

Using Function Points in Agile Projects

Célio Santana1, Fabiana Leoneo1, Alexandre Vasconcelos1, Cristine Gusmão2

1
Universidade Federal de Pernambuco, Centro de Informática, Prof Luiz Freire Avenue.

S/N,50740-540 Recife, Pernambuco, Brazil
2
 Universidade Federal de Pernambuco, Centro de Telesaúda, Hospital das Clínicas | 2º
andar | Av. Prof. Moraes Rego s/n , Recife , Pernambuco, Brazil CEP 50.670-420

{casj, fls2, amlv}@cin.ufpe.br, cristine.gusmao@nutes.ufpe.br

Abstract. Agile development has become increasingly common in the in an
organizational software development environment, this paper, examines
whether function points would be compatible with story points on agile
projects. Specifically, it addresses the question of whether function points
would be a relevant measure of velocity. Though any unit of measure can be
used, this paper contrasts theoretical concepts about Story Points (SP) and
function points (FP) as units for measuring size. Also, was realized a statistical
correlation between FP and SP using 2191 stories and 18 iterations in a
Brazilian public agency. The conclusion drawn from this study is that function
points, in that particular case, could be related with the initial value of the Story
Points found after the planning poker.

Keywords: Function Point, Function Point Analysis, Story Points.

1 Introduction

The software industry is almost 60 years old, which makes it a fairly maturity
industry. One would think that after six decades the software industry would have
well established methods for measuring productivity and quality, and also collected a
large volume of accurate benchmark data of thousand of measured projects. However,
this is not quite the case [1].

Initially to measure productivity and quality used one unit called lines of code
(LOC). At the time, circa 1950, that metric was fairly effective once that coding took
about 50% of the effort to build an application [1].

Between 1957 and 1967 the situation changed dramatically. Low level assembly
languages started to be replaced by more powerful procedural languages such as
COBOL and FORTRAM. Applications sizes grew from 1.000 lines of code past
100.000 lines of code raising problems when using LOC metrics [1].

These economics problems are what caused IBM to assign Allan Albretch to
develop a useful metric that was independent of code volumes, and which could both
economic productivity and quality without distortion. In 1979 Allan Albrecht was the
first to publicly release a method for functionally sizing software called function point
analysis (FPA) [2].

The use of FPA, as a measure of the functional size of software, has grown since
the mid 1970s from a few interested organizations to an impressive list of
organizations worldwide. The successful adoption of FPA was ratified with the
creation of the ISO/IEC 14143:2007 [3].

In 2001 was presented the Agile Manifesto that proposed new values and
principles based in responding to changes quickly and light documentation. This
vision seems antagonist than that proposed by traditional engineering [4].

Schuh [5] defines agile development as a counter movement to 30 years of
increasingly heavy-handed processes meant to refashion computer programming into
software engineering, rendering it as manageable and predictable as any other
engineering discipline.

Mnkandla [4] the agile movement could mark the emergence of a new engineering
discipline that has shifted the values of the software development process from the
mechanistic (i.e., driven by process and rules of science) to the organic (i.e., driven by
softer issues of people and their interactions). Boehm [5] view believes agile
methodologies as a challenge to the mainstream software development community
that presents a counter-culture movement, which addresses change from a radically
different perspective.

To an agile team, a plan is one view of the future but many alternatives are
possible. As a team gains knowledge and experience they will count these into the
plan [6]. A measurement system which support this kind of experience is considered
“special” and some metrics used in this context is Story Points (SP) and Ideal Days
[1].

Jones [1] states that one of the agile weaknesses is the widespread failure to
measure projects using standards metrics such as function points. Based in this
statement an ad-hoc search were conducted in the following sources: ACM Digital
Library 1, CiteSeerX2, IEEE Xplorer3, Scopus4 and SpringerLink5.

Just one source was published and presents relevant work presenting scientific
evidence about the function point analysis and story points running in agile software
development environments. The work was published by Fuqua [7] that conducted a
study by using function points in agile projects and tried to correlate with story points
in that projects.

 Other relevant work about this subject, not found in the ad-hoc search, presented
by Jones [1] in a book, where he states that according to its empirical basis6, it is
noted that two function points is equal to one story point on average. But it is worth
noting that this measure is an average of its empirical database.

In this light, this paper presents conceptual differences between function points and
story points. The goal of this paper is to present the theoretical relationship between
story points and function points as well as providing empirical data from a real life
case study where one project was measured using these two approaches.

After this introductory section, section 2 explores function points analysis. The
section 3 presents the concept of story points. Section 4 shows the size measurement
concept which are related with FPA and SP. The section 5 shows theoretical
differences between both techniques. Section 6 presents the case study in a Brazilian
public agency. And section 7 shows the summary, related works and threats of
validity of the work.

2 Function Point Analysis

Once the growth in the use of function points, there has been wider application and
use of the measure. Since its formation in 1986 the International Function Point Users
Group (IFPUG) has continuously enhanced the original Albrecht method for
functionally sizing software.

This International Standard is the latest release in the continually improvement
IFPUG method. This aims to promote the consistent interpretation of functional size
measurement in conformance with ISO/IEC 14143-1:2007. The IFPUG functional
size measurement method is known as function point analysis and its units of
functional size are called Function Points. The IFPUG version of Function Points is
published in The Counting Practices Manual in its actual version 4.3 [8].

1 http://portal.acm.org/
2 http://citeseer.ist.psu.edu/
3 http://ieeexplore.ieee.org/
4 http://www.scopus.com/
5 http://www.springerlink.com/
6 www.isbsg.org

IFPUG’s method for function point analysis is an ISO standard and must be
conformant to ISO/IEC 14143-1:2007. The method can measure “functional size”
nether “non-functional size”. This does not mean that the nonfunctional size cannot,
or should not, be measured, instead it must be clearly stated as a separate measure
[8]. The process diagram of IFPUG FPA counting is shown in Figure 1.

Figure 1. FPA Procedure Diagram [8].

The first stage in the function point counting procedure is to gather the available
documentation. To support a functional size measurement, it shall describe the
functionality delivered by the software or the functionality that is impacted by the
software project that is being measured.

Suitable documentation may include requirements, data/object models, class
diagrams, data flow diagrams, use cases, procedural descriptions, report layouts,
screen layouts, user manuals and other software development artifacts. If sufficient
documentation is not available, it is important to access experts who are able to
provide additional information to address any gaps in the documentation. The ideal
requirements are called perfect requirements by the FPA practitioners.

The next stage is responsible for counting scope which defines the set of
Functional User Requirements to be included in the function point count. Also in this
stage it is necessary determine the boundary which is a conceptual interface between
the software under construction and its users.

Identifying the functional requirements are related with the concept of elementary
process which is the smallest unit of activity that is meaningful to the user. To identify
each elementary process, the following activities shall be performed:

• Is meaningful to the user;
• Constitutes a complete transaction;
• Is self-contained;
• Leaves the business of the application being counted in a consistent state,

Following these rules it is necessary identify all unique elementary processes.
After that it is necessary to measure data functions which represent functionality

provided to the user to meet internal and external data storage requirements. A data
function is either an internal logical file or an external interface file.

An internal logical file (ILF) is a user recognizable group of logically related data
or control information maintained within the boundary of the application being
measured.

An external interface file (EIF) is a user recognizable group of logically related
data or control information, which is referenced by the application being measured,
but which is maintained within the boundary of another application.

In parallel, could be performed the measuring of transactional functions. A
transactional function is an elementary process that provides functionality to the user
for processing data. A transactional function is an external input, external output, or
external inquiry.

An external input (EI) is an elementary process that processes data or control
information sent from outside the boundary. The primary intent of an EI is to maintain
one or more ILFs and/or to alter the behavior of the system.

An external output (EO) is an elementary process that sends data or control
information outside the application’s boundary and includes additional processing
beyond that of an external inquiry. The primary intent of an external output is to
present information to a user through processing logic other than or in addition to the
retrieval of data or control information. The processing logic must contain at least one

mathematical formula or calculation, create derived data, maintain one or more ILFs,
and/or alter the behavior of the system.

An external inquiry (EQ) is an elementary process that sends data or control
information outside the boundary. The primary intent of an external inquiry is to
present information to a user through the retrieval of data or control information. The
processing logic contains no mathematical formula or calculation, and creates no
derived data. No ILF is maintained during the processing, nor is the behavior of the
system altered.

On systems which present perfect requirements, different measurements performed
by different people must have the same final result. Imperfect requirements lead the
measurement performer take assumptions about that requirement and this kind of
assumption could lead different results in counting the same sample of requirements.
Because of this property is considered that FPA is an objective method for measuring
software.

3 Story Points

Story points are a unit of measure for expressing the overall size of a user story,
feature, or other piece of work. When we estimate with story points we assign a point
value to each item. The raw value we assign is unimportant. What matters are the
relative values [6].

The number of story points associated with a story represents the overall size of the
story. There is no set formula for defining the size of a story. Rather, a story point
estimate is an amalgamation of the amount of effort involved in developing the
feature, the complexity of developing it, the risk inherent in it, and so on [6].

There are two common ways to get started. The first approach is to select a story
that you expect to be one of the smallest stories you’ll work with and say that story is
estimated at 1 story point. The second approach is instead to select a story that seems
somewhat medium-sized and give it a number somewhere in the middle of the range
you expect to use. A story that is assigned a two should be twice as much as a story
that is assigned a one [6].

Story estimates need to be owned collectively by the team. A story comprises
multiple tasks and that a task estimate is owned by the individual who will perform
the task. Story estimates, however, are owned by the team for two reasons: First, since
the team doesn't yet know who will work on the story, ownership of the story cannot
be more precisely assigned than to the team collectively. Second, estimates derived by
the team, rather than a single individual, are probably more useful [9].

At the end of an iteration the team counts the number of story points they
completed. They then use that as a forecast of how many story points they'll complete
in upcoming iterations of the same length. The term velocity to refer to the number of
story points a team completes, or expects to complete, in an iteration [9].

4 Size Measurement

A software measurement is a quantifiable dimension, attribute, or amount of any
aspect of a software program, product, or process. It is the raw data which are
associated with various elements of the software process and product. A typical set of
metrics might include [10]:

• Quality.
• Size. (target of the study)
• Complexity.
• Effort
• Productivity,
• Cost.
• Schedule.
• Rework.

Two ways for measuring software size were catalogued in 1992 [11]. The first
consider the physical source lines and logical source statements. Counts of physical
lines described size in terms of the physical length of the code as it appears when
printed for people to read.

The other way counts of logical statements, on the other hand, attempt to
characterize size in terms of the number of software instructions, irrespective of their
relationship to the physical formats in which they appear.

Both, function points as story points measure software size and are based in counts
logical statements. Function points address functional size [8] while story points
represent the business value of one user story [6].

In Fact, Agile teams separate estimates of size from estimates of duration [9] while
function points are complemented by other methods when it comes to effort and cost
estimate such as COCOMO II [12].

5 Function Points x Story Points

Although FP and SP estimate the size of the software to be delivered, some
particularities make measures applied by both techniques to the same product have
different sizes, variations and deviant behavior at the end of the measurement. Some
of the strongest of these particularities are detailed in the following subsections.

5.1 Team expertise X Standardized Methods.

A nice feature of story points is that each team defines them as they see fit. One team
may decide to define a story point as an ideal day of work and another team may
define a story point as a measure of the complexity of the story [9].

In the last statement, Cohn suggest that the story points can vary from several
teams based in their experience to assess the effort, complexity and risk associated
with certain stories.

Any assumptions made in function points are considered a counting interpretation.
A specification bringing perfect requirements, where no assumptions are made, must
present the same final result. Any assumptions regarding primary intent must be
documented for helps in next counting. Thus function point leaves no space for using
expertise.

For Example, considering function point a small function for including one email
address in a virtual schedule may be the same “size” of a function with perform a
complex integral calculus with receive one equation as parameter and return the string
with the result. The same example in story points should present very different results
and these results could be different among different teams.

In the other hand, considering function points, store one formulary containing
fifteen fields may be different for including one containing sixteen, while in story
points this kind of difference is rare.

So this aspect are seeing in a different way in both techniques.

5.2 Functional Size x Product Size.

According ISO 9126 [13] non-functional requirements are that specifies criteria which
can be used to judge the operation of a system, rather than specific behaviors. This
should be contrasted with functional requirements that define specific behavior or
functions.

Considering the IFPUG definition of functional size is the size of the software
derived by quantifying the Functional User Requirements we should assume that non-
functional requirements are not covered in function points [8].

The IFPUG Framework for Functional Sizing [14] defines some kind of “sizes”
present in software development such as functional size, technical size and quality
size which are related to:

• Functional User Requirements: a sub-set of the user requirements. The
Functional User Requirements represent the user practices and procedures

that the software must perform to fulfil the users’ needs. They exclude
Quality Requirements and any Technical Requirements

• Quality Requirements: any requirements relating to software quality as
defined in ISO 9126:1991

• Technical Requirements: requirements relating to the technology and
environment, for the development, maintenance, support and execution of
the software.

The combination of the functional size, technical size and quality size represents de
Product Size. But, this concept is not detailed by the IFPUG.

Considering the statement that story point estimate is an amalgamation of the
amount of effort involved in developing the feature, the complexity of developing it,
the risk inherent in it, and so on [6]. So it is look like the story point is concerned
define a product size since the agile team considers any kind of risk and complexity to
determine de size of the story, and this assumption are related to Quality and
Technical requirements.

Nowadays, IFPUG is building a metric called Software Non-Functional
Assessment Process (SNAP). The SNAP Project Team expects to develop a project
assessment method that will use a series of questions grouped by category to measure
the impact of non-functional requirements on the development and delivery (size) of
the software product. The resulting size will be the size of the non-functional
requirements, just as the functional size is the size of the functional requirements [15].

In a simple way, we still cannot consider the theoretical concept that SNAP size +
FP Size = SP Size because the agile method considers the environment of the project
and not just the product.

For example in function points, a bookstore which have no requirements for
security, available, performance and its access are made in a local machine, will have
the same FP size of this same bookstore considering the same restrictions of the
amazon.com for example. In story points the amazon.com will be much larger than its
offline, unsecure, slow and unstable version.

5.3 Small Pieces x Whole Product.

In the Agile Manifesto7 were defined 12 principles which one of them states: Deliver
working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale”. This statement reinforces the adoption of
interactive life cycle largely adopted in agile projects.

This continuous delivery in small “timeboxes” reduces the total of points delivered
in one iteration. Sometimes one big story, called epic, must be disaggregated for fit in
one cycle. In fact split stories does not to be a simple task in agile projects.

There are a number of times when it may be necessary to split a user story into
multiple, smaller parts [6]. First, a user story should be split when it is too large to fit
within a single iteration. Sometimes a user story won’t fit in an iteration because it is
bigger than a full iteration.

Alternatively, a story may be small enough to fit within an iteration but it won’t fit
within the iteration being planned because there isn’t enough room left. The team may
feel they will have time to develop a portion of a story in the iteration, but not the
entire story.

Second, it can be useful to split a large user story (an epic) if a more accurate
estimate is necessary.

But the question about splitting stories raises from another Cohn’s statement [9]:
When a story, possibly an epic, is disaggregated into its constituent stories, the sum of
the estimates for the individual stories does not need to equal the estimate of the
initial story or epic. Similarly, a story may be disaggregated into constituent tasks.
The sum of the estimates for the tasks does not need to equal the estimate of the initial
story.

7 www.agilemanifesto.org

Thus, splitting stories seems to be a team decision and there are no rules about how
to split and how distribute the points, making this disaggregation a particular process
which works only for that team in that environment.

Looking for function points splitting does not to be a problem. No data function or
transactional function should be broken because they must follow the elementary
process definition: “smallest unit of activity that is meaningful to the user”.

Even if a function must be broken for a technical reason, it only will be considered
complete when all of the functionality is completely developed, which means or is
delivered zero function points or all function points to the user.

But an anomalous behavior can be seen in the use of function points in interactive
and incremental projects if the boundary of the counting just considers what is
delivered in each iteration. In this case, the sum of the parts are bigger than the whole.

For example, a particular product is being built in an interactive and incremental
whose two iterations have already been completed. In first iteration four features were
delivered totalizing fifty function points. In the second iteration another four features
were delivered but one feature delivered (and already counted with 10 function
points) in first iteration was updated for technical reasons totalizing sixty function
points delivered in second iteration.

But A + B totalize a hundred points, but that function which was built in first
iteration and updated in the second was counted twice and this just happens because
the boundary of the counting is not the whole product and which are delivered in each
iteration. In function points the sum of the parts could be bigger than the whole (never
smaller).

This problem does not occur in story points because the cost, in points, for
updating one feature is embedded in the original story.

5.4 Maintenance and Changes

According ISO/IEC 14764 identified four categories of maintenance [16]:

• Corrective maintenance: Reactive modification of a software product
performed after delivery to correct discovered problems.

• Adaptive maintenance: Modification of a software product performed after
delivery to keep a software product usable in a changed or changing
environment.

• Perfective maintenance: Modification of a software product after delivery to
improve performance or maintainability.

• Preventive maintenance: Modification of a software product after delivery to
detect and correct latent faults in the software product before they become
effective faults.

Agile software development considers the corrective maintenance as a bug and this
kind of problem must not be managed but solved. Which means that must not be
sized.

But adaptive maintenance (evolutive maintenance), perfective maintenance and
preventive maintenance (refactoring), are considered and evaluated in agile projects as
new stories. When maintenance needs to be performed, a new history is written for
that specific demand.

 The functional size measurement quantifies the size of business requirements. In
an enhancement environment, it measures the effects of changes to those business
requirements. Therefore, functional size measurement is applicable to a subset of
adaptive maintenance. This includes the software functionality added, changed or
deleted as well as the software functionality provided to convert data and meet other
implementation requirements [8].

Function points clearly do not fit the types of corrective, perfective and preventive
maintenance, fitting only a few cases of adaptive maintenance. A project that has
undergone many changes may have enhanced the difference in scores between the
two approaches

5.5 One Requirement X Many Requirements

Measuring a single feature using the two techniques and compare their variation may
be the most logical path to be taken when attempting to evaluate the relationship
between the two methods. And repeat this process for the all others features of the
project in an attempt to increase the historical basis would be the next step in this
comparison.

In terms of story points for this idea may not be the best. Cohn [9] states that the
central limit theorem tells us that the sum of a number of independent samples from
any distribution is approximately normally distributed.

For our purposes, this means that a team's story point estimates can be skewed way
toward underestimation, way toward overestimation, or distributed in any other way.
But when we grab an iteration's worth of stories from any of those distributions, the
stories we grab will be normally distributed. This means that we can use the measured
velocity of one iteration to predict the velocity of future iterations.

Naturally, the velocity of only one iteration is not a perfect predictor. Similarly,
velocity may change as a team learns new technology, a new domain, or becomes
accustomed to new team members or new ways of working. This means that to
predict the behavior of the score, or the velocity, of a team is best to consider all
stories delivered than each one individually.

Was also seen in the previous section to consider the score of a feature function
points can be misleading. The measure of the sum of the parts can be greater than the
whole, thus sizing all features is more accurate than sizing one by one as well.

The last reason to evaluate all the features is that there may not be a perfect match
between a story and a requirement. So could be difficult assign exactly which stories
are equivalent to what requirements, evaluating all iteration brings a greater reliance
to the comparison.

6 Case Study

The Agência Estadual de Tecnologia da Informação do Estado de Pernambuco8
,

hereafter called ATI, is following the Brazilian Federal Government instruction
known as the: Instrução Normativa 04 de Maio de 2008, hereafter called IN04, which
came into force on 2 January 2009 the Department of Logistics and Technology of the
Planning Ministry [17].

This instruction in its article 14 states that the outsourcing strategy must define the
understanding of the task to establish procedures and criteria for measurement of
services provided, including metrics, indicators and values. With this the technique
Function Point Analysis has been adopted as currency in the local authority
outsourcing contracts of software products.

ATI was forced to be adherent to this instruction in early 2010. Before that, since
January 2009, ATI has been using Scrum as tool for contract management [17]. After
the adoption of this instruction ATI continued to manage its suppliers through the
scrum, but the payment of invoices should be measured based on the product
delivered sized using function points.

ATI and its supplier held a planning poker meeting where it is sized in story points
all demands of that sprint. But now it was necessary to conduct an estimative counting
in function points required by IN04 for project planning. At the end of the sprint is
still necessary to perform a counting in function points to determine the size of the
product delivered and thus pay the suppliers.

The estimative counting is needed only for the allocation of project resources,
which does not demand an accurate count but only an approximation of reality. But
while ATI can count about 5000 story points per day, the ability to count function
points is reduced to 600 function points in a day. And this estimative counting is
“bureaucracy” being unnecessary in most cases.

8 www.ati.pe.gov.br

The record of the demands is held by ATI supported by a tool called Mantis as
shown in Figure 2. The functional size and story points size of each demand is stored
in this tool and can be recovered directly from the MYSql database which store the
Mantis database.

 Figure 2. Recorded data about one demand showing SP and
FP in Mantis adopted by ATI.

ATI intended to reduce its work performing the estimative counting at the
beginning of the Sprint. Based on the idea that the functional size (FP) is a part of the
product size (SP), was cogitated the possibility of creating a method of conversion
between the two metrics.

The basic idea was realize a statistical correlation between the two counting results
(intention of this work), and if the correlations prove strong enough, will be
performed a linear regression between the two (not finished in the present moment).

To the kick off project was a selected sample of 18 sprints from February 2009
until August 2010 because this is the all period of historical basis of story points and
function points contained in the database. This implies a total of 18 results (Feb 2009
- Aug 2010) for each data sample containing 2191 demands recorded.

First, will be presented the variables and their total values within a Sprint in Table
1. PH and PF represents the amount of story points and function points collected in
each month respectively. The statement Fev/09 until Ago/10 represents the sprints
performed (February 2009 until August 2010). The statements Média and Desvio
Padrão represent the average and standard deviation respectively.

Table 1. Data from two variables in the sample

The first step to perform the statistical correlation should be to test the normality of

the variables, SP and FP, involved in the correlation. The two variables had their
normality evaluated using the Shapiro-Wilk test to determine if the correlation
method, next step, must be parametric or non-parametric [19]. The statistical tool used
in this work was the R software. The results of the normality test are found in Frame
1.

Frame 1. Shapiro-Wilk normality test result.

The normality test to the PH variable (Story Points) was considered normal while

the variable PF (Function Points) were considered not normal, hence the method of
statistical correlation must be a non-parametric. The chosen one was the Spearman
rank correlation [19].

The Result of the Spearman’s rank correlation is shown on Frame 2.

Frame 2. Spearman’s rank correlation result.

The result of the Spearman test rho (ρ) indicates the degree of linear correlation

between the two variables. The value of ρ can range from -1 (negative correlation) to
1 (positive correlation) where |ρ| close to zero indicates a weak correlation and |ρ|
close to 1 indicates strong correlation.

 The value of ρ ≈ 0.7137 means a strong positive correlation. The p-value indicates
the confidence interval of the test, which is much lower value 0.05, thus indicates a
large confidence interval. For visual verification of the strength of linear correlation,
we have constructed a scatter plot which is shown in Figure 3.

Figure 3. Scattered Plot of Variables PH (Story Poi nts) and PF
(Function Point).

The results shown in the scatter plot presenting points growing on a linear pattern,

which support the Spearman’s test on the correlation.

7 Conclusions

Despite the strong differences of size definition presented in function points and story
points, were presented empirical evidence for a real life project realized by a Brazilian
public agency, showing the correlation between functional size and number of story
points which are delivered at the end of each sprint.

The strength of this correlation suggests a further distancing between the two
variables studied which may come from the differences presented in section 4 of this
work.

The result cannot be generalized, but it supports an idea that Product Size =
Functional Size + Non-Functional Size + Environments Variables Size, ie Story
Points = Function Points + Non-Functional Size + Environments Variables Size. This
“formula” is not intended to be shown mathematically correct, but that represent the
functional size is part of the product size and find a correlation between the whole
(product size) and the piece (functional size) represents a valid proportion.

Obviously is necessary to respect the units of measurement and the reality of each
organization, so the result itself is not valuable, but the method of assessment, if
replicated in more environments, may prove useful for a particular company.

7.1 Discussion of results

Even being used to the same goal, function points and story points presents strong
theoretical differences. Whereas the results of this study it is still surprising. Seeing a
correlation between the functional size that is obtained accurately with impersonal
method of sizing and story points obtained purely from the experience of the team.

Especially if we evaluate this short history about this subject, starting with the
Fuqua’s work [7] where he performed a correlation between function points and a set
of indicators used by your company, then performed the same correlation using story
points and found no significant correlation between these two variables.

Although this study [7] has been used another function points, now known as mark
II [20] which is different form official function points provided by the IFPUG. The
basis of impartiality in Mark II counting method remains. The work of Jones [1] only
presents the statement of the relationship between FP \ SP = 2 without more
information on how the result was obtained.

It is obvious which the intention of this work was not to generalize their results, but
was expected to find the same results than Fuqua [7] and close it as more empirical
evidence strengthening the argument toward to “not fit”.

Facing the expectations and the results, we believe that the statement raised in the
Framework for Functional Sizing of IFPUG [14] where it states that product size is a
combination of (quality size, technical size and functional size) or Product Size =
Non-Functional Size + Environments Variables Size + Functional Size.

Of course that different companies presents different “sizes” for their story points
and different proportion of the impact of functional size into the product size, but the
goal of this paper is to motivate of how these companies can find their ratio between
FP and SP.

7.2 Implications for Research and Practice

The implications of this study for practice in first place concerns to own ATI, and the
possibility for perform a linear correlation for find a conversion method between story
points and function points.

Another practical implication is the description of a method that can be used by
companies that are facing the same problem of the ATI and need a solution to how to
assess the relationship between FP and SP within their organization. Remembering
that the values found in this work will be only valid for that ATI project, but
organizations can use this method in its own database and so finding their own
correlation.

Those that are successful, including own ATI, can perform a linear regression and
find a first degree equation (y = Ax + B) where y refers to the number of function
points, x is the amount of story points and A,B are constants. From this equation,
companies can predict with a certain margin of error, which is the value of these
variables from one another.

The first implication of this work in research is to present other empirical results
joining a small base of scientific information about the subject and the first empirical
study, not considering Jones’ work [1], adopting IFPUG method.

Other implication is formally presents the main differences between the two
approaches in section four. Surely, there is plenty of theoretical information compiled
about the subject. But still is the possibility for gathering current data from systematic
reviews or systematic mapping as well as creating data from new experiments and
case studies that will enrich the knowledge of the academy.

In order to present the idea that story points are related to product size and function
points, or functional size, is only part of the product size. What seems clear is that the
proportion between functional size and product size is different in every environment
and can even be irregular within the same project.

 7.3 Threats to Validity

The first group of threats to validity stems from a lack of theoretical concepts
consolidated about a possible correlation between the approaches. This fact may have
contributed to weaken several factors in this study such as the wrong selection of the
method or the pooling of demands. It is an "exploratory" study which portrays a more
specific need than a company that intends to conduct scientific research. Indeed, this
threat not touches the section 5 of this work that could bring contributions if we were
free of the limitations that are in the following section.

Another threat comes from this factor is the lack of information about a demand
that could help in their treatment. For example there is no way of knowing whether a
demand is perfective or corrective maintenance (which could be dropped from the
study because function points do not support them) or whether it is adaptive
maintenance. Another problem with this group is that the number of samples (18) is
still small to reach any definitive conclusion on this study.

Finally the latest threats come from the validity of the statistical method used in
this work. The lack of knowledge prevents to determine which type of method is most
appropriate for the conduct of case studies and experiment. For example, the
statistical method used in this work and the work Fuqua’s [7] were different. In this
method the assumption of measure the set of demands instead one individual (section
5.5) can bring bias to this study.

6.4 Limitation

The main limitation is the small amount of professionals who knows well the two
techniques involved in this study. The impact of this work is the small number of
sprints that could be counted because it was none the counting of function points from
September until December, which would be four more sprints for data collection.

The second limitation was not performing the linear regression to support with
more strength the results of the work, although with a rank correlation of 0.71 and a
high confidence interval is very difficult that there is not a valid linear regression for
this correlation.

6.5 Future Work

In industry, one future work is suggested that is the discovery the first degree equation
FP (x*SP + y) where FP is equal to the total function points delivered after Sprint, SP
represents the estimate given by points in history, x and y are constants. This time it
included a regression analysis to identify the function conversion between the
variables.

To academy we present as future work the attainment of studies using formal
secondary collect data method such as systematic review or systematic mapping on
the relationship between function points and story points.

Another future work is providing more empirical information about the
relationship between FP and SP, to confirm the relationship Product Size = Functional
Size + Non-Functional Size + Environments Variables Size.

Acknowledgments

Célio Santana is a doctoral student at the Center of Informatics of the Federal
University of Pernambuco where he receives the funding from the Brazilian National
Research Council (CNPq), process #141156/2010-4. The authors thank CNPq for
partially funding the participation in the XP’2011 Conference.

References

1. Jones, C.: Applied Software Measurement, MCGraw Hill. (2008)
2. Albrecht, A. J.: Measuring Application Development Productivity. In Proc. IBM

Applications Development Symposium. GUIDE Int and Share Inc., IBM Corp., Monterey,
pp. 83. (1979)

3. ISO/IEC 14143-1:2007, Information technology — Software measurement — Functional
size measurement (2007)

4. Mnkandla, E., Dwolatzky, B.: Balancing the human and the engineering factors in software
development. Proceeding of the IEEE AFRICON 2004 Conference, pp. 1207--1210, (2004).

5. Boehm, B., Turner, R.: Balancing agility and discipline: A guide for the perplexed 1st ed.
pp. pp. 165-194, Addison Wesley (2004).

6. Cohn, M.: Agile Estimating and Planning. Addison-Wesley. (2005)
7. Fuqua, A.: Using Function Points in XP – Considerations. In Proceedings of Extreme

Programming and Agile Processes in Software Engineering, Springerlink.
8. IFPUG: Counting Practices Manual V. 4.3. Available in www.ifpug.org. (2009)
9. Cohn, M.: User Stories Applied. Addison-Wesley. (2004)
10. Glass, R. L.: Building Quality Software. Prentice-Hall. (1992)
11. Park, R. E.: Software Size Measurement. A Framework for Counting Source Statements.

SEI technical report available in: http://www.sei.cmu.edu/reports/92tr020.pdf. Last Access
in 03/01/2010.

12. Boehm, B., Abts, C., Brown, A. W., Chulani, S., Bradford, K. C., Horowitz, E. Madachy,
R., Reifer, J., Steece, B.: Software cost estimation with COCOMO II. Englewood Cliffs,
NJ:Prentice-Hall. (2000)

13. ISO/IEC 9126-1: Software engineering — Product quality — Part 1: Quality model. (2001)
14. IFPUG: Framework for Functional Sizing. Available in www.ifpug.org. (2003)
15. IFPUG: Software Non-functional Assessment Process. Available in

http://www.ifpug.org/about/SWNon-FunctionalAssessmentProcess_Final20-2009.pdf . Last
Visit in 03/01/2011 (2009)

16. ISO/IEC 14764: Software Engineering — Software Life Cycle Processes — Maintenance
(2006)

17. Department of Logistics and Technology.: INSTRUÇÃO NORMATIVA Nº 4, 19 de
maio de 2008. Available in: http://www.governoeletronico.gov.br/anexos/instrucao-
normativa-n-04. Last Access in 30/08/2010. (2008)

18. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall. (2004).
19. DeGroot, M., Schervish M. J.: Probability and Statistics 3 edition, Addison Wesley. (2001)
20. United Kingdom Software Metrics Association (UKSMA): "MKII Function Point Analysis

Counting Practices Manual", Version 1.31 (Mk II FPA). Online at http://www.uksma.co.uk
(1998)

