Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Objetivos do aprendizado

- a.Determinar probabilidades a partir de funções de probabilidade
- b.Determinar probabilidades a partir de funções de distribuição cumulativa.
- a. Calcular média e variância para variáveis discretas.

3-1 Variáveis aleatórias discretas

Exemplos 3.1 e 3.2

- 3.1 Um sistema de comunicação de voz contem 48 linhas externas. Dado um tempo, o sistema é observado e algumas das linhas estão sendo usadas. Seja X o número de linhas uso. X pode assumir valores inteiros 0 até 48. For examplo, x=10.
- 3.2 Seja X o número de bits com erro nos quatro próximos bits transmitidos. Os valores possíveis para X são {0,1,2,3,4}.

3-2 Distribuições de probabilidade e funções de probabilidade

As probabildidades para os valores da variável X do exemplo 3.2 são:

$$P(X=0)=0,6561$$
 $P(X=1)=0,2916$ $P(X=2)=0,0486$ $P(X=3)=0,0036$ $P(X=4)=0,0001$

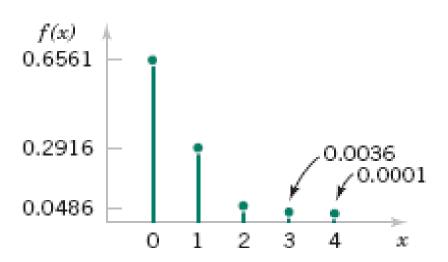


Figura 3-1 Distribuição de probabilidade para bits com erro.

3-2 Distribuições de probabilidade e funções de probabilidade

Definição

Para uma variável aleatória X com possíveis valores x_1, \dots, x_n , a função de probabilidade é uma função tal que

(1)
$$f(x_i) \ge 0$$

(2)
$$\sum_{i=1}^{n} f(x_i) = 1$$

$$(3) \quad f(x_i) = P(X = x_i)$$

(3-1)

Examplo 3-5

Contaminação de pastilhas

Seja a variável aleatória X o de pastilhas de semicondutores que necessitam ser analisadas , de modo a detectar uma grande partícula de contaminação. Seja 0,01 a probabilidade de uma pastilha conter uma grande partícula e que as pastilhas sejam independentes. Determine a distribuição de probabilidade de X. Seja p uma pastilha em que uma grande partícula esta presente e a uma pastilha em que essa partícula esteja ausente.

O espaço amostral do experimento é infinito. Isto é S={p, ap, aap, aaap, aaap, ...}.

Considere
$$P(X=1) = p=0.01$$
, $P(X=2)=0.99(0.01)=0.0099$

Examplo 3-5 (continuação)

Contaminação de pastilhas

Uma formula geral é:

$$P(X = x) = P(aa \dots ap) = 0.99^{x-1} (0.01),$$
 para $x = 1, 2, 3, \dots$ $(x - 1)a$'s

Temos que $f(x)\geq 0$. O fato da soma das probabilidades é igual a 1 é deixado como exercício.

Esse é um exemplo de uma variável aleatória geométrica.

Definição

A função de distribuição acumulada ou cumulativa de uma variável discreta X é denotada por F(x)

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$$

F(x) satisfaz as seguintes propriedades

- (1) $F(x) = P(X \le x) = \sum_{x \le x} f(x_i)$
- $(2) \quad 0 \le F(x) \le 1$
- (3) If $x \le y$, then $F(x) \le F(y)$ (3-2)

Examplo 3-8

Suponha que uma produção diária de 850 peças fabricadas contenha 50 delas que não obedecem aos requerimentos do consumidor. Duas peças são selecionadas ao acaso, sem reposição, da batelada. Seja a variável aleatória X o número de peças não-conformes a amostra. Qual é a função de distribuição cumulativa de X?

$$P(X = 0) = \frac{800}{850} \cdot \frac{799}{849} = 0.886$$

$$P(X = 1) = 2 \cdot \frac{800}{850} \cdot \frac{50}{849} = 0.111$$

$$P(X = 2) = \frac{50}{850} \cdot \frac{49}{849} = 0.003$$

Logo

$$F(0) = P(X \le 0) = 0.886$$

 $F(1) = P(X \le 1) = 0.886 + 0.111 = 0.997$
 $F(2) = P(X \le 2) = 1$

Examplo 3-8

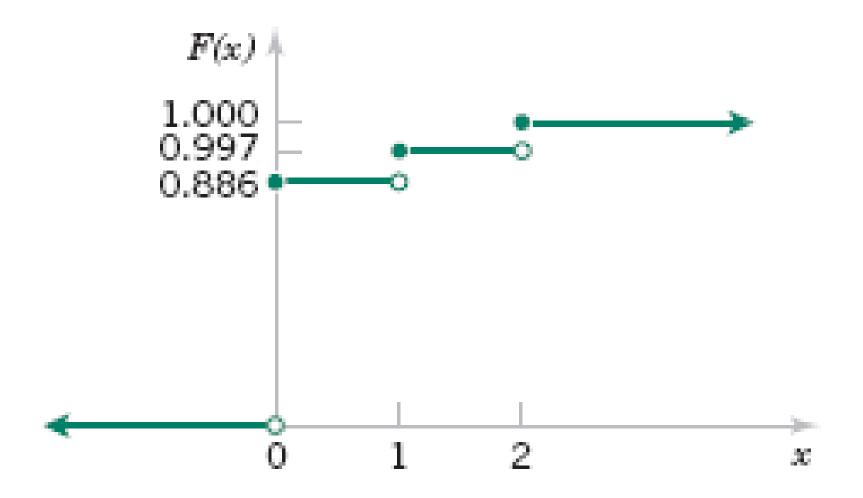


Figura 3-4 Função de distribuição acumulada para o Exemplo 3-8

3-4 Média e Variância de uma Variável Discreta

Definição

A média de uma variável X é

$$\mu = E(X) = \sum_{x} x f(x) \tag{3-3}$$

A variância de uma variável X é

$$\sigma^2 = V(X) = E(X - \mu)^2 = \sum_{x} (x - \mu)^2 f(x) = \sum_{x} x^2 f(x) - \mu^2$$

O desvio padrão de uma variável X é

$$\sigma = \sqrt{\sigma^2}$$
.

3-4 Média e Variância da uma Variável Discreta

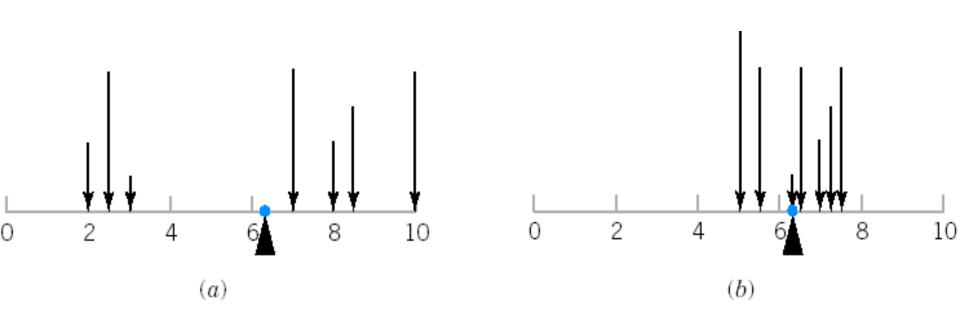


Figure 3-5 Uma distribuição de probabilidade como um carregamento com média igual ao ponto de equilíbrio. (a) e (b) ilustram médias iguais, porém (a) ilustra uma variância maior.

3-4 Média e Variância da uma Variável Discreta

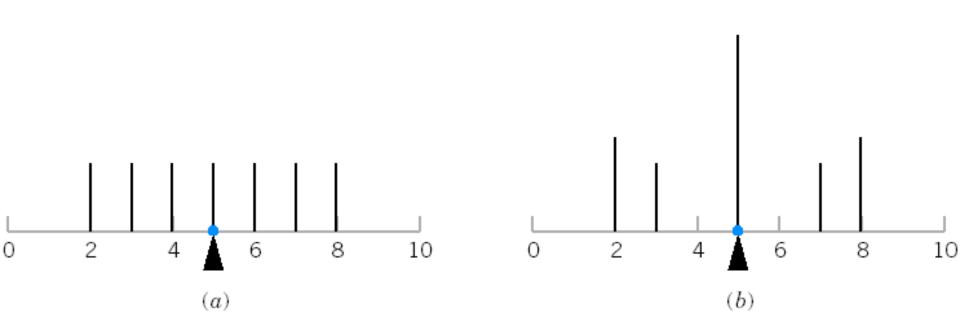


Figura 3-6 As distribuições de probabilidade ilustradas em (a) e (b) diferem, muito embora elas tenham médias e variâncias iguais.

Examplo 3-11

O número de mensagens enviadas por hora, através de uma rede de computadores, tem a seguinte distribuição

x = No de mensagens	10	11	12	13	14	15
f(x)	0.08	0.15	0.30	0.20	0.20	0.07

Determine a média e o desvio-padrão do número de mensagens enviadas por hora

$$E(X) = 10(0.08) + 11(0.15) + \dots + 15(0.07) = 12.5$$

$$V(X) = 10^{2}(0.08) + 11^{2}(0.15) + \dots + 15^{2}(0.07) - 12.5^{2} = 1.85$$

$$\sigma = \sqrt{V(X)} = \sqrt{1.85} = 1.36$$

3-4 Média e Variância da uma Variável Discreta

A variância de uma v.a. X pode ser considerada como o valor esperado de uma função de X, isto é, $h(x)=(X-\mu)^2$

Se X é uma variável aleatória discreta com função de probabilidade f(x)

$$E[h(X)] = \sum_{x} h(x)f(x)$$
 (3-4)

Variáveis Aleatórias Contínuas e Distribuições de Probabilidade

Objetivos do aprendizado

- a.Determinar probabilidades a partir de funções de densidade de probabilidade
- b.Determinar probabilidades a partir de funções de distribuição cumulativa e funções de distribuição cumulativa a partir de funções de densidades de probabilidade e o contrario.
- c.Calcular média e variância para variáveis contínuas.

4-1 Variáveis Aleatórias Contínuas

- tempo de resposta de um sistema computacional;
- rendimento de um processo químico;
- tempo de vida de um componente eletrônico;
- resistência de um material; etc.
- Variáveis aleatórias discretas com grande número de possíveis resultados (podem ser aproximadas para contínuas):
- número de transações por segundo de uma CPU;
- número de defeitos numa amostra de 5.000 itens; etc.

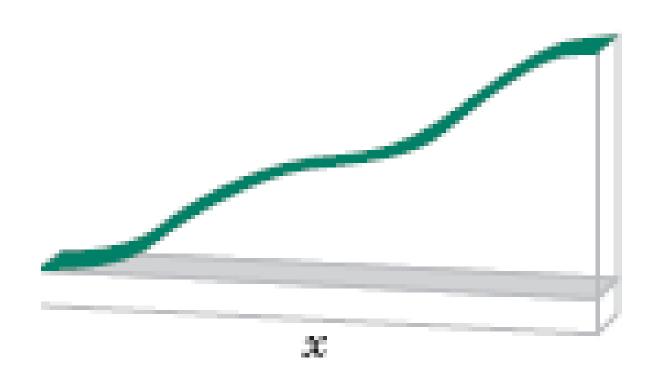


Figura 4-1 Função de densidade de uma carga ao longo de uma viga longa e delgada.

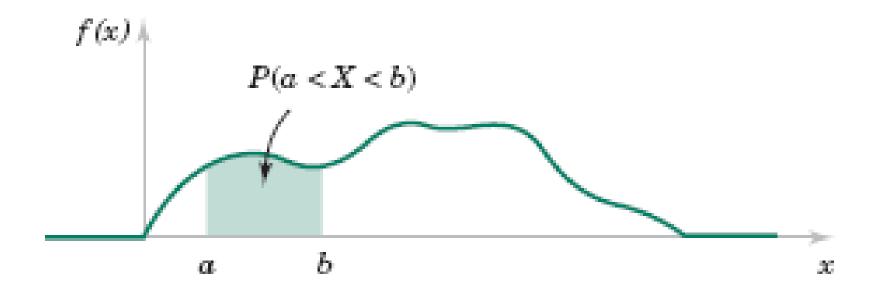


Figura 4-2 Probabilidade determinada a partir da área sob f(x).

Definição

Para uma v.a. contínua X, a função de densidade de probabbilidade é uma função tal que

(1)
$$f(x) \ge 0$$

$$(2) \int_{-\infty}^{\infty} f(x) dx = 1$$

(3)
$$P(a \le X \le b) = \int_a^b f(x) dx =$$
 Area sob $f(x)$ de a e b

Para qualquer a e b

(4-1)

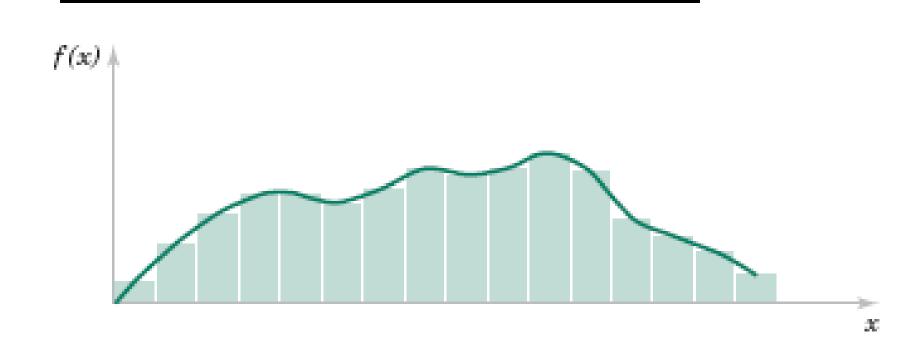


Figura 4-3 Um histograma aproxima uma função de densidade de probabildiade

Se X é uma v.a. contínua, então para qualquer x₁ e x₂

$$P(x_1 \le X \le x_2) = P(x_1 < X \le x_2) = P(x_1 \le X < x_2) = P(x_1 < X < x_2) \quad (4-2)$$

Examplo 4-2

Seja a v.a. continua X o diâmetro de um orificio perfurado em uma placa com um componente metálic. O diâmetro alvo é 12,5 milímetros. A maioria dos distúrbios aleatórios no processo resulta em diâmetros maiores. Dados históricos mostram que a distribuição de X pode ser modelada por uma função de densidade dada abaixo

$$f(x) = 20e^{-20(x-12,5)}, x \ge 12,5$$

Se uma peça com diâmetro maior que 12,60 milímetros for descartada , qual será a proporção de peças descartadas? Uma peça é descartada se X > 12,60

$$P(X > 12.60) = \int_{12.6}^{\infty} f(x) dx = \int_{12.6}^{\infty} 20e^{-20(x-12.5)} dx = -e^{-20(x-12.5)} \Big|_{12.6}^{\infty} = 0.135$$

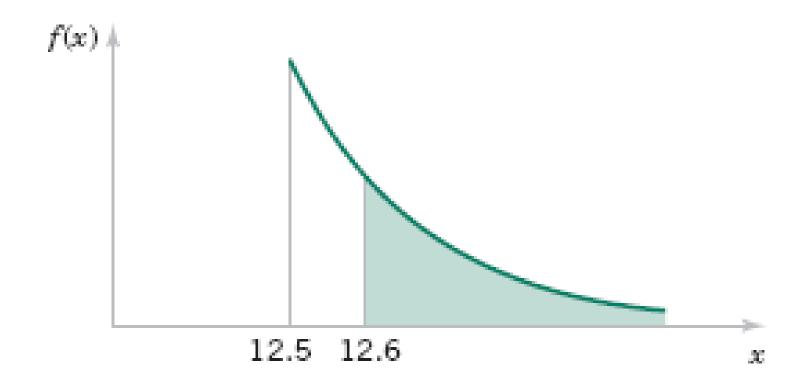


Figura 4-5 Função de densidade de probabildiade para o Examplo 4-2.

Examplo 4-2 (continuação)

Que proporção de peças está entre 12,5 e 12,6 milímetros?

$$P(12.5 < X < 12.6) = \int_{12.5}^{12.6} f(x) dx = -e^{-20(x-12.5)} \Big|_{12.5}^{12.6} = 0.865$$

Uma vez que a área total sob f(x) é igual a 1, podemos também calcular P(12,5 < X < 12,6)=1-P(X>12,6)=1-0,135=0,865

Definição

A função de distribuição acumulada de uma v.a. contínua é

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$
 (4-3)

para $-\infty < x < \infty$.

Examplo 4-4

Para a operação de perfuração no Exemplo 4-2, F(x) é dada por

$$F(x) = 0$$
 for $x < 12.5$

para $12.5 \le x$

$$F(x) = \int_{12.5}^{x} 20e^{-20(u-12.5)} du$$
$$= 1 - e^{-20(x-12.5)}$$

Logo

$$F(x) = \begin{cases} 0 & x < 12.5 \\ 1 - e^{-20(x - 12.5)} & 12.5 \le x \end{cases}$$

Figura 4.7 mostra o gráfico da F(x)

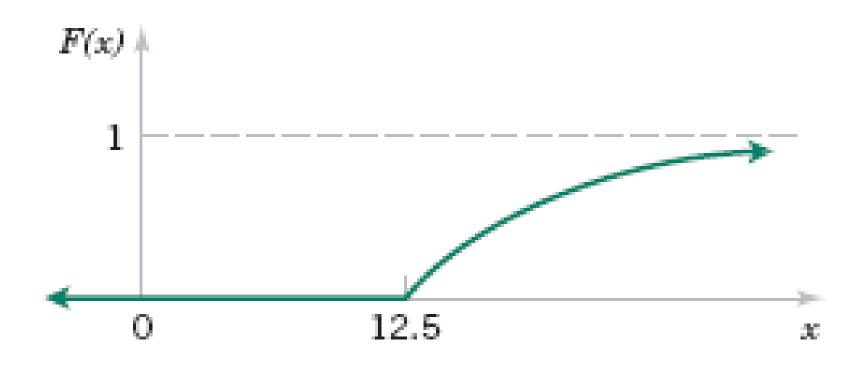


Figura 4-7 Função de distribuição acumulada para o Examplo 4-4.

4-4 Média e Variância de uma Variável Aleatória Contínua

Definição

Suponha X uma v.a. contínua , com uma função de densidade de probabilidade f(x). A média de X é

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx \tag{4-4}$$

A variância de X é

$$\sigma^{2} = V(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2}$$

O desvio padrão é X is $\sigma = \sqrt{\sigma^2}$.

4-4 Média e Variância de uma Variável Aleatória Contínua

Valor esperado de uma função de uma variável aleatória contínua X.

$$E[h(X)] = \int_{-\infty}^{\infty} h(x)f(x) dx$$
 (4-5)

4-4 Média e Variância de uma Variável Aleatória Contínua

Examplo 4-8

Considerando os dados do Exemplo 4-2, a média é

$$E(X) = \int_{12.5} xf(x) dx = \int_{12.5} x \ 20e^{-20(x-12.5)} dx$$

$$E(X) = -xe^{-20(x-12.5)} - \frac{e^{-20(x-12.5)}}{20} \Big|_{12.5}^{\infty} = 12.5 + 0.05 = 12.55$$

A variância é

$$V(X) = \int_{12.5}^{\infty} (x - 12.55)^2 f(x) \, dx$$

V(X)=0,0025