
Building a Software
Requirements Specification and
Design for an Avionics System

An Experience Report

Andrés Paz and Ghizlane El Boussaidi
École de Technologie Supérieure

Montreal, Canada

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Outline

• Context, motivation and related work

• Methodology for requirements specification and design

• Case study

• Lessons learned, challenges and issues

• Conclusions and future work

�2

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Outline

• Context, motivation and related work

• Methodology for requirements specification and design

• Case study

• Lessons learned, challenges and issues

• Conclusions and future work

�3

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

DO-178C

• DO-178C is a guideline identifying the set of best practices for
the development of airworthy software.

• Certification of compliance is mandatory and evidence-based.
- All compliance claims must be backed by evidence artifacts

(a.k.a. data items).

• Supplemental document DO-331 and DO-332 modify the
guideline to support model-based and object-oriented
developments, respectively.

�4

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Motivation

• Avionics case studies are rarely publicly available.

• Available descriptions of avionics systems rarely talk about the
software.

• Avionics systems as described in the literature do not allow for
their use as benchmarks for avionics software development
approaches targeting certification with DO-178C.

�5

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Related Work

�6

Study
Case study...

Representative of
industrial needs

Openly
available

Covers requirements specification and
design according with DO-178C

Supported by
methodology

Leveson et al., 1994 ✓ Compliance with regulation is not
discussed

Zoughbi et al., 2011 ✓ According with DO-178B

Wu et al., 2015 ✓ Only software architecture

White et al., 2012 ✓ Requirements and design have
shortcomings

Schamai et al., 2015 ✓ Compliance with regulation is not
discussed

Boniol et al., 2014 ✓ ✓ Compliance with regulation is not
discussed

Ours (based on Boniol et
al., 2014) ✓ ✓ ✓ ✓

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Outline

• Context, motivation and related work

• Methodology for requirements specification and design

• Case study

• Lessons learned, challenges and issues

• Conclusions and future work

�7

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Methodology

• No methodology for building software requirements
specifications and design following DO-178C has been
reported in the literature.

• Our methodology encompasses the general flow for
requirements specification and design defined in DO-178C.

• As a means for quality assurance several industrial experts
validated both the methodology and its outputs for the case
study.

�8

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Methodology
• Exhibits the sequential nature promoted by DO-178C.
• 3 major activities: Develop HLRs, Develop Software

Architecture and Develop LLRs.
• Actions within the activities are organized to form iterative and

incremental cycles.

�9

act Software requirements
specification and design

Operational
Context

SRATS

Develop HLRs Develop Software
Architecture Develop LLRs

HLRs

LLRs

Software
Architecture

Potential
CFCs

SRATS: System Requirements Allocated
To Software
CFC: Contribution to Failure Condition
HLR: High-Level Requirement
LLR: Low-Level Requirement

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Develop HLRs

�10

Develop HLRs
Operational

Context

[SRATS are
detailed
enough

for software
design]

[HLR is detailed enough
for software design]

[additional HLRs are required to capture the SRATS’ intent]

[no additional HLRs
are required to capture

the SRATS’ intent]

SRATS

Review SRATS for
ambiguities, inconsistencies

and undefined conditions

Develop an HLR in terms of
controllable and monitorable
variables, and trace to SRATS

Develop HLR into more
detailed HLR(s) and trace

to SRATS

[SRATS are
not detailed
enough for
software
design]

[HLR is not
detailed
enough

for software
design]

Review completeness

Define SRATS
as the HLRs

Request clarification or
correction to system processes

[else]

[SRATS need
clarification or correction]

Clarification or correction
to HLR(s) requested

Review level
of refinement

Clarified/Corrected
SRATS received

Review HLR for ambiguity,
inconsistencies or undefined

conditions

Clarified/Corrected HLR(s)

[HLR cannot be
traced to SRATS]

[else]
Label HLR as

a derived
requirement

Review
preclusion of

CFCs

Potential
CFCs

Review
preclusion of

CFCs

Develop
rationale

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Develop Software Architecture

�11

Develop Software Architecture
HLRs

[additional components
are required to cover the HLRs]

[no additional components
are required to cover the HLRs]

Operational
Context

Identify/Define
architectural style

Identify and define dependencies
between components in terms of
provided and required interfaces

Define data dictionaryReview completeness

Identify software
components and
allocate to HLRs

Identify additional
software components
and allocate to HLRs

Identify software
design patterns

Identify class hierarchies realizing a
component and allocate to the
component’s associated HLRs

[clarifications or
corrections
required in HLRs]Request clarification or

correction of HLR(s)

[else]

Clarified/Corrected
HLR(s) received

Allocate components
to HLRs

[no additional classes are
required to realize the component]

[additional classes are required to
realize the component]

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Develop LLRs

�12

Develop LLRs
Software

Architecture

[Source code can be
directly implemented

without further information]

[additional
realizing

classes need to
be specified]

[no
additional realizing classes need to be specified]

Define behaviour of a
realizing class in terms

of a state machine

Refine behaviour of
realizing class into more

specific behaviour

Review completeness

Allocate state machine
elements to the class’s

associated HLRs
[element(s) cannot

be traced to HLR(s)]

[else]

Review level
of refinement

[Source code cannot
be directly implemented

without further information]

[clarifications or
corrections

required in HLR(s)]

Request clarification or
correction of HLR(s)

Clarified/Corrected
HLR(s) received

Allocate
element(s) to

HLRs

Label LLR(s)
as a derived

LLR(s)

[else]

HLRsDevelop LLRs
Software

Architecture

[Source code can be
directly implemented

without further information]

[additional LLRs are
required for the class
or additional realizing

classes need to be
specified]

[no additional
LLRs are required and no additional realizing classes need to be specified]

Develop an LLR in terms of a realizing class’s
controllable and monitorable variables and trace

to the class’s associated HLRs

Refine LLR into more
detailed LLR(s) and trace

to HLRs

Review completeness

[LLR cannot be
traced to HLR(s)]

[else]

Review level
of refinement

[Source code cannot
be directly implemented

without further information]

[clarifications or
corrections

required in HLR(s)]

Request clarification or
correction of HLR(s)

Clarified/Corrected
HLR(s) received

Allocate LLR
to HLRs

Label LLR as a
derived LLR

[else]

HLRs

For textual LLRs For model-based LLRs

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Outline

• Context, motivation and related work

• Methodology for requirements specification and design

• Case study

• Lessons learned, challenges and issues

• Conclusions and future work

�13

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Case Study Overview
• We adapted the case study developed by Boniol et al. for the ABZ 2014

Conference.

• Our case study addresses the development of the software controlling the
operation of a retractable landing gear in a tricycle configuration.

- Landing Gear Control Software (LGCS)

• We organized the case study in several chapters corresponding to DO-178C
data items:

- Plan for Software Aspects of Certification (PSAC)

- Software Development Standards (contains requirements, design and code
standards)

- Requirements Data (contains SRATS and HLRs)

- Design Description (contains Software architecture and LLRs)

�14

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Operational Context

�15

Landing Gear System
Pilot Interface

Digital Controller
running the

Landing Gear
Control Software

Gear Lever
Gear Position
and System

State Indicator

Desired Gear PositionFeedback

Feedback

Analogical
Switch

closes

Analogical
Switch Sensor

triggers

Analogical
Switch Status

Gears and
Doors

Gears and
Doors Sensors

move

trigger

Gears and
Doors Statuses

Hydraulic Circuit
Pressure Sensor

triggers

Hydraulic Circuit
Pressure

Pilot / Copilot

General
Hydraulic

Electro-Valve

Specific
Hydraulic

Electro-Valves

Hydraulic
Circuit

pressurizes

Desired Gear Position

Actuation CommandsActuation Commands

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

HLRs

�16

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Software Architecture

�17

«component»
LGCS

«component»
Sensor

«component»
PilotInterface

«component»
HydraulicEV

«component»
: SensorManager

1

17

1

5

17

«component»
: SequenceController

«component»
: PilotInterfaceManager

«component»
: EVManager

5

«component»
: OperatingModeManager

HLR-6 HLR-12HLR-7

HLR-4

HLR-1

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

LLRs

�18

WaitForHydraulicPressure

after(2 s)

Running

failure
detected

exit

[hcp >= 30000 and hcp < 35000] [else]

close GEV exit

onRevertEvent

HLR-6

HLR-4 HLR-12

VerifyWithinOperatingRange
do/ SensorManager::fetchHydraulicCircuitPressure()

HydraulicPressure
WithinOperating

Range

HLR-6

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Outline

• Context, motivation and related work

• Methodology for requirements specification and design

• Case study

• Lessons learned, challenges and issues

• Conclusions and future work

�19

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Lessons Learned,
Challenges and Issues

• Quality and granularity of SRATS.

• Requirements specification language.

• Granularity of LLRs.

• Bi-directional traceability in model-based LLRs.

�20

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Lessons Learned,
Challenges and Issues

• Quality and granularity of SRATS:
- Descriptions in Boniol et al. 2014 were found to be

inconsistent and ambiguous.
- SRATS had to be corrected, clarified and uniquely identified

before developing HLRs.
- SRATS can be very detailed as to be considered HLRs

without further development.
- SRATS have to be specified as clearly and as detailed as

possible.

�21

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Lessons Learned,
Challenges and Issues

• Requirements specification language for HLRs:
- HLRs are routinely specified in natural language by the industry.

- Not suitable for supporting requirements-based analyses and
verification due to inherent ambiguities.

- A form of controlled natural language following FAA guidelines
was used for the specification of HLRs in the case study.
- Model-based HLRs may help with comprehensibility and analyzability

of HLRs.
- DO-331 enables model-based HLRs. → Part of future work.

- A heavy reliance on review actions in the Develop HLRs activity
is imperative to output HLRs at an acceptable quality.

�22

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Lessons Learned,
Challenges and Issues

• Requirements specification language for LLRs:
- Developing design models for the LGCS with UML was difficult.
- The UML specification contains lots of vaguenesses and

inconsistencies and cannot be taken on its own for model
development under DO-178C, DO-331 and DO-332.
- All notational and semantical unclarities must be removed to

comply with regulations.
- UML state machine notation is not suitable for representing

complex trigger conditions and trigger actions.
- Tabular notations have been suggested in the literature but

are non-standardized constructs.

�23

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Lessons Learned,
Challenges and Issues

• Granularity of LLRs:
- Developing LLRs with an appropriate granularity was challenging

due to intertwined conditions the LGCS has to respect at any
given moment.
- LLRs are expected to be very detailed so source code can be

implemented without needing more information.
- Use of pseudocode or action languages (e.g. Alf) is discouraged

because black-box verification may not be possible.
- DO-178C requires a clear separation between LLRs and code.
- Clear separation between LLRs and code enables black-box

verification.

�24

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Lessons Learned,
Challenges and Issues

• Bi-directional traces in model-based LLRs:
- Establishing bi-directional traces in UML is an issue.
- Backwards traceability was achieved with UML comments.
- Forwards traceability is challenging because uniquely

identifying an LLR in UML is not trivial.
- The same issue may appear with model-based HLRs.

�25

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Outline

• Context, motivation and related work

• Methodology for requirements specification and design

• Case study

• Lessons learned, challenges and issues

• Conclusions and future work

�26

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Conclusions
• Contributions:

- A methodology for requirements specification and design
following DO-178C guideline and supplements.

- A detailed requirements specification and design of an
avionics software that:
- Is representative of complexity and constraints found in the industry.

- Is compliant with DO-178C, and the DO-331 and DO-332
supplements.

- Can serve as a benchmark specification for avionics software
development approaches.

�27

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Future Work

• Extension of the methodology to include software verification
and validation.

• Development of model-based HLRs for the LGCS compliant
with DO-331.

• Incorporate different modelling mechanisms, e.g., Simulink.

• Specify other requirements, e.g., those regarding deployment.

�28

33rd ACM/SIGAPP Symposium on Applied Computing
Requirements Engineering Track - 11th Edition

April 9 - 13, 2018
Pau, France

Thank you.
Summary:
• Methodology for requirements specification and design following DO-178C

guideline and supplements
• Landing Gear Control Software (LGCS) requirements specification and design
• Lessons learned, challenges and issues:

- Quality and granularity of SRATS
- Requirements specification language (for HLRs and LLRs)
- Granularity of LLRs
- Bi-directional traces in model-based LLRs

�29

