
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)

K. Anjyo, P. Faloutsos (Editors)

Modeling and Animating Gases with Simulation Features

Joshua Schpok† William Dwyer‡ and David S. Ebert§

Purdue University

Abstract

In modeling natural phenomena, artists often compromise the benefits of direct control for the visual realism

of physics-based simulation. For gases, Eulerian simulations traditionally provide realistic results, but a poor

representation for artistically shaping the media. In our system, users work with a more intuitive set of continuously

extracted features whose manipulation feeds back into the original simulation. This novel approach overcomes

common control issues by providing modeling tools to manipulate high-level behavior in Eulerian simulations. We

employ techniques in feature extraction, real-time gas simulation, and volume rendering to build an interactive

system to sculpt three-dimensional flows.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:

Animation of Natural Phenomena;

1. Introduction

Since humans identify separate, discrete components in nat-

ural processes, waves in water, plumes in hot gas, flames

in fire, and similar structures can be used as intuitive mod-

eling and animation primitives. However, if not skillfully

constructed, the collective result may appear unrealistic be-

cause these structures are the products of complex local and

global physical processes. On the other hand, physically-

based simulations achieve realistic results by enforcing fea-

sibility. Rather than directly modeling the features, one con-

trols the conditions producing them, which requires a more

scientific perspective of the phenomena (and the simulation

algorithm). Given the chaotic nature of gases, the results may

be difficult to control and inconsistent over different resolu-

tions and time-steps.

Therefore, there is a trade-off between direct modeling tech-

niques, which may not capture nor convey the nuances

of amorphous phenomena, and physical simulations, which

can be difficult to control. In visual effects, the goal is a

compelling result regardless of physical accuracy. Here, we

† e-mail: joshua@schpok.net
‡ e-mail:wdwyer@stanford.edu
§ e-mail:ebertd@purdue.edu

present a system for combining physics-based simulation

and derived high-level flow features to achieve visual real-

ism without forfeiting all control to a dynamics-based solu-

tion. Our priority is visual realism and interactivity through

an intuitive mouse-driven interface. To achieve this goal, we

present the Eulerian simulation as a set of high-level features

using interactive feature extraction techniques. In this sys-

tem, vortices, uniform flows, divergences, and densities can

be adjusted within the volume through ellipsoidal flow fea-

ture widgets. When the user adjusts the parameters through

the widget, the changes are sampled back into the simulation

grid, providing direct interaction with larger-scale flow be-

havior derived from the physics-based simulation. This lets

users work exclusively with high-level features, whose be-

havior is driven by the simulation.

The key contribution of this approach is the interactive, di-

rect manipulation of naturally occurring behavior detected

in Eularian simulations. The strong correlation between

the features and the simulation enables the animator to

make focused adjustments. Our system continuously ex-

tracts features, allows the user to adjust the flow anima-

tion using these features, and applies the resulting feature

changes back into the simulation. The algorithm performs

fast enough to run with an interactive Navier-Stokes simula-

tion and our results are rendered in real-time with hardware-

accelerated advected texturing. Our results convey realistic,

c© The Eurographics Association 2005.

J. Schpok et al. / Modeling and Animating Gases with Simulation Features

high-resolution simulations created with natural, adjustable,

high-level primitives.

2. Previous Work

As gas and water simulation in computer graphics run

faster and appear more realistic, more attention has been fo-

cused on controlling fluid flows. Typically, control is lever-

aged by modifying the dynamical properties of the me-

dia [FM97,REN∗04], or adding control mechanisms to com-

bine and tweak existing simulations [Wit99]. These meth-

ods, however, rely on users being familiar with the dynamics

of fluid flow. Keyframing densities provides a more conven-

tional paradigm through optimizing the driving forces and

calculating the inter-frame derivatives [TMPS03]. New so-

lutions employ the adjoint method [MTPS04], or avoid opti-

mization using coarser closed-form approximations [FL04].

Rather than specifying density field targets, we look at more

directly modifying the simulation. We use ellipsoidal prim-

itives to approximate the visible density and individual flow

primitives [WH91, WFG94] defining flow behavior in their

vicinity. A key contribution of our approach is that these

features are not just synthetically created by the user, but

driven and extracted from an Eulerian simulation. Previ-

ous work has explored modifying the density approxima-

tion [PCS04, REN∗04], but here we present densities and

velocities as separate extracted primitives.

Feature detection and extraction is an established field

in computational simulation [PVH∗03]. Here we develop

coarse approximations motivated by the broad previ-

ous work in vortex extraction [JMT03], flow topology

[TLHD03], and procedural modeling [EMP∗02]. With math-

ematical characterizations of certain flow phenomena, we

can implement algorithms to detect and synthesize high-

level features useful in flow modeling.

3. Approach

The goal of our system is to efficiently manipulate high-

level flow structures in an interactive Navier-Stokes simu-

lation. Our approach finds these features in the simulation

and permits the user to work with the individual regions in

which they occur. An overview of the processes composing

the system is shown in Figure 1. For every frame, features

are extracted from a simulation and presented as adjustable

widgets. Users can interactively “adjust” features while the

simulation runs by applying elementary transformations to

these feature subvolumes.

At every simulation step, we detect relevant density and flow

features and overlay their spatial boundaries on the simula-

tion. Figure 2 is a screen capture of our system in such a ses-

sion. The features are represented with ellipsoidal regions,

which can be reorientated within the simulation domain. For

Figure 1: Outline of task processes per frame in our system.

Note divergent features are not a part of the simulation loop

as they do no occur in our mass-preserving simulation.

Figure 2: In this gas design session, a long vertical vortex

is represented with the green ellipsoid. This simulation gen-

erated the cyclone in Figure 7.

flow features, velocities can also be rescaled to vary the mag-

nitude or reverse the flow. Since the system extracts these

features at every frame, we do not store a history of features

(except for sinks and sources) and rely on their being satis-

factorily derived through the extraction process.

These manipulations reflect back onto the simulation grid as

a spatial transformation on the ellipsoidal subvolume. Users

can then reposition, scale, and rotate the feature’s spatial

area. This process is outlined in Figure 3. The feature’s sub-

volume is subtracted from the simulation grid, appropriately

transformed, and written back into the volume, similar to

cutting and pasting regions on a raster grid. Density features

only affect the density field and velocity features only affect

the velocity field. To fill the space vacated by the feature,

densities are set to zero, and velocities are approximated by

averaging the border voxels’ velocities.

c© The Eurographics Association 2005.

J. Schpok et al. / Modeling and Animating Gases with Simulation Features

Figure 3: One frame of the interactive manipulation process

This editing process can leave coarse compositing artifacts.

Committing small manipulations over many frames can min-

imize these errors, but for large changes, the feature’s bound-

ary values may be coarsely inconsistent with the surround-

ing simulation. To smooth the transition around the fea-

ture subvolume, we “feather” its boundaries when writing

it into the simulation grid. While this process preserves vi-

sual continuity, we must ensure mass conservation by using

a divergence-free projection before the subsequent simula-

tion step.

Our physical simulation is based on a stable fluids solution

[Sta99]. Our simulation resolution in this paper’s examples

are 32x32x32 to ensure interactive performance, though our

techniques easily scale to higher resolutions. We permit the

user to interact with the simulation through the widgets in

the following ways:

• Building Initial Conditions: Features are a high-level

primitive to describe the initial forces driving a simu-

lation. In addition to constructing the environment by

painting velocity and density, users can write in new

procedurally-based representations of our features.

• Real-time Manipulation: While the simulation runs, fea-

tures can be guided by dragging them with a mouse. Since

these changes occur in real-time, the user gets continuous

feedback through the simulation.

• Revising Simulations: A user can revisit the frames of

a simulation to fine-tune the flow. By selecting a certain

frame, densities and velocities can be adjusted in a way

similar to building initial conditions. When a change is

made somewhere along the timeline, the change can be

applied as an adjustment to the frame at that point and, if

desired, overwrite the subsequent frames with a simula-

tion solution from that frame onwards.

In setting up and revising recorded simulation frames, the

simulation process is paused to show the single frame of in-

terest. When the density is not advected, it may be unclear

how the new flow is pushing the density. Our implementa-

tion of texture advection [Ney03] conveys the direction and

rate of flow, which is instrumental in previewing the adjusted

flow.

4. Simulation Features

We present an ellipsoidal decomposition of the density field

and three primitive velocity features to shape flow: uniform

advections, vortices, and divergences. Each of these features

can be created, removed, and modified in the interactive en-

vironment, but are not stored in a history of frames. Instead,

an extraction algorithm is used to segment and quantify fea-

tures from the simulation at every frame. To create a new fea-

ture defined on the grid, we also require a procedural model

to generate the voxel values. Both these methods should be

computationally simple enough to execute in real-time, and

therefore pursue coarser approximations.

There may be inaccuracies in our extraction arising as incor-

rectly classified regions, features that go unclassified, and in-

consistencies between the procedural formulation and the re-

sulting extraction. To address mischaracterizations, a thresh-

old term, α , is used to calibrate the extraction sensitivity.

Occasionally, newly created features may not match their ex-

tracted representation. For example, they may merge with a

c© The Eurographics Association 2005.

J. Schpok et al. / Modeling and Animating Gases with Simulation Features

Figure 4: A vortex parameterization (red) of a flow field

(green) using the feature extraction algorithm developed in

Section 4.1.1, with center c and axis z.

neighboring feature with similar properties. Differences in

perceived and detected features is a limitation of the auto-

matic extraction approach, but may be resolvable with more

accurate methods.

4.1. Vortices

Vortices are easily recognized by human observers, but lack

a complete, formal physical definition. We use the definition

of a vortex a “multitude of material particles rotating around

a common center” [Lug83]. This is typically quantified as

a velocity Jacobian with complex eigenvalues. This charac-

terization motivates our vorticity-based approach to vortex

extraction and synthesis.

4.1.1. Extraction

Our vortex extraction method finds regions with high vortic-

ity and fits ellipsoids around them (see Figure 4). The vor-

ticity magnitude at a given point is calculated as the magni-

tude of the curl of the neighborhood’s velocity field [FSJ01].

We cluster neighboring voxels with high vorticity and con-

sider each cluster a separate vortex. To perform this oper-

ation quickly, we initially seed a vortex at each voxel with

a vorticity magnitude above some threshold, α , then merge

neighboring vortices satisfying the following criteria:

z1 • z2 ≥
α

r01
+ r02

(1)

|z1 × (c1 − c2)| ≤ α (2)

|z2 × (c1 − c2)| ≤ α

α is the user adjustable calibration term, which we normally

set to a value near 2.0 in our applications. Here ci is the

origin of vortex i, r0i
its vortex radius in voxels, and zi is

a vector extending along the vortex’s rotational axis. These

criteria restrict merging vortices to those whose rotational

axes are similar within a tolerance (Equation 1) and are close

along this axis (Equation 2).

Note that as vortices grow, the merging criteria become more

restrictive. Though vortex cores are modeled as straight seg-

ments in our ellipsoidal model, this axis, in reality, is not

necessarily straight [JMT02]. For instance, we see closed

vortex core rings in our examples that induce plumes. Here,

we must subdivide the curved axis into a series of straight

segments. This restriction prevents merging more vortices

deviating from the prevailing axis.

If a pair of vortices (labeled 1 and 2) satisfy the merge cri-

teria, they are replaced with a new vortex (labeled 0). Its

vorticity v0 and rotational axis z0 are a radius-weighted in-

terpolation of the original two.

t =
r02

r01
+ r02

z0 =
z1 + t (z2 − z1)

|z1 + t (z2 − z1)|
(3)

v0 = v1 + t (v2 − v1) (4)

The resulting radius r00
and axis length |z0| is scaled to the

spatial extents of the the source vortices’ union.

Classifying regions purely with a vorticity measure has been

shown to incorrectly classify non-vortex regions [JH95],

which has motivated more complex tensor decomposition

and stream-line tracing schemes [SP99, SB94] and a wealth

of vortex extraction research. While more accurate methods

of vortex extraction could be used, we use this more effi-

cient vortex parameterization, which we can compute at ev-

ery iteration. Therefore, our technique will incorrectly clas-

sify some vortices, but these occur infrequently and are small

enough to be dismissed by the user.

4.1.2. Synthesis

To write a new vortex feature into the velocity field, we up-

date each point x within the vortex’s radius r0. A velocity

is directed along the cross product of the direction to the

point and the vortex’s rotation axis z. The velocity is scaled

to the user defined magnitude v, linearly rolling off with dis-

tance. We use the following function to calculate this veloc-

ity, where r = x− c.

f(x) =

{ (

1−
‖r‖
r0

)

r×z
‖r×z‖v ‖r‖ ≤ r0

0 ‖r‖ > r0

(5)

To add a vortex to the simulation, we add f(x) to all voxels

x in the volume. We use this vortex model to create cyclonic

funnels in Section 6.1, scaling rolling motion in convective

plumes, and to add additional swirling behavior in vapors.

4.2. Uniform Advection

Regions of uniform advection are useful for adjusting pre-

vailing winds, steady jets, and streams. Typically, directly

painting densities into a simulation produces a plume which

may not advect density as uniformly as desired. With uni-

form advection features, users have more control of the ve-

locity uniformity within its bounds. These primitives provide

c© The Eurographics Association 2005.

J. Schpok et al. / Modeling and Animating Gases with Simulation Features

Figure 5: Altering a jet with an extracted uniform advection

feature. The first image shows the result of a buoyant plume,

whose primary velocities from an intermediate frame are ex-

tracted and visualized in the second image. These velocities

are redirected in the third image, and the fourth image shows

the altered simulation result.

a more direct way to steer density because we are directly

adjusting the direction and magnitude of an area.

4.2.1. Extraction

The method to extract regions of uniform advection is sim-

ilar vortices in Section 4.1.1. We initially seed uniform ad-

vection features at all voxels with a velocity over some ad-

justable threshold. We use Equation 1 as a merge criteria

between neighboring features, but now with z as the veloc-

ity direction. Equation 2 is ignored to permit expansion in

all directions. The new combined feature is sized and inter-

polated by Equations 3 and 4 in the same way, with v now

representing velocity magnitude.

4.2.2. Synthesis

To create an area of uniform advection, the area is blended

with the advection vector v using distance-based roll-off:

f(x) =

{ (

1−
‖r‖
r0

)

v ‖r‖ ≤ r0

0 ‖r‖ > r0

(6)

In Figure 5, an intermediate step of a rising plume is redi-

rected and scaled down to alter the final solution. Since the

extracted feature encapsulates a neighborhood of consistent

velocities, the adjustments holistically changes the rising

motion, enabling a higher level of manipulation.

4.3. Sinks and Sources

Sinks and sources are useful for explosions, whirlpools, and

tornadoes. However, their divergent behavior does not occur

in ideal (non-compressible) fluids. In fact, this behavior is

canceled in our simulation by the divergence-free transform.

While there are elegant ways to implement divergent behav-

ior [FOA03], we subtract divergent forces before the Navier-

Stokes simulation, but add them back in after the simulation

step. This permits these forces to persist through rendering

and manipulation, but they are intentionally removed from

Figure 6: Our system distributes processes across the avail-

able computational units.

the simulation process. As a result, divergent forces do not

evolve or advect densities, but their force is still conveyed

through advected textures. The force of a source or sink is

defined by the following equation:

f(x) =

{ (

1−
‖r‖
r0

)

r
‖r‖ v ‖r‖ ≤ r0

0 ‖r‖ > r0

(7)

where positive values of v define sources and negative val-

ues are sinks. This feature is confined to a user defined area

and, with our approach, does not evolve through the simu-

lation. Consequently, the restricted domain does not require

feature extraction since its boundaries are already defined.

We simply use the ellipsoidal region of the current frame for

the following frame.

In the tornado example in Figure 7, we use a sink to draw

texture coordinates in toward the vortex initially forming the

funnel. This motion conveys a spout pulled down along the

central axis that is simultaneously swirled by a vortex fea-

ture.

5. Rendering

To view the gas simulation, we implement a graphics-

accelerated volume renderer. A summary of the system is

outlined in Figure 6. Since the simulation is most efficiently

implemented on the CPU, we defer most rendering compu-

tation to programmable graphics hardware.

Our first step is shadowing. The only shading that we com-

pute on the CPU is approximate shadowing since direct light

integration through a feed-back buffer has shown to bottle-

neck hardware volume renderers [KPH∗03]. Because texture

coordinates are computed later in hardware, this lighting will

shadow each voxel of the simulation density but disregards

the influence of texturing later in the pipeline. In our applica-

tions, this shadowing is sufficiently detailed for our diffusive

gases.

c© The Eurographics Association 2005.

J. Schpok et al. / Modeling and Animating Gases with Simulation Features

To render a single frame, we store the latest simulation vol-

ume as a grid of vertices. Every voxel has a corresponding

vertex positioned within the grid, and density, velocity, and

shadow quantities are assigned as vertex attributes. These

vertices form tessellated planes aligned to the axis closest to

the eye ray. To add additional detail, we use advected tex-

turing [Ney03], which calculates the local displacement of

texture coordinates due to advection. This technique conveys

fine particulate details smoothly moving through our simu-

lation field. To improve image continuity, users can draw ad-

ditional intermediate slices at the expense of rendering per-

formance.

6. Applications

Our system provides a new framework to build and modify

scenes of gaseous phenomena. With this interface, we have

created clouds, dust plumes, and fire by controlling the den-

sity and velocity fields.

To begin modeling, the user may import existing simulation

sequences, or paint or shape implicit ellipsoids to create new

densities and velocities. All controls are adjustable in real-

time and can be saved to apply to other scenes. The com-

panion movies demonstrate the interface, shown in Figure 2.

Once a scene is defined, it may be exported to offline render-

ers for higher fidelity results.

Our applications use simulation grids of 32× 32× 32, but

are rendered over 128 slices to improve image continuity.

Frame rates fluctuate around 5-15 fps on a 3.0 Ghz proces-

sor equipped with an NVIDIA GeForce 6800 Ultra graphics

accelerator. Performance is bottlenecked by the simulation

or the fragment program’s volumetric noise texture lookups,

varying with flow velocities and the viewport’s visible area.

In our examples, a simulation iteration takes approximately

90 ms, vortex extraction 20 ms, while rendering runs con-

currently at 50 ms. In conditions with lower velocities and

the camera within the gas, these benchmarks are nearly re-

versed, with rendering dominating the processing time.

6.1. Cyclones

We can generate a variety of cyclone like effects using vor-

tex and density features. Beginning with a flat cloud base,

we can generate a vertical vortex structure and keyframe the

feature stretching down from the clouds, as seen in Figure 2.

The simulation will draw densities down around the axis

forming the desired funnel (Figure 7). This effect can be en-

hanced with a small downward advective velocity feature, or

by manually keyframing the density primitives to that effect.

In this example, we have created and adjusted the Eulerian

simulation exclusively through high-level primitives. The

cloud structure and motion are directly modeled, but ani-

mated with a realistic physically-based Eulerian simulation.

Using both tools, artists can modify the natural evolution of

Figure 7: Tornadoes can be created by driving a fluid simu-

lation with vortex, sinks, and density features to draw visible

media into a swirling funnel.

Figure 8: A cloud formation and candle flame animated us-

ing a mixture of feature placement and simulation.

the physical simulation while it happens without recalculat-

ing initial conditions and restarting the simulation. This ap-

proach was also used to create the billowing head in Fig-

ure 8.

6.2. Fire

With feature primitives, we are able to emulate various

combustive phenomena. Detonations exhibiting compress-

ible behavior can be modeled using a combination of density

and velocity sources. For environments requiring more uni-

form and less detailed flames, such as the candle in Figure 8,

it may be advantageous to produce these through a physical

simulation and modify the results.

c© The Eurographics Association 2005.

J. Schpok et al. / Modeling and Animating Gases with Simulation Features

Figure 9: Mushroom cloud created by simulated bouyancy

in Equation 8, and its extracted features.

To model the convective motion of hot buoyant gas, thermal

energy is modeled by the density field H. Hot air rises be-

cause it is comparatively less dense than cold air. We model

buoyant velocities b due to the thermal gradient ∇H as a

function of gravity g:

b = g |∇H| (8)

These velocities are added to the velocity field before each

simulation step, making densities rise, curl, and dissipate

like flames. Large gradients representing high temperatures

form distinctive mushroom clouds as in Figure 9. Here, a

high-density source was placed near the bottom of the sim-

ulation domain, and we use the thermal field H as the vi-

sualized density field. By tweaking the gravity vector g and

intensifying vortices extracted from the simulation, the tur-

bulent structure of the density field was further enhanced.

6.3. Clouds

Clouds are products of moist thermal gradients where wa-

ter condenses into a visual form. Users can approximate this

behavior with feature primitives, but may also take advan-

tage of the physical simulation to give rise to this phenom-

ena naturally. Using a buoyancy/condensation model, users

can seed the volume, which naturally rises leaving a visible

condensate trail, but later revise the breadth and height of

its ascent, or alter conditions to give rise to more dramatic

phenomena.

Hot, humid air is modeled as the thermal field H as in Sec-

tion 6.2 and visible condensation as another field, Q. For

simplification, we assume ambient water vapor is uniformly

present and only model its transition into condensation. The

change in the condensation volume Q is the advection by the

flow field plus the new condensing water defined as

mix(h) = γe(
17.67h

h+243.5). (9)

This modified mixing ratio is a parameter of the local heat

h fitted to collected meteorological data [RY88]. A user-

defined parameter γ adjusts the rate of condensation, typi-

cally a function of altitude and gravity.

While physical modeling provides a more realistic paradigm

to create clouds, users still retain high-level control with our

feature manipulation. These processes were used to create

the developing storm in Figure 10. Buoyant heat was seeded

at the bottom of the simulation, and as the condensation

forms, these clouds were reshaped with the density features.

Similarly, the advective forces can be redirected with uni-

form advectors to produce different cloud formations.

7. Conclusion

We have developed a new gas editing technique using fea-

ture extraction to create high-level artistic controls that drive

a realistic physical simulation. Users can create and mod-

ify density and flow elements of a Navier-Stokes simulation

through a set of feature widgets. While previous techniques

enable these primitives solely as a persistent source of den-

sity or energy, feature extraction permits us to apply these

primitives in an initial frame and “refind” them as the simu-

lation evolves.

Our system not only provides a new modeling approach to

establish initial conditions, but also to revise recorded se-

quences. In addition to letting user-defined features evolve

naturally, feature extraction also finds features naturally oc-

curring in the field. This permits the user to select and

change the behavior of features as the simulation progresses,

enabling a more “hands-on” approach to flow modeling.

The resulting simulations are rendered interactively by a

hardware-accelerated implementation of advected textures.

This deterministic technique conveys detailed motion along

the velocity field, and is scalable to higher resolution of-

fline rendering while faithfully reflecting even the most

unusual designs (Figure 11). Combined with our model-

ing approach, our system produces realistic animated gases

through physically-based simulation, controlled with a set of

intuitive high-level primitives.

8. Future Work

We plan to extend our system to combine basic flow prim-

itives into higher-level primitives that construct common

c© The Eurographics Association 2005.

J. Schpok et al. / Modeling and Animating Gases with Simulation Features

Figure 10: A growing thunderhead constructed from seeded heat.

Figure 11: Pouring a swirling, splashing gas.

forms of flow phenomena (plumes, whirlpools). We will in-

vestigate other structural approximations for features and ex-

plore a lofting modeling approach with spline-based feature

skeletons. These more complex flows motivate improving

the performance or the simulation and rendering, both cur-

rent bottlenecks, to remain interactive at higher resolutions.

9. Acknowledgements

This material is based upon work supported by the Purdue

Research Foundation TRASK program and the US National

Science Foundation under grants: NSF ACI-0081581, NSF

ACI-0121288, NSF ACI-0328984, NSF IIS-0098443, NSF

ACI-9978032, and NSF ACI-0222675. We would like to

thank the anonymous reviewers for their valuable comments

to improve this paper, Alias, Inc. for their donation of soft-

ware and NVidia for their donation of hardware to support

our research.

References

[EMP∗02] EBERT D. S., MUSGRAVE F. K., PEACHEY

D., PERLIN K., WORLEY S.: Texturing and Modeling:

A Procedural Approach. Morgan Kaufmann Publishers

Inc., 2002. 2

[FL04] FATTAL R., LISCHINSKI D.: Target-driven smoke

animation. ACM Trans. Graph. 23, 3 (2004), 441–448. 2

[FM97] FOSTER N., METAXAS D.: Controlling fluid an-

imation. In CGI ’97: Proceedings of the 1997 Confer-

ence on Computer Graphics International (Washington,

DC, USA, 1997), IEEE Computer Society, p. 178. 2

[FOA03] FELDMAN B. E., O’BRIEN J. F., ARIKAN O.:

Animating suspended particle explosions. ACM Transac-

tions on Graphics 22, 3 (2003), 708–715. 5

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual

simulation of smoke. In Proceedings of the 28th annual

conference on Computer graphics and interactive tech-

niques (2001), ACM Press, pp. 15–22. 4

[JH95] JEONG J., HUSSAIN F.: On the identification of a

vortex. Journal of Fluid Mechanics (285 1995), 69–94. 4

[JMT02] JIANG M., MACHIRAJU R., THOMPSON D.: A

novel approach to vortex core region detection. In Pro-

ceedings of the symposium on Data Visualisation 2002

(2002), Eurographics Association, pp. 217–ff. 4

[JMT03] JIANG M., MACHIRAJU R., THOMPSON D.:

Detection and visualization of vortices. In Visualization

Handbook. Academic Press, 2003. unpublished. 2

[KPH∗03] KNISS J., PREMOZE S., HANSEN C.,

SHIRLEY P., MCPHERSON A.: A model for volume

lighting and modeling. IEEE Transactions on Visual-

ization and Computer Graphics 9, 2 (2003), 150–162.

5

[Lug83] LUGT H. J.: Vortex flow in nature and technol-

ogy. Wiley, 1983. 4

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIĆ;

Z., STAM J.: Fluid control using the adjoint method. ACM

Trans. Graph. 23, 3 (2004), 449–456. 2

[Ney03] NEYRET F.: Advected textures. In Proceedings

of the 2003 ACM SIGGRAPH/Eurographics Symposium

on Computer animation (2003), Eurographics Associa-

tion, pp. 147–153. 3, 6

[PCS04] PIGHIN F., COHEN J. M., SHAH M.: Modeling

and editing flows using advected radial basis functions. In

Proceedings of the 2004 ACM SIGGRAPH/Eurographics

symposium on Computer animation (2004), ACM Press,

pp. 223–232. 2

[PVH∗03] POST F. H., VROLIJK B., HAUSER H.,

c© The Eurographics Association 2005.

J. Schpok et al. / Modeling and Animating Gases with Simulation Features

LARAMEE R. S., DOLEISCH H.: The state of the art in

flow visualisation: Feature extraction and tracking. Com-

puter Graphics Forum 22, 4 (2003), 775–792. 2

[REN∗04] RASMUSSEN N., ENRIGHT D., NGUYEN D.,

MARINO S., SUMNER N., GEIGER W., HOON S., FED-

KIW R.: Directable photorealistic liquids. In Proceedings

of the 2004 ACM SIGGRAPH/Eurographics symposium

on Computer animation (2004), ACM Press, pp. 193–202.

2

[RY88] ROGERS R. R., YAU M. K.: A Short Course in

Cloud Physics, 3. ed., vol. 113 of International Series in

Natural Philosophy. Pergamon Press, 1988. 7

[SB94] SINGER B. A., BANKS D. C.: A Predictor-

corrector Scheme for Vortex Identification. Tech. rep.,

1994. 4

[SP99] SADARJOEN I., POST F.: Geometric Methods for

Vortex Detection. pp. 53–62. 4

[Sta99] STAM J.: Stable fluids. In Proceedings of the 26th

annual conference on Computer graphics and interactive

techniques (1999), ACM Press/Addison-Wesley Publish-

ing Co., pp. 121–128. 3

[TLHD03] TONG Y., LOMBEYDA S., HIRANI A. N.,

DESBRUN M.: Discrete multiscale vector field decom-

position. ACM Trans. Graph. 22, 3 (2003), 445–452. 2

[TMPS03] TREUILLE A., MCNAMARA A., POPOVIĆ Z.,

STAM J.: Keyframe control of smoke simulations. ACM

Trans. Graph. 22, 3 (2003), 716–723. 2

[WFG94] WILLIAM F. GATES M.: Interactive Flow Field

Modeling for the Design and Control of Fluid Motion in

Computer Animation. Master’s thesis, UBC, 1994. 2

[WH91] WEJCHERT J., HAUMANN D.: Animation aero-

dynamics. In SIGGRAPH ’91: Proceedings of the 18th

annual conference on Computer graphics and interactive

techniques (1991), ACM Press, pp. 19–22. 2

[Wit99] WITTING P.: Computational fluid dynamics in

a traditional animation environment. In SIGGRAPH

’99: Proceedings of the 26th annual conference on Com-

puter graphics and interactive techniques (New York,

NY, USA, 1999), ACM Press/Addison-Wesley Publishing

Co., pp. 129–136. 2

c© The Eurographics Association 2005.

