Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ____________________________ Identificação: _______________
1. Considere o triângulo de vértices: \(A = (−1, 1), \)
\(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (A) 4,700
(B) 4,717
(C) 4,697
(D) 5,000
(E) 5,017
(F) 5,107

2. Considere as retas no espaço: \(r : \)
\[
\begin{aligned}
x &= −4 − 2t \\
y &= 9 + 3t \\
z &= −t
\end{aligned}
\]
e \(s : \)
\[
\begin{aligned}
x &= −1 − q \\
y &= 12 + 3q \\
z &= −6 − 2q
\end{aligned}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

3. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{aligned}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 − 11t
\end{aligned}
\]
e \(s : \)
\[
\begin{aligned}
x &= 3 − 3q \\
y &= −5 + 4q \\
z &= −3 + q
\end{aligned}
\](1.000, -1.000)

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{aligned}
x + y + z − 1 &= 0 \\
2x + y − 3z − 3 &= 0
\end{aligned}
\]
e \(s : \)
\[
\begin{aligned}
x &= 6 − t \\
y &= −9 + 2t \\
z &= 4 − t
\end{aligned}
\](1.000, -1.000)

5. Considere a esfera de equação: \((x − 1)^2 + (y + 2)^2 + (z − 1)^2 = 9 \) e o plano de equação \(2x − 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \). (1.000, -1.000)

6. Sejam \(u = (1, 2, −1) \) e \(v = (3, 1, −4) \) vetores do espaço. Se \(d = \max(||\text{proj}_u^v||, ||\text{proj}_v^u||) \), então marque o inteiro mais próximo de 10d. (1.000, -1.000)

7. Responda V ou F: (3.000, -3.000)
(A) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
(C) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).
(D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
(E) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{aligned}
2x − y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{aligned}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.
(F) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
Nome: ___________________________ Identificação: ___________
1. Marque a distância entre as seguintes retas: \(r \):
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s \):
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

2. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5.000
(B) 5.017
(C) 4.697
(D) 5.107
(E) 4.700
(F) 4.717

3. Considere as retas no espaço: \(r \):
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s \):
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

4. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^u||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\). (1.000, -1.000)

5. Responda V ou F:

(A) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(D) O sistema com soluções no \(IR^3 \) dado como:
\[
\begin{align*}
x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(F) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).

(1.000, -1.000)

7. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r \):
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s \):
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ___________________________
1. Responda V ou F:

(A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(B) \(|u \times v| = |u||v|\) se e somente se \(u \) for ortogonal a \(v \).

(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(D) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(F) O sistema com soluções no \(\mathbb{R}^3 \) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

a coordenada \(x \) da solução é 1.

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3|a| + |b| + |c|\).

\[(1.000, -1.000)\]

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u^u|, |\text{proj}_v^u|\} \), então marque o inteiro mais próximo de 10d.

\[(1.000, -1.000)\]

4. Marque a distância entre as seguintes retas: \(r \) :

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

\[\text{e} \ s : \begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

\[(1.000, -1.000)\]

5. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{align*} x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0 \end{align*} \) e \(s : \begin{align*} x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t \end{align*} \). Marque \(x_0 + y_0 + z_0 \).

\[(1.000, -1.000)\]

6. Considere as retas no espaço: \(r : \begin{align*} x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t \end{align*} \) e \(s : \begin{align*} x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q \end{align*} \). As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\[(1.500, -1.500)\]

7. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:

\[(1.500, -1.500)\]

(F) 5,017
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: __________

IDENTIFICAÇÃO ALUNO

<table>
<thead>
<tr>
<th>1 V-F</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
1. Responda V ou F:

(3.000, -3.000)

(A) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

(B) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).

(E) O sistema com soluções no \(\mathbb{R}^3\) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

possui solução única tal que a coordenada \(x\) da solução é 1.

(F) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

2. Considere o triângulo de vértices: \(A = (-1,1), B = (2,4)\) e \(C = (5,0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:

(1.500, -1.500)

(A) 4,697

(B) 5,107

(C) 4,717

(D) 5,000

(E) 5,017

(F) 4,700

3. Sejam \(u = (1,2,-1)\) e \(v = (3,1,-4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u^w||, ||\text{proj}_v^w||\}\), então marque o inteiro mais próximo de \(10d\).

(1.000, -1.000)

4. Marque a distância entre as seguintes retas: \(r:\)

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

e \(s:\)

\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

(1.000, -1.000)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

(1.000, -1.000)

6. Considere as retas no espaço: \(r:\)

\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]

e \(s:\)

\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]

As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)

7. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r:\)

\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]

e \(s:\)

\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]

Marque \(x_0 + y_0 + z_0\).

(1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ______________________________ Identificação: ______________________

CONTROLE MIXnFIX

IDENTIFICAÇÃO ALUNO

CONTROLE MIXnFIX

1 2 3 4 5 V-F 6

0 1 2 3 4 5 6 7 8 9

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9

A B C D E F G H I J
1. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas:
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).
\[(1.000, -1.000)\]

2. Marque a distância entre as seguintes retas:
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
e \(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\).
\[(1.000, -1.000)\]

4. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:
\[(A) 4,697 \quad (B) 5,107 \quad (C) 5,017 \quad (D) 5,000 \quad (E) 4,717 \quad (F) 4,700\]

5. Responda V ou F:
\[(A) \ ||u \times v|| = ||u|| ||v|| \text{ se e somente se } u \text{ for ortogonal a } v.\]
\[(B) \text{ Considere o sistema } AX = b, \text{ onde } A \text{ é a matriz dos coeficientes, } X \text{ o vetor das incógnitas e } b \text{ o vetor dos termos independentes. O sistema } AX = b \text{ admite infinitas soluções se e somente se o sistema homogêneo associado } AX = 0 \text{ admite infinitas soluções.}\]
\[(C) \text{ O vetor } u \times (v \times u) \text{ é múltiplo do vetor } v.\]
\[(D) \text{ O sistema com soluções no } \mathbb{R}^3 \text{ dado como: } \begin{cases}2x - y + z = 0 \\
x + y + 2z = 0, \text{ possui solução única tal que } 2y + z = 1 \end{cases}\text{ a coordenada } x \text{ da solução é } 1.\]
\[(E) \text{ Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.}\]
\[(F) \text{ Sejam } s \text{ e } r \text{ retas do espaço que são coplanares; se uma terceira reta } l \text{ é reversa com } s, \text{ então } l \text{ será reversa também com } r.\]

6. Considere as retas no espaço:
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
e \(s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
\[(1.500, -1.500)\]

7. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).
\[(1.000, -1.000)\]
1. Considere o triângulo de vértices: \(A = (-1, 1), \)
\(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \(1.500, -1.500 \)

(A) 5.000
(B) 5.017
(C) 4.717
(D) 5.107
(E) 4.700
(F) 4.697

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).

(A) 1.000, -1.000

3. Responda V ou F:

(A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(C) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(D) O sistema com soluções no \(\mathbb{R}^3 \) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

a coordenada \(x \) da solução é 1.

(E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

4. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{ ||\text{proj}_u^w||, ||\text{proj}_v^w|| \} \), então marque o inteiro mais próximo de \(10d \).

5. Marque a distância entre as seguintes retas: \(r \) :

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

\(s : \)

\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

Marque a distância entre as seguintes retas: \(r \) :

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

\(s : \)

\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

6. Considere as retas no espaço: \(r \) :

\[
\begin{align*}
x &= x0 - 4 - 2t \\
y &= y0 + 3t \\
z &= z0 - t
\end{align*}
\]

\(s : \)

\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]

com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\(1.500, -1.500 \)

7. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r \) :

\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]

\(s : \)

\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]

Marque \(x_0 + y_0 + z_0 \).

\(1.000, -1.000 \)
1. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

2. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max(||\text{proj}_u v||, ||\text{proj}_v u||)\), então marque o inteiro mais próximo de 10d. (1.000, -1.000)

3. Responda V ou F:

(A) \(|u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).

(B) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

(C) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

(D) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(F) O sistema com soluções no \(\mathbb{R}^1\) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

a coordenada \(x\) da solução é 1.

4. Considere o triângulo de vértices: \(A = (-1, 1, 0)\), \(B = (2, 4, 0)\) e \(C = (5, 0, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}, \frac{1}{2})\) e o triângulo: (1.500, -1.500)

(A) 4,717
(B) 5,000
(C) 4,697
(D) 4,707
(E) 5,107
(F) 5,017

5. Marque a distância entre as seguintes retas: \(r\) :

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

\(s\) :

\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

6. Considere as retas no espaço: \(r\) :

\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]

e \(s\) :

\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]

Marque \(x_0 + y_0 + z_0\). (1.000, -1.000)

7. Seja \(C = (x_0, y_0, z_0)\) a intersecção das retas: \(r\) :

\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]

\(s\) :

\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]

Marque \(x_0 + y_0 + z_0\). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ________________

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2 V-F</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

CONTROLE MIXnFIX

<table>
<thead>
<tr>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
1. Marque a distância entre as seguintes retas:
 \[r : \begin{cases}
 x = 1 + 7t \\
 y = 1 + 8t \\
 z = 2 - 11t
 \end{cases} \quad \text{e} \quad s : \begin{cases}
 x = 3 - 3q \\
 y = -5 + 4q \\
 z = -3 + q
 \end{cases} \]
 \[-1.000\]

2. Responda V ou F: \((3.000, -3.000)\)
 (A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (B) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).
 (C) \(|u \times v| = |u||v|\) se e somente se \(u\) for ortogonal a \(v\).
 (D) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).
 (E) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.
 (F) O sistema com soluções no \(R^2\) dado como:
 \[\begin{cases}
 2x - y + z = 0 \\
 x + y + 2z = 0
 \end{cases} \]
 possui solução única tal que \(2y + z = 1\). A coordenada \(x\) da solução é 1.

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

4. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u v||, ||\text{proj}_v u||\}\), então marque o inteiro mais próximo de 10\(d\). \((1.000, -1.000)\)

5. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, 5/2)\) e o triângulo: \((1.500, -1.500)\)
 (A) 5,000
 (B) 5,107
 (C) 5,017
 (D) 4,717
 (E) 4,700
 (F) 4,697

6. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas:
 \[\begin{cases}
 x + y + z - 1 = 0 \\
 2x + y - 3z - 3 = 0
 \end{cases} \quad \text{e} \quad s : \begin{cases}
 x = 6 - t \\
 y = -9 + 2t \\
 z = 4 - t
 \end{cases} \]
 Marque \(x_0 + y_0 + z_0\). \((1.000, -1.000)\)

7. Considere as retas no espaço:
 \[r : \begin{cases}
 x = -4 - 2t \\
 y = 9 + 3t \\
 z = -t
 \end{cases} \quad \text{e} \quad s : \begin{cases}
 x = -1 - q \\
 y = 12 + 3q \\
 z = -6 - 2q
 \end{cases} \]
 As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)
1. Marque a distância entre as seguintes retas:
\[r: \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \quad \text{e} \quad s: \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \] \((1,000, -1,000) \)

2. Considere o triângulo de vértices: \(A = (-1,1), B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:

- (A) 4,717
- (B) 5,107
- (C) 4,700
- (D) 5,017
- (E) 4,697

3. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas:
\[r: \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \quad \text{e} \quad s: \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \]
Marque \(x_0 + y_0 + z_0 \).

- (A) 3,000, -3,000
- (B) 5,000
- (C) 4,700
- (D) 5,017
- (E) 4,697

4. Responda V ou F:

- (A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
- (B) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases} \]
possui solução única tal que \(2y + z = 1 \) e a coordenada \(x \) da solução é 1.

- (C) \(||u \times v|| = ||u|| \cdot ||v|| \) se e somente se \(u \) for ortogonal a \(v \).
- (D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
- (E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
- (F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

5. Considere as retas no espaço:
\[r: \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \quad \text{e} \quad s: \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \]
As interseções dessas retas formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

- (A) 1,500, -1,500
- (B) 5,000
- (C) 4,700
- (D) 5,017
- (E) 4,697

6. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max \{ ||\text{proj}_u^v||, ||\text{proj}_v^u|| \} \), então marque o inteiro mais próximo de 10\(d \).

- (A) 1,000, -1,000
- (B) 5,000
- (C) 4,700
- (D) 5,017
- (E) 4,697

7. Considere a esfera de equação:
\[(x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \]
o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a,b,c) \), então marque \(3(|a| + |b| + |c|) \).

- (A) 1,000, -1,000
- (B) 5,000
- (C) 4,700
- (D) 5,017
- (E) 4,697
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXNFIX
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).

(1.000, -1.000)

2. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

(1.000, -1.000)

4. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^w||, ||\text{proj}_v^w||\} \), então marque o inteiro mais próximo de 10d.

(1.500, -1.500)

5. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:

(A) 4.697
(B) 5.000
(C) 4.700
(D) 5.017
(E) 5.107
(F) 4.717

6. Responda V ou F:

(A) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(B) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{align*}
\]
possui solução única tal que \(2y + z = 1 \) a coordenada \(x \) da solução é 1.

(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

7. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)
Nome: ___________________________ Identificação: __________________
1. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

2. Marque a distância entre as seguintes retas: \(r:\)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
\((1.000, -1.000)\)

3. Considere as retas no espaço: \(r:\)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500. -1.500)\)

4. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = \left(9, \frac{5}{2}\right)\) e o triângulo: \((1.500. -1.500)\)

(A) 5,017
(B) 5,000
(C) 4,717
(D) 4,700
(E) 4,697
(F) 5,107

5. Sejamos \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\}\), então marque o inteiro mais próximo de \(10d\). \((1.000, -1.000)\)

6. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r:\)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0\). \((1.000, -1.000)\)

7. Responda V ou F:

(A) O sistema com soluções no \(\mathbb{R}^3\) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possuí solução única tal que a coordenada \(x\) da solução é 1. \((3.000, -3.000)\)

(B) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\). \((\text{C})\)

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações. \((\text{D})\)

(D) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções. \((\text{E})\)

(E) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\). \((\text{F})\)

(F) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ____________________________ Identificação: ________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXnFIX
1. Considere a esfera de equação:
\[(x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\]
e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).
\((1.000, -1.000)\)

2. Marque a distância entre as seguintes retas:
\[
\begin{aligned}
r: & \begin{cases}
x = 1 + 7t \\
y = 1 + 8t \\
z = 2 - 11t
\end{cases} \\
e & \begin{cases}
x = 3 - 3q \\
y = -5 + 4q \\
z = -3 + q
\end{cases}
\]
\(1.000, -1.000\)

3. Responda V ou F:
\((3.000, -3.000)\)
(A) O sistema com soluções no \(IR^3\) dado como:
\[
\begin{cases}
2x - y + z = 0 \\
x + y + 2z = 0
\end{cases}
\]
possui solução única tal que a coordenada \(x\) da solução é 1.

(B) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

(C) \(|u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).

(D) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

(E) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

4. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = max\{||proj_u^v||, ||proj_v^u||\}\), então marque o inteiro mais próximo de 10\(d\).
\((1.000, -1.000)\)

5. Considere o triângulo de vértices: \(A = (-1,1)\), \(B = (2,4)\) e \(C = (5,0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:
\((1.500, -1.500)\)
(A) 5,017
(B) 4,697
(C) 5,107
(D) 5,000
(E) 4,700
(F) 4,717

6. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas:
\[
\begin{cases}
x + y + z - 1 = 0 \\
2x + y - 3z - 3 = 0
\end{cases}
\]
e \(s : \begin{cases}
x = 6 - t \\
y = -9 + 2t \\
z = 4 - t
\end{cases}
\]
Marque \(x_0 + y_0 + z_0\).
\((1.000, -1.000)\)

7. Considere as retas no espaço:
\[
\begin{cases}
x = -4 - 2t \\
y = 9 + 3t \\
z = -t
\end{cases}
\]
e \(s : \begin{cases}
x = -1 - q \\
y = 12 + 3q \\
z = -6 - 2q
\end{cases}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
\((1.500, -1.500)\)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: __________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXNFIX

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

1 A B C D E F
2 0 1 2 3 4 V-F
3 5 6 7 8 9
4 6 7 8 9
5 0 1 2 3 4 5 6 7 8 9
6 0 1 2 3 4 5 6 7 8 9
7 0 1 2 3 4 5 6 7 8 9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
1. Considere o triângulo de vértices: \(A = (-1, 1), \ B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500) \).

(A) 4,697
(B) 5,107
(C) 5,000
(D) 5,017
(E) 4,700
(F) 4,717

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).

(1.000, -1.000)

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque \(3(||u|| + ||v||) \).

(1.000, -1.000)

4. Responda V ou F:

(A) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

a coordena \(x \) da solução é 1.

(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(E) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

5. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]

\(s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]

Marque \(x_0 + y_0 + z_0 \).

(1.000, -1.000)

6. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

\(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

(1.000, -1.000)

7. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]

\(s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]

As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________________ Identificação: ____________

IDENTIFICAÇÃO ALUNO

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

CONTROLE MIXnFIX

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

7
1. Sejam $u = (1, 2, -1)$ e $v = (3, 1, -4)$ vetores do espaço. Se $d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\}$, então marque o inteiro mais próximo de $10d$. (1.000, -1.000)

2. Responda V ou F:
 (A) $||u \times v|| = ||u||||v||$ se e somente se u for ortogonal a v.
 (B) Sejam s e r retas do espaço que são coplanares; se uma terceira reta l é reversa com s, então l será reversa também com r.
 (C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (D) O sistema com soluções no \mathbb{R}^3 dado como:
 \[
 \begin{align*}
 2x - y + z &= 0 \\
 x + y + 2z &= 0
 \end{align*}
 \]
 a coordenada x da solução é 1.
 (E) Considere o sistema $AX = b$, onde A é a matriz dos coeficientes, X o vetor das incógnitas e b o vetor dos termos independentes. O sistema $AX = b$ admite infinitas soluções se e somente se o sistema homogêneo associado $AX = 0$ admite infinitas soluções.
 (F) O vetor $u \times (v \times u)$ é múltiplo do vetor v.

3. Marque a distância entre as seguintes retas: $r :$ \[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\] e $s :$ \[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\] (1.000, -1.000)

4. Considere o triângulo de vértices: $A = (-1, 1, 1)$, $B = (2, 4, -2)$ e $C = (5, 0, 5)$. Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto $P = (9, \frac{5}{2})$ e o triângulo: (1.500, -1.500)
 (A) 4,700
 (B) 5,017
 (C) 4,717
 (D) 5,000
 (E) 4,697
 (F) 5,107

5. Considere a esfera de equação: $(x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9$ e o plano de equação $2x - 2y + z = 1$. Se o centro da circunferência que é interseção do plano com a esfera é (a, b, c), então marque $3(|a| + |b| + |c|)$. (1.000, -1.000)

6. Seja $C = (x_0, y_0, z_0)$ a interseção das retas: $r :$ \[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\] e $s :$ \[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\] Marque $x_0 + y_0 + z_0$. (1.000, -1.000)

7. Considere as retas no espaço: $r :$ \[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\] e $s :$ \[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\] As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _____________________________ Identificação: _____________________

CONTROLE MIXnFIX
1. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

2. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).
(1.000, -1.000)

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|) \).
(1.000, -1.000)

4. Responda V ou F:

(A) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(D) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

5. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u v||, ||\text{proj}_v u||\} \), então marque o inteiro mais próximo de 10\(d\).
(1.000, -1.000)

6. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = \left(9, \frac{5}{2}\right) \) e o triângulo:

(A) 4,697
(B) 5,107
(C) 5,000
(D) 4,700
(E) 4,717
(F) 5,017

7. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
(1.500, -1.500)
1. Considere o triângulo de vértices: $A = (-1, 1)$, $B = (2, 4)$ e $C = (5, 0)$. Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto $P = (9, \frac{5}{2})$ e o triângulo: \((1.500, -1.500) \)

(A) 5,000
(B) 5,017
(C) 5,107
(D) 4,697
(E) 4,717
(F) 4,700

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \)
e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500) \)

3. Responda V ou F:

(A) Sejam s e r retas do espaço que são coplanares; se uma terceira reta l é reversa com s, então l será reversa também com r.

(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se u for ortogonal a v.

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) Considere o sistema $AX = b$, onde A é a matriz dos coeficientes, X o vetor das incógnitas e b o vetor dos termos independentes. O sistema $AX = b$ admite infinitas soluções se e somente se o sistema homogêneo associado $AX = 0$ admite infinitas soluções.

(E) O vetor $u \times (v \times u)$ é múltiplo do vetor v.

(F) O sistema com soluções no \mathbb{R}^3 dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada x da solução é 1.

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \)
e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). \((1.000, -1.000) \)

5. Sejam $u = (1, 2, -1)$ e $v = (3, 1, -4)$ vetores do espaço. Se $d = \max\{||\text{proj}_u^w||, ||\text{proj}_v^w||\}$, então marque o inteiro mais próximo de 10d.

\((1.000, -1.000) \)

6. Seja $C = (x_0, y_0, z_0)$ a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \)
e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque $x_0 + y_0 + z_0$.

\((1.000, -1.000) \)

7. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação $2x - 2y + z = 1$. Se o centro da circunferência que é interseção do plano com a esfera é (a, b, c), então marque $3(|a| + |b| + |c|)$.

\((1.000, -1.000) \)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ______________________

CONTROLE MIXNFIX

IDENTIFICAÇÃO ALUNO
1. Considere o triângulo de vértices: \(A = (-1,1), \) \(B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500) \)

(A) 4,697
(B) 5,000
(C) 4,700
(D) 5,107
(E) 5,017
(F) 4,717

2. Considere a esfera de equação: \((x-1)^2 + (y+2)^2 + (z-1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

\((1.000, -1.000) \)

3. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max\{|\|proj_u^w\||, |\|proj_v^w\||\} \), então marque o inteiro mais próximo de \(10d\).

\((1.000, -1.000) \)

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \) \[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
\(e \) \(s : \) \[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).

\((1.000, -1.000) \)

5. Considere as retas no espaço: \(r : \) \[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s : \) \[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\((1.500, -1.500) \)

6. Responda V ou F:

(A) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
pos sui solução única tal que a coordenada \(x \) da solução é 1.

(B) \(|u \times v|| = ||u|| ||v||\) se e somente se \(u \) for ortogonal a \(v \).

(C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

7. Marque a distância entre as seguintes retas: \(r : \) \[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \) \[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

\((1.000, -1.000) \)
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \[\begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \] e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)

2. Considera a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

3. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). (1.000, -1.000)

4. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u^u||, |\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\). (1.000, -1.000)

5. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5,107
(B) 4,700
(C) 4,717
(D) 5,017
(E) 4,697
(F) 5,000

6. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

7. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).
(C) O sistema com solução no \(IR^3 \) dado como:
\[\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases} \]
possui solução única tal que a coordenada \(x \) da solução é 1.
(D) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
(F) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ________________
1. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{||\text{proj}_u^u||, ||\text{proj}_u^v||\} \), então marque o inteiro mais próximo de 10\(d \).
\((1.000, -1.000)\)

2. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \).
\((1.000, -1.000)\)

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque 3\((|a| + |b| + |c|)\).
\((1.000, -1.000)\)

4. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:
\((A) \ 4,700 \)
\((B) \ 4,717 \)
\((C) \ 5,107 \)
\((D) \ 5,000 \)
\((E) \ 4,697 \)
\((F) \ 5,017 \)

5. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z = 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \).
\((1.000, -1.000)\)

6. Responda V ou F:
\((A) \) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
\((B) \) ||\(u \times v || = || u || || v || \) se e somente se \(u \) for ortogonal a \(v \).
\((C) \) O sistema com soluções no \(IR^3 \) dado como:
\(\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases} \) possui solução única tal que \(2y + z = 1 \) a coordenada \(x \) da solução é 1.
\((D) \) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
\((E) \) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
\((F) \) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

7. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
\((1.500, -1.500)\)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: _______________

IDENTIFICAÇÃO ALUNO

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

CONTROLE MIXNFIX

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \).
Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)

2. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de \(10d \). (1.000, -1.000)

3. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

4. Responda V ou F: (3.000, -3.000)

(A) \(||u \times v|| = ||u|| \cdot ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(B) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\(\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases} \) possui solução única tal que \(2y + z = 1 \) e a coordenada \(x \) da solução é 1.

(C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(D) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

5. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). (1.000, -1.000)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(||a|| + ||b|| + ||c||)\). (1.000, -1.000)

7. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5,017
(B) 5,000
(C) 5,107
(D) 4,697
(E) 4,700
(F) 4,717
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: _____________________
1. Responda V ou F: (3.000, -3.000)

(A) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(C) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(a + b + c) \).

(1.000, -1.000)

3. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r \) :
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
\(e \) \(s \) :
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).

(1.000, -1.000)

4. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

5. Marque a distância entre as seguintes retas: \(r \) :
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s \) :
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

6. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5,107
(B) 5,000
(C) 4,700
(D) 5,017
(E) 4,717
(F) 4,697

7. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u^u||,|\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10d.

(1.000, -1.000)
1. Responda V ou F: \((3.000, -3.000)\)

(A) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

(B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(C) \(2x - y + z = 0\)
\(x + y + 2z = 0\)
possui solução única tal que \(2y + z = 1\)
a coordenada \(x\) da solução é 1.

(D) \(||u \times v|| = ||u||||v||\) se e somente se \(u\) for ortogonal a \(v\).

(E) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

(F) \(||u \times (v \times u)||\) é múltiplo do vetor \(v\).

2. \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u^w||, ||\text{proj}_v^w||\}\), então marque o inteiro mais próximo de 10\(d\). \((1.000, -1.000)\)

(A) 4,697
(B) 5,000

3. Considere o triângulo de vértices: \(A = (-1, 1), \ B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo: \((1.500, -1.500)\)

(A) 4,697
(B) 5,000

(C) 4,717
(D) 4,700
(E) 5,107
(F) 5,017

4. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r\):
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{align*}
\]
e \(s\):
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0\). \((1.000, -1.000)\)

5. Marque a distância entre as seguintes retas: \(r\):
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
\(s\):
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
\((-1.000)\)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

7. Considere as retas no espaço: \(r\):
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
\(s\):
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _______________________________ Identificação: ________________
1. Considere as retas no espaço:
 \[
 r : \begin{cases}
 x = -4 - 2t \\
 y = 9 + 3t \\
 z = -t
 \end{cases}
 \]
 e
 \[
 s : \begin{cases}
 x = -1 - q \\
 y = 12 + 3q \\
 z = -6 - 2q
 \end{cases}
 \]
 As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

2. Considere a esfera de equação:
 \[
 (x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9
 \]
 e o plano de equação
 \[
 2x - 2y + z = 1
 \]
 Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

3. Considere o triângulo de vértices:
 \(A = (-1, 1)\),
 \(B = (2, 4)\) e
 \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo: (1.500, -1.500)
 (A) 4,697
 (B) 5,017
 (C) 5,000
 (D) 4,717
 (E) 4,700
 (F) 5,107

4. Marque a distância entre as seguintes retas:
 \[
 r : \begin{cases}
 x = 1 + 7t \\
 y = 1 + 8t \\
 z = 2 - 11t
 \end{cases}
 \]
 e
 \[
 s : \begin{cases}
 x = 3 - 3q \\
 y = -5 + 4q \\
 z = -3 + q
 \end{cases}
 \]
 (1.000, -1.000)

5. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se
 \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\}\), então marque o inteiro mais próximo de \(10d\). (1.000, -1.000)

6. Responda V ou F:
 (3.000, -3.000)
 (A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (B) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e
 \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.
 (C) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).
 (D) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).
 (E) O sistema com soluções no \(\mathbb{R}^3\) dado como:
 \[
 \begin{cases}
 2x - y + z = 0 \\
 x + y + 2z = 0 \\
 2y + z = 1
 \end{cases}
 \]
 possui solução única tal que a coordenada \(x\) da solução é 1.
 (F) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

7. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas:
 \[
 r : \begin{cases}
 x + y + z - 1 = 0 \\
 2x + y - 3z - 3 = 0
 \end{cases}
 \]
 e
 \[
 s : \begin{cases}
 x = 6 - t \\
 y = -9 + 2t \\
 z = 4 - t
 \end{cases}
 \]
 Marque \(x_0 + y_0 + z_0\). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _____________________________ Identificação: ________________
1. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u^v|, |\text{proj}_v^u|\} \), então marque o inteiro mais próximo de \(10d \).

2. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
\(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

3. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
\(s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).

4. Responda V ou F:

(A) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(C) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(E) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada \(x \) da solução é 1.

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).

6. Considere o triângulo de vértices: \(A = (-1,1), B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:

(A) 4,717
(B) 5,017
(C) 5,000
(D) 4,697
(E) 4,700
(F) 5,107

7. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
\(s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)
Tipo da prova: 24

Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ___________________
1. Considere o triângulo de vértices: \(A = (-1,1), B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5.000
(B) 5.017
(C) 4.717
(D) 5.107
(E) 4.697
(F) 4.700

2. Marque a distância entre as seguintes retas: \(r : \) \[
\begin{align*}
x & = 1 + 7t \\
y & = 1 + 8t \\
z & = 2 - 11t
\end{align*}
\] e \(s : \) \[
\begin{align*}
x & = 3 - 3q \\
y & = -5 + 4q \\
z & = -3 + q
\end{align*}
\] (1.000, -1.000)

3. Responda V ou F:

(A) \(|u \times v| = |u||v||\) se e somente se \(u \) for ortogonal a \(v \).

(B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(D) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(E) O sistema com soluções no \(IIR^3 \) dado como:
\[
\begin{align*}
2x - y + z & = 0 \\
x + y + 2z & = 0 \\
2y + z & = 1
\end{align*}
\] a coordenada \(x \) da solução é 1.

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 & = 0 \\
2x + y - 3z - 3 & = 0
\end{align*}
\] e \(s : \)
\[
\begin{align*}
x & = 6 - t \\
y & = -9 + 2t \\
z & = 4 - t
\end{align*}
\] Marque \(x_0 + y_0 + z_0 . \) (1.000, -1.000)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|) . \) (1.000, -1.000)

6. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x & = -4 - 2t \\
y & = 9 + 3t \\
z & = -t
\end{align*}
\] e \(s : \)
\[
\begin{align*}
x & = -1 - q \\
y & = 12 + 3q \\
z & = -6 - 2q
\end{align*}
\] As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

7. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = max\{||proj_u^v||,||proj_v^u||\} \), então marque o inteiro mais próximo de \(10d \). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ____________
1. Considere as retas no espaço:
 \[r : \begin{cases}
 x = -4 - 2t \\
 y = 9 + 3t \\
 z = -t
 \end{cases} \]
 \[e \ :egin{cases}
 x = -1 - q \\
 y = 12 + 3q \\
 z = -6 - 2q
 \end{cases} \]
 As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

2. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas:
 \[r : \begin{cases}
 x + y + z - 1 = 0 \\
 2x + y - 3z - 3 = 0
 \end{cases} \]
 \[e \ :egin{cases}
 x = 6 - t \\
 y = -9 + 2t \\
 z = 4 - t
 \end{cases} \]
 Marque \(x_0 + y_0 + z_0 \).
 (1.000, -1.000)

3. Marque a distância entre as seguintes retas:
 \[r : \begin{cases}
 x = 1 + 7t \\
 y = 1 + 8t \\
 z = 2 - 11t
 \end{cases} \]
 \[e \ :egin{cases}
 x = 3 - 3q \\
 y = -5 + 4q \\
 z = -3 + q
 \end{cases} \]
 (1.000, -1.000)

4. Responda V ou F:
 \(\text{(A)} \) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
 V

 \(\text{(B)} \) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
 \[\begin{cases}
 2x - y + z = 0 \\
 x + y + 2z = 0 \\
 2y + z = 1
 \end{cases} \]
 possui solução única tal que a coordenada \(x \) da solução é 1.
 F

5. Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
 (D)

6. Considere o triângulo de vértices: \(A = (-1, 1, 0) \), \(B = (2, 4, 0) \) e \(C = (5, 0, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, 5, 2) \) e o triângulo: (1.500, -1.500)
 \(\text{(A)} \) 4,697 \(\text{(B)} \) 5,017 \(\text{(C)} \) 4,717 \(\text{(D)} \) 5,000 \(\text{(E)} \) 4,700 \(\text{(F)} \) 5,107

7. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).
 \(\text{(1.000, -1.000)} \)
Nome: ___________________________ Identificação: ___________________________
1. Considere o triângulo de vértices: \(A = (-1, 1), \) \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, 5) \) e o triângulo: \((1.500, -1.500) \)

(A) 4,697
(B) 5,107
(C) 4,700
(D) 5,017
(E) 5,000
(F) 4,717

2. Responda V ou F:

(A) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada \(x \) da solução é 1.

(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(C) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

3. Seja \(C' = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
\(e \ s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).

(1.000, -1.000)

4. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
\(e \ s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).

(1.000, -1.000)

5. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
\(e \ s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(||a|| + ||b|| + ||c||) \).

(1.000, -1.000)

7. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{ ||\text{proj}_{u}v||, ||\text{proj}_{v}u|| \} \), então marque o inteiro mais próximo de \(10d \).

(1.000, -1.000)
Nome: ____________________________ Identificação: ____________________________
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).
(1.000, -1.000)

2. Responda V ou F:

(A) \(\text{O vetor } u \times (v \times u) \) é múltiplo do vetor \(v \).
(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).
(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
(D) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

3. Considere o triângulo de vértices: \(A = (-1, 1), \ B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:
(1.500, -1.500)

(A) 5,000

4. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).
(1.000, -1.000)

5. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

6. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
(1.500, -1.500)

7. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{||proj_u v||, ||proj_v u||\} \), então marque o inteiro mais próximo de \(10d \).
(1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: _______________
1. Considere o triângulo de vértices: \(A = (-1, 1), \ B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:

(A) 4,697
(B) 5,017
(C) 4,700
(D) 5,000
(E) 4,717
(F) 5,107

2. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max\{|||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de \(10d \).

3. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \).

4. Responda V ou F:

(A) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(B) \(||u \times v|| = ||u||||v|| \) se e somente se \(u \) for ortogonal à \(v \).

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(F) O sistema com soluções no \(\mathbb{R}^3 \) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

possui solução única tal que a coordenada \(x \) da solução é 1.

5. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). Marque \(x_0 + y_0 + z_0 \).

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(||a|| + ||b|| + ||c||) \).

7. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \): \((1.000, -1.000)\).

2. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.000)\).
 - (A) 4.717
 - (B) 4.697
 - (C) 5.000
 - (D) 5.107
 - (E) 5.017
 - (F) 4.700

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u u|, |\text{proj}_v u|\} \), então marque o inteiro mais próximo de 10d: \((1.000, -1.000)\).

4. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\).

5. Responda V ou F:
 - (A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
 - (B) O sistema com soluções no \(\mathbb{R}^3 \) dado como: \(\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases} \) possui solução única tal que \(2y + z = 1 \) a coordenada \(x \) da solução é 1.
 - (C) \(|u \times v| = |u||v| \) se e somente se \(u \) for ortogonal a \(v \).
 - (D) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
 - (E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
 - (F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

6. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \): \((1.000, -1.000)\).

7. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \): \((1.000, -1.000)\).
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ________________________________ Identificação: ______________
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{cases}
x + y + z - 1 = 0 \\
2x + y - 3z - 3 = 0
\end{cases}
\]
e \(s : \)
\[
\begin{cases}
x = 6 - t \\
y = -9 + 2t \\
z = 4 - t
\end{cases}
\]
Marque \(x_0 + y_0 + z_0 = (1.000, -1.000) \).

2. Responda V ou F:

(A) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(C) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{cases}
2x - y + z = 0 \\
x + y + 2z = 0 \\
2y + z = 1
\end{cases}
\]
a coordenada \(x \) da solução é 1.

(D) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

3. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500) \).

(A) 4,700

4. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{cases}
x = 1 + 7t \\
y = 1 + 8t \\
z = 2 - 11t
\end{cases}
\]
e \(s : \)
\[
\begin{cases}
x = 3 - 3q \\
y = -5 + 4q \\
z = -3 + q
\end{cases}
\]
Com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\((1.000, -1.000) \)

5. Considere as retas no espaço: \(r : \)
\[
\begin{cases}
x = -4 - 2t \\
y = 9 + 3t \\
z = -t
\end{cases}
\]
e \(s : \)
\[
\begin{cases}
x = -1 - q \\
y = 12 + 3q \\
z = -6 - 2q
\end{cases}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\((1.500, -1.500) \)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(||a|| + ||b|| + ||c||) \).

\((1.000, -1.000) \)

7. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de \(10d \).

\((1.000, -1.000) \)
Nome: ___________________________ Identificação: ____________________
1. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:

(A) 4.700
(B) 5.017
(C) 5.000
(D) 4.697
(E) 4.717
(F) 5.107

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)

3. Considere a esfera de equação:

\[
(x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9
\]

e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

(1.000, -1.000)

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas:

\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]

Marque \(x_0 + y_0 + z_0 \).

5. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max(||\text{proj}_u^v||, ||\text{proj}_v^u||) \), então marque o inteiro mais próximo de 10d.

(1.000, -1.000)

6. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(B) Considere o sistema \(AX = b \), onde \(A \) é a matriz de coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(C) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(D) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(E) O sistema com soluções no \(\mathbb{R}^3 \) dado como:

\[
\begin{cases}
x + y + 2z = 0 \\
2x - y + z = 0 \\
2y + z = 1
\end{cases}
\]

possui solução única tal que a coordenada \(x \) da solução é 1.

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

7. Marque a distância entre as seguintes retas:

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

e

\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

(1.000, -1.000)
Nome: _______________________________ Identificação: ________________
1. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

2. Considere as retas no espaço:
 \[r : \begin{cases}
 x = -4 - 2t \\
 y = 9 + 3t \\
 z = -t
 \end{cases} \]
 e \(s : \begin{cases}
 x = -1 - q \\
 y = 12 + 3q \\
 z = -6 - 2q
 \end{cases} \). As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

 (A) 4,717
 (B) 4,697
 (C) 5,017
 (D) 5,107
 (E) 5,000
 (F) 4,700

3. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

 (A) 4,717
 (B) 4,697
 (C) 5,017
 (D) 5,107
 (E) 5,000
 (F) 4,700

4. Marque a distância entre as seguintes retas:
 \[r : \begin{cases}
 x = 1 + 7t \\
 y = 1 + 8t \\
 z = 2 - 11t
 \end{cases} \]
 e \(s : \begin{cases}
 x = 3 - 3q \\
 y = -5 + 4q \\
 z = -3 + q
 \end{cases} \). (1.000, -1.000)

5. Responda V ou F:

 (A) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

 (B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

 (C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

 (D) O sistema com soluções no \(IR^3 \) dado como:
 \[\begin{cases}
 2x - y + z = 0 \\
 x + y + 2z = 0 \\
 2y + z = 1
 \end{cases} \]
 possui solução única tal que a coordenada \(x \) da solução é 1.

 (E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

 (F) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

6. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = max\{||proj_u^u||, ||proj_u^v||\} \), então marque o inteiro mais próximo de \(10d \). (1.000, -1.000)

7. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas:
 \[r : \begin{cases}
 x + y + z - 1 = 0 \\
 2x + y - 3z - 3 = 0
 \end{cases} \]
 e \(s : \begin{cases}
 x = 6 - t \\
 y = -9 + 2t \\
 z = 4 - t
 \end{cases} \). Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Algebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ____________________
1. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).
\((1.000, -1.000)\)

2. Considere o triângulo de vértices: \(A = (-1, 1)\), \(B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:
\((A) 4,697\)
\((B) 4,717\)
\((C) 5,107\)
\((D) 5,000\)
\((E) 5,017\)
\((F) 4,700\)

3. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases}\) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases}\). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
\((1.500, -1.500)\)

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases}\) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases}\).
\((1.000, -1.000)\)

5. Responda V ou F:

(A) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).
\(F\)

(B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
\(V\)

(C) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).
\(F\)

(D) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.
\(V\)

(E) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).
\(F\)

(F) O sistema com soluções no \(I\mathbb{R}^3\) dado como: \(\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases}\) possui solução única tal que \(2y + z = 1\) a coordenada \(x\) da solução é 1.
\(F\)

6. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{|\text{proj}_u v|, |\text{proj}_v u|\}\), então marque o inteiro mais próximo de \(10d\).
\((1.000, -1.000)\)

7. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases}\) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases}\). Marque \(x_0 + y_0 + z_0\).
\((1.000, -1.000)\)
1. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \(1.500, -1.500 \)

2. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = -5 + 4q \\ y = 3 - 3q \\ z = -3 + q \end{cases} \). \(1.000, -1.000 \)

3. Responda V ou F:

 (A) O sistema com soluções no IR³ dado como: \(\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases} \) possui solução única tal que a coordenada \(x \) da solução é 1.

 (B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

 (C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

 (D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

 (E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

 (F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). \(1.000, -1.000 \)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(||a|| + ||b|| + ||c||) \). \(1.000, -1.000 \)

6. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\\{||\text{proj}_u v||, ||\text{proj}_v u||\} \), então marque o inteiro mais próximo de \(10d \). \(1.000, -1.000 \)

7. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \(1.500, -1.500 \)

 (A) 5.000
 (B) 5.107
 (C) 5.017
 (D) 4.717
 (E) 4.700
 (F) 4.697
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: _____________
1. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500) \)

(A) 5,107
(B) 5,000
(C) 4,700
(D) 4,717
(E) 5,017
(F) 4,697

2. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \).

\((1.000, -1.000) \)

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

\((1.000, -1.000) \)

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \).

Marque \(x_0 + y_0 + z_0 \).

\((1.000, -1.000) \)

5. Responda V ou F:

(A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(B) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(C) O sistema com soluções no \(I R^3 \) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

possui solução única tal que a coordenada \(x \) da solução é 1.

(D) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(F) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

\((3.000, -3.000) \)

6. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\((1.500, -1.500) \)

7. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u v||, ||\text{proj}_v u||\} \), então marque o inteiro mais próximo de 10\(d\).

\((1.000, -1.000) \)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ____________________________ Identificação: ____________________
1. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^w||, ||\text{proj}_v^w||\} \), então marque o inteiro mais próximo de 10\(d\). (1.000, -1.000)

2. Responda V ou F: (3.000, -3.000)

(A) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(B) O sistema com soluções no \(\mathbb{R}^3 \) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{align*}
\]

possui solução única tal que a coordenada \(x \) da solução é 1.

(C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(E) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(F) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

3. Considere a esfera de equação: \((x-1)^2 + (y+2)^2 + (z-1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque 3(|\(a| + |b| + |c|)\). (1.000, -1.000)

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)

\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]

Marque \(x_0 + y_0 + z_0 \).

5. Considere as retas no espaço: \(r : \)

\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]

e \(s : \)

\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]

As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

6. Marque a distância entre as seguintes retas: \(r : \)

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

e \(s : \)

\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

(1.000, -1.000)

7. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5.000

(B) 4.697

(C) 4.717

(D) 4.700

(E) 5.107

(F) 5.017
1. Responda V ou F:

(A) $||u \times v|| = ||u|| \cdot ||v||$ se e somente se u for ortogonal a v.

(B) Sejam s e r retas do espaço que são coplanares; se uma terceira reta l é reversa com s, então l será reversa também com r.

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) Considere o sistema $AX = b$, onde A é a matriz dos coeficientes, X o vetor das incógnitas e b o vetor dos termos independentes. O sistema $AX = b$ admite infinitas soluções se e somente se o sistema homogêneo associado $AX = 0$ admite infinitas soluções.

(E) O sistema com soluções no \mathbb{R}^3 dado como:

\[
\begin{cases}
2x - y + z = 0 \\
x + y + 2z = 0 \\
2y + z = 1
\end{cases}
\]

a coordenada x da solução é 1.

(F) O vetor $u \times (v \times u)$ é múltiplo do vetor v.

2. Seja $C = (x_0, y_0, z_0)$ a interseção das retas: $r : \begin{cases} x + y + z - 1 = 0 \\
2x + y - 3z - 3 = 0 \end{cases}$ e $s : \begin{cases} x = 6 - t \\
y = -9 + 2t \\
z = 4 - t \end{cases}$

Marque $x_0 + y_0 + z_0$.

(1.000, -1.000)

3. Considere a esfera de equação: $(x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9$ e o plano de equação $2x - 2y + z = 1$. Se o centro da circunferência que é interseção do plano com a esfera é (a, b, c), então marque $3(|a| + |b| + |c|)$.

(1.000, -1.000)

4. Considere as retas no espaço: $r : \begin{cases} x = -4 - 2t \\
y = 9 + 3t \\
z = -t \end{cases}$

$e s : \begin{cases} x = -1 - q \\
y = 12 + 3q \\
z = -6 - 2q \end{cases}$

As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)

5. Sejam $u = (1, 2, -1)$ e $v = (3, 1, -4)$ vetores do espaço. Se $d = \max \{|\text{proj}_u v|, |\text{proj}_v u|\}$, então marque o inteiro mais próximo de $10d$.

(1.000, -1.000)

6. Marque a distância entre as seguintes retas: $r : \begin{cases} x = 1 + 7t \\
y = 1 + 8t \\
z = 2 - 11t \end{cases}$ e $s : \begin{cases} x = 3 - 3q \\
y = -5 + 4q \\
z = -3 + q \end{cases}$

(1.000, -1.000)

7. Considere o triângulo de vértices: $A = (-1, 1)$, $B = (2, 4)$ e $C = (5, 0)$. Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto $P = (9, \frac{5}{2})$ e o triângulo:

(A) 4,717

(B) 5,107

(C) 4,697

(D) 4,700

(E) 5,017

(F) 5,000
Nome: __________________________ Identificação: ________________
1. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \)

\(e \ s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)

2. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500)\)

 (A) 4.697
 (B) 5.000
 (C) 4.717
 (D) 5.017
 (E) 4.700
 (F) 5.107

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u^w||, |\text{proj}_v^w||\} \), então marque o inteiro mais próximo de \(10d \). \((1.000, -1.000)\)

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \)

\(e \ s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). \((1.000, -1.000)\)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

6. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). \((1.000, -1.000)\)

7. Responda V ou F:

 (A) \(|u \times v|| = |u||v||\) se e somente se \(u \) for ortogonal a \(v \).

 (B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

 (C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

 (D) O sistema com soluções no \(IR^3 \) dado como:

 \[\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \\ 2y + z = 1 \end{cases} \]

 possui solução única tal que a coordenada \(x \) da solução é 1.

 (E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

 (F) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
Universidade Federal de Pernambuco
Centro de Informática
Algebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ____________________________ Identificação: ____________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXNFIX

1 2 3 4 5 V-F 6

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9

7

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9

7
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
 x + y + z - 1 &= 0 \\
 2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
 x &= 6 - t \\
 y &= -9 + 2t \\
 z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \). \((1.000, -1.000) \)

2. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
 x &= 1 + 7t \\
 y &= 1 + 8t \\
 z &= 2 - 11t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
 x &= 3 - 3q \\
 y &= -5 + 4q \\
 z &= -3 + q
\end{align*}
\]
\((1.000, -1.000) \)

3. Considere o triângulo de vértices: \(A = (-1,1,1) \), \(B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9,\frac{5}{2}) \) e o triângulo: \((1.500, -1.500) \)

(A) 4,697
(B) 5,107
(C) 4,717
(D) 5,000
(E) 5,017
(F) 4,700

4. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
 x &= -4 - 2t \\
 y &= 9 + 3t \\
 z &= -t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
 x &= -1 - q \\
 y &= 12 + 3q \\
 z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500) \)

5. Responda V ou F: \((3.000, -3.000) \)

(A) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
 2x - y + z &= 0 \\
 x + y + 2z &= 0
\end{align*}
\]
possui solução única tal que \(2y + z = 1 \) e coordenada \(x \) da solução é 1. \(V \)

(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \). \(F \)

(C) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \). \(F \)

(D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções. \(V \)

(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \). \(F \)

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações. \(V \)

6. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max \{ ||\text{proj}_v^u||, ||\text{proj}_u^v|| \} \), então marque o inteiro mais próximo de \(10d. \) \((1.000, -1.000) \)

7. Considere a esfera de equação: \((x-1)^2 + (y+2)^2 + (z-1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|). \) \((1.000, -1.000) \)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: __________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXNFIX

V-F A B C D E F
1. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^u||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10d. (1.000, -1.000)

2. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 4,697
(B) 4,700
(C) 5,017
(D) 5,107
(E) 4,717
(F) 5,000

3. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). As interseções dessas retas formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

4. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

5. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

7. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
(D) O sistema com soluções no \(IR^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{align*}
\]
possui solução única tal que \(2y + z = 1\) a coordenada \(x\) da solução é 1.
(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
(F) \(||u \times v|| = ||u|| \cdot ||v||\) se e somente se \(u \) for ortogonal a \(v \).
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: _______________
1. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). \((1.000, -1.000)\)

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

3. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.000)\)

4. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^w||, ||\text{proj}_v^w||\} \), então marque o inteiro mais próximo de \(10d\). \((1.000, -1.000)\)

5. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = 2 - 11t \end{cases} \). \((1.000, -1.000)\)

6. Responda V ou F:

(A) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u \) for ortogonal a \(v \).

(B) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(F) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

7. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = \left(9, \frac{5}{2}\right)\) e o triângulo: \((1.500, -1.500)\)

(A) 4,700
(B) 5,107
(C) 5,017
(D) 4,697
(E) 4,717
(F) 5,000
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: _______________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXnFIX

1. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{||\text{proj}_u^u||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\). (\(1.000, -1.000\))

2. Responda V ou F:

(A) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(B) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(C) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada \(x \) da solução é 1.

(D) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

3. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondado para o inteiro mais próximo): (\(1.500, -1.500\))

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). (\(1.000, -1.000\))

5. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (\(1.500, -1.500\))

(A) 5,107
(B) 4,697
(C) 5,017
(D) 4,717
(E) 5,000
(F) 4,700

6. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). (\(1.000, -1.000\))

7. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (\(1.000, -1.000\))
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: __________________

 IDENTIFICAÇÃO ALUNO

 CONTROLE MIXNFIX

 0 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 0
5 6 7 8 9 0 1
6 7 8 9 0 1 2
7 8 9 0 1 2 3
8 9 0 1 2 3 4
9 0 1 2 3 4 5

7 V-F
A B C D E F

CONTROLE MIXNFIX

 0 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 0
5 6 7 8 9 0 1
6 7 8 9 0 1 2
7 8 9 0 1 2 3
8 9 0 1 2 3 4
9 0 1 2 3 4 5

CONTROLE MIXNFIX
1. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)

2. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). \((1.000, -1.000)\)

3. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500)\)

(A) 4,700
(B) 5,107
(C) 5,017
(D) 5,000
(E) 4,717
(F) 4,697

4. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u^v|, |\text{proj}_v^u|\} \), então marque o inteiro mais próximo de \(10d \). \((1.000, -1.000)\)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

6. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). \((1.000, -1.000)\)

7. Responda V ou F:

(A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(B) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(C) O sistema com soluções no \(IR^3 \) dado como:
\[
\begin{cases}
2x - y + z = 0 \\
x + y + 2z = 0 \\
2y + z = 1
\end{cases}
\] possui solução única tal que a coordenada \(x \) da solução é 1.

(D) \(|u \times v| = |u||v||\) se e somente se \(u \) for ortogonal a \(v \).

(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
Universidade Federal de Pernambuco
Centro de Informática
Algebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _________________________________ Identificação: ______________________
1. Responda V ou F:

(A) \(|u \times v| = |u||v||\theta|\) se e somente se \(u\) for ortogonal a \(v\).

(B) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

(E) O sistema com soluções no \(\mathbb{R}^3\) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
2x + y - 3z &= -3 \\
x + y + 2z &= 0
\end{align*}
\]
pode ter solução única tal que a coordenada \(x\) da solução é 1.

(F) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

2. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r:\)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0\).

(A) 4,717

(B) 5,017

(C) 5,000

(D) 4,700

(E) 5,107

(F) 4,697

3. Considere o triângulo de vértices: \(A = (-1, 1)\), \(B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = \left(9, \frac{5}{2}\right)\) e o triângulo: (1,500, -1,500)

(A) 4,717

4. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

(A) 4,700

(B) 5,001

(C) 5,000

(D) 4,700

(E) 5,107

(F) 4,697

5. Marque a distância entre as seguintes retas: \(r:\)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
Marque \(1,000, -1,000\).

6. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{(||\text{proj}_u^u||, ||\text{proj}_v^u||)\}\), então marque o inteiro mais próximo de 10d.

(A) 1,000

(B) 1,001

(C) 1,000

(D) 1,000

(E) 1,007

(F) 1,000

7. Considere as retas no espaço: \(r:\)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1,500, -1,500)
1. Considere as retas no espaço: \(r : \begin{align*} x &= -4 - 2t \\ y &= 9 + 3t \\ z &= -t \end{align*} \) e \(s : \begin{align*} x &= -1 - q \\ y &= 12 + 3q \\ z &= -6 - 2q \end{align*} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500) \)

2. Responda V ou F:
 (A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
 (B) Sejam \(s \) e \(r \) retas do espaço que são coplanoares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
 (C) O sistema com soluções no \(IR^3 \) dado como:
 \[
 \begin{cases}
 2x - y + z = 0 \\
 x + y + 2z = 0 \\
 2y + z = 1
 \end{cases}
 \]
 a coordenada \(x \) da solução é 1.
 (D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
 (E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (F) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

3. Considere o triângulo de vértices: \(A = (-1, 1, 2) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500) \)

4. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{ ||\text{proj}_u v||, ||\text{proj}_v u|| \} \), então marque o inteiro mais próximo de 10\(d\).
 \((1.000, -1.000) \)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).
 \((1.000, -1.000) \)

6. Marque a distância entre as seguintes retas: \(r : \begin{align*} x &= 1 + 7t \\ y &= 1 + 8t \\ z &= 2 - 11t \end{align*} \) e \(s : \begin{align*} x &= 3 - 3q \\ y &= -5 + 4q \\ z &= -3 + q \end{align*} \).
 \((1.000, -1.000) \)

7. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{align*} x + y + z - 1 &= 0 \\ 2x + y - 3z - 3 &= 0 \end{align*} \) e \(s : \begin{align*} x &= 6 - t \\ y &= -9 + 2t \\ z &= 4 - t \end{align*} \). Marque \(x_0 + y_0 + z_0 \).
 \((1.000, -1.000) \)
1. Considere o triângulo de vértices: \(A = (-1,1), \\ B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = \left(9,\frac{5}{2}\right) \) e o triângulo: \((1.500, -1.500)\)

(A) 4,700
(B) 5,017
(C) 5,107
(D) 5,000
(E) 4,717
(F) 4,697

2. Considere a esfera de equação: \((x-1)^2 + (y+2)^2 + (z-1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a|+|b|+|c|)\).

\((1.000, -1.000)\)

3. Responda V ou F:

(A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(B) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(C) O sistema com soluções no \(IR^3 \) dado como:

\[
\begin{aligned}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{aligned}
\]

possui solução única tal que \(2y + z = 1 \) e coordenada \(x \) da solução é 1.

(D) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

4. Considere as retas no espaço: \(r : \)

\[
\begin{aligned}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{aligned}
\]

e \(s : \)

\[
\begin{aligned}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{aligned}
\]

As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)

5. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_v u||, ||\text{proj}_u v||\} \), então marque o inteiro mais próximo de 10\(d\).

\((1.000, -1.000)\)

6. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)

\[
\begin{aligned}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{aligned}
\]

e \(s : \)

\[
\begin{aligned}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{aligned}
\]

Marque \(x_0 + y_0 + z_0 \).

\((1.000, -1.000)\)

7. Marque a distância entre as seguintes retas: \(r : \)

\[
\begin{aligned}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{aligned}
\]

e \(s : \)

\[
\begin{aligned}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{aligned}
\]

\((1.000, -1.000)\)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _______________________________ Identificação: ____________________________
1. Responda V ou F:
 \((3.000, -3.000)\)
 (A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (B) \(|u \times v| = |u||v|\) se e somente se \(u\) for ortogonal a \(v\).
 (C) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.
 (D) O sistema com soluções no \(\mathbb{R}^3\) dado como:
 \[
 \begin{align*}
 2x - y + z &= 0 \\
 x + y + 2z &= 0
 \end{align*}
 \]
 a coordenada \(x\) da solução é 1.
 (E) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).
 (F) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

2. Sejam \(u = (1,2,-1)\) e \(v = (3,1,-4)\) vetores do espaço. Se \(d = \max \{|\text{proj}_u^v||,|\text{proj}_v^u||\}\), então marque o inteiro mais próximo de \(10d\).
 (1.000, -1.000)

3. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r\) :
 \[
 \begin{align*}
 x + y + z - 1 &= 0 \\
 2x + y - 3z - 3 &= 0
 \end{align*}
 \]
 e \(s\) :
 \[
 \begin{align*}
 x &= 6 - t \\
 y &= -9 + 2t \\
 z &= 4 - t
 \end{align*}
 \]
 Marque \((x_0 + y_0 + z_0)\). (1.000, -1.000)

4. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

5. Marque a distância entre as seguintes retas: \(r\) :
 \[
 \begin{align*}
 x &= 1 + 7t \\
 y &= 1 + 8t \\
 z &= 2 - 11t
 \end{align*}
 \]
 e \(s\) :
 \[
 \begin{align*}
 x &= 3 - 3q \\
 y &= -5 + 4q \\
 z &= -3 + q
 \end{align*}
 \]
 (1.000, -1.000)

6. Considere as retas no espaço: \(r\) :
 \[
 \begin{align*}
 x &= -4 - 2t \\
 y &= 9 + 3t \\
 z &= -t
 \end{align*}
 \]
 e \(s\) :
 \[
 \begin{align*}
 x &= -1 - q \\
 y &= 12 + 3q \\
 z &= -6 - 2q
 \end{align*}
 \]
 As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

7. Considere o triângulo de vértices: \(A = (-1,1), B = (2,4)\) e \(C = (5,0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:
 (A) 5.000
 (B) 5.017
 (C) 4.717
 (D) 4.697
 (E) 5.107
 (F) 4.700
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: __________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXNFIX

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9

0 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4 4 4 4
4 5 5 5 5 5 5 5 5 5 5
5 6 6 6 6 6 6 6 6 6 6
6 7 7 7 7 7 7 7 7 7 7
7 8 8 8 8 8 8 8 8 8 8
8 9 9 9 9 9 9 9 9 9 9

0 0 0 0 0 0 0 1 1 1 1
1 2 2 2 2 2 2 3 3 3 3
2 3 3 3 3 3 3 4 4 4 4
3 4 4 4 4 4 4 5 5 5 5
4 5 5 5 5 5 5 6 6 6 6
5 6 6 6 6 6 6 7 7 7 7
6 7 7 7 7 7 7 8 8 8 8
7 8 8 8 8 8 8 9 9 9 9
8 9 9 9 9 9 9
1. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\). (1.000, -1.000)

2. Considere a esfera de equação: \((x-1)^2 + (y+2)^2 + (z-1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a,b,c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

3. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

4. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(D) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(E) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(F) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

5. Considere o triângulo de vértices: \(A = (-1,1), \quad B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9,\frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 4,697
(B) 4,700
(C) 4,717
(D) 5,017
(E) 5,107
(F) 5,000

6. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). (1.000, -1.000)

7. Seja \(C = (x_0,y_0,z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) \(e \) \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _______________________________ Identificação: ________________
1. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = \left(9, \frac{5}{2} \right) \) e o triângulo: \((1.500, -1.500) \)

(A) 5,017
(B) 5,000
(C) 4,700
(D) 4,717
(E) 4,697
(F) 5,107

2. Responda V ou F:

(A) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
(B) \(||u \times v|| = ||u|| \cdot ||v|| \) se e somente se \(u \) for ortogonal a \(v \).
(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
(D) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
(F) O sistema com soluções no \(\mathbb{R}^3 \) dado como: \[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada \(x \) da solução é 1.

3. Considere as retas no espaço: \(r : \) \[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s : \) \[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500) \)

4. Marque a distância entre as seguintes retas: \(r : \) \[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \) \[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
\((1.000, -1.000) \)

5. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{ ||\text{proj}_u v||, ||\text{proj}_v u|| \} \), então marque o inteiro mais próximo de \(10d \). \((1.000, -1.000) \)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \). \((1.000, -1.000) \)

7. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \) \[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \) \[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \). \((1.000, -1.000) \)
Nome: _____________________________ Identificação: ____________________
1. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

2. Considere o triângulo de vértices: \(A = (-1, 1), \quad B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (A) 5,017 (B) 5,000 (C) 4,697 (D) 4,717 (E) 4,700 (F) 5,107

3. Responda V ou F:
 (A) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
 \[
 \begin{align*}
 2x - y + z &= 0 \\
 x + y + 2z &= 0 \\
 2y + z &= 1
 \end{align*}
 \]
 possui solução única tal que a coordenada \(x \) da solução é 1.
 (B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
 (C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (D) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(F) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). (1.000, -1.000)

5. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas:
 \[
 \begin{align*}
 2x - y + 3z - 3 &= 0 \\
 x + y + z - 1 &= 0 \\
 2x + y - 3z - 3 &= 0
 \end{align*}
 \]
 Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(||a|| + ||b|| + ||c||) \). (1.000, -1.000)

7. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de \(10d \). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _______________________________ Identificação: ____________________

CONTROLE MIXnFIX

Identificação Aluno

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1V-F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

1 V-F
A
B
C
D
E
F

1 2 3 4 5 6
0 1 2 3 4 5
6 7 8 9 0 1
2 3 4 5 6 7
8 9 0 1 2 3
9 0 1 2 3 4

7
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0 1 2 3 4 5 6 7 8 9

6
A B C D E F

7
0 1 2 3 4 5 6 7 8 9
1. Responda V ou F: (3.000, -3.000)

(A) O sistema com soluções no IR^3 dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada x da solução é 1.

(B) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(C) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(D) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

2. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{ ||proj_u^v||, ||proj_v^u|| \} \), então marque o inteiro mais próximo de 10d. (1.000, -1.000)

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque 3(|a| + |b| + |c|). (1.000, -1.000)

4. Marque a distância entre as seguintes retas: \(r \) :
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s \) :
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

5. Considere as retas no espaço: \(r \) :
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s \) :
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

6. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5,000
(B) 5,107
(C) 4,700
(D) 4,717
(E) 5,017
(F) 4,697

7. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r \) :
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s \) :
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ____________________________ Identificação: ________________

<table>
<thead>
<tr>
<th>IDENTIFICAÇÃO ALUNO</th>
<th>CONTROLE MIXnFIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 V-F</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Identificação de Aluno:

CONTROLE MIXnFIX:

1. 0
2. 1
3. 2
4. 3
5. 4
6. 5
7. 6
8. 7
9. 8

Nome: ____________________________ Identificação: ________________
1. Responda V ou F:

(A) \(|u \times v| = |u||v||\cos \theta|\) se e somente se \(u\) for ortogonal a \(v\).

(B) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) O sistema com soluções no \(\mathbb{R}^3\) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
y + z &= 1
\end{align*}
\]

a coordenada \(x\) da solução é 1.

(E) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

(F) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

2. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u v||, ||\text{proj}_v u||\}\), então marque o inteiro mais próximo de 10\(d\).

\[(1.000, -1.000)\]

3. Considere as retas no espaço: \(r:\)

\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]

\(e\) \(s:\)

\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\[(1.500, -1.500)\]

4. Considere o triângulo de vértices: \(A = (-1, 1, 0), B = (2, 4, 0)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:

\[(1.500, -1.500)\]

\[(A)\ 4,700\]

\[(B)\ 5,107\]

\[(C)\ 4,717\]

\[(D)\ 5,017\]

\[(E)\ 4,697\]

\[(F)\ 5,000\]

5. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r:\)

\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]

\(e\) \(s:\)

\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0\).

\[(1.000, -1.000)\]

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

\[(1.000, -1.000)\]

7. Marque a distância entre as seguintes retas: \(r:\)

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

\(e\) \(s:\)

\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

\[(1.000, -1.000)\]
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: __________________________ Identificação: ____________________
1. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^w||, ||\text{proj}_v^w||\} \), então marque o inteiro mais próximo de 10d.

(1.000, -1.000)

2. Responda V ou F:

(3.000, -3.000)

(A) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{cases}
2x - y + z = 0 \\
x + y + 2z = 0
\end{cases}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(F) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

1.000, -1.000

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque 3(\(|a| + |b| + |c| \)).

(1.000, -1.000)

4. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

5. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).

(1.000, -1.000)

6. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:

(1.500, -1.500)

(A) 4,697

(B) 5,107

(C) 5,017

(D) 5,000

(E) 4,700

(F) 4,717

7. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)
Nome: ___________________________ Identificação: ___________________________
1. Marque a distância entre as seguintes retas: \(r \) : \[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\] e \(s \) : \[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]. (1.000, -1.000)

2. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 4,697
(B) 5,000
(C) 4,700
(D) 5,017
(E) 4,717
(F) 5,107

3. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas:
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\] e \(s : \) \[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]. Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)

4. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\] e \(s : \) \[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]. As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

5. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de \(10d \). (1.000, -1.000)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|) \). (1.000, -1.000)

7. Responda V ou F: (3.000, -3.000)

(A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).
(C) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\] possui solução única tal que a coordenada \(x \) da solução é 1.
(D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _____________________________ Identificação: __________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXnFIX
1. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5,000
(B) 4,717
(C) 4,697
(D) 4,700
(E) 5,107
(F) 5,017

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

3. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
(B) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incôgnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
(C) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada \(x \) da solução é 1.

(D) \(||u \times v|| = ||u|| \cdot ||v|| \) se e somente se \(u \) for ortogonal a \(v \).
(E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)

5. Considere a esfera de equação: \((x-1)^2 + (y+2)^2 + (z-1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

6. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{|\text{proj}_u^v|, |\text{proj}_v^u|\} \), então marque o inteiro mais próximo de \(10d \). (1.000, -1.000)

7. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ____________________________ Identificação: ________________
1. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).
 \((1.000, -1.000)\)

2. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r:\)
\[
\begin{align*}
 x + y + z - 1 &= 0 \\
 2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
 x &= 6 - t \\
 y &= 9 + 2t \\
 z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0\).
 \((1.000, -1.000)\)

3. Considere o triângulo de vértices: \(A = (-1,1), B = (2,4)\) e \(C = (5,0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:
 \((1.500, -1.500)\)

 (A) 5.000
 (B) 4.697
 (C) 4.717
 (D) 4.700
 (E) 5.107
 (F) 5.017

4. Marque a distância entre as seguintes retas: \(r:\)
\[
\begin{align*}
 x &= 1 + 7t \\
 y &= 1 + 8t \\
 z &= 2 - 11t
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
 x &= 3 - 3q \\
 y &= 3 - 5 + 4q \\
 z &= -3 + q
\end{align*}
\]
 \((1.000, -1.000)\)

5. Considere as retas no espaço: \(r:\)
\[
\begin{align*}
 x &= -4 - 2t \\
 y &= 9 + 3t \\
 z &= -t
\end{align*}
\]
e \(s:\)
\[
\begin{align*}
 x &= 1 - q \\
 y &= 12 + 3q \\
 z &= -6 - 2q
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
 \((1.500, -1.500)\)

6. Sejam \(u = (1,2, -1)\) e \(v = (3,1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\}\), então marque o inteiro mais próximo de \(10d\).
 \((1.000, -1.000)\)

7. Responda V ou F:

 (A) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.
 \(V\)
 \(F\)

 (B) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).
 \(V\)
 \(F\)

 (C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 \(V\)
 \(F\)

 (D) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).
 \(V\)
 \(F\)

 (E) O sistema com soluções no \(\mathbb{R}^3\) dado como:
\[
\begin{align*}
 2x - y + z &= 0 \\
 x + y + 2z &= 0 \\
 2y + z &= 1
\end{align*}
\]
a coordenada \(x\) da solução é 1.
 \(V\)
 \(F\)

 (F) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).
 \(V\)
 \(F\)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ________________
1. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

2. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo: (1.500, -1.500)

(A) 4.697
(B) 4.717
(C) 5.000
(D) 5.107
(E) 5.017
(F) 4.700

3. Responda V ou F:

(A) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções. V

(B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações. F

(C) O sistema com soluções no \(IR^3\) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada \(x\) da solução é 1. F

(D) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\). V

(E) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\). F

(F) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\). V

4. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases}\) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases}\). Marque \(x_0 + y_0 + z_0\). (1.000, -1.000)

5. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases}\) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases}\). (1.000, -1.000)

6. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\}\), então marque o inteiro mais próximo de 10\(d\). (1.000, -1.000)

7. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases}\) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases}\). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)
Nome: ___ Identificação: _________________________

Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

IDENTIFICAÇÃO ALUNO

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

CONTROLE MIXNFIX

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
1. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)

2. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). \((1.000, -1.000)\)

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

4. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0\). \((1.000, -1.000)\)

5. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(C) O sistema com soluções no \(IR^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(D) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(F) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

6. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{ ||proj_u^w||, ||proj_v^w|| \} \), então marque o inteiro mais próximo de \(10d \). \((1.000, -1.000)\)

7. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500)\)

(A) 4,717
(B) 5,107
(C) 4,697
(D) 4,700
(E) 5,017
(F) 5,000
Tipo da prova: 59

Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ________________________________ Identificação: ________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXNFIX

7 V-F
A
B
C
D
E
F

A
B
C
D
E
F
1. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)

2. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). \((1.000, -1.000)\)

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\). \((1.000, -1.000)\)

4. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = \left(9, \frac{5}{2} \right) \) e o triângulo: \((1.500, -1.500)\)

 (A) 4,717
 (B) 5,017
 (C) 4,697
 (D) 4,700
 (E) 5,107
 (F) 5,000

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

6. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0\). \((1.000, -1.000)\)

7. Responda V ou F:

 (A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
 (B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
 (D) O sistema com soluções no \(IR^3 \) dado como:
 \[
 \begin{cases}
 2x - y + z = 0 \\
 x + y + 2z = 0 \\
 2y + z = 1
 \end{cases}
 \]
 possui solução única tal que a coordenada \(x \) da solução é 1.
 (E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
 (F) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ___________________________
1. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). (1.000, -1.000)

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases}\) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases}\). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.000)

3. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases}\) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases}\). Marque \(x_0 + y_0 + z_0\). (1.000, -1.000)

4. Considere o triângulo de vértices: \(A = (-1, 1, 1)\), \(B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = \left(9, \frac{5}{2}\right)\) e o triângulo: (1.500, -1.500)
 (A) 5,107
 (B) 4,717
 (C) 5,017
 (D) 5,000
 (E) 4,700
 (F) 4,697

5. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases}\) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases}\). (1.000, -1.000)

6. Responda V ou F:
 (A) O sistema com soluções no \(\mathbb{R}^3\) dado como: \(\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases}\) possui solução única tal que a coordenada \(x\) da solução é 1.
 (B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (C) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.
 (D) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).
 (E) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).
 (F) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

7. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\}\), então marque o inteiro mais próximo de \(10d\). (1.000, -1.000)
Nome: _____________________________ Identificação: ____________
1. Considere a esfera de equação:
\[(x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\] e o plano de equação
\[2x - 2y + z = 1\]. Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque
\[3(|a| + |b| + |c|)\].

\[(1.000, -1.000)\]

2. Considere o triângulo de vértices:
\[A = (-1, 1), B = (2, 4)\] e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:
\[(1.500, -1.000)\]

(A) 4,700
(B) 5,000
(C) 4,717
(D) 5,017
(E) 4,697

3. Responda V ou F:

(A) O sistema com soluções no \(\mathbb{R}^3\) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
a coordenada \(x\) da solução é 1.

(B) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) Sejam \(s\) e \(r\) retas do espaço que são coplanares: se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

(E) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

(F) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).

4. Marque a distância entre as seguintes retas:

\[
\begin{align*}
r : \begin{cases} x = 1 + 7t & \\
y = 1 + 8t & \\
z = 2 - 11t &
\end{cases}
\]

\[
e : \begin{cases} x = 3 - 3q & \\
y = -5 + 4q & \\
z = 3 + q &
\end{cases}
\]

\[(1.000, -1.000)\]

5. Considere as retas no espaço:

\[
r : \begin{cases} x = -4 - 2t & \\
y = 9 + 3t & \\
z = -t &
\end{cases}
\]

\[
e : \begin{cases} x = -1 - q & \\
y = 12 + 3q & \\
z = -6 - 2q &
\end{cases}
\]

As interseções dessas retas com os planos coordenados no primeiro octante fornecem um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\[(1.500, -1.500)\]

6. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas:

\[
r : \begin{cases} x + y + z - 1 = 0 & \\
2x + y - 3z - 3 = 0 &
\end{cases}
\]

\[
e : \begin{cases} x = 6 - t & \\
y = -9 + 2t & \\
z = 4 - t &
\end{cases}
\]

Marque \(x_0 + y_0 + z_0\).

\[(1.000, -1.000)\]

7. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u v||, ||\text{proj}_v u||\}\), então marque o inteiro mais próximo de 10d.

\[(1.000, -1.000)\]
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _______________________________ Identificação: ________________
1. Marque a distância entre as seguintes retas: \(r \) :
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\] e \(s \) :
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
\(-0.000, 1.000\)

2. Considere o triângulo de vértices: \(A = (-1,1) \), \(B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:
\[
(1.500, -1.500) \quad (A) \quad 5,107 \quad (B) \quad 5,000 \quad (C) \quad 4,700 \quad (D) \quad 5,017 \quad (E) \quad 4,697 \quad (F) \quad 4,717
\]

3. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r \) :
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\] e \(s \) :
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).
\((1.000, -1.000) \)

4. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(\|a\| + \|b\| + \|c\|) \).
\((1.000, -1.000) \)

5. Responda V ou F:
\[
(3.000, -3.000)
\]
\(A \) \(\|u \times v\| = \|u\|\|v\| \) se e somente se \(u \) for ortogonal a \(v \).
\(B \) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{align*}
\] possui solução única tal que a coordenada \(x \) da solução é 1.
\(C \) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
\(D \) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
\(E \) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
\(F \) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

6. Considere as retas no espaço: \(r \) :
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\] e \(s \) :
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\] com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
\((1.500, -1.500) \)

7. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max \{\|\text{proj}_u v\|, \|\text{proj}_v u\|\} \), então marque o inteiro mais próximo de \(10d \).
\((1.000, -1.000) \)
Nome: ____________________________________ Identificação: ____________
1. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^u||, ||\text{proj}_v^v||\} \), então marque o inteiro mais próximo de 10\(d \).

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.000)

3. Considere as retas no espaço:
\[
\begin{align*}
\text{r:} & \quad \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \\
\text{s:} & \quad \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases}
\end{align*}
\]
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.000)

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \).

5. Responda V ou F:

 (A) \(||u \times v|| = ||u|| \cdot ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

 (B) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

 (C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

 (D) O sistema com soluções no \(IR^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{align*}
\]
possuí solução única tal que \(2y + z = 1 \) a coordenada \(x \) da solução é 1.

 (E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

 (F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(||a|| + ||b|| + ||c||) \).

7. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.000)

 (A) 4.697
 (B) 5.017
 (C) 4.717
 (D) 5.000
 (E) 5.107
 (F) 4.700
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ____________________________ Identificação: ________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXnFIX
1. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). (1.000, -1.000)

2. Responda V ou F:

(A) \(||u \times v|| = ||u|| \cdot ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(B) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{cases}
2x - y + z = 0 \\
x + y + 2z = 0 \\
2y + z = 1
\end{cases}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(F) Considere o sistema \(AX = b \), onde \(A \) é a matriz de coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

3. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\
y = 9 + 3t \\
z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\
y = 12 + 3q \\
z = -6 - 2q \end{cases} \). As interseções dessas retas formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

4. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5,107

(B) 5,017

(C) 4,697

(D) 5,000

(E) 4,700

(F) 4,717

5. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{||\text{proj}_u v||, ||\text{proj}_v u||\} \), então marque o inteiro mais próximo de 10d. (1.000, -1.000)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque 3(||a|| + ||b|| + ||c||). (1.000, -1.000)

7. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\
2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\
y = -9 + 2t \\
z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _____________________________ Identificação: _____________________________

IDENTIFICAÇÃO ALUNO

0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

CONTROLE MIXnFIX

0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3 V-F</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>
1. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\). (1.000, -1.000)

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

3. Responda V ou F:

(A) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(B) O sistema com soluções no \(\mathbb{R}^3 \) dado como: \(\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \\ 2y + z = 1 \end{cases} \) possui solução única tal que a coordenada \(x \) da solução é 1.

(C) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

4. Marque a distância entre as seguintes retas:
\(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). (1.000, -1.000)

5. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas:
\(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). (1.000, -1.000)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(||a|| + ||b|| + ||c||) \). (1.000, -1.000)

7. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: (1.500, -1.500)

(A) 5,000
(B) 5,107
(C) 4,697
(D) 4,717
(E) 4,700
(F) 5,017
Universidade Federal de Pernambuco
Centro de Informática
Algebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ________________________________ Identificação: ________________
1. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)

2. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500)\)

 - (A) 5.017
 - (B) 5.107
 - (C) 4.697
 - (D) 5.000
 - (E) 4.700

3. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). \(1.000, -1.000 \)

4. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u^v||,|\text{proj}_v^u||\}, \) então marque o inteiro mais próximo de \(10d \). \((1.000, -1.000)\)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|). \((1.000, -1.000)\)

6. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0. \) \((1.000, -1.000)\)

7. Responda V ou F:
 - (A) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções. \(\text{V} \)
 - (B) O sistema com soluções no \(IR^3 \) dado como: \(2x - y + z = 0 \) \(x + y + 2z = 0 \) possui solução única tal que \(2y + z = 1 \) a coordenada \(x \) da solução é 1. \(\text{F} \)
 - (C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \). \(\text{V} \)
 - (D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações. \(\text{V} \)
 - (E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \). \(\text{F} \)
 - (F) \(||u \times v|| = ||u||||v|| \) se e somente se \(u \) for ortogonal a \(v \). \(\text{V} \)
1. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)

2. Responda V ou F:
 \((3.000, -3.000)\)
 \((A)\) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).
 \((B)\) O sistema com soluções no \(\mathbb{R}^3\) dado como: \(\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases}\) possui solução única tal que a coordenada \(x\) da solução é 1.
 \((C)\) \(||u \times v|| = ||u|| \cdot ||v||\) se e somente se \(u\) for ortogonal a \(v\).
 \((D)\) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.
 \((E)\) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).
 \((F)\) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

3. Considere o triângulo de vértices: \(A = (-1,1,1)\), \(B = (2,4,0)\) e \(C = (5,0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo: \((1.500, -1.500)\)

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \). \((1.000, -1.000)\)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a,b,c)\), então marque \(3(||a|| + ||b|| + ||c||))\). \((1.000, -1.000)\)

6. Sejam \(u = (1,2,-1)\) e \(v = (3,1,-4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u v||, ||\text{proj}_v u||\}\), então marque o inteiro mais próximo de \(10d\). \((1.000, -1.000)\)

7. Seja \(C = (x_0,y_0,z_0)\) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0\). \((1.000, -1.000)\)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _____________________________ Identificação: ________________

IDENTIFICAÇÃO ALUNO

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

CONTROLE MIXnFIX

<table>
<thead>
<tr>
<th>1 V-F</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
1. Responda V ou F:

(A) O sistema com soluções no \mathbb{R}^3 dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possui solução única tal que a coordenada x da solução é 1.

(B) Sejam s e r retas do espaço que são coplanares; se uma terceira reta l é reversa com s, então l será reversa também com r.

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) O vetor $\mathbf{u} \times (\mathbf{v} \times \mathbf{u})$ é múltiplo do vetor \mathbf{v}.

(E) Considere o sistema $AX = b$, onde A é a matriz dos coeficientes, X o vetor das incógnitas e b o vetor dos termos independentes. O sistema $AX = b$ admite infinitas soluções se e somente se o sistema homogêneo associado $AX = 0$ admite infinitas soluções.

(F) $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}||$ se e somente se \mathbf{u} for ortogonal a \mathbf{v}.

2. Sejam $\mathbf{u} = (1, 2, -1)$ e $\mathbf{v} = (3, 1, -4)$ vetores do espaço. Se $d = \max\{||\text{proj}_\mathbf{u}\mathbf{v}||, ||\text{proj}_\mathbf{v}\mathbf{u}||\}$, então marque o inteiro mais próximo de $10d$.

3. Considere a esfera de equação: $(x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9$ e o plano de equação $2x - 2y + z = 1$. Se o centro da circunferência que é interseção do plano com a esfera é (a, b, c), então marque $3(|a| + |b| + |c|)$.

4. Seja $C = (x_0, y_0, z_0)$ a interseção das retas: $r : \begin{cases} x + y + z = 1 \\ 2x + y - 3z = 3 \end{cases}$ e $s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases}$. Marque $x_0 + y_0 + z_0$.

5. Marque a distância entre as seguintes retas: $r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases}$ e $s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases}$. (1.000, -1.000)

6. Considere as retas no espaço: $r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases}$ e $s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases}$. As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)

7. Considere o triângulo de vértices: $A = (-1, 1, 1)$, $B = (2, 4)$ e $C = (5, 0)$. Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto $P = (9, \frac{5}{2})$ e o triângulo: (1.500, -1.500)

(A) 5,107
(B) 4,700
(C) 5,000
(D) 4,697
(E) 4,717
(F) 5,017
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: __________________________ Identificação: __________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXNFIX

1 V-F 2 3 4 5
A 0 0 0 0 0 0 0 0 0 0
B 1 1 1 1 1 1 1 1 1 1
C 2 2 2 2 2 2 2 2 2 2
D 3 3 3 3 3 3 3 3 3 3
E 4 4 4 4 4 4 4 4 4 4
F 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9

6 7
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9

0 6 7 A B C D E F
1. Responda V ou F:

(A) \(\|u \times v\| = \|u\|\|v\| \) se e somente se \(u \) for ortogonal a \(v \).

(B) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(C) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(E) O sistema com soluções no \(\mathbb{R}^3 \) dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

a coordenada \(x \) da solução é 1.

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\((1.500, -1.500) \)

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{ ||\text{proj}_u^w||, ||\text{proj}_v^w|| \} \), então marque o inteiro mais próximo de \(10d \). \((1.000, -1.000) \)

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \).

\((1.000, -1.000) \)

5. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \).

\((1.000, -1.000) \)

6. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é intersecção do plano com a esfera é \((a, b, c) \), então marque \(3(||a|| + ||b|| + ||c||) \).

\((1.000, -1.000) \)

7. Considere o triângulo de vértices: \(A = (-1, 1), \) \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:

\((A) \ 4.700 \) \((B) \ 4.717 \) \((C) \ 5.107 \) \((D) \ 5.000 \) \((E) \ 5.017 \) \((F) \ 4.697 \)
Universidade Federal de Pernambuco
Centro de Informática
Algebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ____________________

CONTROLE MIXnFIX

IDENTIFICAÇÃO ALUNO

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4 V-F</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
1. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \). \((1.000, -1.000)\)

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\).

3. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é intersecção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\).

4. Responda V ou F:

 (A) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

 (B) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

 (C) O sistema com soluções no \(\mathbb{R}^3\) dado como:
 \[
 \begin{cases}
 2x - y + z = 0 \\
 x + y + 2z = 0 \\
 2y + z = 1
 \end{cases}
 \] possui solução única tal que a coordenada \(x\) da solução é 1.

5. Considere o triângulo de vértices: \(A = (-1, 1)\), \(B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo: \((1.500, -1.500)\).

 (A) 5,017
 (B) 4,700
 (C) 5,000
 (D) 4,717
 (E) 4,697
 (F) 5,107

6. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\}\), então marque o inteiro mais próximo de 10\(d\). \((1.000, -1.000)\).

7. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \end{cases}\) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \end{cases}\). \((1.000, -1.000)\).

 (D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

 (E) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).

 (F) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXnFIX
1. Responda V ou F:

(A) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(B) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(D) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(F) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

2. Considere as retas no espaço: \(r : \) \[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s : \) \[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \(1.500, -1.500 \)

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de \(10d \). \(1.000, -1.000 \)

4. Marque a distância entre as seguintes retas: \(r : \) \[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \) \[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
\(1.000, -1.000 \)

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é intersecção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).
\(1.000, -1.000 \)

6. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas: \(r : \) \[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \) \[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0 \).
\(1.000, -1.000 \)

7. Considere o triângulo de vértices: \(A = (-1, 1), \) \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:
\(1.500, -1.500 \)

(A) 5,017
(B) 5,500
(C) 4,717
(D) 5,107
(E) 4,700
(F) 4,697
Universidade Federal de Pernambuco
Centro de Informática
Algebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ___________________

IDENTIFICAÇÃO ALUNO

CONTROLE MIXnFIX
1. Considere o triângulo de vértices: \(A = (-1, 1), \)
\(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500) \)

(A) 4,697
(B) 4,717
(C) 5,107
(D) 5,017
(E) 5,000
(F) 4,700

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

\[(1.000, -1.000)\]

3. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \)

\(e \) \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \)
As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500) \)

4. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
(B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
(C) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]
possui solução única tal que a coordenada \(x \) da solução é 1.

(D) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogéneo associado \(AX = 0 \) admite infinitas soluções.

(E) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(F) \(\|u \times v\| = \|u\| \|v\| \) se e somente se \(u \) for ortogonal a \(v \).

5. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \)
\[(1.000, -1.000)\]

6. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{||\text{proj}_v^u||, ||\text{proj}_u^v||\} \), então marque o inteiro mais próximo de \(10d \).

\[(1.000, -1.000)\]

7. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \)
Marque \(x_0 + y_0 + z_0 \).

\[(1.000, -1.000)\]
1. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(B) O sistema com soluções no IR^3 dado como:

\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

possui solução única tal que a coordenada \(x \) da solução é 1.

(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(D) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(E) \(|u \times v| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(F) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

2. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \text{max} \{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\).

(1.000, -1.000)

3. Considere as retas no espaço:

\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]

As intersecções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

(1.500, -1.500)

4. Marque a distância entre as seguintes retas:

\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]

\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

Marque \(1000 \) e \(-1000 \).

5. Considere a esfera de equação:

\((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

(1.000, -1.000)

6. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas:

\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]

\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]

Marque \(x_0 + y_0 + z_0 \).

(1.000, -1.000)

7. Considere o triângulo de vértices:

\(A = (-1, 1), \ B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:

(1.500, -1.500)

(A) 4,697

(B) 5,000

(C) 4,717

(D) 5,107

(E) 4,700

(F) 5,017
1. Considere o triângulo de vértices: \(A = (-1,1), \ B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500)\)

(A) 5.000
(B) 5.107
(C) 4.697
(D) 4.700
(E) 4.717
(F) 5.017

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

\((1.000, -1.000)\)

3. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \).

\((1.000, -1.000)\)

4. Considere as retas no espaço: \(r : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \) e \(s : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):

\((1.500, -1.500)\)

5. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u^w||, ||\text{proj}_v^w||\} \), então marque o inteiro mais próximo de 10d.

\((1.000, -1.000)\)

6. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \).

\((1.000, -1.000)\)

7. Responda V ou F:

(A) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(B) \(|u \times v|| = |u||u||v|\) se e somente se \(u \) for ortogonal a \(v \).

(C) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(D) O sistema com soluções no \(IR^3 \) dado como:

\[\begin{cases} 2x - y + z = 0 \\ x + y + 2z = 0 \end{cases} \]

possui solução única tal que \(2y + z = 1\) a coordenada \(x \) da solução é 1.

(E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
Universidade Federal de Pernambuco
Centro de Informática
Algebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: _______________________________ Identificação: ____________________

CONTROLE MIXnFIX

IDENTIFICAÇÃO ALUNO

CONTROLE MIXnFIX
1. Considere as retas no espaço: \(r \): \[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s \): \[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\)

2. Considere a esfera de equação: \((x-1)^2 + (y+2)^2 + (z-1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\). \((1.000, -1.000)\)

3. Considere o triângulo de vértices: \(A = (-1,1) \), \(B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, -1.500)\)

 (A) 5,107

 (B) 4,700

 (C) 4,717

 (D) 4,697

 (E) 5,017

 (F) 5,000

4. Responda V ou F:

 (A) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções. \(V \)

 (B) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \). \(V \)

 (C) O sistema com soluções no \(IR^3 \) dado como:

 \[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0 \\
2y + z &= 1
\end{align*}
\]

 possui solução única tal que a coordenada \(x \) da solução é 1. \(V \)

 (D) \(|u \times v| = |u||v|\) se e somente se \(u \) for ortogonal a \(v \). \(F \)

 (E) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações. \(F \)

 (F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \). \(V \)

5. Marque a distância entre as seguintes retas: \(r \):

 \[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s \):

 \[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]

 \((1.000, -1.000)\)

6. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = \max \{|\|\text{proj}_u^v\|\}, |\|\text{proj}_v^u\|\}| \), então marque o inteiro mais próximo de 10\(d\). \((1,000, -1,000)\)

7. Seja \(C = (x_0, y_0, z_0) \) a intersecção das retas: \(r \):

 \[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s \):

 \[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]

Marque \(x_0 + y_0 + z_0 \). \((1.000, -1.000)\)
Nome: ____________________________ Identificação: ____________________________
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \). Marque \(x_0 + y_0 + z_0 \).

\((1.000, -1.000) \)

2. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 4t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = -1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500) \)

3. Considere o triângulo de vértices: \(A = (-1,1), B = (2,4) \) e \(C = (5,0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo: \((1.500, \ -1.500) \)

(A) 4,700
(B) 5,017
(C) 4,697
(D) 4,717
(E) 5,000
(F) 5,107

4. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \end{cases} \). \((1.000, \ -1.000) \)

5. Responda V ou F:

(A) O sistema com soluções no \(IR^3 \) dado como:
\[
\begin{cases}
2x - y + z = 0 \\
x + y + 2z = 0
\end{cases}
\] possui solução única tal que a coordenada \(x \) da solução é 1.

(B) \(||u \times v|| = ||u|| ||v|| \) se e somente se \(u \) for ortogonal a \(v \).

(C) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).

(D) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).

(E) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.

(F) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

6. Sejam \(u = (1,2,-1) \) e \(v = (3,1,-4) \) vetores do espaço. Se \(d = max\{||proj_u^v||, ||proj_v^u||\} \), então marque o inteiro mais próximo de \(10d \).

\((1.000, \ -1.000) \)

7. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9 \) e o plano de equação \(2x - 2y + z = 1 \). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c) \), então marque \(3(|a| + |b| + |c|) \).

\((1.000, \ -1.000) \)
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ________________

CONTROLE MIXnFIX

IDENTIFICAÇÃO ALUNO

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

CONTROLE MIXnFIX

<table>
<thead>
<tr>
<th>7</th>
<th>V-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>

7 V-F
1. Marque a distância entre as seguintes retas: \(r \) :
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s \) :
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, \(-1.000\))

2. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{|\text{proj}_u u|, |\text{proj}_v v|\} \), então marque o inteiro mais próximo de 10\(d\).
(1.000, \(-1.000\))

3. Considere o triângulo de vértices: \(A = (-1, 1) \), \(B = (2, 4) \) e \(C = (5, 0) \). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2}) \) e o triângulo:
(1.500, \(-1.500\))

- (A) 5.017
- (B) 5.107
- (C) 4.717
- (D) 5.000
- (E) 4.700
- (F) 4.697

4. Considere as retas no espaço: \(r \) :
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s \) :
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
(1.500, \(-1.500\))

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque 3\((|a| + |b| + |c|)\).
(1.000, \(-1.000\))

6. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas:
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
e \(s \) :
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0\).
(1.000, \(-1.000\))

7. Responda V ou F:
(A) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
(B) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
(C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
(D) \(|u \times v| = |u||v||\) se e somente se \(u \) for ortogonal a \(v \).
(E) O sistema com soluções no \(IR^3 \) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{align*}
\]
possui solução única tal que \(2y + z = 1\) a coordenada \(x\) da solução é 1.
(F) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
Universidade Federal de Pernambuco
Centro de Informática
Álgebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________________ Identificação: __________________

CONTROLE MIXnFIX
1. Seja \(C = (x_0, y_0, z_0) \) a interseção das retas: \(r : \begin{cases} x + y + z - 1 = 0 \\ 2x + y - 3z - 3 = 0 \end{cases} \) e \(s : \begin{cases} x = 6 - t \\ y = -9 + 2t \\ z = 4 - t \end{cases} \).
Marque \(x_0 + y_0 + z_0 = (1.000, -1.000) \).

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|) = (1.000, -1.000)\).

3. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo: \((1.500, -1.500)\).
 (A) 5,107
 (B) 4,717
 (C) 4,697
 (D) 4,700
 (E) 5,000
 (F) 5,017

4. Considere as retas no espaço: \(r : \begin{cases} x = -4 - 2t \\ y = 9 + 3t \\ z = -t \end{cases} \) e \(s : \begin{cases} x = 1 - q \\ y = 12 + 3q \\ z = -6 - 2q \end{cases} \). As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): \((1.500, -1.500)\).

5. Responda V ou F:
 (3.000, -3.000)
 (A) Sejam \(s \) e \(r \) retas do espaço que são coplanares; se uma terceira reta \(l \) é reversa com \(s \), então \(l \) será reversa também com \(r \).
 (B) O sistema com soluções no \(\mathbb{R}^3 \) dado como:
 \begin{align*}
 2x - y + z &= 0 \\
 x + y + 2z &= 0 \\
 2y + z &= 1
 \end{align*}
 possui solução única tal que a coordenada \(x \) da solução é 1.
 (C) Considere o sistema \(AX = b \), onde \(A \) é a matriz dos coeficientes, \(X \) o vetor das incógnitas e \(b \) o vetor dos termos independentes. O sistema \(AX = b \) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0 \) admite infinitas soluções.
 (D) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.
 (E) O vetor \(u \times (v \times u) \) é múltiplo do vetor \(v \).
 (F) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u \) for ortogonal a \(v \).

6. Marque a distância entre as seguintes retas: \(r : \begin{cases} x = 1 + 7t \\ y = 1 + 8t \\ z = 2 - 11t \end{cases} \) e \(s : \begin{cases} x = 3 - 3q \\ y = -5 + 4q \\ z = -3 + q \end{cases} \).
 (1.000, -1.000)

7. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max \{||\text{proj}_u^v||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10d. \((1.000, -1.000)\).
Nome: _______________________________ Identificação: ___________________
1. Responda V ou F:
 \[(3.000, -3.000)\]

 (A) \[||u \times v|| = ||u|| ||v||\] se e somente se \(u\) for ortogonal a \(v\).

 (B) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incógnitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

 (C) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

 (D) O sistema com soluções no \(\mathbb{R}^3\) dado como:
 \[
 \begin{align*}
 2x - y + z &= 0 \\
 x + y + 2z &= 0 \\
 2y + z &= 1
 \end{align*}
 \]
 a coordenada \(x\) da solução é 1.

 (E) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

 (F) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

2. Sejam \(u = (1, 2, -1)\) e \(v = (3, 1, -4)\) vetores do espaço. Se \(d = \max\{||\text{proj}_u^v||, ||\text{proj}_v^u||\}\), então marque o inteiro mais próximo de 10\(d\).
 \[(1.000, -1.000)\]

3. Marque a distância entre as seguintes retas: \(r\):
 \[
 \begin{align*}
 x &= 1 + 7t \\
 y &= 1 + 8t \\
 z &= 2 - 11t
 \end{align*}
 \]
 e \(s\):
 \[
 \begin{align*}
 x &= 3 - 3q \\
 y &= -5 + 4q \\
 z &= -3 + q
 \end{align*}
 \]
 \[(1.000, -1.000)\]

4. Considere o triângulo de vértices: \(A = (-1, 1)\), \(B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo:
 \[(1.500, -1.500)\]

 (A) 5,107
 (B) 5,000
 (C) 5,017
 (D) 4,697
 (E) 4,717
 (F) 4,700

5. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 9\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).
 \[(1.000, -1.000)\]

6. Considere as retas no espaço: \(r\):
 \[
 \begin{align*}
 x &= -4 - 2t \\
 y &= 9 + 3t \\
 z &= -t
 \end{align*}
 \]
 e \(s\):
 \[
 \begin{align*}
 x &= -1 - q \\
 y &= 12 + 3q \\
 z &= -6 - 2q
 \end{align*}
 \]
 As interseções dessas retas com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo):
 \[(1.500, -1.500)\]

7. Seja \(C' = (x_0, y_0, z_0)\) a interseção das retas: \(r\):
 \[
 \begin{align*}
 x + y + z - 1 &= 0 \\
 2x + y - 3z - 3 &= 0
 \end{align*}
 \]
 e \(s\):
 \[
 \begin{align*}
 x &= 6 - t \\
 y &= -9 + 2t \\
 z &= 4 - t
 \end{align*}
 \]
 Marque \(x_0 + y_0 + z_0\).
 \[(1.000, -1.000)\]
Universidade Federal de Pernambuco
Centro de Informática
Algebra Vetorial e Linear Para Computação-2010.2
Primeiro Exercício Escolar - 17/09/2010

Nome: ___________________________ Identificação: ________________
1. Marque a distância entre as seguintes retas: \(r : \)
\[
\begin{align*}
x &= 1 + 7t \\
y &= 1 + 8t \\
z &= 2 - 11t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 3 - 3q \\
y &= -5 + 4q \\
z &= -3 + q
\end{align*}
\]
(1.000, -1.000)

2. Considere a esfera de equação: \((x - 1)^2 + (y + 2)^2 + (z - 1)^2 = 1\) e o plano de equação \(2x - 2y + z = 1\). Se o centro da circunferência que é interseção do plano com a esfera é \((a, b, c)\), então marque \(3(|a| + |b| + |c|)\).

3. Sejam \(u = (1, 2, -1) \) e \(v = (3, 1, -4) \) vetores do espaço. Se \(d = \max\{||\text{proj}_u^u||, ||\text{proj}_v^u||\} \), então marque o inteiro mais próximo de 10\(d\).

4. Responda V ou F:

(A) Em qualquer sistema linear podemos substituir duas equações pela soma das duas equações.

(B) O sistema com soluções no \(R^3\) dado como:
\[
\begin{align*}
2x - y + z &= 0 \\
x + y + 2z &= 0
\end{align*}
\]
possui solução única tal que \(2y + z = 1\), a coordenada \(x\) da solução é 1.

(C) Considere o sistema \(AX = b\), onde \(A\) é a matriz dos coeficientes, \(X\) o vetor das incognitas e \(b\) o vetor dos termos independentes. O sistema \(AX = b\) admite infinitas soluções se e somente se o sistema homogêneo associado \(AX = 0\) admite infinitas soluções.

(D) O vetor \(u \times (v \times u)\) é múltiplo do vetor \(v\).

(E) \(||u \times v|| = ||u|| ||v||\) se e somente se \(u\) for ortogonal a \(v\).

(F) Sejam \(s\) e \(r\) retas do espaço que são coplanares; se uma terceira reta \(l\) é reversa com \(s\), então \(l\) será reversa também com \(r\).

5. Considere o triângulo de vértices: \(A = (-1, 1), B = (2, 4)\) e \(C = (5, 0)\). Escolha entre as alternativas a que apresenta o valor mais próximo da distância entre o ponto \(P = (9, \frac{5}{2})\) e o triângulo: (1.500, -1.500)

(A) 4,697

(B) 5,017

(C) 4,717

(D) 5,107

(E) 4,700

(F) 5,000

6. Seja \(C = (x_0, y_0, z_0)\) a interseção das retas: \(r : \)
\[
\begin{align*}
x + y + z - 1 &= 0 \\
2x + y - 3z - 3 &= 0
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= 6 - t \\
y &= -9 + 2t \\
z &= 4 - t
\end{align*}
\]
Marque \(x_0 + y_0 + z_0\).

7. Considere as retas no espaço: \(r : \)
\[
\begin{align*}
x &= -4 - 2t \\
y &= 9 + 3t \\
z &= -t
\end{align*}
\]
e \(s : \)
\[
\begin{align*}
x &= -1 - q \\
y &= 12 + 3q \\
z &= -6 - 2q
\end{align*}
\]
com os planos coordenados no primeiro octante formam um quadrilátero, cuja área é (arredondada para o inteiro mais próximo): (1.500, -1.500)