Abaco Quick User’s Guide

Luis Carlos de Sousa Menezes

1. Introduction

This isa quick introduction for the Abaco System. This system is intended to be an action semantics based
compiler generation system that is able to recognize action semantics descriptions and produce
implementations that can be used to test the language' s features before to produce the real implementations
(we expect that Abaco can produce these fina implementations some day).

The next sections will describe concepts for the Graphical User Interface, the Algebraic Specification
Language, the Action Semantics Support and how to integrate the System with Java Code.

2. Graphical User Interface

This section explains some basic concepts used by Abaco Graphical User Interface.

2.1 Projects

The Abaco Interfaceis designed work with project files. A project file containsalist of specificationsthat can
be compiled by the Abaco Compiler.

By default, the Abaco isinitialized with no project currently opened. Before we can edit specifications we
have to create anew project (Menu Option “File/New/Pr oject”) or open an existing one (Menu Option
“File/Open™). Oncethe user chooses a project heisableto edit or compileits specifications.

When the user finishes to edit one project he can save the modified project (Menu Options “File/Save’ or
“File/Save as...”), close the current project (Menu Option “File/Close”) or exit the system.

2.2 Main Window

The Abaco main interface, showed by the Figure 1, is formed by two work areas. Specifications pand (the
left side panel) and the editors panel (theright one).

The specifications pand displays the existing specificationsin the currently opened project using a
hierarchical tree (the specification “ ActionNotation/Functional” is showed like anode “Functional” child of
the node “ActionNotation”). Some nodes of the project tree may contain no associated specification (the
project contains a specification named “ActionNotation/Functional” but no specification named
“ActionNotation”). Thisfeature is modeled by theicon (E), placed beside the specification name, that
indicates the existence of one specification associated with this node.

nCO = athd b oniabaco bra p |
File Edit Tools “window Help

® [ActionExtensions |
= actionhotationt

G- ction

O vielders
@ actionhotationz

[Databatation
B preface introduces: action, yielder,

£ fctionNotation1/hction E“EJE]
-~

(*§Library®)

2]

complete, fail, diwverc

and _, _ and then _,
unfolding _, unfc

escape, _ trap

lin: 1 col: 1

Figure 1Abaco User Inteface

The editors panel are used to hold several kinds of editors to allow the user to change the specifications
contents, evaluate termsin a compiled specifications, type actionsto be executed, etc.

2.3 Editing Projects

Once aproject is opened, the user can execute the following editing actionsin the system:

Editing a specification: If the user wantsto change the text associated with a specification, he just have to
make a double-click in a specification panel item. This action will open a specification editor window in
editors pand with the specifications contents. Changes in this window will alter the associated specification.

Create a new specification: A new specification can be inserted selecting the menu option
(“File/New/Specification™) or doing aright-click in specifications panel and select the “New Specification”
options. The System will ask the specification’s name and create anew node in specifications panel and open
a specification editor window.

Remove a specification: The Abaco has two kinds of specification remove operation: arecursive and anon-
recursve one. Thefirgt operation will delete the selected specification and also its child specifications. The
second one just removes the selected specification.

2.4 Compiling Specifications

To compile one specification in Abaco, initially select a specification in the specifications pand. After you
select the specification click theright mouse button to shows the menu for this specification. Select the option
compile to start the compilation process. The Abaco will show a compiler window that indicates the
compilation’s current stage. If some error is found the system will abort the compilation indication the error
found. If the process finishes successfully you should get a screen like the following figure:

< The ABACO System - abaco__library.prj
File Edt Tools Window Help

£ Compiling

[Datatiotation | < — 3
B pretace Parsing Specification: DataNotation/Tuple®|

Parsing Specification: DataNotation/Sets

‘Parsing dpecification: DataNotation/Maps

|Parsing Specification: DataNotation/Lists

‘Parsmg Specification: DataNotation/Strir |

|Parsing Specification: DataNotation/Ident

ICreating sort table and parser ..

Parsing rewriting squations ...

|Generating java code ...

Compiling java code ...

[Creating runtime machine ...

}:ompllauon 0K o

[0 [| L

|~

Select “OK” and Abaco will open a console window that allows the evaluation of valid terms according the
specification’srules.

2.5 Executing Compiled Specifications

If a specification was successfully compiled, the Abaco opens a console window that allows the eval uation of
valid terms like defined in compiled specification. The following figure shows an interface with this kind of
window:

< The ABACO System - abaco_ library. prj
fle Edit Tools Window Help

6 Actionhotation2 |
® [DataNotation 8 3
B pretace £ Console - [ActionNotation1] E@&\

ype: urtyped expressian

s

The console window is formed by: atext area that is used to edit term to be evaluated, two navigation
buttons that navigate among past evaluated terms an the execution button that eval uates the exigting term
and shows its value after the specification’ s equations processing.

2.6 Saving the Compiled Code

If you are satisfied with the compiled code you can save it to use outside the environment. To save the binary
code select the console window and execute the menu option (“Tools/Save Generated Code ...”) oneis
displayed asking for the saved code filename.

2.7 Using the Saved Code

The produced binary code can be used as shown bellow:

a) Asajava standalone application

Just executes in a command line: “java—jar SavedCode.jar” and the system will popup an eval uation window
similar to the Environment Console window. The archive: “runtime.jar”, that contains Abaco code used by
compiled specification should be located in the same place of “SavedCode.jar” or pointed by the
CLASSPATH environment variable.

b) Asan Applet

Itis possibleto use a save code as an applet inserting in aHTML file the following code segment:

<applet code=GuiApplet archive="SavedCode.jar,runtime.jar* WIDTH=600 HEIGHT=400 >
<param name="labell" value="Evaluate" >
<param name="label2" value="Compile" > <param name="action2" value="compile _" >
<param name="contents" value="give 0" >
<param name="contentsURL" value="teste.an" >

</applet>

This code segment when interpreted by a browser will show a console like window insde the HTML page.
The console window can be action’s buttons configured by the pair of arguments (label,, action,), where
label, indicates the button’ s label and action, indicates an specification’s operator that will process theterm
typed by user, if no action is associated with alabd it will produce a button that just evaluate the typed term
according the compiled specification’ srules.

The“contents’ and “contentsURL” arguments can be used to specify the text box’ sinitial value.

OBS.: In the present system version the applet code presented some instantiation problems in some older
versions of the Internet explorer and Netscape or newer browsers with an old version of the Java virtua
machine (they can’t be compatible with the binary code versions produced).

¢) Embedded in other applications

It's possible to use Abaco' s generated code insi de applications code using the communication API. This API
is described in Section .The code that makesthislink is something like:

i nport br.uf pe.abaco. runtine. *;

AbacoExecuti onEngi ne engi ne =
AbacoExecut i onEngi ne. fromlar Fi | e(
(new File("code.jar")).toURL()
).

Termt = engine.parse("fibs s s 0");
System out. println(engine.print(t));

2.8 Exporting Specification

The Abaco can export specification into text , LaTeX and HTML files. To export some specification, the user
just have to select the desired main specification, click the right mouse button and select the option “Export”.

The Abaco should display an options window like the showed bellow:
S

Select a file format b export

& HTHUFormat [~ Export each separated bl fis

I~ Append a custom .css file

" LaTex Farmat

" Plain text Format I Export

oK Cancel

These options help the configuration of the generated code. After this dialog, the system ask afilename and
process the specifications to produce the exported document. All dependents specifications are also showed in
the produced file.

3 Abaco Algebraic Specification Language

3.1 Preface

The Abaco Specification Language can beinitiated by an introduces sentence and an needs sentences like we
show in the following specification:

introduces: stack, ltem.
needs: LinkedList.

The introduces sentence is used to defined witch sorts (data types) are defined by the specification. In the
current Abaco version the user is not forced to declare explicitly all sorts defined by the specification (the
system just produces a warning message if it happens).

The needs sentence specifies others specifications that, probably, contain definitions used by the current
specification and should be imported by the compiler before process the specification. The abaco system by
default searches the imported specifications insde the current project. If the current project does not contains
the imported specification, the Abaco can also search in the project stored in thefile “abaco _library.prj” this
project may be located in the current directory or in the Abaco ingallation directory. The existence of this
project isnot obligatory and its missing will not produce any error to the compiler. If theimported
specification were not found, the compiler aborts the process with the appropriated message. By default all
Abaco specifications also imports a specification named “ pr eface” that defines some basic characteristics
used by the specifications (Pretty Printers operators for example).

3.2Defining Sorts

The following kinds of definitions are used to define the relation between the sorts defined by specifications:

eq stack <= LinkedList .
eq number = integer.

Thefirg definition specifies that Stack isa subsort of the sort LinkedList. This declaration makes with every
term belonging to stack also belongsto LinkedList.

The second definition specifies that two sorts (number and integer) are equals and refers to the same data
type.

3.3 Defining Operators

Operator functionality is used to define new operators signature. An operator isan entity that takes some
arguments of defined types and produces a new valor of a determined type. The operator’ s definition syntax is
shown bellow:

op push _ _ ::item, stack -> stack.
op pop _ :: stack -> stack .
op empty-stack :: -> stack.

These sentences define four new operatorsin the specification. The first operator “push _ " receives aitem
term and a stack and produces ancther stack term. In the operators name, the symbol “_" means the arguments
placement. The second sentenceis similar to thefirst one: it defines the operator “pop " that receiver a stack

element and produces ancther stack as answer. The last definition defines a constant operator (that receives no
arguments) “empty-stack” of type“stack”.

3.3Defining Rewriting Equations

Rewriting equations are used to specify operations semantics by defining the equality of different terms. The
basic syntax of Abaco rewriting equationsis exemplified below:

re pop push “x~y ="y.
resum (0, ™x)="x

3.5BNF-Like Syntax Definitions

The Abaco has a aternative way to define operators that presents a syntax smilar to BNF-Grammarsand is
good to define programming languages:

syntax
Command =
[[“if" Expression “then” Command “else” Command]] |
[[“while” Expression “do” Command] |
[[Command “;” Command]] .
Expression = [[Expression “+” Expression]] | [[Number]] .
endsyntax

This specification is similar to the following one:

op if _ then _ else _ :: Expression, Command, Command -> Command .
op while _do _ :: Expression, Command -> Command.

op _; _:: Command, Command -> Command.

op _ + _ :: Expression, Expression -> Expression.

eq Number <= Expression .

3.6Lexical Rules

Lexical rules allows the definition of more complex sorts using regular expressions.

lexical [0-9]+ :: number .
lexical \" [a-z0-9A-Z]*\” :: dtring.

The firgt sentence defines that a sequence of elements between “0” and “9” makes a congtant of type
“number” . The second one defines that a sequence of |etters, number and white spaces delimited by double-
guotes forms elements of type “string”.

3.7 Pretty Printing

Pretty Printer equations are used to specify how the Abaco should typeset specification’s terms when the
default way is not adequate (produces ugly results). The following code segment exemplifies thisfeature:

pp if _then _else _::
“if” %0 “then” prefix (* “, %1) “else” prefix(“ “, %2) .
pp _;_:%0nl%1.

A pretty-printer rule is defined an operator and the rule that typesets terms produced by this operator. The
typesetting ruleis formed by a sequence of the following command:

o “String” — printsthe specified String;

* %n— printsthe nth argument;

* nl —jumpstothenext line

o prefix (“string” , rule): print rulein aseparated line

3.8Interface with Native Java Code

To provide a more efficient way to implement some low level features, we can implement some
specification’ s entities using native java code, using the following directive.

lexical [0-9]+ :: number => "NaturalTerm".
native sum (_, _) :: "NaturalSum" .
op _ and _ :: action, action -> action. (implemented by “OptimizedTerm”)

Thefirg directive defines sort eements using regular expressions and specifies that terms produced with this
rule will be implemented by the class “Natural Term” that may represent numbers using more efficient ways
that the default one (strings). “Natural Term” should be a class that extends the class “Term” (see Section 4)
and must have a static object creator function: “static Term createTerm(String t)”. That will be used to create
this class objects.

The second directive specifies that the class “NaturalSum” implementsthe operator “sum(_,)". Thisclass
should extend the “ NativeCode” derived class appropriated to operator’s arity (see Section 4).

The last directive (not supported yet) extends the operator’ s functionality by defining anew class

“OptimizedTerm” that will implement terms produced by this operator in amore efficient way than the
default one.

4 The action semantics implementation

To facilitate the testing of action semantics descriptions, the Abaco system contains some facilitiesto help a
designer to test specifications.

Action Notation and Data Notation Specifications. The “abaco_library.prj” project file contains

specifications that define sorts and operators used by action semantics to describe programming languages
semantics.

Action interpreter and debugger: the action interpreter and debugger allows designersto execute action
produced by programming languages semantics and see their execution resultsin order to validate them.
These tools can be called from console windows produced by the compilation of programming language
specifications using the operators “perform _” and “debug _". These operators receive an action and,

respectively, show the action execution result or open an action debugger window similar the showed in the
next figure:

&The ABALCO System - abaco_library.prj =10 il
File Edt Tools ‘Window Help
- [3 ActiorExtensions EiactionDebugger
= X
B[Actiorhotationl é_ EEE
[=BRY - tionhiotation? £ Income: 1=
~- [Action |give 0
3 Kernel then Transients:
[Vielders il " o the gven catura o
- [Datahotation . E Binddines:
[preface -
Storage: =
g | | r

Outeome: conplating =

Transients:

lin: 3col: 31

The action debugger window contains panels that show, respectively, the action that is being executed, the
informations passed to the action and their produced ones.

A generic (independently of programming language) action interpreter and debugger can be obtained by
selecting the menu option “File\New\Action Editor” open an action editor window where actions can be
typed and evaluated (menu option “Tools\I nter pret Action”) or adebugger window can be launched (menu
option “Tools\Debug Action™)

5 Interface with Java Code

The Abaco systems defines some classes that can be used to call Abaco implementations from Java programs
or implement some basic sorts using more efficient “low” level java constructions. These classes are located

in the package “br.ufpe.abaco.runtime” which is stored in the runtime binary file of Abaco distribution
“runtimejar”.

Thefirg important classisthe class Term that is parent of all classes that implementsterms defined in
compiled specifications. The term specification contains the functions showed bellow:

public abstract class Term {
Oper ator operator();

int arity();
Term get Arg(int pos);

voi d set Type(int t);
int getType();
}

The method operator () returnsthe specification’s operator used to produce thisterm or null if it was not
applicable.

The method arity return the number of arguments of thisterm. The method getArgis used to retrieve the nth
argument for thisterm or null if not applicable.

The methods st Type and get Type are used to set the term type (sort).

The next class used by the Abaco’ sinterface is the class AbacoExecutionEngine that models an compiled
java specifications. The most important method’ s signatures of this classis showed bellow:

cl ass AbacoExecutionEngi ne {

Ter m par se(| nput Stream sour ce)

t hrows Conpi |l er Exception, | OExcepti on;
Term parse(String contents)

throws Conpil er Excepti on;
String print(Termt);

Operator getOperator(String nane);
int sortlndex(String sortNane);
String sortName(int sortlndex);

Term run(Operator op);

Term run(Qperator op, Term a0);

Term run(Operator op, TermaO, Termal);

Term run(Operator op, TermaO, Termal, Term a2);
Term run(Operator op, Termargs[]);

bool ean i sSubSort(Termt, int sortlndex);

stati c AbacoExecutionEngi ne fromlarFile(URL fil eNanme)

The method par seisintended to produce aterm formed by the compilation of a character sequence, given by
a String or ageneric InputStream, processed by specification’ srewriting equations.

The method print produces a human-readabl e string representation for a given Term. This string can be
obtained using the default process or pretty-printer rules when applicable.

The methods getOperator, sortlndex and sortName are intended to retrieve operators and sortsruntime
identifications from their specification names.

The methods run isintended to produced aterm formed by the result of some operator applied with
appropriated argument terms.

The methods isSubSort tests the type of some term

Finaly, the static method fromJar File is intended to produce an execution engine from a Jar file that contains
an specification code generated by Abaco Interface.

The last class we discuss isthe class NativeCode and their subclasses. These classes are designed to holds
java code that executes natively specification’s defined operators.

cl ass NativeCode {
publ i ¢ AbacoExecuti onEngi ne runner;
public void setEngi ne(AbacoExecuti onEngi ne runner);

}

public abstract class NativeCodeO extends NativeCode {
abstract Termrun();

public abstract class NativeCodel extends NativeCode {
public abstract Term run(Term argo0);

}
public abstract class NativeCode2 extends NativeCode {
public abstract Termrun(Term arg0, Term argl);

The classes NativeCode0, NativeCodel, NativeCode2, NativeCode3, etc. are intended to modd,
respectively operators with arity 0,1,2,3,etc. It contains afield that refers the current execution engineand a
method run that should be redefined by derived classes and will be called when the compiled code needs the

results of some operator applied some arguments. The method run should returns the resulted term or null
valueif it was not able to provide any term.

