
k

∑
j=0

α j zj :

Our goal is to minimize the total strain energy over the whole
polygonPm+1. Hence we define

E(Pm+1) :=
2n�1

∑
i=0

K(pm+1
i )2 (1)

to be the energy functional which should become minimal. Since
the pointspm+1

2i of Pm+1 with even indices are fixed due to the in-
terpolation condition, the pointspm+1

2i+1 with odd indices are the only
free parameters of this optimization problem. The unique minimum
of the quadratic functional is attained at the common root of all par-
tial derivatives:

∂
∂pm+1

2l+1

E(Pm+1) =
k

∑
i=0

∂
∂pm+1

2l+1

K(pm+1
2l+1+r�i)

2

= 2
k

∑
i=0

αi

k

∑
j=0

α j pm+1
2l+1�i+ j

= 2
k

∑
i=�k

βi pm+1
2l+1+i

(2)

with the coefficients

β�i = βi =
k�i

∑
j=0

α j α j+i ; i = 0; : : : ;k: (3)

Hence, the strain energyE(Pm+1) becomes minimal if the new
pointspm+1

2i+1 are the solution of the linear system

0
B@

β0 β2 β4 : : : β2
β2 β0 β2 : : : β4
...

...
...

. . .

1
CA
0
BBB@

pm+1
1

pm+1
3
...

pm+1
2n�1

1
CCCA =

0
B@

�β1 �β1 �β3 : : : �β3
�β3 �β1 �β1 : : : �β5

...
...

...
. . .

1
CA
0
BB@

pm
0

pm
1
...

pm
n�1

1
CCA

(4)

which follows from (2) by separation of the fixed pointspm+1
2i =

pm
i from the variables. Here, both matrices are circulant and (al-

most) symmetric. A consequence of this symmetry is that the new
points do not depend on the orientation by which the vertices are
numbered (left to right or vice versa).

To emphasize the analogy between curve fairing and interpola-
tory refinement by variational methods, we call the equation

k

∑
i=�k

βi pm+1
2l+1+i = 0; l = 0; : : : ;n�1 (5)

theEuler-Lagrange-equation.

Theorem 3 The minimization of E(Pm+1) has a well-defined solu-
tion if and only if the characteristic polynomialα(z) for the local
measure K has no diametric roots z= �ω on the unit circle with
Arg(ω) 2 π IN=n. (Proof to be found in the original paper)

Remark The setπ IN=2m becomes dense in IR for increasing re-
finement depthm! ∞. Since we are interested in the smoothness
properties of the limiting curveP∞, we should drop the restriction
that the diametric roots have to have Arg(ω) 2 π IN=n. Forstability
reasons we requireα(z) to have no diametric roots on the unit circle
at all.

The optimization by which the new points are determined is a
geometric process. In order to obtain meaningful schemes, we have
to introduce more restrictions on the energy functionalsE or on the
measures of roughnessK.

For the expressionK2(pi) to be valid,K has to be vector valued,
i.e., the sum of the coefficientsα j has to be zero. This is equivalent
to α(1) = 0. Since

k

∑
i=�k

βi =
k

∑
i=0

k

∑
j=0

αi α j =

� k

∑
j=0

α j

�2

the sum of the coefficientsβi also vanishes in this case andaffine
invarianceof the (linear) scheme is guaranteed because constant
functions are reproduced.

1.4 Implicit refinement schemes

In the last section we showed that the minimization of a quadratic
energy functional (1) leads to the conditions (5) which determine
the solution. Dropping the variational background, we can more
generally prescribe arbitrary real coefficientsβ�k; : : : ;βk (with



β�i = βi to establish symmetry and∑βi = 0 for affine invariance)
and define an interpolatory refinement scheme which chooses the
new pointspm+1

2i+1 of the refined polygonPm+1 such that the homo-
geneous constraints

k

∑
i=�k

βi pm+1
2l+1+i = 0; l = 0; : : : ;n�1 (6)

are satisfied. We call these schemes:implicit refinement schemes
to emphasize the important difference to other refinement schemes
where usually the new points are computed by one or twoexplicitly
given rules (cf. the termimplicit curvesfor curves represented by
f (x;y) = 0). The stationary refinement schemes are a special case
of the implicit schemes whereβ2 j = δ j;0. In general, the implicit
schemes are non-stationary since the resulting weight coefficients
by which the new pointspm+1

2i+1 are computed depend on the number
of vertices inPm.

In (Kobbelt, 1995b) a general technique is presented which al-
lows to analyse the smoothness properties of the limiting curve gen-
erated by a given implicit refinement scheme.

The next theorem reveals that the class of implicit refinement
schemes is not essentially larger than the class of variational
schemes.

Theorem 4 Let β�k; : : : ;βk be an arbitrary symmetric set of real
coefficients(β�i = βi). Then there always exists a (potentially com-
plex valued) local roughness measure K such that (6) is the Euler-
Lagrange-equation corresponding to the minimization of the energy
functional (1). (Proof to be found in the original paper)

Remark We do not consider implicit refinement schemes with
complex coefficientsβi since then (6) in general has no real solu-
tions.

Example To illustrate the statement of the last theorem we look
at the 4-point scheme of (Dubuc, 1986). This is a stationary re-
finement scheme where the new pointspm+1

2i+1 are computed by the
rule

pm+1
2i+1 =

9
16

(pm
i +pm

i+1)�
1
16

(pm
i�1+pm

i+2):

The scheme can be written in implicit form (6) withk = 3 and
β�3 = 1, β�2 = 0, β�1 = �9, β0 = 16 since the common factor
1
16 is not relevant. The roots ofβ(z) are z1 = : : : = z4 = 1 and
z5;6 =�2�p3. From the construction of the last proof we obtain

α(z) = (2+
p

3)� (3+
p

12)z+
p

3z2+z3

as one possible solution. Hence, the quadratic strain energy
which is minimized by the 4-point scheme is based on the local
roughness estimate

K(pi) = (2+
p

3)pi � (3+
p

12)pi+1+
p

3pi+2+pi+3:

1.5 Minimization of differences

Theorem 2 asserts that a fast contraction rate of some higher differ-
ences is sufficient for the convergence of a sequence of polygons to
a (k times) continuously differentiable limit curve. Thus it is nat-
ural to look for refinement schemes with a maximum contraction
of differences. This obviously is an application of the variational
approach. For the quadratic energy functional we make the ansatz

Ek(Pm+1) :=
2n�1

∑
i=0

k4kpm+1
i k2: (7)

The partial derivatives take a very simple form in this case

∂
∂pm+1

2l+1

Ek(Pm+1) =
k

∑
i=0

∂
∂pm+1

2l+1

k4kpm+1
2l+1�ik2

= 2
k

∑
i=0

(�1)k+i
�

k
i

�
4kpm+1

2l+1�i

= 2(�1)k42kpm+1
2l+1�k:

and the corresponding Euler-Lagrange-equation is

42kpm+1
2l+1�k = 0; l = 0; : : : ;n�1 (8)

where, again, the indices of thepm+1
i are takenmodulo2n. The

characteristic polynomial of the underlying roughness measureK
is α(z) = (z�1)k and thus solvability and affine invariance of the
refinement scheme are guaranteed. The solution of (8) only requires
the inversion of a banded circulant matrix with bandwidth 2b k

2c+1.

Theorem 5 The refinement scheme based on the minimization of
Ek in (7) produces at least Ck-curves. (Proof to be found in the
original paper)

In order to prove even higher regularities of the limiting curve
one has to combine more refinement steps. In (Kobbelt, 1995b)
a simple technique is presented that allows to do the convergence
analysis of such multi-step schemes numerically. Table 1 shows
some results wherer denotes the number of steps that have to be
combined in order to obtain these differentiabilities.

In analogy to the non-discrete case where the minimization of the
integral over the squaredk-th derivative has piecewise polynomial
C2k�2 solutions (B-splines), it is very likely that the limiting curves
generated by iterative minimization ofEk are actually inC2k�2 too.
The results given in Table 1 can be improved by combining more
than r steps. Fork = 2;3, however, sufficiently many steps have
already been combined to verifyP∞ 2C2k�2.

k r diff’ty k r diff’ty

2 2 C2 7 6 C10

3 11 C4 8 4 C11

4 2 C5 9 6 C13

5 7 C7 10 4 C14

6 3 C8 11 6 C16

Table 1: Lower bounds on the differentiability ofP∞ generated by
iterative minimization ofEk(Pm).

For illustration and to compare the quality of the curves gener-
ated by these schemes, some examples are given in Fig. 3. The
curves result from applying different schemes to the initial data
P0 = (: : : ;0;1;0; : : :). We only show the middle part of one peri-
odic interval ofP∞. As expected, the decay of the function becomes
slower as the smoothness increases.

Remark Considering Theorem 2 it would be more appropri-
ate to minimize the maximum differencek4k Pmk∞ instead of
k4k Pmk2. However, this leads to non-linear refinement schemes
which are both, hard to compute and difficult to analyse. More-
over, in (Kobbelt, 1995a) it is shown that a contraction rate of
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Figure 3: Discrete curvature plots of finite approximations to the curves generated by the four-point schemeF (P∞ 2C1) and the iterative
minimization ofE2 (P∞ 2C2), E3 (P∞ 2C4) andE5 (P∞ 2C7).

k42k Pmk∞ = O(2�mk) impliesk4k Pmk∞ = O(2�m(k�ε)) for ev-
ery ε > 0. It is further shown thatk4k Pmk∞ = O(2�mk) is the
theoretical fastest contraction which can be achieved by interpola-
tory refinement schemes. Hence, the minimization ofk4k Pmk∞
cannot improve the asymptotic behavior of the contraction.

1.6 Interpolatory refinement of open polygons

The convergence analysis of variational schemes in the case of open
finite polygons is much more difficult than it is in the case of closed
polygons. The problems arise at both ends of the polygonsPm
where the regular topological structure is disturbed. Therefore, we
can no longer describe the refinement operation in terms of Toeplitz
matrices but we have to use matrices which are Toeplitz matrices al-
most everywhere except for a finite number of rows, i.e., except for
the first and the last few rows.

However, one can show that in a middle region of the polygon
to be refined the smoothing properties of an implicit refinement
scheme applied to an open polygon do not differ very much from
the same scheme applied to a closed polygon. This is due to the fact
that in both cases the influence of the old pointspm

i on a new point
pm+1

2 j+1 decrease exponentially with increasing topological distance
ji� j j for all asymptotically stable schemes (Kobbelt, 1995a).

For the refinement schemes which iteratively minimize forward
differences, we can at least prove the following.

Theorem 6 The interpolatory refinement of open polygons by it-
eratively minimizing the2k-th differences, generates at least Ck�1-
curves. (Proof to be found in the original paper)

The statement of this theorem only gives a lower bound for the
differentiability of the limiting curveP∞. However, the author con-
jects that the differentiabilities agree in the open and closed polygon
case. For special cases we can prove better results.

Theorem 7 The interpolatory refinement of open polygons by it-
eratively minimizing the second differences, generates at least C2-
curves. (Proof to be found in the original paper)

1.7 Local refinement schemes

By now we only considered refinement schemes which are based
on aglobal optimization problem. In order to construct local re-
finement schemes we can restrict the optimization to some local
subpolygon. This means a new pointpm+1

2l+1 is computed by mini-
mizing some energy functional over awindowpm

l�r ; : : : ;p
m
l+1+r . As

the indexl varies, the window is shifted in the same way.

Let E be a given quadratic energy functional. The solution of
its minimization over the windowpm

l�r ; : : : ;p
m
l+1+r is computed by

solving an Euler-Lagrange-equation

B (pm+1
2l+1+2i)

r
i=�r = C (pm

l+i)
r+1
i=�r : (9)

The matrix ofB�1 C can be computed explicitly and the weight
coefficients by which a new pointpm+1

2l+1 is computed, can be read

off from the corresponding row inB�1 C . Since the coefficients
depend onE andr only, this construction yields a stationary refine-
ment scheme.

For such local schemes the convergence analysis is independent
from the topological structure (open/closed) of the polygons to be
refined. The formalisms of (Cavaretta et al., 1991), (Dyn & Levin,
1990) or (Kobbelt, 1995b) can be applied.

Minimizing the special energy functionalEk(P) from (7) over
open polygons allows the interesting observation that the resulting
refinement scheme has polynomial precision of degreek�1. This
is obvious since for points lying equidistantly parameterized on a
polynomial curve of degreek� 1, all k-th differences vanish and
Ek(P) = 0 clearly is the minimum of the quadratic functional.

Since the 2r + 2 points which form the subpolygon
pm

l�r ; : : : ;p
m
l+1+r uniquely define an interpolating polynomial

of degree 2r + 1, it follows that the local schemes based on
the minimization ofEk(P) are identical fork � 2r + 2. These
schemes coincide with the Lagrange-schemes of (Deslauriers &
Dubuc, 1989). Notice thatk� 4r +2 is necessary because higher
differences are not possible on the polygonpm+1

2(l�r); : : : ;p
m+1
2(l+1+r)

and minimizingEk(P)� 0 makes no sense.
The local variational schemes provide a nice feature for prac-

tical purposes. One can use the refinement rules defined by the
coefficients in the rows ofB�1 C in (9) to compute points which
subdivide edges near the ends of open polygons. Pure stationary
refinement schemes do not have this option and one therefore has
to deal withshrinking ends. This means one only subdivides those
edges which allow the application of the given subdivision mask
and cuts off the remaining part of the unrefined polygon.

If k� 2r +2 then the use of these auxiliary rules causes the lim-
iting curve to have a polynomial segment at both ends. This can
be seen as follows. LetP0 = (p0

0; : : : ;p
0
n) be a given polygon and

denote the polynomial of degree 2r +1� k�1 uniformly interpo-
lating the pointsp0

0; : : : ;p
0
2r+1 by f (x).

The first vertex of the refined polygonP1 which not necessarily
lies on f (x) is p1

2r+3. Applying the same refinement scheme itera-
tively, we see that ifpm

δm
is the first vertex ofPm which does not lie



on f (x) thenpm+1
δm+1

= pm+1
2δm�2r�1 is the first vertex ofPm+1 with this

property. Letδ0 = 2r +2 and consider the sequence

lim
m!∞

δm

2m = (2r +2)� (2r +1) lim
m!∞

m

∑
i=1

2�i = 1:

Hence, the limiting curveP∞ has a polynomial segmentf (x)
between the pointsp0

0 and p0
1. An analog statement holds at the

opposite end betweenp0
n�1 andp0

n.
This feature also arises naturally in the context of Lagrange-

schemes where the new points near the ends of an open polygon
can be chosen to lie on the first or last well-defined polynomial. It
can be used to exactly compute the derivatives at the endpointsp0

0
andp0

n of the limiting curve and it also provides the possibility to
smoothly connect refinement curves and polynomial splines.

1.8 Computational Aspects

Since for the variational refinement schemes the computation of the
new pointspm+1

2i+1 involves the solution of a linear system, the algo-
rithmic structure of these schemes is slightly more complicated than
it is in the case of stationary refinement schemes. However, for the
refinement of an open polygonPm the computational complexity is
still linear in the length ofPm. The matrix of the system that has
to be solved, is a banded Toeplitz-matrix with a small number of
pertubations at the boundaries.

In the closed polygon case, the best we can do is to solve the
circulant system in the Fourier domain. In particular, we transform
the initial polygonP0 once and then performm refinement steps
in the Fourier domain where the convolution operator becomes a
diagonal operator. The refined spectrumbPm is finally transformed
back in order to obtain the resultPm. The details can be found in
(Kobbelt, 1995c). For this algorithm, the computational costs are
dominated by the discrete Fourier transformation ofbPm which can
be done inO(n log(n)) = O(2mm) steps. This is obvious since the
numbern = 2mn0 of points in the refined polygonPm allows to
applymsteps of the fast Fourier transform algorithm.

The costs for computingPm are thereforeO(m) per point com-
pared toO(1) for stationary schemes. However, since in practice
only a small number of refinement steps are computed, the constant
factors which are hidden within these asymptotic estimates are rele-
vant. Thus, the fact that implicit schemes need a smaller bandwidth
than stationary schemes to obtain the same differentiability of the
limiting curve (cf. Table 1) equalizes the performance of both.

In the implementation of these algorithms it turned out that all
these computational costs are dominated by the ‘administrative’
overhead which is necessary, e.g., to build up the data structures.
Hence, the differences in efficiency between stationary and implicit
refinement schemes can be neglected.
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II Discrete Fairing

Many mathematical problems in geometric modeling are merely
due to the difficulties of handling piecewise polynomial parameter-
izations of surfaces (e.g., smooth connection of patches, evaluation
of geometric fairness measures). Dealing with polygonal meshes is
mathematically much easier although infinitesimal smoothness can
no longer be achieved. However, transferring the notion of fairness
to the discrete setting of triangle meshes allows to develop very
efficient algorithms for many specific tasks within the design pro-
cess of high quality surfaces. The use of discrete meshes instead
of continuous spline surfaces is tolerable in all applications where
(on an intermediate stage) explicit parameterizations are not nec-
essary. We explain the basic technique ofdiscrete fairingand give
a survey of possible applications of this approach.

The original paper has been published in:

L. Kobbelt
Variational Design with Parametric Meshes
of Arbitrary Topology,
in Creating fair and shape preserving curves
and surfaces, Teubner, 1998

2.1 Introduction

Piecewise polynomial spline surfaces have been the standard repre-
sentation for free form surfaces in all areas of CAD/CAM over the
last decades (and still are). However, although B-splines are op-
timal with respect to certain desirable properties (differentiability,
approximation order, locality,. . . ), there are several tasks that can-
not be performed easily when surface parameterizations are based
on piecewise polynomials. Such tasks include the construction of
globally smooth closed surfaces and the shape optimization by min-
imizing intrinsically geometric fairness functionals [5, 12].

Whenever it comes to involved numerical computations on free
form surfaces — for instance in finite element analysis of shells —
the geometry is usually sampled at discrete locations and converted
into a piecewise linear approximation, i.e., into a polygonal mesh.

Between these two opposite poles, i.e., thecontinuousrepresen-
tation of geometric shapes by spline patches and thediscreterep-
resentation by polygonal meshes, there is a compromise emerging
from the theory ofsubdivision surfaces[9]. Those surfaces are de-
fined by abase meshroughly describing its shape, and arefinement
rule that allows one to split the edges and faces in order to obtain a
finer and smoother version of the mesh.

Subdivision schemes started as a generalization ofknot insertion
for uniform B-splines [11]. Consider a control mesh[ci; j ] and the
knot vectors[ui ] = [ihu] and [vi ] = [ihv] defining a tensor product
B-spline surfaceS . The same surface can be given with respect to
the refined knot vectors[ûi ] = [ihu=2] and [v̂i ] = [ihv=2] by com-
puting the corresponding control vertices[ĉi; j ], eachĉi; j being a
simple linear combination of original verticesci; j . It is well known
that the iterative repetition of this process generates a sequence of
meshesCm which converges to the spline surfaceS itself.

The generic subdivision paradigm generalizes this concept by
allowing arbitrary rules for the computation of the new control ver-
ticesĉi; j from the givenci; j . The generalization also includes that
we are no longer restricted to tensor product meshes but can use
rules that are adapted to the different topological special cases in
meshes with arbitrary connectivity. As a consequence, we can use
any (manifold) mesh for the base mesh and generate smooth sur-
faces by iterative refinement.

The major challenge is to find appropriate rules that guarantee
the convergence of the meshesCm generated during the subdivision
process to a smooth limit surfaceS = C∞. Besides the classical

stationary schemes that exploit the piecewise regular structure of
iteratively refined meshes [2, 4, 9], there are more complex geo-
metric schemes [15, 8] that combine the subdivision paradigm with
the concept of optimal design by energy minimization (fairing).

The technical and practical advantages provided by the repre-
sentation of surfaces in the form of polygonal meshes stem from
the fact that we do not have to worry about infinitesimal inter-patch
smoothness and the refinement rules do not have to rely on the ex-
istence of a globally consistent parameterization of the surface. In
contrast to this, spline based approaches have to introduce com-
plicated non-linear geometric continuity conditions to achieve the
flexibility to model closed surfaces of arbitrary shape. This is due
to the topologically rather rigid structure of patches with triangular
or quadrilateral parameter domain and fixed polynomial degree of
cross boundary derivatives. The non-linearity of such conditions
makes efficient optimization difficult if not practically impossible.
On discrete meshes however, we can derivelocal interpolants ac-
cording to local parameterizations (charts) which gives the freedom
to adapt the parameterization individually to the local geometry and
topology.

In the following we will shortly describe the concept ofdiscrete
fairing which is an efficient way to characterize and compute dense
point sets on high quality surfaces that observe prescribed interpo-
lation or approximation constraints. We then show how this ap-
proach can be exploited in several relevant fields within the area of
free form surface modeling.

The overall objective behind all the applications will be the at-
tempt to avoid, bypass, or at least delay the mathematically involved
generation of spline CAD-models whenever it is appropriate. Espe-
cially in the early design stages it is usually not necessary to have an
explicit parameterization of a surface. The focus on polygonal mesh
representations might help to free the creative designer from being
confined by mathematical restrictions. In later stages the conver-
sion into a spline model can be based on more reliable information
about the intended shape. Moreover, since technical engineers are
used to performing numerical simulations on polygonal approxima-
tions of the true model anyway, we also might find short-cuts that
allow to speed up the turn-around cycles in the design process, e.g.,
we could alter the shape of a mechanical part by modifying the FE-
mesh directly without converting back and forth between different
CAD-models.

2.2 Fairing triangular meshes

The observation that in many applications the global fairness of a
surface is much more important than infinitesimal smoothness mo-
tivates thediscrete fairingapproach [10]. Instead of requiringG1

or G2 continuity, we simply approximate a surface by a plain trian-
gularC0– mesh. On such a mesh we can think of the (discrete) cur-
vature being located at the vertices. The termfairing in this context
means to minimize these local contributions to the total (discrete)
curvature and to equalize their distribution across the mesh.

We approximate local curvatures at every vertexp by divided
differences with respect to a locally isometric parameterizationµp.
This parameterization can be found by estimating a tangent plane
Tp (or the normal vectornp) at p and projecting the neighboring
verticespi into that plane. The projected points yield the parameter
values(ui ;vi) if represented with respect to an orthonormal basis
feu;evg spanning the tangent plane

pi �p = ui eu+vi ev+di np:

Another possibility is to assign parameter values according to the
lengths and the angles between adjacent edges (discrete exponential



map) [15, 10].
To obtain reliable curvature information atp, i.e., second order

partial derivatives with respect to the locally isometric parameteri-
zationµp, we solve the normal equation of the Vandermonde system

VT V
h

1
2 fuu; fuv;

1
2 fvv

iT
= VT [di ]i

with V = [u2
i ;uivi ;v2

i ]i by which we get the best approximating
quadratic polynomial in the least squares sense. The rows of the in-
verse matrix(VT V)�1VT =: [αi; j ] by which the Taylor coefficients
f� of this polynomial are computed from the data[di ]i , contain the
coefficients of the corresponding divided difference operatorsΓ�.

Computing a weighted sum of the squared divided differences is
equivalent to the discrete sampling of the corresponding continuous
fairness functional. Consider for example
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∑
pi

ωi

�
kΓuu(p j �pi)k2 +

2kΓuv(p j �pi)k2 + kΓvv(p j �pi)k2
�
:

(10)

Notice that the value of (10) is independent of the particular choices
feu;evg for each vertex due to the rotational invariance of the func-
tional. The discrete fairing approach can be understood as a gen-
eralization of the traditional finite difference method to parametric
meshes where divided difference operators are defined with respect
to locally varying parameterizations. In order to make the weighted
sum (10) of local curvature values a valid quadrature formula, the
weightsωi have to reflect the local area element which can be ap-
proximated by observing the relative sizes of the parameter trian-
gles in the local chartsµp : pi �p 7! (ui ;vi).

Since the objective functional (10) is made up of a sum over
squared local linear combinations of vertices (in fact, of vertices
being direct neighbors of one central vertex), the minimum is char-
acterized by the solution of a global but sparse linear system. The
rows of this system are the partial derivatives of (10) with respect
to the movable verticespi. Efficient algorithms are known for the
solution of such systems [6].

2.3 Applications to free form surface design

When generating fair surfaces from scratch we usually prescribe a
set of interpolation and approximation constraints and fix the re-
maining degrees of freedom by minimizing an energy functional.
In the context of discrete fairing the constraints are given by an ini-
tial triangular mesh whose vertices are to be approximated by a fair
surface being topologically equivalent. The necessary degrees of
freedom for the optimization are obtained by uniformly subdivid-
ing the mesh and thus introducing newmovablevertices.

The discrete fairing algorithm requires the definition of a local
parameterizationµp for each vertexp including the newly inserted
ones. However, projection into an estimated tangent plane does not
work here, because the final positions of the new vertices are ob-
viously not known a priori. In [10] it has been pointed out that
in order to ensure solvability and stability of the resulting linear
system, it is appropriate to define the local parameterizations (lo-
cal metrics) for the new vertices byblendingthe metrics of nearby
vertices from the original mesh. Hence, we only have to estimate
the local charts covering the original vertices to set-up the linear
system which characterizes the optimal surface. This can be done
prior to actually computing a solution and we omit an additional
optimization loop over the parameterization.

When solving the sparse linear system by iterative methods we
observe rather slow convergence. This is due to the low-pass fil-
ter characteristics of the iteration steps in a Gauß-Seidel or Jacobi
scheme. However since the mesh on which the optimization is per-
formed came out of a uniform refinement of the given mesh (subdi-
vision connectivity) we can easily find nested grids which allow the
application of highly efficient multi-grid schemes [6].

Moreover, in our special situation we can generate sufficiently
smooth starting configurations by midpoint insertion which allows
us to neglect the pre-smoothing phase and to reduce the V-cycle of
the multi-grid scheme to the alternation of binary subdivision and
iterative smoothing. The resulting algorithm has linear complexity
in the number of generated triangles.

The advantage of this discrete approach compared to the classi-
cal fair surface generation based on spline surfaces is that we do not
have to approximate a geometric functional that uses true curvatures
by one which replaces those by second order partial derivatives with
respect to the fixed parameterization of the patches. Since we can
use a custom tailored parameterization for each point evaluation of
the second order derivatives, we can choose this parameterization
to be isometric — giving us access to the true geometric functional.

Figure 4 shows an example of a surface generated this way. The
implementation can be done very efficiently. The shown surface
consists of about 50K triangles and has been generated on a SGI
R10000 (195MHz) within 10 seconds. The scheme is capable of
generating an arbitrarily dense set of points on the surface of min-
imal energy. It is worth to point out that the scheme works com-
pletely automatic: no manual adaption of any parameters is nec-
essary, yet the scheme produces good surfaces for a wide range of
input data.

2.4 Applications to interactive modeling

For subdivision schemes we can use any triangular mesh as a con-
trol mesh roughly describing the shape of an object to be modeled.
The flexibility of the schemes with respect to the connectivity of the
underlying mesh allows very intuitive modifications of the mesh.
The designer can move the control vertices just like for Bezier-
patches but she is no longer tied to the common restrictions on the
connectivity which is merely a consequence of the use of tensor
product spline bases.

When modeling an object by Bezier-patches, the control vertices
are the handles to influence the shape and the de Casteljau algorithm
associates the control mesh with a smooth surface patch. In our
more general setting, the designer can work on anarbitrary triangle
mesh and the connection to a smooth surface is provided by the
discrete fairing algorithm. The advantages are that control vertices
are interpolated which is a more intuitive interaction metaphor and
the topology of the control structure can adapt to the shape of the
object.

Figure 5 shows the model of a mannequin head. A rather coarse
triangular mesh allows already to define the global shape of the
head (left). If we add more control vertices in the areas where more
detail is needed, i.e., around the eyes, the mouth and the ears, we
can construct the complex surface at the far right. Notice how the
discrete fairing scheme does not generate any artifacts in regions
where the level of detail changes.

2.5 Applications to mesh smoothing

In the last sections we saw how the discrete fairing approach can be
used to generate fair surfaces that interpolate the vertices of a given
triangular mesh. A related problem is to smooth out high frequency
noise from a givendetailedmesh without further refinement. Con-
sider a triangulated surface emerging for example from 3D laser
scanning or iso-surface extraction out of CT volume data. Due to
measurement errors, those surfaces usually show oscillations that
do not stem from the original geometry.



Figure 4: A fair surface generated by the discrete fairing scheme. The flexibility of the algorithm allows to interpolate rather complex data by
high quality surfaces. The process is completely automatic and it took about 10 sec to compute the refined mesh with 50K triangles. On the
right you see the reflection lines on the final surface.

Figure 5: Control meshes with arbitrary connectivity allow to adapt the control structure to the geometry of the model. Notice that the
influence of one control vertex in a tensor product mesh is always rectangular which makes it difficult to model shapes with non-rectangular
features.

Constructing the above mentioned local parameterizations, we
are able to quantify the noise by evaluating the local curvature.
Shifting the vertices while observing a maximum tolerance can re-
duce the total curvature and hence smooth out the surface. From a
signal processing point of view, we can interpret the iterative solv-
ing steps for the global sparse system as the application of recursive
digital low-pass filters [13]. Hence it is obvious that the process
will reduce the high frequency noise while maintaining the low fre-
quency shape of the object.

Figure 6 shows an iso-surface extracted from a CT scan of an
engine block. The noise is due to inexact measurement and insta-
bilities in the extraction algorithm. The smoothed surface remains
within a tolerance which is of the same order of magnitude as the
diagonal of one voxel in the CT data.

2.6 Applications to surface interrogation

Deriving curvature information on a discrete mesh is not only use-
ful for fair interpolation or post-processing of measured data. It can
also be used to visualize artifacts on a surface by plotting the color
coded discrete curvature directly on the mesh. Given for example
the output of the numerical simulation of a physical process: since
deformation has occurred during the simulation, this output typi-
cally consists merely of a discrete mesh and no continuous surface
description is available.

Figure 6: An iso-surface extracted from a CT scan of an engine
block. On the left, one can clearly see the noise artifacts due to
measurement and rounding errors. The right object was smoothed
by minimizing the discrete fairing energy. Constraints on the posi-
tional delocation were imposed.

Using classical techniques from differential geometry would re-
quire to fit an interpolating spline surface to the data and then vi-
sualize the surface quality by curvature plots. The availability of



samples of second order partial derivatives with respect to locally
isometric parameterizations at every vertex enables us to show this
information directly without the need for a continuous surface.

Figure 7 shows a mesh which came out of the FE-simulation of
a loaded cylindrical shell. The shell is clamped at the boundaries
and pushed down by a force in normal direction at the center. The
deformation induced by this load is rather small and cannot be de-
tected by looking, e.g., at the reflection lines. The discrete mean
curvature plot however clearly reveals the deformation. Notice that
histogram equalization has been used to optimize the color contrast
of the plot.

2.7 Applications to hole filling and blending

Another area where the discrete fairing approach can help is the
filling of undefined regions in a CAD model or in a measured data
set. Of course, all these problems can be solved by fairing schemes
based on spline surfaces as well. However, the discrete fairing ap-
proach allows one to split the overall (quite involved) task into sim-
ple steps: we always start by constructing a triangle mesh defining
the global topology. This is easy because noG1 or higher bound-
ary conditions have to be satisfied. Then we can apply the discrete
fairing algorithm to generate a sufficiently dense point set on the ob-
jective surface. This part includes the refinement and energy mini-
mization but it is almost completely automatic and does not have to
be adapted to the particular application. In a last step we fit poly-
nomial patches to the refined data. Here we can restrict ourselves
to pure fitting since the fairing part has already been taken care of
during the generation of the dense data. In other words, the discrete
fairing has recovered enough information about an optimal surface
such that staying as close as possible to the generated points (in a
least squares sense) is expected to lead to high quality surfaces. To
demonstrate this methodology we give two simple examples.

First, consider the point data in Figure 8. The very sparsely
scattered points in the middle region make the task of interpolation
rather difficult since the least squares matrix for a locally supported
B-spline basis might become singular. To avoid this, fairing terms
would have to be included into the objective functional. This how-
ever brings back all the problems mentioned earlier concerning the
possibly poor quality of parameter dependent energy functionals
and the prohibitive complexity of non-linear optimization.

Alternatively, we can connect the points to build a spatial tri-
angulation. Uniform subdivision plus discrete fairing recovers the
missing information under the assumption that the original surface
was sufficiently fair. The un-equal distribution of the measured data
points and the strong distortion in the initial triangulation do not
cause severe instabilities since we can define individual parameteri-
zations for every vertex. These allow one to take the local geometry
into account.

Another standard problem in CAD is theblendingor filleting
between surfaces. Consider the simple configuration in Figure 9
where several plane faces (dark grey) are to be connected smoothly.
We first close the gap by a simple coarse triangular mesh. Such
a mesh can easily be constructed for any reasonable configuration
with much less effort than constructing a piecewise polynomial rep-
resentation. The boundary of this initial mesh is obtained by sam-
pling the surfaces to be joined.

We then refine the mesh and, again, apply the discrete fairing
machinery. The smoothness of the connection to the predefined
parts of the geometry is guaranteed by letting the blend surface
mesh overlap with the given faces by one row of triangles (all nec-
essary information is obtained by sampling the given surfaces). The
vertices of the triangles belonging to the original geometry are not
allowed to move but since they participate in the global fairness
functional they enforce a smooth connection. In fact this technique
allows to define Hermite-type boundary conditions.

Figure 8: The original data on the left is very sparse in the mid-
dle region of the object. Triangulating the points in space and dis-
cretely fairing the iteratively refined mesh recovers more informa-
tion which makes least squares approximation much easier. On the
right, reflection lines on the resulting surface are shown.

2.8 Conclusion

In this paper we gave a survey of currently implemented applica-
tions of the discrete fairing algorithm. This general technique can
be used in all areas of CAD/CAM where an approximation of the
actual surface by a reasonably fine triangular mesh is a sufficient
representation. If compatibility to standard CAD formats matters, a
spline fitting post-process can always conclude the discrete surface
generation or modification. This fitting step can rely on more infor-
mation about the intended shape than was available in the original
setting since adenseset of points has been generated.

As we showed in the previous sections, mesh smoothing and hole
filling can be done on the discrete structurebeforeswitching to a
continuous representation. Hence, the bottom line of this approach
is to do most of the work in the discrete setting such that the math-
ematically more involved algorithms to generate piecewise poly-
nomial surfaces can be applied to enhanced input data with most
common artifacts removed.

We do not claim that splines could ever be completely replaced
by polygonal meshes but in our opinion we can save a considerable
amount of effort if we use spline models only where it is really
necessary and stick to meshes whenever it is possible. There seems
to be a huge potential of applications where meshes do the job if we
find efficient algorithms.

The major key to cope with the genuine complexity of highly
detailed triangle meshes is the introduction of a hierarchical struc-
ture. Hierarchies could emerge from classical multi-resolution tech-
niques like subdivision schemes but could also be a by-product of
mesh simplification algorithms.

An interesting issue for future research is to find efficient and
numerically stable methods to enforce convexity preservation in the
fairing scheme. At least local convexity can easily be maintained
by introducing non-linear constraints at the vertices.

Prospective work also has to address the investigation of explicit
and reliable techniques to exploit the discrete curvature information
for the detection of feature lines in the geometry in order to split a
given mesh into geometrically coherent segments. Further, we can
try to identify regions of a mesh where the value of the curvature
is approximately constant — those regions correspond to special
geometries like spheres, cylinders or planes. This will be the topic
of a forthcoming paper.

References

[1] E. Catmull, J. Clark,Recursively generated B-spline surfaces
on arbitrary topological meshes, CAD 10 (1978), pp. 350–355



Figure 7: Visualizing the discrete curvature on a finite element mesh allows to detect artifacts without interpolating the data by a continuous
surface.

Figure 9: Creating a “monkey saddle“ blend surface to join six planes. Any blend surface can be generated by closing the gap with a triangular
mesh first and then applying discrete fairing.

[2] Celniker G. and D. Gossard,Deformable curve and surface
finite elements for free-form shape design, ACM Computer
Graphics25 (1991), 257–265.

[3] D. Doo and M. Sabin,Behaviour of Recursive Division Sur-
faces Near Extraordinary Points, CAD 10 (1978), pp. 356–
360

[4] N. Dyn, Subdivision Schemes in Computer Aided Geometric
Design, Adv. Num. Anal. II, Wavelets, Subdivisions and Ra-
dial Functions, W.A. Light ed., Oxford Univ. Press, 1991, pp.
36–104.

[5] Greiner G.,Variational design and fairing of spline surfaces,
Computer Graphics Forum13 (1994), 143–154.

[6] Hackbusch W., Multi-Grid Methods and Applications,
Springer Verlag 1985, Berlin.

[7] Hagen H. and G. Schulze,Automatic smoothing with geomet-
ric surface patches, CAGD 4 (1987), 231–235.

[8] Kobbelt L., A variational approach to subdivision, CAGD 13
(1996), 743–761.

[9] Kobbelt L., Interpolatory subdivision on open quadrilateral
nets with arbitrary topology, Comp. Graph. Forum15 (1996),
409–420.

[10] Kobbelt L.,Discrete fairing, Proceedings of the Seventh IMA
Conference on the Mathematics of Surfaces, 1997, pp. 101–
131.

[11] J. Lane and R. Riesenfeld,A Theoretical Development for
the Computer Generation and Display of Piecewise Polyno-
mial Surfaces, IEEE Trans. on Pattern Anal. and Mach. Int.,
2 (1980), pp. 35–46

[12] Moreton H. and C. S´equin, Functional optimization for fair
surface design, ACM Computer Graphics26 (1992), 167–
176.

[13] Taubin G.,A signal processing approach to fair surface de-
sign, ACM Computer Graphics29 (1995), 351–358

[14] Welch W. and A. Witkin,Variational surface modeling, ACM
Computer Graphics26 (1992), 157–166

[15] Welch W. and A. Witkin,Free-form shape design using trian-
gulated surfaces, ACM Computer Graphics28 (1994), 247–
256





Chapter 9

Subdivision Cookbook

Speaker: Joe Warren





A Cookbook for Variational Subdivision

Joe Warren Henrik Weimer
Department of Computer Science

Rice University

Abstract

These course notes will attempt to answer the following questions:What is
subdivision? How can the rules for subdivision schemes be derived in a systematic
manner? How can these rules be extended to handle special topological features
such as extraordinary points or creases?We will argue that most subdivision
schemes correspond to a special type of multigrid method that generates shapes
which solve (or nearly solve) a variational problem. These subdivision schemes
are influenced by two factors: the variational functional and the local grid topol-
ogy. Using a recipe based on this observation, we will build subdivision schemes
for several interesting examples including B-splines, minimum energy curve net-
works, membrane splines and fluid flow.

1 Introduction

Computer graphics intrinsically depends on the mathematical and algorithmic repre-
sentation of shape. Traditionally, smooth shapes have been represented using para-
metric representations such as B-splines or implicit representations such as algebraic
surfaces. During the last two decades, subdivision has evolved as a simple yet flexible
method for the modeling of geometric shapes. Starting with a coarse polyhedron, a
subdivision scheme defines a sequence of increasingly dense polyhedra that converge
to a smooth limit shape.

Modeling with subdivision is simple and easy to implement since only discrete
geometric entities such as points, edges and polygons are involved. Furthermore, the
transformation rules that yield the next finer shape are simple weighted averages of the
vertices of the coarser shape. Thus these transformations can be implemented easily
and computed very efficiently. Yet, subdivision schemes are flexible since the actual
subdivision rules can be chosen very generally. Subdivision schemes can be evaluated
locally, that is to say if only some part of the whole model shape is of interest, compu-
tational effort has only to be expended on the evaluation of the shape in that localized
area. Finally, modeling with subdivision gives us a multiresolution representation of
the shapes for granted: The control polyhedra at coarser levels approximate the limit
shape well and can be refined arbitrarily. Throughout the last few years, multiresolu-
tion surface modeling systems have been presented that exploit this idea (see [5], [13]).
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With these systems the user is allowed to modify the polygonal shape at any level of
subdivision and therefore has control over the shape of the object at any scale.

Much work has been dedicated to analyzing a subdivision scheme given as a set
of known subdivision rules. However, relatively little work has been done on methods
for systematically generating interesting subdivision schemes. Two main techniques
for generating subdivision schemes are known: Box-splines (see deBoor et. al [2]) are
based on the idea of repeated convolution and possess relatively simple subdivision
schemes. Unfortunately, box-splines are restricted to uniform grids. Extensions of
box-splines to topologically non-uniform grids (i.e. polyhedra) has traditionally been
done in a somewhat ad-hoc manner that defies generalization (see Loop [7]).

Variational methods (Kobbelt [4], Mallet [8], Warren and Weimer [10],[11]) gener-
ate subdivision schemes as the solution process to certain types of variational problems.
Given an initial shape, the subdivision scheme generates a sequence of shapes converg-
ing to a limit shape that follows the initial shape and minimizes a functional associated
with the variational problem. These notes will show that the actual rules for these
variational subdivision schemes are determined by two factors:

� the variational functional, and,

� the local grid topology.

Variational methods have been very successful in Computer Aided Geometric De-
sign because these methods yield fair, smooth shapes. The beauty of the variational
approach to subdivision is that the known box-splines can be subsumed as a special
case (see Warren and Weimer [11]) with non-uniform grids being handled in a system-
atic manner. In these notes, we will demonstrate a simple ”recipe” that allows one to
systematically design customized subdivision schemes. This method can easily handle
special topological features such as extraordinary points and creases. First, we review
some common methods for solving variational problems. As we shall see, these meth-
ods are intrinsically related to variational subdivision.

2 Multigrid

At its most basic level, variational modeling entails finding a shape defined over a
given domain that minimizes a given continuous functional. Due to the difficulties of
manipulating continuous functionals, a standard approach is to discretize the domain
and to convert the problem into one of minimizing a corresponding discrete functional.
By splitting the problem domain into a discrete gridT, the corresponding variational
solution can be approximated by a discrete coefficient vectorp with one value per grid
point in T . The beauty of this approach is that many important variational problems
can now be expressed as the minimization of a quadratic formpTEp whereE is a
symmetric, positive definite matrix whose entries depend on the variational functional.

This matrixE is often referred to as theenergy matrixassociated with the vari-
ational problem.E expresses a discrete approximation to the continuous variational
functional overT. Using basic calculus, it is easy to show thatpTEp is minimized
if and only if E p= 0. Based on this observation, the rows ofE are often viewed as
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discrete differences that approximate the partial differential equation associated with
the variational problem (via the Euler-Lagrange equations). SincepTEp is trivially
minimized by p = 0, extra conditions are imposed on the minimization to ensure a
non-trivial solution. As we shall see, the choice of these extra conditions is very im-
portant. For now, we simply consider systems of the form

E p = b;

where the entries ofb capture the associated boundary conditions.
This system of linear equations can be solved using a direct solver, such as Gaus-

sian elimination. However, in many cases, the gridT and its associated energy matrix
E is so large that using a direct solver is impractical due to running time and space
requirements. Fortunately, the matricesE associated with most variational problems
are very sparse. Traditional iterative solution methods such as the Jacobi or Gauss-
Seidel iteration can solve such systems of moderate size. Given an initial guess, these
methods produce increasinglyaccurate solutions using localized, iterativeupdate oper-
ations. See Varga [9] for an introduction to these techniques.

However, in practice, these iterative solution methods exhibit a very curious behav-
ior: high-frequency errors are eliminated very fast, within a few iterations. However,
low-frequency errors, governing the global appearance and nature of the solution, are
eliminated only very slowly. In fact, one often observes that iterative solvers of this
type ”stall” after a certain number of iterations and the solution only improves very
marginally once high-frequency errors have been eliminated. Multigrid methods try to
circumvent this problem of ”stalling”. Using a sequence of denser and denser grids,
multigrid computes solutions in a hierarchical fashion. If we denote the sequence of
domain grids byTi and the corresponding energy matrices byEi, then the multigrid
method attempts to find a sequence of vectorspi satisfying the equation

Ei pi = bi (1)

for increasingi, i.e. for increasingly dense grids. Typically, the solution process at
level i consists of three steps (see Briggs [1] for more details):

1. Prediction: Compute an initial guessp0
i to the exact solutionpi. This initial

guess is derived from the solutionpi�1 on the next coarser grid using some type
of linear prediction function. In terms of matrix notation, this prediction step can
be written as

p0
i = Si�1pi�1

whereSi�1 is a matrix that maps vectors overTi�1 to vectors overTi . In multigrid
terminology,Si�1 is a prolongation operator. A common choice for this predic-
tion operation in a typical multigrid method is piecewise linear interpolation.

2. Smoothing: Improve the guessp0
i usingk rounds of an iterative method such as

Jacobi or Gauss-Seidel iteration. These iterative methods have the form:

pj+1
i = Ai p

j
i +Bibi (2)
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whereAi andBi are matrices that depend onEi and the type of smoothing method
chosen. If we letr j

i denote the residualEi p
j
i � bi , then this residual decreases

according to the equation:
r j+1
i = Air

j
i :

3. Coarse grid correction: Restrict the residualrk
i to the next coarser gridTi�1 by

eliminating all entries inrk
i which do not correspond to a gridpoint inTi�1. Given

this restricted residualri�1, solve the equationEi�1ei�1 = ri�1 onTi�1. Finally,
add the correction termei = Si�1ei�1 to the current approximationpk

i .

Note the interaction of these three steps: At a given level of the multigrid process,
high frequency errors are eliminated very rapidly due to the smoothing in step two. Of
course, low frequency errors still remain after smoothing. However, restricting these
low frequency errors to coarser grids eventually turns the errors into high frequency
errors which are quickly eliminated by the smoothing operation on the coarse grid. In
practice, multigrid has proven very effective at solving systems of linear equations of
this type. As we shall see in the next section, multigrid and subdivision are intrinsically
related.

3 Subdivision

For those familiar with subdivision, it is clear that subdivision and multigrid share some
striking similarities. Each method produces a sequence of vectorspi that converge to
some ”interesting” limit shape. In fact, if we closely examine the structure of multigrid,
we can express subdivision as a special case of multigrid. Consider a version of multi-
grid in which only the prediction step is carried out at each level (i.e. the smoothing
and coarse grid correction steps are omitted). This process would define a sequence of
vectorsp0

i satisfying
p0

i = Si�1p0
i�1:

This process is exactly subdivision! The predictorSi�1 is simply a subdivision
matrix. Of course, the limit shape produced by this process depends on the type of pre-
dictor chosen. For a typical multigrid predictor, such as piecewise linear interpolation,
the limit of thep0

i asi ! ∞ is just a piecewise linear shape. To have any hope that this
subdivision process might produce a reasonable solution to the actual variational prob-
lem, we must base the predictorSi very carefully on the particular variational problem.
Note that if the predictorSi happens to produce a solutionp0

i whose corresponding
residualr0

i is always zero, then the smoothing and coarse grid correction steps could be
omitted without difficulty. PredictorsSi which produce zero residual areperfect pre-
dictors in the sense that they produce perfectlyaccurate solutions. Subdivision using
perfect predictors produces shapes that exactly satisfy the variational problem. We next
give a simple characterization for a general class of perfect predictorsSi in terms of the
energy matricesEi .
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3.1 Perfect predictors

By definition, the solution vectorspi satisfy the equationEi pi = bi where the matrix
Ei is a discrete version of the variational functional onTi . The vectorbi characterized
the boundary conditions of the variational problem onTi . The key in our derivation of
perfect predictors is the structure of the right-hand sidebi. In particular, we suggest
a specific structure for thebi that results in a multigrid scheme with perfect predic-
tors whose rows are either locally supported or highly localized. In particular, this
choice replicates many known subdivision schemes such as those for B-splines and
box-splines.

Let Ui be theupsampling matrixthat takes a vector overTi into a vector over the
next finer gridTi+1. Ui maps the entries of these vectors as follows: entries correspond-
ing to grid points inTi are replicated; entries corresponding to grid points inTi+1�Ti

are set to zero. Thus, the upsampling matrixUi consists of rows that are either zero (for
new grid points) or a standard unit vector (for old grid points). Now, if we choosebi to
have the form

bi = Ui�1Ui�2:::U0E0p0;

then equation 1 becomes

Ei pi =Ui�1:::U0E0p0: (3)

Standard interpolatory methods force minimization where the solutionspi interpolate
the values ofp0 on the initial gridT0. Instead, equation 3 forces minimization where
the differencesEi pi interpolate the differencesE0p0 at grid points ofT0. Repeated
upsampling forces the remaining differences ofEi pi at grid points inTi�T0 to be zero,
thus ensuring minimization ofpTE p (see Warren and Weimer [11] for more details).
Given this framework, we can now characterize perfect predictors for the multigrid
scheme defined by equation 3.

Theorem:Given a solutionpi�1 to equation 3, letpi be the guess produced by the
predictorSi�1 (i.e. pi = Si�1pi�1). If Si�1 satisfies the equation

EiSi�1 =Ui�1Ei�1; (4)

thenSi�1 is a perfect predictor.
Proof: Multiply both sides of equation 4 bypi�1 from the right. Next, apply the

right-hand side of equation 3 toEi�1pi�1. Sincepi = Si�1pi�1, we have shown thatpi

also satisfies equation 3.

3.2 Example: Minimum energy curves

Historically, splines were a commonly used drafting tool in mechanical and engineer-
ing design, before the advent of computer aided design systems. Using a thin, flexible
strip of metal or wood a designer could draw smooth curves by first anchoring the strip
to a sequence ofn+1 points on the drafting table and then letting the strip slide freely
into a minimum energy configuration. Mathematically, this strip of metal or wood
could be modeled by a curvep[t] wheret 2 [0;n] (as a convention throughout these
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notes, continuous functions are denoted by bold face letters). The bending energy of
p[t] can be approximated by the continuous functional

E[p[t]]=
Z n

0
p(2)[t]

2
dt: (5)

The associated variational problem is to minimizeE[p[t]] subject top[ j ] interpolat-
ing the j th anchor point. The minimizing functions for this particular problem are
well-known: p[t] is a C2 piecewise cubic function known as anatural cubic spline.
Cubic splines are one of the fundamental tools of geometric design. In particular, they
possess a locally supported basis, the B-spline basis, with a number of remarkable
properties including a particularly simple subdivision scheme. Our goal in this section
is to discretize cubic splines, convert the problem to the multigrid setting and then to
systematically derive the subdivision scheme for cubic B-splines as a consequence of
equation 3. Later throughout these notes we will generalize this methodology to derive
subdivision schemes for other interesting variational problems.

A typical discretization of the problem from equation 5 is to replacep[t] by a poly-
gon p = (p0; p1; :::p2n). The even index vertices ofp are placed at then+ 1 anchor
points. The remaining, odd index vertices ofp are positioned such that the discrete

bending energy ofp is minimized. Thus, the vertexpj should approximatep
h

j
2

i
. In

this case, the discrete analog ofE[p[t]] is the functional

E[p] = 8
2n�1

∑
j=1

(pj�1�2pj + pj+1)
2
: (6)

The termpj�1�2pj + pj+1 is a discrete approximation to the continuous expression
p(2)[t]. The summation is the discrete analog of integration. The constant 8 arises due
to the half integer grid spacing. This spacing causes the second difference term to be
normalized by a factor of 4. Squaring these terms raises this factor to 16. This spacing
also introduces an extra factor of1

2 into the summation. Thus, the total effect of halving
the grid spacing is to multiply the energy functional by a factor of 8.

Moving this process into a multigrid setting, the polygonp is replaced by a se-
quence of polygonspi each of whom haven� 2i vertices. Each polygonpi has those
vertices with indices that are multiples of 2i fixed at the anchor points. The remaining
vertices are positioned to minimize the functional

E[pi] = 8i �
2i n�1

∑
j=1

((pi) j�1�2(pi) j +(pi) j+1)
2
:

Since these discrete functionalsE[pi] converge to the continuous functionalE[p[t]]
as i ! ∞, the polygonspi converge top[t] as i ! ∞. Using the energy matricesEi

associated with the discrete functional we can write

E[pi] = pi
TEi pi

where, away from the boundary, the rows of the matricesEi are all shifts of the single
sequence 8i � (1;�4;6;�4;1). Note that this sequence encodes the mask for a fourth
difference.
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To employ equation 3, we distinguish two kinds of local grid configurations. The
interior of the polygonpi is topologically uniform with all grid points looking similar.
Near the boundary of the grid, i.e. at the endpoints ofpi , we distinguish among the
grid points based on their distance from the actual boundary. Our goal is now to find
two perfect predictors, one for the interior of the polygon and one for the endpoints
of the polygon. For the interior, we note that upsampling consists in splitting coarse
coefficients apart by inserting a 0 inbetween any two adjacent coefficients. In terms of
matrices, the conditionEiSi�1 =Ui�1Ei�1 can be written as

8

0
BBBBBBBB@

: : : : : : : : : : :

: 1 �4 6 �4 1 0 0 0 0 :

: 0 1 �4 6 �4 1 0 0 0 :

: 0 0 1 �4 6 �4 1 0 0 :

: 0 0 0 1 �4 6 �4 1 0 :

: 0 0 0 0 1 �4 6 �4 1 :

: : : : : : : : : : :

1
CCCCCCCCA

:Si�1=

0
BBBBBBBB@

: : : : : : :

: 0 1 0 0 0 :

: 0 0 0 0 0 :

: 0 0 1 0 0 :

: 0 0 0 0 0 :

: 0 0 0 1 0 :

: : : : : : :

1
CCCCCCCCA

:

0
BBBBBBBB@

: : : : : : :

: 6 �4 1 0 0 :

: �4 6 �4 1 0 :

: 1 �4 6 �4 1 :

: 0 1 �4 6 �4 :

: 0 0 1 �4 6 :

: : : : : : :

1
CCCCCCCCA

:

Here, the dots indicate that only a small portion of the matrices is shown. However,
since the rows in the system repeat, this portion is sufficient to determine a perfect
predictor for the interior of the grid. Since this system is rank deficient, there is more
than one possible solution to the system above. However, there is one particularly nice
solution with minimal support. This predictor has the form

Si�1 =
1
8

0
BBBBBBBBBBBBBBBB@

: : : : : : :

: 6 1 0 0 0 :

: 4 4 0 0 0 :

: 1 6 1 0 0 :

: 0 4 4 0 0 :

: 0 1 6 1 0 :

: 0 0 4 4 0 :

: 0 0 1 6 1 :

: 0 0 0 4 4 :

: 0 0 0 1 6 :

: : : : : : :

1
CCCCCCCCCCCCCCCCA

:

This matrix exactly encodes the subdivision scheme for uniform cubic B-splines due
to Lane and Riesenfeld [6]. Note the simple structure ofSi�1: all columns contain the
same sequence of coefficients(1;4;6;4;1) and the matrix has a 2-to-1-slant, i.e. as we
go over one column to the right, the column is shifted down by two. The action of
Si�1 on a polygonpi�1 is as follows: vertices ofpi are positioned to lie either on the
midpoint of edges ofpi�1 or near vertices ofpi�1 (by taking 6

8 of a vertex plus1
8 of

both of its neighbors).
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0 1 2 3 4 0 1 2 3 4

Figure 1: Subdivision for cubic B-splines.

The second type of subdivision rule arises at the endpoints of the polygons. There,
the matricesEi have a slightly more complicated structure. Equation 4 has in this case
the form

8

0
BBBBBB@

1 �2 1 0 0 0 0 :

�2 5 �4 1 0 0 0 :

1 �4 6 �4 1 0 0 :

0 1 �4 6 �4 1 0 :

0 0 1 �4 6 �4 1 :

: : : : : : : :

1
CCCCCCA

:Si�1 =

0
BBBBBB@

1 0 0 0 0 :

0 0 0 0 0 :

0 1 0 0 0 :

0 0 0 0 0 :

0 0 1 0 0 :

: : : : : :

1
CCCCCCA

:

0
BBBBBB@

1 �2 1 :

�2 5 �4 :

1 �4 6 :

0 1 �4 :

0 0 1 :

: : : :

1
CCCCCCA

:

It is now easy to verify thatSi�1 has the form

Si�1=
1
8

0
BBBBBBBBBB@

8 0 0 :

4 4 0 :

1 6 1 :

0 4 4 :

0 1 6 :

0 0 4 :

0 0 1 :

: : : :

1
CCCCCCCCCCA

:

Again,Si�1 has a simple structure. Its first row forces the endpoint ofpi to interpolate
the endpoint ofpi�1. The remaining rows agree with interior subdivision rules. In fact,
this rule produces cubic splines satisfying the natural boundary condition.

These predictors (subdivision rules)Si can easily generate arbitrarily dense poly-
gonspi . Because these predictors are perfect (i.e. satisfy equation 4), the polygonspi

converge to the natural cubic splinep[t]. Figure 1 shows an example of three rounds
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of prediction (i.e. subdivision) applied to the initial polygonf(0;4), (1;12), (2;10),
(3;5), (4;8)g.

4 A recipe for variational subdivision

The previous section argued that subdivision can be viewed as a multigrid method that
employs a perfect predictor. In every round of the multigrid process, the predictor pro-
duces an error free guess for the next solution. Thus, smoothing and coarse grid error
correction are rendered unnecessary. As an example, we derived perfect predictors
for cubic B-splines and noted that the resulting matrices have a very simple structure
with local support. This section presents a general ”recipe” for creating a variational
subdivision scheme based on these ideas. The recipe is outlined in figure 2 below.

1. Define a discrete variational functional,

2. Generate a catalog of simple mesh types arising in the
problem,

3. For each mesh type, solve for the locally supported pre-
dictorSi that minimizesjjEiSi�1�Ui�1Ei�1jj.

Figure 2: A recipe for custom subdivision schemes.

The minimization process in step 3 is necessary because for many important prob-
lems a perfect predictor with local support does not exist. However, by restrictingSi�1

to have fixed support and minimizing the equationjjEiSi�1�Ui�1Ei�1jj, we can com-
pute predictors that produce a reasonablyaccurate approximation to the exact solution.
The corresponding subdivision schemes are locally supported and produce limit shapes
that are good qualitative approximations to the exact solution. In fact, by increasing
the support ofSi�1 the solution can be made arbitrarily precise. Of course, highly
local schemes cannot match theaccuracy of a full multigrid method. However, at a
minimum, they provide an excellent initial guess for the smoothing and coarse grid
correction portions of full multigrid.

4.1 Relation to other work

Subdivision has been studied significantly over the course of the last decades. The
specific link between subdivision and variational problems has also been investigated
by Kobbelt [4] and Mallet [8]. Each proposes subdivision schemes consisting of a
simple predictor (perhaps piecewise linear interpolation or some known subdivision
scheme) followed by some number of smoothing steps. (In multigrid terminology, this
process is referred to as nested iteration.) Both authors neglect the possibility that
a predictor customized to the particular variational problem might produce superior
results.
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Both Kobbelt [4] and Mallet [8] propose interpolatory schemes. The schemes pro-
posed here are approximating in the sense that the limit shape follows an initial shape
while minimizing the variational problem. Traditionally, approximating functions,
such as B-splines, have been more successful in geometric design applications than
their interpolating counterparts because the resulting solutions typically oscillate less
and have more localized support. In some cases (e.g. B-splines and box-splines), there
exist exact, approximating schemes with locally supported bases whose interpolating
counterparts have globally supported bases. Finally, there exist variational problems
whose interpolating schemes do not converge in any reasonable sense, while their ap-
proximating counterparts do. One such example are the membrane splines discussed
later in the paper.

5 Examples

This section applies the recipe of figure 2 to several interesting example problems.
First, we generalize the subdivision scheme for minimum energy curves (B-splines)
given in the previous section to a network of curves. Next, we derive a subdivision
scheme for surfaces that mimic an elastic membrane. Then, we combine these two
problems and produce a subdivision scheme for a minimum energy curve network
connected by elastic membranes. Finally, we conclude with some ideas on further
applications of the recipe.

5.1 Minimum energy curve networks

In the case of minimum energy curves, our analysis was carried out entirely in the
discrete domain using a sequence of polygons. Here, we take a similar approach for
curve networks. Apolygon networkconsists of a set of vertices connected by a set
of edges. Note that more than two edges in the network may be incident on a single
vertex of the network. Topologically, subdivision of a polygon network corresponds to
splittingeach edge into two connected edges. In this framework, a curve network is the
limit of a sequence of increasingly dense polygonal networks produced by subdivision.
Our goal is to construct subdivision rules that position vertices on the polygon network
such that the limit of the process is a minimum energy curve network.

5.1.1 Define the energy functional

We first need to generalize the functional of equation 6 to the case of polygon net-
works. The crux of the functional in equation 6 was the termpj�1�2pj + pj+1. This
expression measured the amount that the polygon(pj�1; pj; pj+1) ”bends”. In the case
of polygon networks, several curves may pass through a vertex. Thus, several terms
of this form may be necessary for each vertex. We suggest tagging thej th vertex of
the network with a lista[ j ] of neighbor pairs. This tagging scheme allows the user a
great deal of flexibility in creating interesting polygon networks. The discrete energy
functional for the polygon network can be written as:
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E[pi] = 8i
jpi j

∑
j=1

ja[ j ]j

∑
k=i

((pi)a[ j ;k;1]�2(pi)k+(pi)a[ j ;k;2])
2
: (7)

Inheritance of these tags during subdivision is straightforward. A new vertex is inserted
between a pair of adjacent old vertices and is assigned a single tag pair consisting of
the two old vertices. Neighbor tags for old vertices are updated by replacing an old
adjacent vertex with the vertex inserted on the corresponding edge.

5.1.2 Generate a catalog of simple mesh types

We next identify the various types of local configurations that are possible in a poly-
gon network. In theory, there are an infinite number of possible configurations. For
example, any number of curves can pass through a common vertex! In practice, we
focus on a few canonical vertex configurations and analyze those. The simplest two
vertex configurations have already been identified and analyzed. For vertices on the
interior of a curve and at the isolated endpoint of a curve, the energy functional of
equation 7 degenerates into the energy functional of equation 6. Since the analysis of
the previous section was entirely local, the subdivision rules for these two vertex con-
figurations remain unchanged. Due to the interpolatory nature of the endpoint rule, the
rule for several curves terminating at a common vertex remains simple interpolation.
We now focus on three important types of vertex configurations. Other types of vertex
configurations can typically be expressed as variants or combinations of these three
configurations.

� X vertex: Two curves smoothly intersecting at a vertex.

� Y vertex: One curve smoothly branching into two curves at a vertex.

� T vertex: One curve terminating at a vertex on a smooth curve.

5.1.3 Solve for locally supported predictors

To apply equation 4 for a particular vertex configuration, we first construct the matrices
Ei appropriate for the configuration. As in the previous case, all polygons incident
on the vertex are assumed to extend infinitely. Note that this assumption causes the
topology of the network to be locally invariant under subdivision. As a result, all
matricesEi are multiples of a single common, infinite matrixE. Given this matrix
E, we next construct the predictorS defining the subdivision scheme at the vertex.
First, we fixed the support of the rows ofS to have an appropriate size (in this case,
support equivalent to that of cubic splines). Next, we construct the matrixSwith non-
zero entries expressed as indeterminates. Extra conditions such as constant precision,
linear precision or symmetry can also be enforced in terms of constraints on these
indeterminates.

Given the matricesE andS, we are now ready to minimize the matrix expression
jj8E S�U Ejj. This expression can be minimized with respect to a variety of norms.
In general, we recommend using the∞-norm (although we have also used the 2-norm).
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Due to the repetition of rows inE, minimizing this norm leads to a linear program
in a small number of variables that can be solved in a reasonably efficient manner
(see [10] for more details). Unfortunately, these vertex configurations do not admit
perfect predictors with local support, i.e. the matrix norm cannot be forced to zero.
However, they do have simple, locally supported rules that provide a quite reasonable
approximation to the true minimizer. Figure 3 summarizes these rules.

1 1

11

12

2 2

0

121 1

2

12

Figure 3: Subdivision rules for various vertex configurations

Figure 4 shows three curve networks produced by these rules and compares them
to the true minimum energy curve networks. The top row shows an example using
the X rule. The middle row shows an example using the Y rule. Note that the locally
supported subdivision rule for a Y vertex fails to produce the smooth branching of the
exact minimum energy curve network because the exact solution is globally supported.
The bottom row shows an example using the T rule. Based on experimentation with a
wide range of vertex configurations, we propose a general rule for subdivision at vertex
i of the original network. Leta[i] be the list of neighbor pairs associated with vertex
i: weight vertexi by 3

4; weight the remaining neighbors of vertexi by the number of
times that they appear ina[i] divided by 8� ja[i]j. Note that this general rule reproduces
the special rules given in figure 3.

5.2 Membrane splines

This section develops a subdivision scheme producing spline surfaces that behave like
an elastic membrane. Given a triangulated polyhedron, the scheme produces a se-
quence of increasingly faceted polyhedra using the standard 4-1 triangular face split.
The resulting sequence of triangulated polyhedra converges to a surface that follows
the initial polyhedron and approximately minimizes a simple notion of discrete elas-
tic energy. This scheme is essentially a generalization of the functional subdivision
scheme based on Laplace’s equation that appeared in Warren and Weimer [11].

5.2.1 Define the energy functional

Given a polyhedronp with triangular faces, leta[i] denote a list containing the indices
of those vertices adjacent to vertexi. One reasonable measure of the elastic energy of
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Figure 4: Initial networks (left), minimum energy curve networks via subdivision (mid-
dle), and exact solutions (right).

p is the sum of the squares of the edge lengths inp,

E[p] =
1
2

jpj

∑
i=1

ja[i]j

∑
j=i

(pi � pa[i; j ])
2
: (8)

If E[p] is expressed in matrix form aspTE p, thenE is simply the Laplacian of the poly-
hedronp. In the case of polygon networks, a normalizing constant of 8i was necessary
when generalizing the functional to a sequence of polygon networkspi produced by
subdivision. For membrane energy, this constant conveniently works out to be 1: The
factor 4 induced by doubling the edge length is canceled by the factor1

4 for summing
over a two-dimensional mesh. Therefore, the functional of equation 8 can be applied
independent of the level of subdivision.

5.2.2 Generate a catalog of simple mesh types

Cataloging different types of local topologies for triangular meshes is straightforward.
The standard approach is to classify the mesh locally based on the valence of a vertex.
In the uniform case, all vertices of a triangular mesh have valence 6. Vertices with
valence other than 6 are classified asextraordinary points. Since subdivision leaves
the valence of these vertices unchanged while introducing only new vertices of valence
six, the meshes in our catalog consist of a single extraordinary point surrounded by an
infinite uniform triangular mesh. Note that the infinite energy matrixE associated with
such a mesh is again independent of the level of subdivision.
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5.2.3 Solve for locally supported predictors

Our approach follows that for polygon networks. Foreach mesh type, construct the
associated energy matrixE and fix a support for the predictorS. (For membranes, we
suggest the same support as used in Loop’s scheme [7]). Then, minimize the expression
jjE S�U Ejj where the entries ofSare treated as unknowns. Typically, the rules ofS
are first computed in the uniform case (i.e. valence 6). These uniform rules can then
be used to pad the matrixSthat expresses the subdivision rules at extraordinary points.

As in the case of minimum energy curve networks, it is impossible to satisfy
E S= U E exactly. Therefore, there does not exist a locally supported subdivision
scheme that behaves exactly like a membrane. However, there do exist simple, locally
supported subdivision rules that provide a reasonable approximation to the behavior of
a membrane. Figure 5 summarizes these rules. Note that these rules are not the exact
minimizer ofjjE S�U Ejj, but have the property that they are simple and close to the
true minimizer.

1

4

1

7n

-2

-2

-2 -2

-2

4

-2

-2

-2

Figure 5: Subdivision rules for membrane splines.

The figure 6 shows an example application of this subdivision scheme. A coarse
octahedron is shown on the top with increasing levels of subdivision below. Note
that the subdivision scheme produces a very ”spiky” shape. This effect models the
behavior of an elastic membrane. The surface spikes at coarse vertices and stretches
into a narrow tube to produce low elastic energy. In general, the subdivision scheme
yields a good low frequency approximation of the exact minimizer, in the sense that the
overall shape of the resulting objects isaccurate. However, there are also smaller spikes
scattered over the surfaces away from the original coarsest vertices. These extra spikes
are a result of the fact that the approximateSused in the subdivision scheme does not
exactly satisfyE S =U E. Specifically, those differences ofE Scorresponding to new
vertices are not exactly zero as required byU E.

At this point, we have two options. The first option is to increase the support
of the predictorS. This change will produce a better predictor and a moreaccurate
subdivision scheme. However, the resulting shapes will still exhibit the same problem
(although at a much reduced scale). Also, manipulating subdivision rules over larger
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Figure 6: Membrane spline defined via subdivision. Some of the large spikes were
truncated to focus on the interesting parts of the figure.

supports can be difficult due to the interactions of extraordinary points on the initial
coarse grid.

The second possibility is to employ several rounds of smoothing aftereach round
of subdivision (as proposed by Kobbelt [4] and Mallet [8]). Aftereach round of subdi-
vision, we suggest running several rounds of smoothingwith one crucial modification.
Recalling equation 2 (one round of subdivision withbi = Ui�1Ei�1pi�1), we can ex-
press standard smoothing as

pj+1
i = Ai p

j
i +Bi(Ui�1Ei�1pi�1) (9)

whereAi andBi depend onEi . Sincepi�1 has been produced by an inexact subdivision
scheme, many of the differences inEi�1pi�1 that are zero for the exact scheme are
actually non-zero for the inexact scheme. Instead of propagating these non-zero dif-
ferences, we suggest modifying the upsampling matrixUi�1 in equation 9 to upsample
only those differences whose corresponding exact differences are non-zero. Typically,
this change causes only differences corresponding to a subset of the vertices inp0 to
be upsampled. (Some entries inE0p0 may also be exactly zero.)
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Figure 7: Membrane spline defined via subdivision plus smoothing (3 rounds per level).
Some of the large spikes were truncated to focus on the interesting parts of the figure.

This modified smoothing effectively eliminates the extraneous spikes of figure 6
due to their high frequency nature. Combining the low frequency accuracy ofS with
the high frequency correction of smoothing yields a subdivision scheme that is visu-
ally accurate. Note that because the overall, low frequency shape yielded by the local
subdivision schemeS is very close to the exact solution, only a few rounds of smooth-
ing are necessary to eliminate all high frequency noise. Figure 7 shows this combined
scheme (employing 3 rounds of Jacobi smoothing) applied to the coarse octahedron.
The surface at the bottom of figure 7 is the exact solution.

Note that this subdivision scheme for membrane splines is approximating, not in-
terpolating. In particular, the spikes ofpi do not interpolate the vertices of the coarse
polyhedronp0. Instead, the spikes are determined by the differences ofE0 p0. If one
of these initial differences is zero, then the corresponding limit surface is smooth at
this vertex. Figure 8 illustrates a modification of the octahedron in which the bottom
vertex has been pushed upward to form a square pyramid. Again, the exact solution
is on the bottom right. Since the base of this pyramid is now planar, the difference in
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E0 p0 corresponding to this vertex is zero and, thus, the limit surface is smooth at this
vertex.

Figure 8: A membrane spline for a square pyramid (3 rounds of smoothing per level).

Finally, note that the lengths of the spikes in figures 7 and 8 diverge very gradually
as the number of rounds of subdivision increases. Fortunately, the exact scheme is
convergent everywhere except at the tips of these spikes. If instead one attempts to
force interpolation at the tips of the spikes, i.e. interpolation of the coarsest control
pointsp0, the resulting scheme converges to a limit surface consisting of a collection
of infinitesimally thin spikes joined at the centroid ofp0.

5.3 Membrane splines and minimum energy curve networks

The final example combines the subdivision schemes for minimum energy curve net-
works and membrane splines. The resulting scheme produces surfaces that mimic an
elastic membrane connecting a network of minimum energy curves. The input to the
scheme is an initial triangulated polyhedronp0 and a subsetn[p0] of the edges ofp0

that forms a discrete polygon network. Subsequent polyhedrapi are defined by 4-1
triangular face splits with the polygon network tags being inherited as usual.
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5.3.1 Define the energy functional

If En andEm are the energy functionals for curve networks and membranes respec-
tively, then the functional for the combined scheme can be written as:

E[p] = λ En[n[p]] + Em[p]: (10)

As λ increases,E[p] is dominated by the energy of the curve networkEn[n[p]]. In the
limit, as λ ! ∞, the surface behaves like a minimum energy curve network onn[p]
and an elastic membrane that interpolates the curve network on the rest ofp. If E[p] is
written in matrix form, then

E[p] = pT(λ En+ Em)p:

If the rows ofEn andEm are viewed as defining two sets of differences, one set char-
acterizing curve networks and the other one characterizing membranes, then these ma-
trices can be merged into a single difference matrixE that captures the behavior of
the functional asλ ! ∞: For vertices inn[p], place the corresponding rows ofEn into
E. For the remaining vertices ofp, place the corresponding rows ofEm into E. The
resulting non-symmetric difference matrixE characterizes surfaces consisting of a set
of elastic membranes interpolating a minimum energy curve network.

5.3.2 Generate a catalog of simple mesh types

For vertices on the curve network, no new cataloging is necessary since the membrane
energy has no effect on the curve network. As a first attempt, we distinguish vertices
on the interior of the membrane by their valence. Later, we will see that this catalog is
insufficient.

5.3.3 Solve for locally supported predictors

Since the catalog of simple mesh types for this combined scheme is simply the union
of the two previous catalogs, the subdivision rules for minimum energy curve networks
and membrane splines can be reused. The middle portion of figure 9 depicts several
rounds of this combined subdivision scheme (without smoothing) applied to an initial
octahedron (left) with two red curve loops lying on its surface.

Figure 9: Base octahedron (left) basic subdivision scheme (center left) , augmented
subdivision scheme (center right) and subdivision with three rounds of smoothing at
every level (right).
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Note that the resulting surface fails to behave like a membrane away from the curve
network. In particular, it bulges outward and exhibits large spikes at grid points that
should actually be smooth. The reason for this bad behavior is that the subdivision
matricesSi produced by the combined scheme are a poor solution to the equation
EiSi�1 = Ui�1Ei�1. The large residuals that result cause the spikes in the center left
of figure 9.

Figure 10: Several curve loops on a octahedron connected by elastic membrane subdi-
vision (left) and exact solution (right).

There are two solutions to this problem. First, we could augment our catalog of
local mesh topologies and design specialized subdivision rules for membrane vertices
that are employed near the curve network. These rules can be derived using a straight-
forward application of our standard recipe. The center right portion of figure 9 shows
an example application of these custom rules (with the same support as before) applied
to the base octahedron. Note that the large spikes are absent and the surface behaves
more like a membrane. However, the smaller high frequency spikes that plagued the
pure membrane scheme are still present. Another obvious drawback of this solution is
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Figure 11: A catenoid defined through subdivision and the exact solution (lower right).

that the resulting catalog of custom subdivision rules would be immense. The second
solution is more passable. We simply apply several rounds of the modified smooth-
ing used in conjunction with membrane splines. The smoothing eliminates the high
frequency spikes that result from the incompatibility of the membrane rules with the
curve network as shown in the right of figure 9.

Figure 10 shows an example of this scheme applied to an initial octahedron with
one, two and three minimum energy curve loops on its surface. The left column depicts
the result of subdivision combined with three rounds of smoothing per level; the right
column depicts the exact solution. Figure 11 shows a classical shape from surface
modeling, a catenoid. A cateniod is an elastic membrane that joins two parallel, circular
rings. The main characteristic of this shape is an inward pinching of the membrane to
minimize its elastic energy. The upper left portion of the figure depicts the initial
polygon p0 for the cateniod. Vertices ofp0 on the interior of the membrane were
positioned such thatE0p0 is zero for these vertices, thus forcing the membrane to be
smooth on its interior. The remaining portions of the figure depict subdivision plus
smoothing. The resulting smooth subdivision surface is shown in the lower left and the
exact solution on the lower right.
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5.4 Other applications

5.4.1 Subdivision scheme for lofted curve networks

Given a curve network, one typical problem is lofting: produce a surface that inter-
polates the curve network smoothly. The beauty of equation 10 is that the surface
functional used in place ofEm can be very general. If this functional penalizes sur-
face bending across edges in the curve network, the resulting surfaces will tend to
interpolate the curve network smoothly. The top row of figure 12 depicts an exam-
ple of a smooth subdivision scheme that interpolates the red minimum energy curve
network. Note that the surface has a discontinuous tangent plane across the upper red
curve. The bottom row depicts the same scheme adjusted to produce a surface that lofts
(i.e.smoothly interpolates) the curve network. The scheme is based on the following
discrete functional for triangulated polyhedra: edges of adjacent triangles contribute
energy based on their deviation from forming a parallelogram. An interesting prob-
lem for future work is developing a set of subdivision rules for a lofted version of the
scheme of Loop [7].

Figure 12: A subdivision surface smoothly interpolating a simple curve network

5.4.2 Subdivision scheme for fluid flow

Our last example does not involve modeling surfaces. Instead, we consider modeling
vector fields. In this case, the matricesEi are derived from the Navier-Stokes equations

that characterize the behavior of a fluid. A discrete vector field

�
ui

vi

�
satisfies these

equation ifEi

�
ui

vi

�
= 0. Our approach is to use equation 4 to derive a set of sub-

division rulesSi�1 such thatEiSi�1 'Ui�1Ei�1. The resulting subdivision scheme for
vector fields has the form: �

ui

vi

�
= Si�1

�
ui�1

vi�1

�
:

As i ! ∞, the limit of these discrete fields is a continuous vector field that follows the

initial vector field
�

u0

v0

�
and nearly satisfies the underlying Navier-Stokes equations.
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Weimer and Warren [12] describe this scheme in complete detail. Figure 13 gives an
example application of this scheme in three dimensions. Shown are a coarse, user-
defined vector field around a cylinder (left) and two rounds of subdivision (center left
and center right). The right portion of the figure depicts particles being traced through
the resulting smooth flow field.

Figure 13: Subdivision for fluid flow.

6 Summary

These course notes presented a recipe for the derivation of custom subdivisionschemes.
Following a few simple steps, this recipes allows one to derive schemes that model a
range of interesting objects described in terms of discrete energy functionals. The
examples demonstrated how subdivision rules for cubic B-splines, minimum energy
curve networks and membrane splines can be derived using this recipe. Finally, a
combination of energy functionals was used to derive a scheme that merges minimum
energy curve networks with membranes.
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Subdivision Surfaces in Character Animation
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Figure 1: Geri.

Abstract

The creation of believable and endearing characters in computer
graphics presents a number of technical challenges, including the
modeling, animation and rendering of complex shapes such as
heads, hands, and clothing. Traditionally, these shapes have been
modeled with NURBS surfaces despite the severe topological re-
strictions that NURBS impose. In order to move beyond these re-
strictions, we have recently introduced subdivision surfaces into our
production environment. Subdivision surfaces are not new, but their
use in high-end CG production has been limited.

Here we describe a series of developments that were required
in order for subdivision surfaces to meet the demands of high-end
production. First, we devised a practical technique for construct-

ing provably smooth variable-radius fillets and blends. Second, we
developed methods for using subdivision surfaces in clothing sim-
ulation including a new algorithm for efficient collision detection.
Third, we developed a method for constructing smooth scalar fields
on subdivision surfaces, thereby enabling the use of a wider class
of programmable shaders. These developments, which were used
extensively in our recently completed short filmGeri’s game, have
become a highly valued feature of our production environment.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation.

1 Motivation

The most common way to model complex smooth surfaces such
as those encountered in human character animation is by using a
patchwork of trimmed NURBS. Trimmed NURBS are used pri-
marily because they are readily available in existing commercial
systems such as Alias-Wavefront and SoftImage. They do, how-
ever, suffer from at least two difficulties:

1. Trimming is expensive and prone to numerical error.

2. It is difficult to maintain smoothness, or even approximate
smoothness, at the seams of the patchwork as the model is



Figure 2: The control mesh for Geri’s head, created by digitizing a
full-scale model sculpted out of clay.

animated. As a case in point, considerable manual effort was
required to hide the seams in the face of Woody, a principal
character inToy Story.

Subdivision surfaces have the potential to overcome both of these
problems: they do not require trimming, and smoothness of the
model is automatically guaranteed, even as the model animates.

The use of subdivision in animation systems is not new, but for a
variety of reasons (several of which we address in this paper), their
use has not been widespread. In the mid 1980s for instance, Sym-
bolics was possibly the first to use subdivision in their animation
system as a means of creating detailed polyhedra. The LightWave
3D modeling and animation system from NewTek also uses subdi-
vision in a similar fashion.

This paper describes a number of issues that arose when we
added a variant of Catmull-Clark [2] subdivision surfaces to our
animation and rendering systems, Marionette and RenderMan [17],
respectively. The resulting extensions were used heavily in the cre-
ation of Geri (Figure 1), a human character in our recently com-
pleted short filmGeri’s game. Specifically, subdivision surfaces
were used to model the skin of Geri’s head (see Figure 2), his hands,
and his clothing, including his jacket, pants, shirt, tie, and shoes.

In contrast to previous systems such as those mentioned above,
that use subdivision as a means to embellish polygonal models, our
system uses subdivision as a means to define piecewise smooth sur-
faces. Since our system reasons about the limit surface itself, polyg-
onal artifacts are never present, no matter how the surface animates
or how closely it is viewed.

The use of subdivision surfaces posed new challenges through-
out the production process, from modeling and animation to ren-
dering. In modeling, subdivision surfaces free the designer from
worrying about the topological restrictions that haunt NURBS mod-
elers, but they simultaneously prevent the use of special tools that
have been developed over the years to add features such as variable
radius fillets to NURBS models. In Section 3, we describe an ap-
proach for introducing similar capabilities into subdivision surface
models. The basic idea is to generalize the infinitely sharp creases
of Hoppeet. al. [10] to obtain semi-sharp creases – that is, creases
whose sharpness can vary from zero (meaning smooth) to infinite.

Once models have been constructed with subdivision surfaces,
the problems of animation are generally easier than with corre-
sponding NURBS surfaces because subdivision surface models are
seamless, so the surface is guaranteed to remain smooth as the
model is animated. Using subdivision surfaces for physically-based

(a) (b)

(c) (d)

Figure 3: Recursive subdivision of a topologically complicated
mesh: (a) the control mesh; (b) after one subdivision step; (c) after
two subdivision steps; (d) the limit surface.

animation of clothing, however, poses its own difficulties which we
address in Section 4. First, it is necessary to express the energy
function of the clothing on subdivision meshes in such a way that
the resulting motion does not inappropriately reveal the structure
of the subdivision control mesh. Second, in order for a physical
simulator to make use of subdivision surfaces it must compute col-
lisions very efficiently. While collisions of NURBS surfaces have
been studied in great detail, little work has been done previously
with subdivision surfaces.

Having modeled and animated subdivision surfaces, some
formidable challenges remain before they can be rendered. The
topological freedom that makes subdivision surfaces so attractive
for modeling and animation means that they generally do not
admit parametrizations suitable for texture mapping. Solid tex-
tures [12, 13] and projection textures [9] can address some pro-
duction needs, but Section 5.1 shows that it is possible to go a good
deal further by using programmable shaders in combination with
smooth scalar fields defined over the surface.

The combination of semi-sharp creases for modeling, an appro-
priate and efficient interface to physical simulation for animation,
and the availability of scalar fields for shading and rendering have
made subdivision surfaces an extremely effective tool in our pro-
duction environment.

2 Background

A single NURBS surface, like any other parametric surface, is lim-
ited to representing surfaces which are topologically equivalent to
a sheet, a cylinder or a torus. This is a fundamental limitation for
any surface that imposes a global planar parameterization. A single
subdivision surface, by contrast, can represent surfaces of arbitrary
topology. The basic idea is to construct a surface from an arbitrary
polyhedron by repeatedly subdividing each of the faces, as illus-
trated in Figure 3. If the subdivision is done appropriately, the limit
of this subdivision process will be a smooth surface.

Catmull and Clark [2] introduced one of the first subdivision
schemes. Their method begins with an arbitrary polyhedron called



the control mesh. The control mesh, denotedM0 (see Figure 3(a)),
is subdivided to produce the meshM1 (shown in Figure 3(b)) by
splitting each face into a collection of quadrilateral subfaces. A
face havingn edges is split inton quadrilaterals. The vertices of
M1 are computed using certain weighted averages as detailed be-
low. The same subdivision procedure is used again onM1 to pro-
duce the meshM2 shown in Figure 3(c). The subdivision surface is
defined to be the limit of the sequence of meshesM0;M1; ::: created
by repeated application of the subdivision procedure.

To describe the weighted averages used by Catmull and Clark it
is convenient to observe that each vertex ofMi+1 can be associated
with either a face, an edge, or a vertex ofMi ; these are called face,
edge, and vertex points, respectively. This association is indicated
in Figure 4 for the situation around a vertexv0 of M0. As indicated
in the figure, we usef ’s to denote face points,e’s to denote edge
points, andv’s to denote vertex points. Face points are positioned
at the centroid of the vertices of the corresponding face. An edge
point ei+1

j , as indicated in Figure 4 is computed as

ei+1
j =

vi +ei
j + f i+1

j�1+ f i+1
j

4
; (1)

where subscripts are taken modulo the valence of the central vertex
v0. (The valence of a vertex is the number of edges incident to it.)
Finally, a vertex pointvi is computed as

vi+1 =
n�2

n
vi +

1
n2 ∑

j
ei

j +
1
n2 ∑

j
f i+1
j (2)

Vertices of valence 4 are called ordinary; others are called extraor-
dinary.
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Figure 4: The situation around a vertexv0 of valencen.

These averaging rules — also called subdivision rules, masks, or
stencils — are such that the limit surface can be shown to be tangent
plane smooth no matter where the control vertices are placed [14,
19].1

Whereas Catmull-Clark subdivision is based on quadrilaterals,
Loop’s surfaces [11] and the Butterfly scheme [6] are based on tri-
angles. We chose to base our work on Catmull-Clark surfaces for
two reasons:

1. They strictly generalize uniform tensor product cubic B-
splines, making them easier to use in conjunction with exist-
ing in-house and commercial software systems such as Alias-
Wavefront and SoftImage.

2. Quadrilaterals are often better than triangles at capturing the
symmetries of natural and man-made objects. Tube-like sur-
faces — such as arms, legs, and fingers — for example, can
be modeled much more naturally with quadrilaterals.

1Technical caveat for the purist: The surface is guaranteed to be smooth
except for control vertex positions in a set of measure zero.

Figure 5: Geri’s hand as a piecewise smooth Catmull-Clark surface.
Infinitely sharp creases are used between the skin and the finger
nails.

Figure 6: A surface where boundary edges are tagged as sharp and
boundary vertices of valence two are tagged as corners. The control
mesh is yellow and the limit surface is cyan.

Following Hoppeet. al.[10] it is possible to modify the subdivi-
sion rules to create piecewise smooth surfaces containing infinitely
sharp features such as creases and corners. This is illustrated in
Figure 5 which shows a close-up shot of Geri’s hand. Infinitely
sharp creases were used to separate the skin of the hand from the
finger nails. Sharp creases can be modeled by marking a subset
of the edges of the control mesh as sharp and then using specially
designed rules in the neighborhood of sharp edges. Appendix A
describes the necessary special rules and when to use them.

Again following Hoppeet. al., we deal with boundaries of the
control mesh by tagging the boundary edges as sharp. We have also
found it convenient to tag boundary vertices of valence 2 as corners,
even though they would normally be treated as crease vertices since
they are incident to two sharp edges. We do this to mimic the behav-
ior of endpoint interpolating tensor product uniform cubic B-spline
surfaces, as illustrated in Figure 6.

3 Modeling fillets and blends

As mentioned in Section 1 and shown in Figure 5, infinitely sharp
creases are very convenient for representing piecewise-smooth sur-
faces. However, real-world surfaces are never infinitely sharp. The
corner of a tabletop, for instance, is smooth when viewed suffi-
ciently closely. For animation purposes it is often desirable to cap-
ture such tightly curved shapes.

To this end we have developed a generalization of the Catmull-



Clark scheme to admit semi-sharp creases – that is, creases of con-
trollable sharpness, a simple example of which is shown in Figure 7.

(a) (b)

(c) (d)

(e)

Figure 7: An example of a semi-sharp crease. The control mesh for
each of these surfaces is the unit cube, drawn in wireframe, where
crease edges are red and smooth edges are yellow. In (a) the crease
sharpness is 0, meaning that all edges are smooth. The sharpnesses
for (b), (c), (d), and (e) are 1, 2, 3, and infinite, respectively.

One approach to achieve semi-sharp creases is to develop subdi-
vision rules whose weights are parametrized by the sharpnesss of
the crease. This approach is difficult because it can be quite hard
to discover rules that lead to the desired smoothness properties of
the limit surfaces. One of the roadblocks is that subdivision rules
around a crease break a symmetry possessed by the smooth rules:
typical smooth rules (such as the Catmull-Clark rules) are invariant
under cyclic reindexing, meaning that discrete Fourier transforms
can be used to prove properties for vertices of arbitrary valence (cf.
Zorin [19]). In the absence of this invariance, each valence must
currently be considered separately, as was done by Schweitzer [15].
Another difficulty is that such an approach is likely to lead to a
zoo of rules depending on the number and configuration of creases
through a vertex. For instance, a vertex with two semi-sharp creases
passing through it would use a different set of rules than a vertex
with just one crease through it.

Our approach is to use a very simple process we call hybrid sub-
division. The general idea is to use one set of rules for a finite but

arbitrary number of subdivision steps, followed by another set of
rules that are applied to the limit. Smoothness therefore depends
only on the second set of rules. Hybrid subdivision can be used to
obtain semi-sharp creases by using infinitely sharp rules during the
first few subdivision steps, followed by use of the smooth rules for
subsequent subdivision steps. Intuitively this leads to surfaces that
are sharp at coarse scales, but smooth at finer scales.

Now the details. To set the stage for the general situation where
the sharpness can vary along a crease, we consider two illustrative
special cases.

Case 1: A constant integer sharpnesss crease: We subdivide
s times using the infinitely sharp rules, then switch to the smooth
rules. In other words, an edge of sharpnesss> 0 is subdivided us-
ing the sharp edge rule. The two subedges created each have sharp-
nesss� 1. A sharpnesss= 0 edge is considered smooth, and it
stays smooth for remaining subdivisions. In the limit wheres! ∞
the sharp rules are used for all steps, leading to an infinitely sharp
crease. An example of integer sharpness creases is shown in Fig-
ure 7. A more complicated example where two creases of different
sharpnesses intersect is shown in Figure 8.

(a) (b)

(c) (d)

Figure 8: A pair of crossing semi-sharp creases. The control mesh
for all surfaces is the octahedron drawn in wire frame. Yellow de-
notes smooth edges, red denotes the edges of the first crease, and
magenta denotes the edges of the second crease. In (a) the crease
sharpnesses are both zero; in (b), (c), and (d) the sharpness of the
red crease is 4. The sharpness of the magenta crease in (b), (c), and
(d) is 0, 2, and 4, respectively.

Case 2:A constant, but not necessarily integer sharpnesss: the
main idea here is to interpolate between adjacent integer sharp-
nesses. Lets# ands" denote the floor and ceiling ofs, respectively.
Imagine creating two versions of the crease: the first obtained by
subdividings# times using the sharp rules, then subdividing one ad-
ditional time using the smooth rules. Call the vertices of this first
versionv#0;v#1; :::. The second version, the vertices of which we
denote byv"0;v"1; :::, is created by subdividings" times using the
sharp rules. We take thes"-times subdivided semi-sharp crease to



Figure 9: A simple example of a variable sharpness crease. The
edges of the bottom face of the cubical control mesh are infinitely
sharp. Three edges of the top face form a single variable sharpness
crease with edge sharpnesses set to 2 (the two magenta edges), and
4 (the red edge).

have vertex positionsvs"
i computed via simple linear interpolation:

vs"
i = (1�σ)v#i +σv"i (3)

whereσ = (s�s#)=(s" �s#). Subsequent subdivisions are done us-
ing the smooth rules. In the case where all creases have the same
non-integer sharpnesss, the surface produced by the above process
is identical to the one obtained by linearly interpolating between
the integer sharpness limit surfaces corresponding tos# ands". Typ-
ically, however, crease sharpnesses will not all be equal, meaning
that the limit surface is not a simple blend of integer sharpness sur-
faces.

The more general situation where crease sharpness is non-integer
and varies along a crease is presented in Appendix B. Figure 9 de-
picts a simple example. A more complex use of variable sharpness
is shown in Figure 10.

4 Supporting cloth dynamics

The use of simulated physics to animate clothing has been widely
discussed in the literature (cf. [1, 5, 16]). Here, we address the
issues that arise when interfacing a physical simulator to a set of
geometric models constructed out of subdivision surfaces. It is not
our intent in this section to detail our cloth simulation system fully
– that would require an entire paper of its own. Our goal is rather to
highlight issues related to the use of subdivision surfaces to model
both kinematic and dynamic objects.

In Section 4.1 we define the behavior of the cloth material by
constructing an energy functional on the subdivision control mesh.
If the material properties such as the stiffness of the cloth vary over
the surface, one or more scalar fields (see Section 5.1) must be de-
fined to modulate the local energy contributions. In Section 4.2 we
describe an algorithm for rapidly identifying potential collisions in-
volving the cloth and/or kinematic obstacles. Rapid collision detec-
tion is crucial to achieving acceptable performance.

Figure 10: A more complex example of variable sharpness creases.
This model, inspired by an Edouard Lanteri sculpture, contains nu-
merous variable sharpness creases to reduce the size of the control
mesh. The control mesh for the model made without variable sharp-
ness creases required 840 faces; with variable sharpness creases the
face count dropped to 627. Model courtesy of Jason Bickerstaff.

4.1 Energy functional

For physical simulation, the basic properties of a material are gen-
erally specified by defining an energy functional to represent the
attraction or resistance of the material to various possible deforma-
tions. Typically, the energy is either specified as a surface integral
or as a discrete sum of terms which are functions of the positions of
surface samples or control vertices. The first type of specification
typically gives rise to a finite-element approach, while the second
is associated more with finite-difference methods.

Finite-element approaches are possible with subdivision sur-
faces, and in fact some relevant surface integrals can be computed
analytically [8]. In general, however, finite-element surface in-
tegrals must be estimated through numerical quadrature, and this
gives rise to a collection of special cases around extraordinary
points. We chose to avoid these special cases by adopting a finite-
difference approach, approximating the clothing with a mass-spring
model [18] in which all the mass is concentrated at the control
points.

Away from extraordinary points, Catmull-Clark meshes under
subdivision become regular quadrilateral grids. This makes them
ideally suited for representing woven fabrics which are also gen-
erally described locally by a gridded structure. In constructing the
energy functions for clothing simulation, we use the edges of the
subdivision mesh to correspond with the warp and weft directions
of the simulated woven fabrics.

Since most popular fabrics stretch very little along the warp
or weft directions, we introduce relatively strong fixed rest-length
springs along each edge of the mesh. More precisely, for each edge
from p1 to p2, we add an energy termksEs(p1; p2) where

Es(p1; p2) =
1
2

�
jp1� p2j

jp�1� p�2j
�1

�2

: (4)

Here,p�1 and p�2 are the rest positions of the two vertices, andks is



the corresponding spring constant.
With only fixed-length springs along the mesh edges, the simu-

lated clothing can undergo arbitrary skew without penalty. One way
to prevent the skew is to introduce fixed-length springs along the
diagonals. The problem with this approach is that strong diagonal
springs make the mesh too stiff, and weak diagonal springs allow
the mesh to skew excessively. We chose to address this problem
by introducing an energy term which is proportional to the product
of the energies of two diagonal fixed-length springs. Ifp1 and p2
are vertices along one diagonal of a quadrilateral mesh face andp3
andp4 are vertices along the other diagonal, the energy is given by
kdEd(p1; p2; p3; p4) wherekd is a scalar parameter that functions
analagously to a spring constant, and where

Ed(p1; p2; p3; p4) = Es(p1; p2)Es(p3; p4): (5)

The energyEd(p1; p2; p3; p4) reaches its minimum at zero when
either of the diagonals of the quadrilateral face are of the original
rest length. Thus the material can fold freely along either diago-
nal, while resisting skew to a degree determined bykd. We some-
times use weak springs along the diagonals to keep the material
from wrinkling too much.

With the fixed-length springs along the edges and the diagonal
contributions to the energy, the simulated material, unlike real cloth,
can bend without penalty. To add greater realism to the simulated
cloth, we introduce an energy term that establishes a resistance to
bending along virtual threads. Virtual threads are defined as a se-
quence of vertices. They follow grid lines in regular regions of the
mesh, and when a thread passes through an extraordinary vertex of
valencen, it continues by exiting along the edgebn=2c-edges away
in the clockwise direction. Ifp1; p2; and p3 are three points along
a virtual thread, the anti-bending component of the energy is given
by kpEp(p1; p2; p3) where

Ep(p1; p2; p3) =
1
2
� [C(p1; p2; p3)�C(p�1; p

�
2; p

�
3)]

2 (6)

C(p1; p2; p3) =

���� p3� p2

jp�3� p�2j
�

p2� p1

jp�2� p�1j

���� (7)

andp�1; p
�
2; andp�3 are the rest positions of the three points.

By adjustingks, kd and kp both globally and locally, we have
been able to simulate a reasonably wide variety of cloth behavior. In
the production ofGeri’s game, we found that Geri’s jacket looked a
great deal more realistic when we modulatedkp over the surface of
the jacket in order to provide more stiffness on the shoulder pads, on
the lapels, and in an area under the armpits which is often reinforced
in real jackets. Methods for specifying scalar fields likekp over a
subdivision surface are discussed in more detail in section 5.1.

4.2 Collisions

The simplest approach to detecting collisions in a physical simula-
tion is to test each geometric element (i.e. point, edge, face) against
each other geometric element for a possible collision. WithN geo-
metric elements, this would takeN2 time, which is prohibitive for
largeN. To achieve practical running times for large simulations,
the number of possible collisions must be culled as rapidly as possi-
ble using some type of spatial data structure. While this can be done
in a variety of different ways, there are two basic strategies: we
can distribute the elements into a two-dimensional surface-based
data structure, or we can distribute them into a three-dimensional
volume-based data structure. Using a two-dimensional structure
has several advantages if the surface connectivity does not change.
First, the hierarchy can be fixed, and need not be regenerated each
time the geometry is moved. Second, the storage can all be stati-
cally allocated. Third, there is never any need to rebalance the tree.

Finally, very short edges in the surface need not give rise to deep
branches in the tree, as they would using a volume-based method.

It is a simple matter to construct a suitable surface-based data
structure for a NURBS surface. One method is to subdivide the
(s;t) parameter plane recursively into an quadtree. Since each node
in the quadtree represents a subsquare of the parameter plane, a
bounding box for the surface restricted to the subsquare can be
constructed. An efficient method for constructing the hierarchy of
boxes is to compute bounding boxes for the children using the con-
vex hull property; parent bounding boxes can then be computed in a
bottom up fashion by unioning child boxes. Having constructed the
quadtree, we can find all patches withinε of a point p as follows.
We start at the root of the quadtree and compare the bounding box
of the root node with a box of size 2ε centered onp. If there is
no intersection, then there are no patches withinε of p. If there is
an intersection, then we repeat the test on each of the children and
recurse. The recursion terminates at the leaf nodes of the quadtree,
where bounding boxes of individual subpatches are tested against
the box aroundp.

Subdivision meshes have a natural hierarchy for levels finer than
the original unsubdivided mesh, but this hierarchy is insufficient
because even the unsubdivided mesh may have too many faces to
test exhaustively. Since there is there is no global(s;t) plane from
which to derive a hierarchy, we instead construct a hierarchy by
“unsubdividing” or “coarsening” the mesh: We begin by forming
leaf nodes of the hierarchy, each of which corresponds to a face
of the subdivision surface control mesh. We then hierarchically
merge faces level by level until we finish with a single merged face
corresponding to the entire subdivision surface.

The process of merging faces proceeds as follows. In order to
create thè th level in the hierarchy, we first mark all non-boundary
edges in thè �1st level as candidates for merging. Then until all
candidates at thèth level have been exhausted, we pick a candidate
edgee, and remove it from the mesh, thereby creating a “superface”
f � by merging the two facesf1 and f2 that sharede: The hierarchy
is extended by creating a new node to representf � and making its
children be the nodes corresponding tof1 and f2. If f � were to
participate immediately in another merge, the hierarchy could be-
come poorly balanced. To ensure against that possibility, we next
remove all edges off � from the candidate list. When all the candi-
date edges at one level have been exhausted, we begin the next level
by marking non-boundary edges as candidates once again. Hierar-
chy construction halts when only a single superface remains in the
mesh.

The coarsening hierarchy is constructed once in a preprocessing
phase. During each iteration of the simulation, control vertex posi-
tions change, so the bounding boxes stored in the hierarchy must be
updated. Updating the boxes is again a bottom up process: the cur-
rent control vertex positions are used to update the bounding boxes
at the leaves of the hierarchy. We do this efficiently by storing with
each leaf in the hierarchy a set of pointers to the vertices used to
construct its bounding box. Bounding boxes are then unioned up
the hierarchy. A point can be “tested against” a hierarchy to find
all faces withinε of the point by starting at the root of the hierar-
chy and recursively testing bounding boxes, just as is done with the
NURBS quadtree.

We build a coarsening hierarchy for each of the cloth meshes, as
well as for each of the kinematic obstacles. To determine collisions
between a cloth mesh and a kinematic obstacle, we test each vertex
of the cloth mesh against the hierarchy for the obstacle. To deter-
mine collisions between a cloth mesh and itself, we test each vertex
of the mesh against the hierarchy for the same mesh.



5 Rendering subdivision surfaces

In this section, we introduce the idea of smoothly varying scalar
fields defined over subdivision surfaces and show how they can be
used to apply parametric textures to subdivision surfaces. We then
describe a collection of implementation issues that arose when sub-
division surfaces and scalar fields were added to RenderMan.

5.1 Texturing using scalar fields

NURBS surfaces are textured using four principal methods: para-
metric texture mapping, procedural texture, 3D paint [9], and solid
texture [12, 13]. It is straightforward to apply 3D paint and solid
texturing to virtually any type of primitive, so these techniques
can readily be applied to texture subdivision surfaces. It is less
clear, however, how to apply parametric texture mapping, and more
generally, procedural texturing to subdivision surfaces since, unlike
NURBS, they are not defined parametrically.

With regard to texture mapping, subdivision surfaces are more
akin to polygonal models since neither possesses a global(s;t)
parameter plane. The now-standard method of texture mapping
a polygonal model is to assign texture coordinates to each of the
vertices. If the faces of the polygon consist only of triangles and
quadrilaterals, the texture coordinates can be interpolated across
the face of the polygon during scan conversion using linear or bi-
linear interpolation. Faces with more than four sides pose a greater
challenge. One approach is to pre-process the model by splitting
such faces into a collection of triangles and/or quadrilaterals, us-
ing some averaging scheme to invent texture coordinates at newly
introduced vertices. One difficulty with this approach is that the
texture coordinates are not differentiable across edges of the origi-
nal or pre-processed mesh. As illustrated in Figures 11(a) and (b),
these discontinuities can appear as visual artifacts in the texture,
especially as the model is animated.

(a) (b)

(c) (d)

Figure 11: (a) A texture mapped regular pentagon comprised of
5 triangles; (b) the pentagonal model with its vertices moved; (c)
A subdivision surface whose control mesh is the same 5 triangles
in (a), and where boundary edges are marked as creases; (d) the
subdivision surface with its vertices positioned as in (b).

Fortunately, the situation for subdivision surfaces is profoundly
better than for polygonal models. As we prove in Appendix C,
smoothly varying texture coordinates result if the texture coordi-
nates(s;t) assigned to the control vertices are subdivided using
the same subdivision rules as used for the geometric coordinates
(x;y;z). (In other words, control point positions and subdivision can
be thought of as taking place in a 5-space consisting of(x;y;z;s;t)
coordinates.) This is illustrated in Figure 11(c), where the surface
is treated as a Catmull-Clark surface with infinitely sharp bound-
ary edges. A more complicated example of parametric texture on a
subdivision surface is shown in Figure 12.

As is generally the case in real productions, we used a combi-
nation of texturing methods to create Geri: the flesh tones on his
head and hands were 3D-painted, solid textures were used to add
fine detail to his skin and jacket, and we used procedural texturing
(described more fully below) for the seams of his jacket.

The texture coordinatess and t mentioned above are each in-
stances of a scalar field; that is, a scalar-valued function that varies
over the surface. A scalar fieldf is defined on the surface by as-
signing a valuefv to each of the control verticesv. The proof sketch
in Appendix C shows that the functionf (p) created through sub-
division (wherep is a point on the limit surface) varies smoothly
wherever the subdivision surface itself is smooth.

Scalar fields can be used for more than just parametric texture
mapping — they can be used more generally as arbitrary parameters
to procedural shaders. An example of this occurs on Geri’s jacket.
A scalar field is defined on the jacket that takes on large values for
points on the surface near a seam, and small values elsewhere. The
procedural jacket shader uses the value of the this field to add the
apparent seams to the jacket. We use other scalar fields to darken
Geri’s nostril and ear cavities, and to modulate various physical
parameters of the cloth in the cloth simulator.

We assign scalar field values to the vertices of the control mesh
in a variety of ways, including direct manual assignment. In some
cases, we find it convenient to specify the value of the field directly
at a small number of control points, and then determine the rest by
interpolation using Laplacian smoothing. In other cases, we spec-
ify the scalar field values by painting an intensity map on one or
more rendered images of the surface. We then use a least squares
solver to determine the field values that best reproduce the painted
intensities.

(a) (b)

Figure 12: Gridded textures mapped onto a bandanna modeled us-
ing two subdivision surfaces. One surface is used for the knot, the
other for the two flaps. In (a) texture coordinates are assigned uni-
formly on the right flap and nonuniformly using smoothing on the
left to reduce distortion. In (b) smoothing is used on both sides and
a more realistic texture is applied.



5.2 Implementation issues

We have implemented subdivision surfaces, specifically semi-sharp
Catmull-Clark surfaces, as a new geometric primitive in Render-
Man.

Our renderer, built upon the REYES architecture [4], demands
that all primitives be convertible into grids of micropolygons (i.e.
half-pixel wide quadrilaterals). Consequently, each type of prim-
itive must be capable of splitting itself into a collection of sub-
patches, bounding itself (for culling and bucketing purposes), and
dicing itself into a grid of micropolygons.

Each face of a Catmull-Clark control mesh can be associated
with a patch on the surface, so the first step in rendering a Catmull-
Clark surface is to split it in into a collection of individual patches.
The control mesh for each patch consists of a face of the control
mesh together with neighboring faces and their vertices. To bound
each patch, we use the knowledge that a Catmull-Clark surface lies
within the convex hull of its control mesh. We therefore take the
bounding box of the mesh points to be the bounding box for the
patch. Once bounded, the primitive is tested to determine if it is
diceable; it is not diceable if dicing would produce a grid with too
many micropolygons or a wide range of micropolygon sizes. If
the patch is not diceable, then we split each patch by performing a
subdivision step to create four new subpatch primitives. If the patch
is diceable, it is repeatedly subdivided until it generates a grid with
the required number of micropolygons. Finally, we move each of
the grid points to its limit position using the method described in
Halsteadet. al.[8].

An important property of Catmull-Clark surfaces is that they
give rise to bicubic B-splines patches for all faces except those in
the neighborhood of extraordinary points or sharp features. There-
fore, at each level of splitting, it is often possible to identify one or
more subpatches as B-spline patches. As splitting proceeds, more
of the surface can be covered with B-spline patches. Exploiting
this fact has three advantages. First, the fixed 4� 4 size of a B-
spline patch allows for efficiency in memory usage because there
is no need to store information about vertex connectivity. Second,
the fact that a B-spline patch, unlike a Catmull-Clark patch, can be
split independently in either parametric direction makes it possible
to reduce the total amount of splitting. Third, efficient and well
understood forward differencing algorithms are available to dice B-
spline patches [7].

We quickly learned that an advantage of semi-sharp creases over
infinitely sharp creases is that the former gives smoothly varying
normals across the crease, while the latter does not. This implies
that if the surface is displaced in the normal direction in a creased
area, it will tear at an infinitely sharp crease but not at a semi-sharp
one.

6 Conclusion

Our experience using subdivision surfaces in production has been
extremely positive. The use of subdivision surfaces allows our
model builders to arrange control points in a way that is natural
to capture geometric features of the model (see Figure 2), without
concern for maintaining a regular gridded structure as required by
NURBS models. This freedom has two principal consequences.
First, it dramatically reduces the time needed to plan and build an
initial model. Second, and perhaps more importantly, it allows the
initial model to be refined locally. Local refinement is not possi-
ble with a NURBS surface, since an entire control point row, or
column, or both must be added to preserve the gridded structure.
Additionally, extreme care must be taken either to hide the seams
between NURBS patches, or to constrain control points near the
seam to create at least the illusion of smoothness.

By developing semi-sharp creases and scalar fields for shading,

we have removed two of the important obstacles to the use of subdi-
vision surfaces in production. By developing an efficient data struc-
ture for culling collisions with subdivisions, we have made subdi-
vision surfaces well suited to physical simulation. By developing a
cloth energy function that takes advantage of Catmull-Clark mesh
structure, we have made subdivision surfaces the surfaces of choice
for our clothing simulations. Finally, by introducing Catmull-Clark
subdivision surfaces into our RenderMan implementation, we have
shown that subdivision surfaces are capable of meeting the demands
of high-end rendering.

A Infinitely Sharp Creases

Hoppe et. al. [10] introduced infinitely sharp features such as
creases and corners into Loop’s surfaces by modifying the subdi-
vision rules in the neighborhood of a sharp feature. The same can
be done for Catmull-Clark surfaces, as we now describe.

Face points are always positioned at face centroids, independent
of which edges are tagged as sharp. Referring to Figure 4, suppose
the edgevi ei

j has been tagged as sharp. The corresponding edge
point is placed at the edge midpoint:

ei+1
j =

vi +ei
j

2
: (8)

The rule to use when placing vertex points depends on the number
of sharp edges incident at the vertex. A vertex with one sharp edge
is called a dart and is placed using the smooth vertex rule from
Equation 2. A vertexvi with two incident sharp edges is called a
crease vertex. If these sharp edges areei

j v
i andviei

k, the vertex point

vi+1 is positioned using the crease vertex rule:

vi+1 =
ei

j +6vi +ei
k

8
: (9)

The sharp edge and crease vertex rules are such that an isolated
crease converges to a uniform cubic B-spline curve lying on the
limit surface. A vertexvi with three or more incident sharp edges
is called a corner; the corresonding vertex point is positioned using
the corner rule

vi+1 = vi (10)

meaning that corners do not move during subdivision. See
Hoppeet. al. [10] and Schweitzer [15] for a more complete dis-
cussion and rationale for these choices.

Hoppeet. al. found it necessary in proving smoothness proper-
ties of the limit surfaces in their Loop-based scheme to make further
distinctions between so-called regular and irregular vertices, and
they introduced additional rules to subdivide them. It may be nec-
essary to do something similar to prove smoothness of our Catmull-
Clark based method, but empirically we have noticed no anamolies
using the simple strategy above.

B General semi-sharp creases

Here we consider the general case where a crease sharpness is al-
lowed to be non-integer, and to vary along the crease. The follow-
ing procedure is relatively simple and strictly generalizes the two
special cases discussed in Section 3.

We specify a crease by a sequence of edgese1;e2; ::: in the con-
trol mesh, where each edgeei has an associated sharpnessei :s. We
associate a sharpness per edge rather than one per vertex since there
is no single sharpness that can be assigned to a vertex where two or
more creases cross.2

2In our implementation we do not allow two creases to share an edge.
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Figure 13: Subedge labeling.

During subdivision, face points are always placed at face cen-
troids. The rules used when placing edge and vertex points are
determined by examining edge sharpnesses as follows:

� An edge point corresponding to a smooth edge (i.e,e:s= 0) is
computed using the smooth edge rule (Equation 1).

� An edge point corresponding to an edge of sharpnesse:s>= 1
is computed using the sharp edge rule (Equation 8).

� An edge point corresponding to an edge of sharpnesse:s< 1 is
computed using a blend between smooth and sharp edge rules:
specifically, letvsmoothandvsharpbe the edge points computed
using the smooth and sharp edge rules, respectively. The edge
point is placed at

(1�e:s)vsmooth+e:svsharp: (11)

� A vertex point corresponding to a vertex adjacent to zero or
one sharp edges is computed using the smooth vertex rule
(Equation 2).

� A vertex point corresponding to a vertexv adjacent to three
or more sharp edge is computed using the corner rule (Equa-
tion 10).

� A vertex point corresponding to a vertexv adjacent to two
sharp edges is computed using the crease vertex rule (Equa-
tion 9) if v:s� 1, or a linear blend between the crease vertex
and corner masks ifv:s< 1, wherev:s is the average of the
incidence edge sharpnesses.

When a crease edge is subdivided, the sharpnesses of the result-
ing subedges is determined using Chaikin’s curve subdivision algo-
rithm [3]. Specifically, ifea, eb, ec denote three adjacent edges of
a crease, then the subedgeseab andebc as shown in Figure 13 have
sharpnesses

eab:s = max(
ea:s+3eb:s

4
�1;0)

ebc:s = max(
3eb:s+ec:s

4
�1;0)

A 1 is subtracted after performing Chaikin’s averaging to ac-
count for the fact that the subedges (eab;ebc) are at a finer level than
their parent edges (ea;eb;ec). A maximum with zero is taken to
keep the sharpnesses non-negative. If eitherea or eb is infinitely
sharp, theneab is; if either eb or ec is infinitely sharp, thenebc
is. This relatively simple procedure generalizes cases 1 and 2 de-
scribed in Section 3. Examples are shown in Figures 9 and 10.

C Smoothness of scalar fields

In this appendix we wish to sketch a proof that a scalar fieldf is
smooth as a function on a subdivision surface wherever the surface
itself is smooth. To say that a function on a smooth surfaceS is
smooth to first order at a pointp on the surface is to say that there

exists a parametrizationS(s;t) for the surface in the neighborhood
of psuch thatS(0;0) = p, and such that the functionf (s;t) is differ-
entiable and the derivative varies continuously in the neighborhood
of (0;0).

The characteristic map, introduced by Reif [14] and extended by
Zorin [19], provides such a parametrization: the characteristic map
allows a subdivision surfaceS in three space in the neighborhood
of a pointp on the surface to be written as

S(s;t) = (x(s;t);y(s;t);z(s;t)) (12)

whereS(0;0) = p and where each ofx(s;t), y(s;t), andz(s;t) is
once differentiable if the surface is smooth atp. Since scalar fields
are subdivided according to the same rules as thex;y, andzcoordi-
nates of the control points, the functionf (s;t) must also be smooth.
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