102
S. Sandri, J. Stolfi, L.Velho

PSP applied to Software Test Operations

João Marcos P. Vasconcelos, Augusto Sampaio

Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851 – CEP 50.732-970 – Recife – PE – Brazil

{jmpv,acas}@cin.ufps.br

Abstract. This paper’s analyzes the use of PSP on Software Test activities and propose modifications to improve the process for test activities, based on a test operation scenario. PSP is found suitable for Test Development Activities and PTP (Personal Test Process) is introduced as a personal process, based on PSP, for test engineers engaged on test operation activities. Ideas on how to validate PTP are presented at the end of this paper.

Resumo. O objetivo deste artigo é analisar o uso de PSP em atividades de de teste de software e propor melhorias para o processo num cenário de testes de software. Diante de uma breve análise o PSP mostra-se apto para as atividades de desenvolvimento de testes. O PTP (Personal Test Process) é apresentado como um processo, baseado no PSP, voltado ao engenheiro de testes engajado em atividades de execução de testes. Idéias da validação do PTP são apresentadas no fim deste artigo.

Keywords: PSP, Personal Processes, Software Test, SPI, Personal Test Process

1. Introduction

Software testing is a well-known and well-accepted way to improve the quality of a program even though it’s impossible to find all errors in a program [Kaner, Falk and Nguyen 1999]. Standards such as ISO 12119 assure the importance of software testing activities.

Despite its importance on the quality of the delivered software product, the test activities are often neglected and little time is assigned for those tasks. The scarce time available and importance of the work to be done requires a lot from the test managers.

This paper presents the Personal Test Process - PTP, a software test process based on the well known Personal Software Process, and focused on the test engineer and test execution activities. This process came to fill a void of personal processes focused on test activities. The main objective of PTP is to bring the major values of PSP to the test engineers.

This research was made based on the experiences of CIn-STP (Software Test Program), a software testing program held in collaboration of Centro de Informática (CIn) of Universidade Federal de Pernambuco (UFPE) and Motorola Brazil Design Center (BDC).

The paper is organized as the following: section 2 and 3 are an overview of the PSP and Software Testing, respectively; section 4 introduces the PTP, and some of its elements; finally at the section 5 the conclusion is made, some related and future works are also presented.

2. Personal Software Process - PSP

As stated on PSP official website [PSP SEI 2004], “The Personal Software Process helps individual engineers to improve their performance by bringing discipline to the way they develop software. Based on the practices found in the Capability Maturity Model (CMM), the PSP can be used by engineers as a guide to a disciplined and structured approach to developing software”. It’s a part of SEI strategy on achieving high organizational capability and maturity (Figure 1).

	[image: image1.png]CMMI® Builds
organizational
capability

TSP Bullds
quality products on
costand schedule

PSP Bullde
Individual skil
and discipline

ahetatats
SR

Figure 1 SEI strategy for high capability and high maturity
The Personal Software Process is presented at SEI Technical Reports [Humphrey 2000] [Humphrey 1997a], and two books [Humphrey 1995] [Humphrey 1997b]. It’s a process focused on the individual, instead of the more common organizational approach.

At the lower levels, PSP introduces a number of tools to improve the developer ability to produce a high quality small program. At the upper levels, new concepts are presented and the old ones expanded; finally, at the last level, PSP is expanded in order to enable the development of programs with over several thousand lines of codes.

2.1. PSP levels

PSP is split into 7 levels, each building on the previous one. The following sections describes the objectives of each PSP level.

	[image: image2.png]“Task Planning
Schedule Planning

Figure 2 PSP levels
The PSP0 objectives are:

· To incorporate basic measurement in your software development process;

· To require minimal changes in your personal practices;

· To demonstrate the use of a defined process in writing small programs; and

· To use your current process as an introductory process framework.

In addition of those of PSP0, PSP0.1 has the further objective of helping you to measure and estimate the sizes of the programs you produce.

PSP1 is intended to establish an orderly and repeatable procedure for developing software size estimates. As the process is used a growing base of estimating data is built to make progressively more accurate size estimates.

PSP1.1 institutes methods for:

· Making resource and schedule plans;

· Tracking your performance against these plans; and

· Judging the likely of project completion dates

The next level, PSP2 introduces design and code reviews; and methods for evaluating and improving the quality of those reviews.

PSP2.1 adds the following objectives:

· To help you to reduce the number of defects in your designs;

· To provide criteria for determining if a design is complete; and

· To provide a consistent framework for verifying the quality of your designs.

Finally, at the last level, PSP3 extends the personal process capability of PSP2.1 to develop programs of up to several thousand LOC.

3. Software Test

3.1. Initial Concepts

This section presents some basic software test concepts.

Target-of-test – An artifact being tested. For example, a release of given software is the target-of-test of a customer test, while a single class can be the target-of-test of a unit test.

Test case – The set of test data, execution conditions, and expected test results developed for a specific test objective.

Test cycle – A test cycle consist of the planning, execution and consolidation of a specific test phase under a specific target-of-test.

Test engineer – For the scope of this paper, a person responsible for carrying out the test operation activities.

Test operation – A term used for the activities related to test execution. It can be related to another word as in Test Operation Team, the team that executes tests, etc.

Test phase – A division of the test process. On each test phase a specific target-of-test is tested with a different set of objectives. See section 3.5 for some examples.

Test procedures – The set of detailed instructions for the setup, execution, and evaluation of test results for test cases.

Test scripts – Computer instructions that automate the execution of a Test Case. It can be an application by itself, a script for a test tool, a component for a test framework, etc. With Test Scripts, test cases can be executed automatically, or with minimum human interference.

Test suite – A set of test cases.

Tester – A person responsible for the test execution activity. His attributions are a subset of the test engineer’s.

Testware – A collective name for the material used for the test activities. Usually meaning Test Suites, Test Cases, Test Procedures, and/or Test Scripts.

3.2. Dimensions of Testing

To assess product quality, different tests are needed, each with a separated focus. [Kruchten 2000]. These tests can be categorized in several dimensions:

· Quality dimension, the major quality characteristic or attribute that is the focus of the test. E.g. Reliability, Functionality, Performance, Compliance to standards or laws;

· Stage of testing, the point in the lifecycle at which the test is executed. Examples of stages are Unit Test, Integration Test, System Test, Acceptance Test. The target-of-test type is usually constant for each stage, for example, on the Unit Test Stage the target-of-test is usually a class, or a component;

· Type of test, the specific test objective, usually limited to a single quality dimension. E.g. Configuration Test, Function Test, Integrity Test and Load Test.

3.3. Test Artifacts

Test Plan is the artifact that describes the purpose and goals of testing on the project. It identifies the strategies and resources needed to implement and execute testing. Also, the Test Plan may present the scheduling for the test cycles. It’s created based on the efforts of both the software development and software test teams.

Test Cycle Plans is the result of the test cycle planning. Among other things, it must list the target-of-test, the test cases to be used and if those test cases must be executed manually or in a automated way on that particular test cycle.

Test Suites Documents describe several Test Cases, usually grouped by feature, and/or test dimension. Each test case usually contains the test procedures and references for the Test Scripts related to each test case described.

The Test Results artifact contains the results of the test cycle execution. It usually presents detailed information on the executed test cases, and the result of each test case. The granularity of the information of this report can vary, though.

Despite not being exactly a test artifact, Change Requests (CRs) are the main tool used for communication between the test and development teams. As failures on the test execution are found, CRs (also called bug or defect report) must be created
 so the defect is fixed for the next version.

3.4. Test Approaches

Software test implementation takes one of the following approaches:

· Black box, the test is developed from the requirements of the software. No knowledge of how the system was implemented is required.

· White box, the test is developed from an analysis of the possible flow on the program. It’s necessary a rather thorough knowledge of the tested software.

3.5. Test Phases

The test process can be separated into several phases, each focused on a few aspects of software testing and with one specific objective. Some test phases performed by CIn-STP are:

· Sanity Test. This phase objective is to assure the build process was successful and the software build is suitable for use on the other test phases;

· Feature Test, responsible for checking the correctness and completeness of the software features individually;

· System Test. On this phase the software is tested to verify if there are any incompatibilities between the features;

An overview of the test phase can be found at Table 1 Dimensions of Test Phases.

	Test Phase
	Quality Dimensions
	Stages of Testing
	Types of Tests
	Approach

	Sanity Test
	Functionality
	Integration Test
	Integrity Test
	Black box

	Feature Test
	Functionality
	Integration Test
	Function Test
	Black box

	System Test
	Functionality
	System Test
	Function Test
	Black box

Table 1 Dimensions of Test Phases
3.6. Test Activities

Despite the test phase, dimension and type, the test activities are usually the same and can be divided into 4 categories:

· Test Planning

· Test Development Activities

· Test Operation Activities

· Test Quality Assurance Activities

3.6.1. Test Planning Activity

The test planning activity is usually made in cooperation of the project manager and test manager. This plan must run side-by-side with the software development plan and the company objectives. According to [Pressman 1995] the test project is as challenging as the software development itself, so its planning must be taken as seriously as the software development planning activity.

The main output from the test planning activity is the test plan document. This document must drives all test activities and it must be constantly updated.

Test planning activity is not in the scope of this paper. There are several books presenting good information on test planning, such as [Kaner, Falk and Nguyen 1999].

3.6.2. Test Development Activity

The test development activity creates and maintains the test cases, test procedures and test scripts used on software operation activities. It is in one way very similar to software development activity and a similar approach can be taken here.

A test development workflow comprehends the following steps:

1. Requirements information is collected;

2. Requirements is analyzed and test cases are designed, opportunities of reuse of existing material are investigated on this step;

3. Test case design is implemented, the implementation may happen in the form of a manual test procedure or an automated test script;

4. Test cases, and its implementations, are verified and validated;

5. Test cases, test procedures and test scripts are released for use on the test operation activities.

3.6.2.1. Test Maintenance

As the tested software evolves, the test cases, test procedures and test scripts needs to be updated. As happens with test development and software development processes, the test maintenance is very similar to the software development process.

Some common steps while maintaining testware:

1. A Change Request (CR) is created for a testware;

2. The CR validity is checked.

a. The issue is reproduced;

b. The software and testware requirements are analyzed to identify the required changes on the testware;

3. The changes on the testware are analyzed, designed, implemented and verified as usual;

4. The changed testware is validated;

5. The new version of the testware is made available to the test operation teams.

3.6.3. Test Operation Activities

Test operation activities are the day-to-day activities of a test group. It can be categorized into:

1. Test Cycle Planning

2. Test Cycle Execution

3. Test Cycle Consolidation

The Test Cycle Planning activity objective is to plan the execution of one test cycle. It shall not be mixed up with Test Planning, a higher level activity that sets the test strategy for the software based on the software development effort.

When planning the test cycle, the test operations engineer must make sure the selected test cases will form the best set to maximize the probability to find errors while minimizing the effort necessary for the tests [Pressman 1995].

The main output from this phase is the Test Cycle Plan.

Test Cycle Execution activity, or just test execution is the act of verifying certain aspects of the software. Manual and automated test cases are executed as planned on the test cycle plan and the results of each test case are recorded.

The main output from this phase is the test results and test logs.

At the Test Cycle Consolidation, each failure on the test case execution is analyzed as it can indicate an error on the tested software
, or the testware
 itself. A proper change request is created based on the analysis. The individual test reports are then compiled into a test result report, containing the results from that test cycle, and then published.

The outputs from this task are the test results report, and change request for both the tested software and the testware.

3.6.4. Test Quality Assurance Activities

There are some test specific quality assurance tasks that must be executed in order to assure the quality of the test.

Defects found on other test phases are monitored. Defects may escape the test and be detected latter on another test phase. Those cases must be analyzed and the testware updated to prevent reoccurrences of this failure.

The main output from this task are change requests created for the deficient testware.

Also, the test team must follow the development CRs. The first and more obvious reason is to ensure the defect is fixed on a latter test. The second reason is to check if there was no update on the software requirements the test team was not aware. In those cases the development team will usually reject the CR and the test team must update their testware for the new requirements.

This is especially important on low maturity organizations where emergency update on the software may happens before the necessary requirement documents are updated and released.

The outputs from this task are testware change requests.

4. PTP – Personal Test Process

The PSP, as defined on [Humphrey 1995], [Humphrey 1997b] and [Humphrey 2000] is focused on software development. But it’s not limited to that use [Humphrey 1995].

The following sections present the Personal Test Process (PTP), a process for test operations based on PSP techniques, methods and tools. It’s highly recommended the reading of [Humphrey 1995], [Humphrey 1997b] or the participation on a PSP training in order to make good use of PTP.

4.1. PTP Levels

The PTP is divided into several levels. Each level building on the processes from the previous level (Figure 3).

	[image: image3.png]Use of Prediction Interval

Use of Historical Data

Probe Task Planning

Schedule Planning
Estimates for all Test Activities

Current Process

. Process Improvement
Basic Measures

Estimates

Figure 3 PTP levels
4.1.1. PTP0

At the first level, the PTP introduces time and defects tracking to a regular test cycle execution.

Time tracking data will latter be used on test cycle planning to improve the test execution times estimates.

Caution must be taken when defect tracking not to mix up PTP defect with defects on the target-of-test or testware. Defect tracking on PTP is used to evaluate the impact of failures on the process. In turn, this enables decision makers to plan process improvement based on facts instead of feeling.

For example, after analyzing the defect logs, it’s noticed there are many delays on test execution activities due a lack of some hardware. The process could be changed so there is some kind of resource reserving activities to ensure the necessary equipment is available when required.

4.1.2. PTP0.1

The second level of Personal Test Process introduces two important elements:

· Process Improvement Proposal (PIP) Forms

· Time and effort estimates

The PIP forms are introduced on PSP0.1 and are detailed in [Humphrey 1995]. Its purpose is: to provide a way to record process problems and solution ideas; and to provide an orderly record of process improvement ideas for use in later process improvement.

The time and effort estimates initially do not require any specific process. Usually these estimates are based on estimator experience and feeling, but other methods can be used. The main objective of these estimates is to start to collect a historical data about the process and estimates. Inevitably, even with a big history database, the collected data will not be sufficient for all future estimates and this initial information can help to improve a “blind” estimate.

4.1.3. PTP1

The third level of PTP introduces the use of PROBE estimation methodology to PTP0.1. This method was selected as it’s the base for PSP estimates, other methods can be evaluated and replace PROBE on PTP estimations.

The PROBE is detailed at [Humphrey 1995].

4.1.4. PTP1.1

The Personal Test Process on its fourth level enables:

· Planning and tracking for longer test cycles, through the use of PSP Task Planning Template and PSP Schedule Planning Template.

· Consolidate the use of estimations expanding it to all test operation activities; this facilitates a better planning of the whole test team activities.

The PSP Task Planning Template and the PSP Schedule Planning Template, enables a close follow up of long activities. It presents data in a form easily used on Earned Value (EV) tracking [Boehm 1981][Humphrey 1989]

 REF Humphrey_1995 \h
[Humphrey 1995]. The templates and instructions on how to use them can be found at [Humphrey 1995].

4.1.5. PTP2

The fifth level of PTP introduces the prediction interval to the estimates. Using historical data and using Student’s t distribution one can calculate the prediction interval. This interval gives a range around the estimate within which the actual value
 will be.

The use of time intervals optimizes the data to be used on test planning so a schedule can be tightened on some high precision estimate, while being loosened on a estimate with a high likelihood of going wrong.

4.2. Artifacts Guidelines and Templates

PTP presents several artifact guidelines and templates, as happens with PSP. The templates are to be used for storing information on a standardized way, and the guidelines details how to fill in the information required on the templates.

The Test Cycle Request document formalizes the test execution. It includes all requirements for the test. For example, a Test Cycle Request demanding the execution of a feature test, on the reports generation feature.

The Testware Summary brings a synopsis of the available test cases. The information here contained includes a list of the test cases with how many times it has been executed, how much time did that execution took (for both the test script and test procedure as available). Table 2 Testware Summary Template depicts a snippet of the Testware Summary Template.

The PTP templates can be replaced for a tool that includes the information and do all the necessary calculations.

	Testware Summary

Program: __________________________________ Date: ___/___/______

Test Suite: _______________________________ Test Phase: _________________________

 Executions Execution Time Average Time Faults Found

Test Case Id TP TS TP TS TP TS TP TS

__ _____________________ ____ ____ ______ ______ ______ ______ ______ ______

__ _____________________ ____ ____ ______ ______ ______ ______ ______ ______

__ _____________________ ____ ____ ______ ______ ______ ______ ______ ______

__ _____________________ ____ ____ ______ ______ ______ ______ ______ ______

__ _____________________ ____ ____ ______ ______ ______ ______ ______ ______

Table 2 Testware Summary Template

	Purpose
	To hold the information about the test cases execution on a convenient and readily retrievable form

	Header
	Fill in:

· Program this test suite is for

· Date of creation of this testware summary. As the test executions goes on, new Testware Summaries are created to hold the updated information, and this date updated

· The Test Suite represented on this Testware Summary form

· The Test Phase this test suite is for

	Test Execution Information
	Fill in the necessary information

· # – The number of that Test Case

· Test Case – The test case name or identification

· Executions – Fill in how many times this test case’s procedure (TP) and script (TS) have been executed

· Execution Time – Fill in how much time have been spent on execution of this test case. This is a cumulative value. Fill in the TP with the manual test execution and TS with the automated one.

· Average Time – Calculate the average time of test procedure and test scripts execution. Divide the Execution Time columns by the Executions columns and fill in the proper columns for the averages of manual (TP) and automated (TS) test execution.

· Faults Found – Cumulative number of faults found using this test case. Fill in separately for manual (TP) and automated (TS) tests.

Table 3 Testware Summary Instructions
4.3. Process Scripts

PSP contains scripts for its activities. The main test execution activities are described in sections 4.3.1 to 4.3.5. There are similar scripts, for the test specific quality assurance activities briefly presented at section 3.6.4.

4.3.1. PTP0 Process Script

	Phase Number
	Purpose
	To guide you in executing the test operation activities

	
	Inputs Required
	· Test Cycle Request

· Test Cycle Form

· Time and Defect Recording Logs

· Defect Type Standard

· Testware Summary

	
	Permanent Activity
	· Complete the time and defect recording log

	1
	Test Cycle Planning
	· Select test cases to be executed

· Select the test procedures and test scripts to be used

· Evaluate the availability of testware (especially test environment and tools)

	2
	Test Cycle Execution
	· Obtain the necessary testware (test procedures, test scripts, target-of-test, hardware, test tools)

· Setup the test environment

· Execute the tests

· Record the test results

	3
	Test Results Analysis
	· Evaluate what caused the test failure (testware or target-of-test)

· Create change requests for testware and target-of-test as necessary

	4
	Test Results Consolidation
	· Consolidate the test results

· Publish the Test Results Report

· Update Testware Summary with new test execution times and faults

	
	Exit Criteria
	· Software tested based on the selected test cases

· Test Results Report available

· Change Requests created for the software and testware as necessary

· Updated Testware Summary with new test execution times

· Completed time and defect recording logs

Table 4 PTP0 Process Script

4.3.2. PTP0.1 Process Script

	Phase Number
	Purpose
	To guide you in executing the test operation activities

	
	Inputs Required
	· Test Cycle Request

· Test Cycle Form

· Time and Defect Recording Logs

· Defect Type Standard

· Testware Summary

· PIP Form

	
	Permanent Activity
	· Complete the time and defect recording log

· Complete PIP Form

	1
	Test Cycle Planning
	· Select test cases to be executed

· Select the test procedures and test scripts to be used

· Estimate the time and effort for test cycle execution

· Evaluate the availability of testware (especially test environment and tools)

	2
	Test Cycle Execution
	· Obtain the necessary testware (test procedures, test scripts, target-of-test, hardware, test tools)

· Setup the test environment

· Execute the tests

· Record the test results

	3
	Test Results Analysis
	· Evaluate what caused the test failure (testware or target-of-test)

· Create change requests for testware and target-of-test as necessary

	4
	Test Results Consolidation
	· Consolidate the test results

· Publish the Test Results Report

· Update Testware Summary with new test execution times and faults

	
	Exit Criteria
	· Software tested based on the selected test cases

· Test Results Report available

· Change Requests created for the software and testware as necessary

· Updated Testware Summary with new test execution times

· Completed time and defect recording logs
· Completed PIP Forms

Table 5 PTP0.1 Process Script
4.3.3. PTP1 Process Script

	Phase Number
	Purpose
	To guide you in executing the test operation activities

	
	Inputs Required
	· Test Cycle Request

· Test Cycle Form

· Time and Defect Recording Logs

· Defect Type Standard

· Testware Summary

· Historical estimates

· PIP Form

	
	Permanent Activity
	· Complete the time and defect recording log

· Complete PIP Form

	1
	Test Cycle Planning
	· Select test cases to be executed

· Select the test procedures and test scripts to be used

· Use the PROBE method to estimate the time and effort for test cycle execution

· Evaluate the availability of testware (especially test environment and tools)

	2
	Test Cycle Execution
	· Obtain the necessary testware (test procedures, test scripts, target-of-test, hardware, test tools)

· Setup the test environment

· Execute the tests

· Record the test results

	3
	Test Results Analysis
	· Evaluate what caused the test failure (testware or target-of-test)

· Create change requests for testware and target-of-test as necessary

	4
	Test Results Consolidation
	· Consolidate the test results

· Publish the Test Results Report

· Update Testware Summary with new test execution times and faults

	
	Exit Criteria
	· Software tested based on the selected test cases

· Test Results Report available

· Change Requests created for the software and testware as necessary

· Updated Testware Summary with new test execution times

· Completed time and defect recording logs
· Completed PIP Forms

Table 6 PTP1 Process Script

4.3.4. PTP1.1 Process Script

	Phase Number
	Purpose
	To guide you in executing the test operation activities

	
	Inputs Required
	· Test Cycle Request

· Test Cycle Form

· Time and Defect Recording Logs

· Defect Type Standard

· Testware Summary

· Historical estimates

· PIP Form

· For long cycles (several days), Task Planning Template
· For long cycles (several days), Schedule Planning Template

	
	Permanent Activity
	· Complete the time and defect recording log

· Complete PIP Form

· Follow up activities using Task and Schedule Planning Templates

	1
	Test Cycle Planning
	· Use the PROBE method to estimate the time and effort for test cycle planning (as needed)
· Select test cases to be executed

· Select the test procedures and test scripts to be used

· Use the PROBE method to estimate the time and effort for test cycle execution

· Use the PROBE method to estimate the time and effort for test results analysis

· Use the PROBE method to estimate the time and effort for test results consolidation
· Complete a Task Planning Template (as needed)

· Complete a Schedule Planning Template (as needed)

· Evaluate the availability of testware (especially test environment and tools)

	2
	Test Cycle Execution
	· Obtain the necessary testware (test procedures, test scripts, target-of-test, hardware, test tools)

· Setup the test environment

· Execute the tests

· Record the test results

	3
	Test Results Analysis
	· Evaluate what caused the test failure (testware or target-of-test)

· Create change requests for testware and target-of-test as necessary

	4
	Test Results Consolidation
	· Consolidate the test results

· Publish the Test Results Report

· Update Testware Summary with new test execution times and faults

	
	Exit Criteria
	· Software tested based on the selected test cases

· Test Results Report available

· Change Requests created for the software and testware as necessary

· Updated Testware Summary with new test execution times

· Completed time and defect recording logs
· Completed PIP Forms

Table 7 PTP1.1 Process Script
4.3.5. PTP2 Process Script

	Phase Number
	Purpose
	To guide you in executing the test operation activities

	
	Inputs Required
	· Test Cycle Request

· Test Cycle Form

· Time and Defect Recording Logs

· Defect Type Standard

· Testware Summary

· Historical estimates

· PIP Form

· For long cycles (several days), Task Planning Template

· For long cycles (several days), Schedule Planning Template

	
	Permanent Activity
	· Complete the time and defect recording log

· Complete PIP Form

· Follow up activities using Task and Schedule Planning Templates

	1
	Test Cycle Planning
	· Use the PROBE method to estimate the time and effort for test cycle planning and the respective prediction interval (as needed)

· Select test cases to be executed

· Select the test procedures and test scripts to be used

· Use the PROBE method to estimate the time and effort for test cycle execution and the respective prediction interval
· Use the PROBE method to estimate the time and effort for test results analysis and the respective prediction interval
· Use the PROBE method to estimate the time and effort for test results consolidation and the respective prediction interval
· Complete a Task Planning Template (as needed)

· Complete a Schedule Planning Template (as needed)

· Evaluate the availability of testware (especially test environment and tools)

	2
	Test Cycle Execution
	· Obtain the necessary testware (test procedures, test scripts, target-of-test, hardware, test tools)

· Setup the test environment

· Execute the tests

· Record the test results

	3
	Test Results Analysis
	· Evaluate what caused the test failure (testware or target-of-test)

· Create change requests for testware and target-of-test as necessary

	4
	Test Results Consolidation
	· Consolidate the test results

· Publish the Test Results Report

· Update Testware Summary with new test execution times and faults

	
	Exit Criteria
	· Software tested based on the selected test cases

· Test Results Report available

· Change Requests created for the software and testware as necessary

· Updated Testware Summary with new test execution times

· Completed time and defect recording logs
· Completed PIP Forms

Table 8 PTP2 Process Script

4.4. Enactment of PTP

Before using the TSP, it should be tailored for the project or company. Detailing of the TSP scripts is a part of such tailoring. Table 10 exemplifies a fine-grained detailing of the Test Cycle Execution on PTP0 (Table 9). Suppose this tailoring is for a particular company that executes tests on mobile phone’s firmware and it uses a fictional tool named TestManager for storing test cycle information and time tracking.

	1
	Test Cycle Execution
	· Obtain the necessary testware (test procedures, test scripts, target-of-test, hardware, test tools)

· Setup the test environment

· Execute the tests

· Record the test results

Table 9 Test Cycle Execution on PTP0

	Phase Number
	Purpose
	To guide you in executing the test operation activities

	
	Inputs Required
	· Access to TestManager tool

	1
	Obtain the necessary testware
	· Open the test cycle planning information for the current test cycle on TestManager

· Obtain the phones listed on the tested product field

· Obtain the firmware build listed on the target-of-test field

· Obtain a copy of the test procedures listed on the test suites field

	2
	Setup the test environment
	· Load the build on the phone

· Create a test result sheet on TestManager

	3
	Execute the tests
	· Execute the instructions provided for the test procedure on TestManager

	4
	Record the test results
	· Record the result for the test procedure execution on TestManager. (S = success; F = failure; N = not applicable
)

· Record the time spent for the Test Procedure execution on TestManager

	
	Exit Criteria
	· All selected test cases have been verified

· Time spend on running the tests have been recorded on Test Manager

Table 10 Example of detailed Test Cycle Planning on PTP0
4.4.1. Using PTP on a Test Team

Although designed for a scenario where the test activities for one test cycle are carried out by a single independent test engineer, the PTP can be easily extended to accommodate a scenario where multiple testers are responsible for a single test cycle. The test cases selected for a given scenario can be split up between several testers; those are responsible for carrying out the steps 2 (Test Cycle Execution) and 3 (Test Results Analysis). The analyzed results are then consolidated (step 4) by a single test engineer who is responsible for publishing the results of the test cycle.

On a team environment, peer reviews can be carried out to verify the test result analysis. This improves the quality of the reported data, and reduces the chance of mistakes when opening change requests.

4.4.2. PTP improvement

The PTP is just a guide on how to improve the test operations of a testing team. It must be improved to better meet the particular goals for one organization. A tool of great value on PTP process improvement are the PIP forms, it can be used on any process development process, not limited to PSP’s (as seen in [Humphrey 1995]).

5. Conclusions

The Personal Software Process, PSP, is strongly focused on the software development activities, as such, it needs major modifications in order to be adapted to the test operation activities.

The PTP, Personal Test Process, has been proposed as an alternative to PSP on test operation activities, keeping strengths of PSP while tailoring it to the test operation activities. It is expected PTP can improve:

· Estimates, through the use of time recording and effort recording logs, to build a historic database; and the PROBE estimation method;

· Manageability, with the use of a disciplined and documented process for test operation activities. The improvement on estimates is also very helpful for the management of the test activities;

· Testers Efficiency
, the PTP defines and structures the test operation processes. Scripts help testers avoiding to forget the execution of a activity or make it in an disorderly way. Additionally, the improved estimates enables testers to commit to tighter schedules;

· Test Team Productivity, all improvements above leads to a improvement on the productivity of the test team as a whole;

· Test Process Training, the documented process of PTP facilitates the training of new test personnel. The scripts can be extremely helpful for newcomers who can easily clarify his doubts;

· Process Improvement, through the use of the PIP forms. Process Improvement needs and opportunities can be documented promptly. According to Humphrey’s experiences [Humphrey 1995] “PIPs provide an invaluable source of improvement ideas”;

Some related works, such as [Hou, Tomayko 1998] and [Grove 1998] have applied subsets of PSP with undergraduate students. Both achieved improvement on the estimates accuracy, productivity of the individuals and product quality. Reports of experience of PSP on the industry, [Morisio 2000] and [Kamatar, Hayes 2000], confirm the improvement on the team production and quality of the work. As test script development most of time is very similar to building “small programs”, and given the success reported by those researches, PSP may be very useful for test development.

“Personal Software Engineering Project Management Process” [Brown 1999] is interesting as it takes a approach similar to PTP’s as it adapts the PSP to other activities than the software development.

The research on this topic is not finished; there are several opportunities of future work on this subject. The first and perhaps the most important is the PTP validation. As of now, only two small experiments were held, and interviews with test specialists conducted to validate the PTP. All of them confirmed the PTP validity, yet more experiments are needed to confirm the value of PTP.

The validation experiments are to be held in two environments, the first one is on a team specialized on test execution to check the value of PTP on its intended scenario. The second one is on a team responsible for both the development and test of the software.

Special attention should be taken on the choice of PTP estimation method, as it is a critical part of PTP value. A future work can evaluate the use of PROBE as the estimation method for PTP.

Another point that needs further investigation is the use of automated support tools for PTP. As stated in [Morisio 2000], the use of tools for data collecting on PSP is essential. This investigation could begin evaluating the use of PSP automated tools, such as [SPDI 2004], [PSPS 2004] and [LEAP 2004], for use in PTP. Also automated software tools can improve the management of testware artifacts and the historical database.

One interesting approach for metrics collecting is presented at [Johnson et al 2003]. The Hackystat framework, there proposed, makes the metrics collecting and analysis ubiquitous and transparent to the developer. It’d be nice to evaluate its use along with PTP.

PSP as is looks like a sound personal process for the test script development activities. Tailoring the PSP for the test cases and test procedures writing is also a remarkable future research topic.

6. References

[Boehm 1981]
Boehm, B. W., “Software Engineering Economics”, Prentice-Hall, 1981.

[Brown 1999]
Brown, A., “Personal software engineering project management process”, Proceedings of the 21st international conference on Software engineering, p.669-670, 1999.

[Grove 1998]
Grove, R., F., “Using the Personal Software Process to Motivate Good Programming Practices”, Proceedings of the 6th annual conference on the teaching of computing and the 3rd annual conference on Integrating technology into computer science education : Changing the delivery of computer science education, p. 98-101, 1998.

[Hou, Tomayko 1998]
Hou, L., Tomayko, J., “Applying the personal software process in CS1: an experiment”, Proceedings of the twenty-ninth SIGCSE technical symposium on Computer science education, p. 322-325, 1998.

[Humphrey 1989]
Humphrey, W., “Managing the Software Process”, SEI series in software engineering, Addison Wesley, 1989. ISBN: 0-201-180995-2, 1989.

[Humphrey 1995]
Humphrey, W., “A Discipline for Software Engineering”, SEI series in software engineering, Addison Wesley, 1995. ISBN: 0-201-54610-8, 1995.

[Humphrey 1997a]
Humphrey, W., “The Personal Software Process (PSP): An Empirical Study of the Impact of PSP on Individual Engineers”, Technical Report, CMU/SEI-2000-TR-022, 1997.

[Humphrey 1997b]
Humphrey, W. “Introduction to the personal software process”, SEI series in sofware engineering, Addison Wesley, 2000. ISBN: 0-201-54809-7, 1997.

[Humphrey 2000]
Humphrey, W., “The Personal Software Process (PSP)”, Technical Report, CMU/SEI-2000-TR-022, 2000.

[Johnson et al 2003]
Johnson, P., Kou, H., Agustin, J., M., Chan, C., Moore, C., A., Miglani, J., Zhen, S., and Doane, W., E., “Beyond the Personal Software Process: Metrics collection and analysis for the differently disciplined”, Proceedings of the 2003 International Conference on Software Engineering, 2003.

[Kamatar, Hayes 2000]
Kamatar, J., Hayes, W., “An Experience Report on the Personal Software Process”, IEEE Software December 2000 pg 85-89, 2000.

[Kaner, Falk and Nguyen 1999]
Kaner, C., Falk J., and Nguyen, H. Q., “Testing Computer Software”, Wiley, 1999. ISBN: 0-471-35846-0, 1999.

[Kruchten 2000]
Kruchten, P., “The Rational Unified Process: An Introduction”, Object Technology Series, Addison Wesley, 2000. ISBN: 0-201-70710-1, 2000.

[Morisio 2000]
Morisio, M., “Applying the PSP in Industry”, IEEE software, December 2000. pg 90-95, 2000.

[LEAP 2004]
L.E.A.P. framework website. http://csdl.ics.hawaii.edu/Tools/LEAP/, January 2004.

[Pressman 1995]
Pressman, R., “Engenharia de Software”, Makron Books, 1995.

[PSP SEI 2004]
“What is the Personal Software Process (PSP)?”, http://www.sei.cmu.edu/tsp/psp.html, January 2004.

[PSPS 2004]
Personal Software Process Studio website http://www-cs.etsu-tn.edu/psp/, January 2004.

[SPDI 2004]
Software Process Dashboard Initiative website, http://processdash.sourceforge.net/, January 2004.

� Usually the handling of change requests are through a Change Management Tool.

� Although the test is focused on finding errors on its target-of-test, it can also happen to locate problems on other parts of the tested software.

� It can be a problem on the test case, or its implementation (test procedure or test script)

� Suppose a time estimate to execute a task, this is the actual time to execute it.

� Both testers and test engineers

Proceedings of the XII SIBGRAPI (October 1999)

23

