
RATIONAL ROSE

1. STARTING RATIONAL ROSE...2

2. CREATING A PROJECT MODEL IN RATIONAL ROSE2

3. USE CASE DIAGRAM ...6

4. CLASS DIAGRAM ...9

5. ACTIVITY DIAGRAM ...16

6. SEQUENCE DIAGRAM ...17

7. COLLABORATION DIAGRAMS..21

8. DRAWING A STATE DIAGRAM..23

9. GENERATING TABLES FROM CLASSES ...23

10. GENERATING SQL..26

11. GENERATING JAVA CODE ..26

12. REVERSE ENGINEERING A PROJECT..30

13. CUSTOMISING YOUR MODEL..33

14. TROUBLESHOOTING..34

1. Starting Rational Rose
Top of the Document Use Case Diagram ClassDiagram ActivityDiagram
When Rational Rose starts up, the following screen is displayed.

Create a new model, using Rational Unified Process.

2. Creating a project Model in Rational Rose
Top of the Document Use Case Diagram ClassDiagram ActivityDiagram

1. Start up Rational Rose Enterprise Edition.
2. Create a new model using the Rational Unified Process icon.
3. The window you will see will look something like this:

4. Using the View menu, turn off the log window. You will be left with the

browser area on the left hand side, the application window, the standard
toolbar and the diagram toolbox. This toolbox changes depending on which
diagram you are drawing. The example shown is for a class diagram.

5. Configure the modelling tool, by double clicking Model Properties in the
browser. Configure the tabs General, Diagram, Browser, Notation and
Toolbars.

6. General, as follows

7. Diagram as follows:

8. Tick everything in the browser window and in the Notation window, use
Unified notation, with a default language of Java. Leave other tick boxes
blank.

9. In the toolbars tab, tick ‘Show standard toolbar’ and ‘Enable Docking’, ‘Show
Diagram toolbar’ and ‘Enable docking’. Click the ‘…’ beside UML class
diagram and add the following toolbar buttons to the current toolbar: ‘Creates
an Association relationship’, ‘Creates an aggregation’ and ‘creates a
unidirectional aggregation’. Click ‘close’ when all required buttons have been
added.

10. Save your empty project model in a directory that is easily identifiable to you:

e.g. F:/UML/Sample1. In future, this model will appear in the ‘recent’ tab
when you go to open a model.

11. Close the model and the tool.

Top of the Document Use Case Diagram ClassDiagram ActivityDiagram

3. Use Case Diagram

1. Open the model previously created by starting up Rational Rose Enterprise
Edition, choosing Create New Model and clicking the Existing tab and
selecting the model by name. If a class diagram is open in the application
window, close it.

2. In the Browser window, select Use Case View. Double click on Main. This
opens the main Use Case. Note that the diagram toolbar has changed to reflect

the fact that the active diagram is a Use Case diagram.

A Use Case can be added by clicking on the Use Case icon on the toolbar
and then clicking in the active diagram.

3. The Use Case can be renamed while it is highlighted in blue. To rename it
later, right click the use case and choose the Specification from the menu:

The use case can be
renamed here.

4. Continue to add all
necessary Use
Cases to the
diagram.

5. Add actors to the
diagram by
clicking on the
Actor icon a
clicking on the
active diagram. A
new actors are
named, they a
in a list below an
new actor that is
represented o
diagram until such
time as the new
actor is named.

This allows for the same actor to appear on a diagram twice. If the user
decides to place the actor on the diagram twice, then (s)he will be prompted
with the warning ‘Newclass will be deleted from the model’ Yes/No.
WARNING: If you want to delete a duplicate icon from the model, be sure to
use DEL – not Delete from Model. Delete from Model will remove all
information on that actor / usecase/ class from the model.!!!

nd

s

ppear
y

n the

6. Use the ‘Unidirectional Association’ icon to draw the associations
between actors and use cases.

7. Use the ‘Extend Use Case’ icon to extend a use case from another one. If
there is no button on the toolbar for this, right click on the toolbar and
choose “customize…”. This will bring up the set of possible buttons.
‘Extend Use Case’ and ‘Include Use Case’ are about half way down the list.
Add these to the toolbar and close the dialogue box.

8. Use the ‘Include Use Case’ to include the functionality of one use case in
another.

9. Note that the items appear in the browser window when you insert them into
the diagram.

10. If you wish to copy the diagram into Word, while the diagram is active,
choose Edit from the standard toolbar and ‘Copy Active Diagram’. This will
put the diagram into the paste buffer.

11. An actor can be a generalisation of another actor or actors.
12. The Font of the diagram can be changed by changing the ‘General’ tab in the

model properties, or by using the ‘format’ menu from the toolbar.

13. If you want to name a Use Case and you have left it, you can select it, right
click and choose ‘Open Specification’. Type over the current highlighted
name.

14. When you ‘save’ it saves the entire model. If you want to add another
diagram to this model, reopen the model.

Settle with Payment

View Claim details

Make Payment

Report Incident

Third Party

Report Claim

<<extend>>

Assessor

Assess Claim

Refer to Underwriter

Underwriting
Company

Refer to Expert Witness

Driver Verify Incident

<<include>>

Expert Witness

Lodge Report<<include>>

<<include>>

<<extend>>

Reject

<<extend>>

<<extend>>

<<extend>>

Employee

Top of the Document Use Case Diagram ActivityDiagram SequenceDiagram

4. Class Diagram

1. Start up Rational Rose using the Start Menu, Rational Suite Development
Studio and Rational Rose Enterprise Edition (with red diamond beside it).

2. Using the Create New Model dialogue box, click on the Recent tab. Your
project may be there. Alternately, click on the existing tab and browse to find

your
model.

This screen is
automatically
displayed:

3. In the browser window, Click on the ‘Logical View’ folder, right click; click

‘New’ and ‘Class
Diagram’ to create a n
class diagram, naming it
appropriately.

ew

4. Open the new diagram

by double-clicking its
icon in the browser
window.

5. Move the cursor over the

icons on the Diagram
Toolbox area to see what
their functions are. Use
the class icon to create
and place a class in the

diagram.

Note that the actors are included as possible labels for the class. Ignore these and
replace the name NewClass with the name you want to put on the class. If you
have omitted this step, you can rename it at any time by right-clicking on the class
and choosing ‘Open Specification’ as follows:

Leave all other boxes as they are for now. The class will be labelled, with two
empty compartments below it:

Claim

6. Create the rest of the classes from the diagram you have developed in tutorials.
7. You can modify the display format to display or suppress attributes or

operations, or to show the signature of an operation.
8. When the classes are put in, you can add associations, using either the uni-

directional association or the bi-directional association.

9. Right click on the association and ensure that ‘Stereotype label’, ‘Public’ and

‘Navigable’ are ticked. To specify the association further ‘Open standard
specification’. You can add multiplicity and roles.

10. To add attributes, click the ‘attributes’ tab on the class specification.

Right click in the empty box and fill in the attribute name

Double click on the attribute to add more detail:

Operations are added using the operations tab:

Operations can be further specified:

Adding other associations
Generalisation

To add a generalisation, click on the Generalisation icon . Start from the
specialised class and draw towards the general class.

Aggregation

To create an aggregate relationship, either use the Aggregation icon or right click
on an association and click the aggregate tick box. Start at class A, where A is the
containing class. Draw to class B, where B is the part class.

Composition
To create a composition relationship, add an aggregation. Open the Specification of
the aggregation and choose Role B detail (If the aggregate tick box is not ticked, then
choose Role A detail instead). Tick the ‘containment’ radio button to fill in the
aggregate diamond.

body limb

11. When the model is saved, the diagram will be saved along with it.

Top of the Document Use Case Diagram ClassDiagram ActivityDiagram

5. Activity Diagram
If you are not already running Rational Rose, start it using the Start menu, Program
Files, Rational Rose Enterprise Edition. Open the model from where you previously
saved it. If you have not saved a model previously, read section 1.

Right click on the Use Case View and choose New and Activity diagram. The tools
in the toolbar that you will need are:

 This is the start state, which signifies the start of the workflow.

 This is the end state, which signifies the end of the workflow.

 This is the transition between activities, activity and state, activity and
decision, decision and activity or state and activity.

 This is the decision diamond.

 This is the activity.

 This is the state.

Use the lecture to explain how to draw the diagrams.

Top of the Document Use Case Diagram ClassDiagram ActivityDiagram

6. Sequence Diagram

When drawing a Sequence diagram, it is assumed that you have previously:-

• Drawn a Use Case diagram in the Use Case View and populated it with actors

and use cases.

• Set up at least one control class to control the Use Case.

• Set up (business) entity classes in the Logical View complete with attributes

and operations.

• Set up boundary classes in the Logical View, complete with attributes and

operations and any inherited classes.

Before you draw a sequence diagram, you must have a realisation of the Use Case that

you are representing. To create this, right click on Logical view in the browser and

pick New Use Case Diagram

Call it ‘Use Case Realisation’

Populate the new Use Case diagram with one Use case for each one from the Use

Case view. USE THE ICON FROM THE TOOLBAR TO DO THIS. If

necessary, customise the toolbar to add this icon. It is called ‘Creates a Use Case

realisation’. Open the specification on the Use case, give it the same name as the one

in the Use Case view and give it a stereotype of ‘Use Case Realisation’. When this

has been done, the realisations will come up in the diagram and

in the logical view browser as dotted ovals.

Right click on the dotted oval in the

browser and choose ‘New Sequence Diagram’. Give it the same

name as the Use Case.

Order Raw Materials

Pick required actors and classes from the browser and drag them onto the diagram.

Depending on the options you have on the view, they may all be shown as rectangles,

or may use the icon representing their stereotype.

To add an event / signal / message between classes; use the straight arrow icon

from the toolbar. Start at the originating class and drag it to the receiving class. Right

click on the event and pick the operation from the list shown. If the operation is not

in the class already, add it. The message can be edited and its specification altered to

make it synchronous or to make sure there is a significant return value: To add a new

sequence diagram (e.g. for another use case), develop the other sequence diagram (e.g. DiagramB) add

a note to the original diagram (e.g. Diagram A). Drag DiagramB from the browser into the note

on Diagram A. To end an object’s lifeline in the Use Case, use the icon on its lifeline.

Note that in this diagram, the

messages are numbered

sequentially and

hierarchically. To show this,

edit the Model Properties

(see browser pane). Choose

the ‘Diagram’ tab and ensure

that the three tick boxes

called ‘Collaboration

numbering’, ‘Sequence

numbering’ and

‘Hierarchical Messages’ are

ticked. The ‘Icon’ radio

button should also be chosen.

First, populate the diagram

d

one

.

with instances of the require

classes. This can be d

by dragging the class from

the browser onto the screen

Try to keep the actor to the

left side, followed by any boundary classes, control classes and entity classes, in that order. If you

name the instance, the instance name will be separated from the class name by a colon. You may

choose to use an anonymous instance. As soon as a class sends a message, it shows activation. The

receiving class also shows activation. The message can specify which operation in the receiving cla

it invokes. The simple message can be named. The nature of the message can be altered, by choosing

‘Open Specification’ and choosin

the detail tab. The nature of t

message pr

ss

g

he

otocol can be specified.

 a

Rational Rose only allows scenarios to be modelled. Selection and iteration cannot be modelled.

In procedural systems, most of the

calls are either simple or

synchronous. Synchronous

suggests a dialogue between the

calling and called objects. The

simple message causes a thread to

begin, which holds up all objects

that it involves, until the object

has received a ‘Return’ message

to show that it has completed.

For example, in the sequence

diagram shown above, the actor is

committed to a single thread of

activity from message 1. Load

nother thread. This is the case for

non-concurrent, single-thread systems.

until it receives back 1.4, a return. The actor is then free to activate

7. Collaboration Diagrams
Top of the Document Use Case Diagram ClassDiagram ActivityDiagram
To create a collaboration diagram in Rational Rose, ensure first that the Use Case that
you want to illustrate is present and that all classes have been set up, complete with

their stereotypes.

Right click on the Use Case in the browser and choose ‘New’ and ‘Collaboration
Diagram’. Give the diagram the same name as the Use Case and double click on it to
open it. Note the toolbar should look as above.

A Collaboration diagram has classes, links and messages. The links show how the
classes communicate, while the messages travel on the links. Any two classes that
communicate must be joined by links. Two classes may only be joined by one link

, but there can be many messages passing between them. The messages are
directional, so use either or .

To draw the diagram, drag the objects from the browser.

 : Sales
clerk

 : OrderUI

 : Regis terNewOrder

 : Des i gn

 : Des ignUI

 : Retailer
Order

 : Retailer
Order Line : Retailer

When you do this, they may appear as boxes. When you have all of the objects on the
diagram, do the following:

Select all from the edit menu. Go to Format menu and set stereotype to icon. At
format menu, disable ‘use fill colour’ (if you wish!)At format menu, choose font and
change the font to something that will distinguish the objects from the message
names. (I chose bold italic 12 point bookman old style). Connect with links all
objects that send messages to each other.

 : Sales clerk

 : OrderUI

 :
RegisterNewOrder

 : Design

 : DesignUI

 : Retailer Order

 : Retailer

 : Retailer Order
Line

Go to top Use Case Diagram Class Diagram Sequence Diagram Collaboration

8. Drawing a State Diagram
In the class diagram, select the persistent class for which you wish to draw a state
diagram. Right click and choose Subdiagrams, ‘New Statechart diagram’.
Alternately, a statechart diagram can be started by right clicking on the Logical View
and choosing ‘New’ and StateChart Diagram. However, this does not attach the
diagram to an existing class.

Using the icons on offer, draw the diagram.

Go to top Use Case Diagram Class Diagram Sequence Diagram Collaboration

9. Generating tables from classes
Converting classes to tables
Remember:

• You can only generate tables from PERSISTENT classes.
• To generate tables, there must be a defined schema.
• The schema must be associated with a database in the component view.

In the component view:

Set up a database
(Right click on logical
view, choose data
modeler, new,
database).

Open the specification
for the database and
associate it with
whichever implementation route suits (e.g. SQL Server 7)

In the logical view:

(a) Classify the classes, using a 3-tier system. (To do this, tick the ‘Three-tier

diagram’ box in the tools - options menu in Rational Rose.)

Move all persistent classes into one package.

For each persistent class:

Open the standard
specification

Select the ‘detail’ tab

Turn on the ‘persistent’
radio button.

If you have not already
given the attributes data
types, do so now.

(b) Set up a new schema (Right click on
logical view, choose data modeler,
new, schema.)

Open the schema specification.

Associate it with the database you
have created.

(c) Transform the objects to data. Right click on the package that holds the
classes in the Logical view.

Choose data modeler

Choose ‘Transform to data
model’

Fill in destination schema and
target database that you have
set up. Execute the
transformation. (To see your
tables, expand the schema. If
they aren’t there, maybe you
didn’t make them persistent?).

To see your data model, right
click on the schema, choose
data modeller, new, data
model diagram)

(d) Generate (and optionally execute) SQL. Right click on the schema, choose
data modeller, forward engineer…

This results in your tables being generated into your database.

Open a new data model diagram

Populate it with tables

Result

This creates a set of tables in the database.

You can view them by setting up a new data model diagram.

Right click on schema

Choose data modeler

Choose new

Choose data model diagram

Go to top Use Case Diagram Class Diagram Sequence Diagram Collaboration

10. Generating SQL
• Right click on the database

• Choose Data modeler

• Forward Engineer…

11. Generating Java Code

Before commencing code generation, it is advisable to have packaged your classes.
The example shown below is from a class that is part of a package called
‘OM_Claim’.

In the class diagram window,
choose a class and open its

specification.

Accident
Accident date/time ...
Accident location : ...
Accident descriptio...
Bus registration : In...

Report Accident()
Cerify Accident()
GetStatus()

11

Type in ‘This is my
documentation for <substitute
your own class name>’ Click
on the attributes tab. Right
click in the attributes table and
choose ‘Specification’. Give
the attributes the correct type,
initial value and export

control. Click OK to return to the class specification window. Repeat this for all
attributes, ending on the class specification window.

Click the Operations tab. Select one of the operations, right click and select

‘Specification’.

Accident

Accident date/time : Date = 01012004
Accident location : String = None
Accident description : String = None
Bus registration : String = 00 D 00000

Report Accident() : Boolean
Cerify Accident() : Boolean
GetStatus() : String

(from OM_claim)

You are now ready to generate the Java code for
this class. Click the class. The documenta
‘Documentation’ panel.

tion for this class is now displayed in the

In the Tools menu, select Java / J2EE and Generate Code for the selected class. (You
may get a warning that not all units are loaded. This is only significant for a
completed project.).

d

C

R

10:44:57| Starting Code Generation

10:44:57| WARNING: Class Logical View::OM_claim::Accident - the name of attribute Accident
date/time is not a valid Java identifier.

10:44:57| ERROR: Class Logical View::OM_claim::Accident - a name which is a valid Java
identifier cannot be constructed for attribute Accident date/time

10:45:16| Starting Code Generation

10:45:16| WARNING: Class Logical View::OM_claim::Accident - the name of attribute Accident
date/time is not a valid Java identifier.

10:45:16| ERROR: Class Logical View::OM_claim::Accident - a name which is a valid Java
identifier cannot be constructed for attribute Accident date/time
he above yields the following errors:

 again. The following
ialogue is displayed:

ode generation for t

eturn to the class diagram and fix the problems. Generate

Returning to the Classpaths
dialogue, click on the
component and click
‘Assign’. The component
//Source file: C:\\Contents\\Rational
Rose\\Claims\\JavaCode\\OM_claim\\Accident.java
package OM_claim;

/**
 * This is documentation for the Accident class
 */
public class Accident
{
 private Date Accidentdatetime = 01012004;
 private String AccidentLocation = None;
 private String AccidentDescription = None;
 private String BusRegistration = 00 D 00000;
 public Claim theClaim[];

 /**
 * @roseuid 418F4FF20390
 */
 public Accident()
 {

 }

 /**
 * @return Boolean
 * @roseuid 418A4EDF0242
 */
 public Boolean ReportAccident()
 {
 return null;
 }

 /**
 * @return Boolean
 * @roseuid 418A4EE5020F
 */
 public Boolean CerifyAccident()
 {
 return null;
 }

 /**
 * @return String
 * @roseuid 418A4EE90124
 */
 public String GetStatus()
 {
 return null;
 }
}

then disappears from the RHS of the screen. W

hopefully you will get

hen the code generation is complete,

The following code has been generated into the folder: C:\Contents\Rational
Rose\Claims\JavaCode\OM_claim

The Rational Rose model will produce the following log and new component:

12. Reverse Engineering a project

e called the
component ‘Reversed’
here. Right-click on
the component and
choose Java J2EE and
‘Reverse Engineer’.
Specify the path
where the source you

To reverse engineer
the project, put all
.java sources into the
one directory. Create
a component in the
Component view. I
hav

want to reverse engineer is. Select each of the .java sources individually and a
them. They are not added until they

dd
 come up in the window. When you have

nished, click ‘Done’. This will return to the project and give a report in the log
indow.

fi
w

W e
(‘Reversed’ in the illustration). The following is shown. Right
and choose ‘Assign’.

w component
 click on each class

hen this has been completed, open the specification for the n

13. Customising your model
When you start up a new model in Rational Rose, using the Rational Unified Process
template, there are many packages and folders that have been set up for your use.
These can be extremely confusing.

When starting a model for a simple
system, it may not be necessary to
model the Business domain. If n
you may delete the Business Use-
Case Model from the Use Case
View, leaving only the Use-Case
model.

ot,

Be aware that the tool will allow
you to insert almost any icon in
any folder. Try to keep to the
guidelines – i.e. put actors into the
Use Case View, Use Case Model,
Actors folder.

The number of folders in the
Logical view will depend on the
options that you have taken in the
Diagram tab in the Options menu.
If you have selected the ‘Three-tier
diagram’, Rational Rose provides
folders to allow you to manage the
different layers and also to allow
you to evolve the model from the
business domain through to
implementation. Once again, for a
simple system, all of these folders
may not be necessary. Take a note
of the folders that are offered and
try cutting them down, unless you
know the meaning of the folders.
Always use appropriate folder
names to denote and classify
classes, objects and diagrams.

When it comes to generation, the
folder denotes the package to
which the class belongs. Ensure
that it is appropriately named and
that each package folder’s contents
are appropriate to the task that will
be done on the folder.

To delete a folder, select it and use CTRL-D.

14. Troubleshooting
1) I add a business class that has the same name as an actor and the drawing tool

shows me the actor:

Before naming the class, open its specification. Change the stereotype to
business entity, and then rename it to the actor name. You will be warned that
the name appears in multiple domains, but that is OK.

2) When I add my class, it doesn’t look like the one in the sample.

When you add a class, the stereotype may default to none. This will give the normal
3-compartment box display. When you change the stereotype, this can change the
way in which the class is displayed. To change the display, right click on the class
and choose stereotype. If you want the 3-box compartment, choose ‘none’.

	Starting Rational Rose
	Creating a project Model in Rational Rose
	Use Case Diagram
	Class Diagram
	Adding other associations
	Generalisation
	Aggregation
	Composition

	Activity Diagram
	Sequence Diagram
	Collaboration Diagrams
	Drawing a State Diagram
	Generating tables from classes
	Converting classes to tables
	In the component view:
	In the logical view:

	Generating SQL
	Generating Java Code
	Reverse Engineering a project
	Customising your model
	Troubleshooting

