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Abstract. Transposable Elements (TEs) are DNA sequences that can change
their location within the genome. They make up a large portion of the DNA in
organisms, and contribute to genetic diversity within and across species. Fur-
thermore, they increase the size of the genome and may affect the functionality
of genes. Accurate classification of TEs present in a genome is an important step
towards understanding their effects on genes and their role in genome evolution.
Usually, TEs classification is performed using homology-based Bioinformatics
tools, comparing a sequence with a database with many sequences belonging
to previously known TE classes. This is a limited strategy, since it ignores the
sequences’ biochemical properties, and also the hierarchical relationships that
may exist between the different TE classes. Based on existing proposals to es-
tablish a hierarchical TE taxonomy, we propose a new dataset for TE classifi-
cation, having features that try to consider sequence properties that cannot be
represented only by character sequences. Furthermore, the proposed dataset is
hierarchically structured, facilitating its use by conventional and hierarchical
classification methods. Focusing on investigating the interpretabiliy potential of
our features, we tested our new dataset using decision trees and rule induction
algorithms. The experiments showed promising results.

1. Introduction

Transposable Elements (TEs) are DNA sequences that have the ability to move within the
genome of a cell, changing, thereby, the activity of certain genes. According to [Wicker
et al. 2007], TEs can be classified in a hierarchically taxonomy containing subclasses and
superclasses.

In general terms, TEs can be divided into two major classes, according to their
transposition mechanisms: Class I (retrotransposons) and Class II (transposons). The
retrotransposons are transposed via RNA “copy and paste” mechanism — they are tran-
scribed into RNA and then, again, transcribed into DNA. On the other hand, transposons
use a “cut and paste” mechanism, and do not rely on RNA for the transposition process.
Retrotransposons are the most abundant elements in eukaryotic genomes, contributing
to increase their size. When TEs are embedded into other genes, they can modify and
even reduce the activity of proteins. These alterations generate changes that either make
impossible the organism survival, or contribute to genetic variability. Thus, the study of
methods for TE classification is very important for TE’s behavior comprehension, in order



Figure 1. Difference between the mechanisms of transposition Class I and Class
II TEs. (a) transposition of retrotransposons (“copy and paste”); (b) transposition
of transposons (“cut and paste”).

to help understanding how they affect genes functional mechanisms. Figure 1 illustrates
the process of TE’s transposition.

Currently, the identification and classification of TEs still employs a lot of manual
work, despite the existence of automated methods that seek for TE’s candidate sequences
in the genomes. According to [Bergman and Quesneville 2007], there are many methods
proposed to classify TEs, both using homology, structural information, and also seeking
for repetitions in sequences. However, all those methods have limitations, because either
they assume that the sequences involved are very similar, thus propagating incorrectly
made classifications, or they are specific to a particular type of element [Costa et al. 2013].
Furthermore, the use of homology between sequences ignores many of their biochemical
properties. Additionally, with the exception of few methods like [Costa et al. 2013,
Abrusán et al. 2009], none of them induce models automatically from the data provided,
using Machine Learning (ML).

In [Wicker et al. 2007], a TE’s classification taxonomy is proposed, where their
families and superfamilies are structured in a hierarchy. Part of this hierarchy is shown in
Figure 2. As can be seen in the figure, TEs are divided into four hierarchical levels plus
the root. At each level, each node corresponds to a TE family/superfamily.

In this work, an hierarchically structured TE dataset was proposed, based on
[Wicker et al. 2007] taxonomy. This dataset has been formatted for use by machine
learning algorithms, with attributes that try to incorporate knowledgement that cannot be
encoded by simple character sequences. In possession of this database, the performance
of different ML algorithms can be investigated. The advantage of using ML is based
upon the fact that the methods learn how to automatically identify TEs through the use of
datasets with previously identified TEs. It is also possible to extract interpretable knowl-
edge by the means of classification rules. To the best of the author’s knowledge, this is
the first attempt to build a ML hierarchical dataset for TEs classification considering the
whole [Wicker et al. 2007] taxonomy.

The remainder of this work is organized as follows. Section 2 presents some works
proposed for TE classification; our new ML dataset for hierarchical classification of TEs is
presented in Section 3; the experiments performed to evaluated the discriminative power
of our attributes are presented in Section 4, together with a discution with the results;
finally, Section 5 presents our conclusions and future research directions.
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Figure 2. Example of hierarchical taxonomy classification of TEs. Adapted
from [Wicker et al. 2007].

2. Related Work

Some methods were proposed for TE classification. However, with very few exceptions,
these methods use homology, structural information, or search for repetitions in the se-
quences [Bergman and Quesneville 2007]. They assume that involved sequences are very
similar, and also are specific for given types of TEs [Costa et al. 2013]. In addition, with
exception of few methods [Abrusán et al. 2009, Costa et al. 2013, Loureiro et al. 2013],
none of them automatically induces classification models from the provided data.

The LTRDigest method [Steinbiss et al. 2009], as an example, is specific for
Long Terminal Repeats (LTR) retrotransposons. The method is initiated with a list of
LTR-Retrotransposons, and then annotate these sequences with protein domains (using
Hidden Markov Models) and other structural regions. It then finds groups in the LTR-
retrotransposons, which can be checked to see if they correspond to known TEs.

TEClass [Abrusán et al. 2009] classifies sequences in Classes I and II. Class
I elements can then be classified in LTRs and non-LTRs. The non-LTR elements can
be classified in LINE and SINE. The classification is performed using binary Support
Vector Machines (SVMs), and k-mers as attributes, but no hierarchical relationships were
considered for the SVMs induction. Also, the dataset used does not consider the TEs
[Wicker et al. 2007] taxonomy.

[Feschotte et al. 2009] proposed RepClass, a method consisting of three different
classification modules: homology based, search for structural characteristics, and search
for target site duplications. The three modules provide classification in different granular-
ities, which are them integrated for the obtention of a single classification.

The Pastec method [Hoede et al. 2014] uses HMMs and different characteristics
to classify TEs. Some of these characteristics are structural (sequence length, presence of
LTRs and DIRs), homology and conserved domains.



3. A new Hierarchical Machine Learning Dataset for TEs Classification

This section presents the procedures performed to construct the new proposed ML dataset.
In order to build a dataset with attributes that give biologically relevant and discriminative
characteristics, we used signatures from the PROSITE database [Sigrist et al. 2012] of
protein families and domains. PROSITE consists of biologically significant sites, patterns
and profiles, which help in the identification of which protein family a sequence belongs
to.

For the development of the dataset, we propose a pipeline which integrates differ-
ent Bioinformatic tools. We first collected nucleotide sequences from the PSGB Repeat
Element Database [Nussbaumer et al. 2013]. This database provides an extensive collec-
tion of biological data. The extracted sequences have their characterization represented
as depicted in Figure 3, according to [Wicker et al. 2007]
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Figure 3. PSGB TEs classification according to Wicker’s taxonomy.

As can be seen in Figure 3, the Wicker’s taxonomy classify TEs into Class, Order
and Superfamily. Class II DNA Transposons can be further divided into Subclass 1 and
Subclass 2. Only Subclass 1 is shown in the figure. To hierarchically structure the MIPS
sequences, we associated an id to each of the classes in each level. Thus, 2.1.1.3 (Mutator)
is a subclass of 2.1.1 (TIR), which is a subclass of 2.1 (Subclass 1), which in turn a
subclass of 2 (DNA Transposons). The symbol “·” is then used as a level divisor in
our proposal.

Because PROSITE is a protein family database, and PSGB database contains only
nucleotide sequences, we needed to translate our DNA sequences into amino acid se-
quences considering all six reading frames, in order to search them against PROSITE.
However, as not all TE sequences are guaranteed to be translated into proteins, one al-
ternative is to retrieve Open Reading Frames (ORFs) from our nucleotide sequences. An
ORF is a nucleotide sequence with great potential to be translated to amino acid.



To retrieve ORFs, we used the GETORF tool [Rice et al. 2000] within the IN-
TERPROSCAN software [Jones et al. 2014], which receives as input a collection of DNA
sequences in fasta format. The tool returns, for each sequence, the ORFs found for that
sequence. Having the ORFs for each TE sequence, we can scan them using a specific tool
to search for PROSITE signatures.

We are using TE ORFs and searching them against PROSITE signatures to try to
answer the following question: can PROSITE signatures be used to discriminate different
classes of TEs? We believe the answer is yes, based on the fact that the signatures we
are using as dataset attributes were found in ORFs present in TE sequences. Thus, the
same patterns and profiles present in the PROSITE protein families may be present in the
TE sequences.

The search for PROSITE signatures was performed using the PS-SCAN tool [Cas-
tro et al. 2006], which allows scanning of amino acid sequences against motifs of the
PROSITE collection. For each ORF sequence, a number of annotated PROSITE signa-
tures was retrieved, which were then associated to the original DNA TEs sequences. For
each TE sequence, the presence or absence of such signatures were used as attributes
for ML methods. Figure 4 illustrates the pipeline previously described. For illustration
purposes, a small part of the final proposed dataset is shown in Table 1.
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Figure 4. Pipeline for the proposed ML dataset for hierarchical classification.

Table 1. Illustration of the proposed dataset.
Sequence ID PS00001 PS00004 ... PS60014 TE Class

Sequence ID1 1 1 ... 0 1.4
Sequence ID2 1 1 ... 0 1.1.2
Sequence ID3 0 1 ... 0 1.4
Sequence ID1 0 0 ... 0 1.5

...
...

...
...

...
...

Sequence IDn 1 1 ... 1 1.1.2

From the 18678 sequences downloaded from the PSGB dataset, our pipeline es
ishas up to now processed 4568 of them. This is because scanning the whole PROSITE
database against signatur a very time consuming task. Until now, PS-SCAN has found
407 distinct PROSITE signatures annotated in three TE orders (LTR, LINE and SINE)
and two TE superfamilies (COPIA and GYPSY). The number of sequences retrieved from
each of the five TE classes is described in Table 2.

The five TE classes shown in Table 2 are Class I Retrotransposons. These TEs
copy themselves in two stages, first from DNA to RNA by transcription, then from RNA



Table 2. Number of sequences for each TE class.
TE class LTR COPIA GYPSY LINE SINE
# sequences 1053 1093 1764 470 188

back to DNA by reverse transcription. The DNA copy is then inserted into the genome in a
new position. Reverse transcription is catalyzed by a reverse transcriptase enzyme, which
is often encoded by the TE itself. This class of TEs behaves very similarly to retroviruses,
such as HIV. It is composed of five orders, among which the retrotransposons with Long
Terminal Repeats (LTRs), which are identical sequences (up to minor variations) of a
few hundred nucleotides, the long interspersed nuclear elements (LINEs), and the short
interspersed nuclear elements (SINEs). As Class I TEs as very abundant in genomes
of many species, these are ideal candidates for evaluating how well discriminative our
proposed features are.

4. Experiments and Discussion
In order to verify the discriminative power of the PROSITE signatures when used as TE
dataset features, we performed experiments using two popular classifiers, the J48 decision
tree induction algorithm [Quinlan 1993], and the JRip rule induction algorithm [Cohen
1995]. Both algorithms are implemented within the RWeka package [Hornik et al. 2009].

As can be seen in Table 2, our current dataset is very unbalanced. Thus, we per-
formed two sets of experiments: (i) considering the complete unbalanced dataset, and
(ii) a balanced dataset considering only the classes 1.1, 1.1.1 and 1.1.2. For each of these
datasets, we executed the J48 and JRip algorithms using the 10-fold cross-validation strat-
egy. To evaluate the results, we averaged the overall accuracy considering all classes over
the 10 executions. We also averaged the per-class precision, recall and fmeasure results.
Per-class precision, recall and and Fmeasure are particularly useful when class instances
are not evenly distributed. The next subsections detail the experiments performed.

4.1. Complete Dataset

Considering the J48 algorithm, an average accuracy of 64.34% was obtained, with a
standard deviation value of 2.9. For illustration purposes, Figure 5 shows part of the
decision tree induced using the first training fold. The complete decision tree has
221 leaves. For the JRip classifier, the average accuracy obtained was 58.60%, with
standard deviation value of 3.6. Analogously to J48, average per-class precision, re-
call, and fmeasure results were calculated. Part of the rules induced using the first
fold is shown in Figure 6. The total number of rules obtained was 21. As can be
seen in both figures, the numbers in parenthesis mean the coverage/errors in the train-
ing data, which is a convention in tree/rule induction. Thus, in Figure 6, for ex-
ample, the rule (PS00007 = 0) and (PS00001 = 0) and (PS00004 = 0)
=> TE Class 1.5 (60.0/19.0)means that there were 60 examples with absence
(0) of these three signatures that were correctly classified as belonging to superfamily 1.5,
and 19 examples misclassified.

The bar graphs in Figures 7, 8 and 9 show the averaged the per-class precision,
recall and fmeasure results for the J48 and JRip algorithms. By Figure 7, we can conclude
that J48 obtained the highest precisions for classes 1.1.1 and 1.1.2 (fewer false positive



Figure 5. Part of the J48 decision tree for the complete dataset

Figure 6. JRip Rules - Complete data set



results in comparison to JRip). However, for classes 1.1, 1.4 and 1.5, JRip obtained higher
precision values.

Considering the recall results, Figure 8, J48 obtained better results in the majority
of the classes. Thus, although more precise in some classes, e.g. 1.4 and 1.5, the JRip
algorithm obtained a lower coverage considering these classes (lower recall).

When we combine precision and recall through fmeasure (Figure 9), we conclude
that J48 performed better than JRip in the complete dataset. Still, JRip obtained a higher
standard deviation, indicating that the J48 algorithm was the more stable classifier.

Figure 7. Precision values for the complete dataset

Figure 8. Recall values for the complete dataset

Regarding the discriminative power of our features, we consider these first experi-
ments very promising, since good results were obtained. Also, we consider that with more
instances, even better results can be obtained. In addition, instead of considering only the
presence or absence of the PROSITE signatures, we could consider also the frequency of
such signatures. Similar strategy was adopted in works such as [Wan et al. 2012] where
Gene Ontology terms were used as features for protein function prediction datasets.



Figure 9. Fmeasure values for the complete dataset

4.2. Partial Dataset
In order to perform experiments with a balanced dataset, we removed instances belonging
to the classes 1.4 e 1.5. As shown in Table 2, the number of instances belonging to classes
1.1, 1.1.1 and 1.1.2 is considerably larger than the other two remaining classes. Thus, by
removing instances from classes 1.4 and 1.5, and balancing the number of instances for
the remaining classes, better classification results are expected. Balancing was performed
in order to have the same number of instances for each class. Thus, because the original
dataset has 1053 instances belonging to class 1.1, we removed instances from classes
1.1.1 and 1.1.2, letting all three classes with 1053 instances.

After balancing the dataset, the average accuracy obtained by J48 was 68.03%,
with standard deviation value of 2.2. For the JRip classifier, the average number of correct
classifications was 66.09%, with standard deviation value of 2.2. For both classifier, per-
class precision, recall, and Fmeasure results were also calculated.

The graphs shown in Figures 10, 11 and 12 refer to the balanced partial dataset.
It is possible to conclude that the results for J48 and JRip were very close, and even
the same in some cases. Thus, if we compare the results obtained in the complete and
partial dataset, J48 can be considered a more robust classifier, performing better in the
unbalanced dataset.

5. Conclusions and Future Works
In this paper, we proposed a new Machine Learning (ML) dataset for Hierarchical Clas-
sification of Transposable Elements (TEs). The dataset was hierarchically structured ac-
cording to the taxonomy proposed by [Wicker et al. 2007], and the presence/absence of
PROSITE signatures was used as features.

To construct our dataset, a pipeline connecting different Bioinformatic tools was
developed. First, nucleotide sequences were collected from the PSGB public dataset,
and tools such as GETORF and PS-SCAN were used to obtain Open Reading Frames
(ORFs) and PROSITE signatures. To validate the discriminative power of our features, we
performed experiments using two popular interpretable classifiers, the J48 decision tree
induction algorithm, and the JRip rule induction algorithm.



Figure 10. Precision values for the partial dataset

Figure 11. Recall values for the partial dataset

Figure 12. Fmeasure values for the partial dataset



By the time of writing this paper, our dataset had 4568 instances divided into five
TE classes. Because of the dataset unbalance, we perfomed two sets of experiments:
considering the original and the rebalanced partial dataset. The experiments showed that
J48 is more robust to unbalanced data if compared to JRip, being more stable and more
accurate. For the balanced partial dataset, both algorithms presented similar results.

The construction of the dataset presented in this work is still in progress. The
final dataset should contain approximately 18600 sequences. Thus, improved results are
expected with more instances in the dataset.

As future work, we plan to add sequences from other databases than PSGB. We
are currently extracting sequences from Repbase [Bao et al. 2015], which contain a great
number of repetitive sequences from many different genomes. We are also going perform
experiments with other ML algorithms, to determine which one provides the best results.
The use of ML algorithms for TEs classification according to [Wicker et al. 2007] tax-
onomy can be advantageous, allowing interpretable knowledge extraction in the form of
classification rules. Homology based methods should also be used in our experiments,
such as Blast [Altschul et al. 1997] and RepeatMasker [Smit et al. 2010].
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