SSJ User’s Guide

Package simevents

Simulation Clock and Event List Management

Version: September 14, 2007

This package provides the simulation clock and tools to manage the future events
list. These are the basic tools for discrete-event simulation. Several different
implementations of the event list are offered. Some basic tools for continuous
simulation (i.e., solving differential equations with respect to time) are also pro-
vided.

CONTENTS 1

Contents
OVEIVIEW . . o o o o oo 2
5T [3
SIUATOH .« o o o o e o e 4
Eventl 6
CONBIMUOUS . - .« o o o oo e 9
[ContinuousStatel 11
ListWAERSTat]l o o o e 13
[LinkedListStatl 16
Accumulate, 18
EVEnILAsT . .« o o o oo 20
[DoublyLinked| 22
.. 23
B O 24
Henriksenl o o o 25

2 CONTENTS

Overview

The scheduling part of discrete-event simulations is managed by the “chief-executive” class
Simulator, which contains the simulation clock and the central monitor. The event list
is taken from one of the implementations of the interface EventList, which provide differ-
ent kinds of event list implementations. One can change the default SplayTree event list
implementation via the method init. The class Event provides the facilities for creating
and scheduling events in the simulation. Each type of event must be defined by extending
the class Event. The class Continuous provides elementary tools for continuous simulation,
where certain variables vary continuously in time according to ordinary differential equations.

The class LinkedListStat implements doubly linked lists, with tools for inserting, re-
moving, and viewing objects in the list, and automatic statistical collection. These lists can
contain any kind of Object.

Sim

This static class contains the executive of a discrete-event simulation. It maintains the
simulation clock and starts executing the events in the appropriate order. Its methods
permit one to start, stop, and (re)initialize the simulation, and read the simulation clock.

This class is deprecated in SSJ V2.0, and its implementation now uses the default sim-
ulator returned by the getDefaultSimulator () method in the Simulator class. It is rec-
ommended to use the more general Simulator class directly, because it supports the same
functionnalities as this class, with the additional ability to have more than one simulation
clocks and event lists.

package umontreal.iro.lecuyer.simevents;

public final class Sim

Methods

public static double time()
Returns the current value of the simulation clock.

public static void init()
Reinitializes the simulation executive by clearing up the event list, and resetting the simu-
lation clock to zero. This method must not be used to initialize process-driven simulation;
SimProcess.init must be used instead.

public static void init (EventList evlist)
Same as init, but also chooses evlist as the event list to be used. For example, init
(new DoublyLinked()) initializes the simulation with a doubly linked linear structure
for the event list. This method must not be used to initialize process-driven simulation;
umontreal.iro.lecuyer.simprocs.DSOLProcessSimulator (EventList) or
umontreal.iro.lecuyer.simprocs.ThreadProcessSimulator (EventList) must be used
instead.

public static EventList getEventList()

Gets the currently used event list.

public static void start()
Starts the simulation executive. There must be at least one Event in the event list when
this method is called.

public static void stop()
Tells the simulation executive to stop as soon as it takes control, and to return control to the
program that called start. This program will then continue executing from the instructions
right after its call to Sim.start. If an Event is currently executing (and this event has just
called Sim.stop), the executive will take control when the event terminates its execution.

Simulator

Represents the executive of a discrete-event simulator. This class maintains a simulation
clock, an event list, and starts executing the events in the appropriate order. Its methods
permit one to start, stop, and (re)initialize the simulation, and read the simulation clock.

Usually, a simulation program uses a single simulation clock which is represented by an
instance of this class. For more convenience and compatibility, this class therefore provides
a mechanism to construct and return a default simulator which is used when an event is
constructed without an explicit reference to a simulator, and when the simulator is accessed
through the Sim class.

Note that this class is NOT thread-safe. Consequently, if a simulation program uses
multiple threads, it should acquire a lock on a simulator (using a synchronized block)
before accessing its state.

package umontreal.iro.lecuyer.simevents;
import java.util.ListIterator;
public class Simulator

public static Simulator defaultSimulator

Represents the default simulator being used by the class Sim, and the no-argument construc-
tor of Event. This simulator is usually obtained with the getDefaultSimulator method,
which initializes it if needed. But it might also be initialized differently, e.g., if process-driven
simulation is required.

Constructors
public Simulator()

Constructs a new simulator using a splay tree for the event list.

public Simulator (EventList eventList)

Constructs a new simulator using eventList for the event list.

Methods
public double time()

Returns the current value of the simulation clock.

public void init()

Reinitializes the simulation executive by clearing up the event list, and resetting the simu-
lation clock to zero.

Simulator 5

public void init (EventList evlist)

Same as init, but also chooses evlist as the event list to be used. For example, init (new
DoublyLinked()) initializes the simulation with a doubly linked linear structure for the
event list. To initialize the current Simulator with a not empty eventList is also possible,
but the events scheduled in the eventList will be linked with the current simulator only.

public EventList getEventList()

Gets the currently used event list.

public boolean isSimulating()

Determines if this simulator is currently running, i.e., executing scheduled events.

public boolean isStopped()

Determines if this simulator was stopped by an event. The simulator may still be processing
the event which has called the stop method; in this case, isSimulating returns true.

protected Event removeFirstEvent()

Removes the first event from the event list and sets the simulation clock to its event time.

public void start ()

Starts the simulation executive. There must be at least one Event in the event list when
this method is called.

public void stop()

Tells the simulation executive to stop as soon as it takes control, and to return control to the
program that called start. This program will then continue executing from the instructions
right after its call to start If an Event is currently executing (and this event has just called
stop), the executive will take control when the event terminates its execution.

public ContinuousState continuousState()

Returns the current state of continuous variables being integrated during the simulation.
This state is used by the Continuous class when performing simulation of continuous vari-
ables; it defaults to an empty state, which is initialized only when this method is called.

Static methods

public static Simulator getDefaultSimulator()

Returns the default simulator instance used by the deprecated class Sim. If this simulator
does not exist yet, it is constructed using the no-argument constructor of this class. One
can specify a different default simulator by setting the defaultSimulator field directly.

Event

This abstract class provides event scheduling tools. Each type of event should be defined as
a subclass of the class Event, and should provide an implementation of the method actions
which is executed when an event of this type occurs. The instances of these subclasses are
the actual events.

Each event is linked to a simulator represented by an instance of Simulator before it can
be scheduled and processed. A default simulator, given by Simulator.getDefaultSimulator,
is used if no simulator is linked explicitly with an event. When an event is constructed, it
is not scheduled. It must be scheduled separately by calling one of the scheduling methods
schedule, scheduleNext, scheduleBefore, etc. An event can also be cancelled before it
occurs.

A scheduled event has an associated time at which it will happen and a priority, which
can be queried using the methods time and priority, respectively. By default, events occur
in ascending order of time, and have priority 1. Events with the same time occur in ascending
order of priority. For example, if events el and e2 occur at the same time with priority 2
for el and priority 1 for e2, e2 will occur before el. Events with the same time and priority
occur in the order they were scheduled.

package umontreal.iro.lecuyer.simevents;

public abstract class Event implements Comparable<Event>

Constructor

public Event()

Constructs a new event instance, which can be placed afterwards into the event list of the
default simulator by calling one of the schedule... variants. For example, if Bang is an
Event subclass, the statement “new Bang() .scheduleNext();” creates a new Bang event
and places it at the beginning of the event list.

public Event (Simulator sim)

Construct a new event instance associated with the given simulator.

Methods

public void schedule (double delay)

Schedules this event to happen in delay time units, i.e., at time sim.time() + delay, by
inserting it in the event list. When two or more events are scheduled to happen at the same
time and with the same priority, they are placed in the event list (and executed) in the same
order as they have been scheduled.

Note that the priority of this event should be adjusted using setPriority before it is sched-
uled.

Event 7

public void scheduleNext ()

Schedules this event as the first event in the event list, to be executed at the current time
(as the next event).

public void scheduleBefore (Event other)
Schedules this event to happen just before, and at the same time, as the event other. For

example, if Bing and Bang are Event subclasses, after the statements

Bang bigOne = new Bang().schedule (12.0);
new Bing().scheduleBefore (bigOne);

the event list contains two new events scheduled to happen in 12 units of time: a Bing event,
followed by a Bang called bigOne.

public void scheduleAfter (Event other)

Schedules this event to happen just after, and at the same time, as the event other.

public void reschedule (double delay)

Cancels this event and reschedules it to happen in delay time units.

public boolean cancel()

Cancels this event before it occurs. Returns true if cancellation succeeds (this event was
found in the event list), false otherwise.

public final boolean cancel (String type)
Finds the first occurence of an event of class “type” in the event list, and cancels it. Returns
true if cancellation succeeds, false otherwise.

public final Simulator simulator ()

Returns the simulator linked to this event.

public final void setSimulator (Simulator sim)
Sets the simulator associated with this event to sim. This method should not be called while
this event is in an event list.

public final double time()

Returns the (planned) time of occurence of this event.

public final void setTime (double time)

Sets the (planned) time of occurence of this event to time. This method should never be
called after the event was scheduled, otherwise the events would not execute in ascending
time order anymore.

public final double priority ()

Returns the priority of this event.

8 Event

public final void setPriority (double priority)

Sets the priority of this event to inPriority. This method should never be called after
the event was scheduled, otherwise the events would not execute in ascending priority order

anymore.

public int compareTo (Event e)

Compares this object with the specified object for order. Returns a negative integer, zero,
or a positive integer as this event is less than, equal to, or greater than the specified event.
If an event el is smaller than another event e2, event el occurs before event e2.

public abstract void actions();

This is the method that is executed when this event occurs. Every subclass of Event that
is to be instantiated must provide an implementation of this method.

Continuous

Represents a variable in a continuous-time simulation. This abstract class provides the
basic structures and tools for continuous-time simulation, where certain variables evolve
continuously in time, according to differential equations. Such continuous variables can be
mixed with events and processes.

Each type of continuous-time variable should be defined as a subclass of Continuous.
The instances of these subclasses are the actual continuous-time variables. Each subclass
must implement the method derivative which returns its derivative with respect to time.
The trajectory of this variable is determined by integrating this derivative. The subclass
may also reimplement the method afterEachStep, which is executed immediately after
each integration step. By default (in the class Continuous), this method does nothing.
This method could, for example, verify if the variable has reached a given threshold, or
update a graphical illustration of the variable trajectory.

When creating a class representing a continuous variable, the toString method can be
overridden to display information about the continuous variable. This information will be
displayed when formating the event list as a string.

Each continuous variable has a linked simulator represented by an instance of the
Simulator class. If no simulator is provided explicitly when constructing a variable, the
default simulator returned by Simulator.getDefaultSimulator is used.

package umontreal.iro.lecuyer.simevents;

public abstract class Continuous

Constructor

public Continuous()
Constructs a new continuous-time variable linked to the default simulator, without initializ-
ing it.

public Continuous (Simulator sim)

Constructs a new continuous-time variable linked to the given simulator, without initializing
it.
Methods

public void init (double val)

Initializes or reinitializes the continuous-time variable to val.

public double value()

Returns the current value of this continuous-time variable.

10 Continuous

public Simulator simulator ()
Returns the simulator linked to this continuous-time variable.

public void setSimulator(Simulator sim)
Sets the simulator linked to this continuous-time variable. This method should not be called
while this variable is active.

public void startInteg()
Starts the integration process that will change the state of this variable at each integration
step.

public void startInteg (double val)
Same as startInteg, after initializing the variable to val.

public void stopInteg()
Stops the integration process for this continuous variable. The variable keeps the value it
took at the last integration step before calling stopInteg.

public abstract double derivative (double t);
This method should return the derivative of this variable with respect to time, at time t.
Every subclass of Continuous that is to be instantiated must implement it. If the derivative
does not depend explicitly on time, ¢ becomes a dummy parameter. Internally, the method
is used with ¢ not necessarily equal to the current simulation time.

public void afterEachStep()
This method is executed after each integration step for this Continuous variable. Here, it
does nothing, but every subclass of Continuous may reimplement it.

public static void selectEuler(double h)
Selects the Euler method as the integration method, with the integration step size h, in time
units, for the default simulator. The non-static method selectEuler in ContinuousState
can be used to set the integration method for any given simulator. This method appears
here only to keep compatibility with older versions of SSJ; using a non-static Simulator
instance rather than the default simulator is recommended.

public static void selectRungeKutta4(double h)
Selects a Runge-Kutta method of order 4 as the integration method to be used, with step
size h. The non-static method selectRungeKutta4 in ContinuousState can be used to set
the integration method for any given simulator. This method appears here only to keep
compatibility with older versions of SSJ; using a non-static Simulator instance rather than
the default simulator is recommended.

public static void selectRungeKutta2(double h)
Selects a Runge-Kutta method of order 2 as the integration method to be used, with step
size h. The non-static method selectRungeKutta2 in ContinuousState can be used to set
the integration method for any given simulator. This method appears here only to keep
compatibility with older versions of SSJ; using a non-static Simulator instance rather than
the default simulator is recommended.

11

ContinuousState

Represents the portion of the simulator’s state associated with continuous-time simulation.
Any simulator, including the default static one, can have an associate continuous state
which is obtained using the continuousState () method of the Simulator class. This state
includes all active integration variables as well as the current integration method.

One of the methods selectEuler, selectRungeKutta2 or selectRungeKutta4 must be
called before starting any integration. These methods permit one to select the numerical
integration method and the step size h (in time units) that will be used for all continuous-
time variables linked to the simulator. For all the methods, an integration step at time ¢
changes the values of the variables from their old values at time ¢t — h to their new values at
time ¢.

Each integration step is scheduled as an event and added to the event list.

package umontreal.iro.lecuyer.simevents;

public class ContinuousState

// Integration methods
public enum IntegMethod{

EULER, // Euler integration method

RUNGEKUTTA2, // Runge-Kutta integration method of order 2

RUNGEKUTTA4 // Runge-Kutta integration method of order 4
Constructor

protected ContinuousState (Simulator sim)

Creates a new ContinuousState object linked to the given simulator. Usually, the user
should not call this constructor directly since a new object is created automatically by the
continuousState () method of class Simulator.

Methods

public List<Continuous> getContinuousVariables()

Returns the list of continuous-time variables currently integrated by the simulator. The
returned list is updated automatically as variables are added or removed, but it cannot be
modified directly. One must instead use startInteg or stopInteg in class Continuous to
add or remove variables.

public IntegMethod integMethod ()

Return an integer that represent the integration method in use.

12 ContinuousState

public void selectEuler (double h)
Selects the Euler method as the integration method, with the integration step size h, in time
units.

public void selectRungeKutta2 (double h)
Selects a Runge-Kutta method of order 2 as the integration method to be used, with step
size h.

public void selectRungeKutta4 (double h)

Selects a Runge-Kutta method of order 4 as the integration method to be used, with step
size h.

13

ListWithStat

Implements a list with integrated statistical probes to provide automatic collection of statis-
tics on the sojourn times of objects in the list and on the size of the list as a function of time
given by a simulator. The automatic statistical collection can be enabled or disabled for each
list, to reduce overhead. This class extends TransformingList and transforms elements into
nodes associating insertion times with elements.

package umontreal.iro.lecuyer.simevents;

public class ListWithStat<E>

extends TransforminglList<E, ListWithStat.Node<E>>

Constructors

public ListWithStat (List<Node<E>> nodeList)

Constructs a new list with internal data structure using the default simulator and imple-
mented by nodeList, . The given list is cleared for the constructed list to be initially
empty.

public ListWithStat (Simulator inSim, List<Node<E>> nodeList)

Constructs a new list with internal data structure implemented by nodeList. The given list
is cleared for the constructed list to be initially empty.

public ListWithStat (List<Node<E>> nodelList, Collection<? extends E> c)

Constructs a list containing the elements of the specified collection, whose elements are
stored into nodeList and using the default simulator.

public ListWithStat (Simulator inSim, List<Node<E>> nodelist,
Collection<? extends E> c)

Constructs a list containing the elements of the specified collection, whose elements are
stored into nodeList.

public ListWithStat (List<Node<E>> nodelist, String name)

Constructs a new list with name name, internal list nodeList, and using the default sim-
ulator. This name can be used to identify the list in traces and reports. The given list is
cleared for the constructed list to be initially empty.

public ListWithStat (Simulator inSim, List<Node<E>> nodelList, String name)

Constructs a new list with name name, and internal list nodeList. This name can be used
to identify the list in traces and reports. The given list is cleared for the constructed list to
be initially empty.

14 ListWithStat

public ListWithStat (List<Node<E>> nodelist,
Collection<? extends E> c, String name)

Constructs a new list containing the elements of the specified collection c, with name name,
internal list nodeList, and using the default simulator. This name can be used to identify
the list in traces and reports.

public ListWithStat (Simulator inSim, List<Node<E>> nodelist,
Collection<? extends E> c, String name)

Constructs a new list containing the elements of the specified collection c, with name name,
and internal list nodeList. This name can be used to identify the list in traces and reports.

Methods

public E convertFromInnerType (Node<E> node)
public Node<E> convertTolInnerType (E element)

public Simulator simulator ()

Returns the simulator associated with this list.

public void setSimulator(Simulator sim)

Sets the simulator associated with this list. This list should be cleared after this method is
called.

Statistic collection methods

public boolean getStatCollecting()

Returns true if the list collects statistics about its size and sojourn times of elements, and
false otherwise. By default, statistical collecting is turned off.

public void setStatCollecting (boolean b)

Starts or stops collecting statistics on this list. If the statistical collection is turned ON, the
method creates two statistical probes if they do not exist yet. The first one, of the class
Accumulate, measures the evolution of the size of the list as a function of time. It can
be accessed by the method statSize. The second one, of the class Tally, and accessible
via statSojourn, samples the sojourn times in the list of the objects removed during the
observation period, i.e., between the last initialization time of this statistical probe and the
current time. The method automatically calls initStat to initialize these two probes. When
this method is used, it is normally invoked immediately after calling the constructor of the
list.

public void initStat()

Reinitializes the two statistical probes created by setStatCollecting (true) and makes
an update for the probe on the list size.

ListWithStat 195

public double getInitTime()

Returns the last simulation time initStat was called.

public Accumulate statSize()
Returns the statistical probe on the evolution of the size of the list as a function of the
simulation time. This probe exists only if setStatCollecting (true) has been called for
this list.

public Tally statSojourn()

Returns the statistical probe on the sojourn times of the objects in the list. This probe
exists only if setStatCollecting (true) has been called for this list.

public String report()

Returns a string containing a statistical report on the list, provided that setStatCollecting
(true) has been called before for this list. Even If setStatCollecting was called with
false afterward, the report will be made for the collected observations. If the probes do not
exist, i.e., setStatCollecting was never called for this object, an illegal state exception
will be thrown.

public String getName()

Returns the name associated to this list, or null if no name was assigned.

Inner class

public static class Node<E>

Represents a node that can be part of a list with statistical collecting.

Constructor

public Node (E element, double insertionTime)

Constructs a new node containing element element inserted into the list at time
insertionTime.

Methods

public E getElement()

Returns the element stored into this node.

public double getInsertionTime()

Returns the insertion time of the element in this node.

16

LinkedListStat

This class extends ListWithStat, and uses a linked list as the internal data structure.

package umontreal.iro.lecuyer.simevents;

public class LinkedListStat<E> extends ListWithStat<E>

Constructors
public LinkedListStat()
Constructs a new list, initially empty.
public LinkedListStat(Simulator inSim)
Constructs a new list, initially empty, and using the default simulator.
public LinkedListStat (Collection<? extends E> c)

Constructs a list containing the elements of the specified collection, using the default simu-
lator.

public LinkedListStat (Simulator inSim, Collection<? extends E> c)

Constructs a list containing the elements of the specified collection.

public LinkedListStat (String name)

Constructs a new list with name name, using the default simulator. This name can be used
to identify the list in traces and reports.

public LinkedListStat (Simulator inSim, String name)

Constructs a new list with name name. This name can be used to identify the list in traces
and reports.

public LinkedListStat (Collection<? extends E> c, String name)

Constructs a new list containing the elements of the specified collection ¢ and with name
name, using the default simulator. This name can be used to identify the list in traces and
reports.

public LinkedListStat (Simulator inSim, Collection<? extends E> c, String name)

Constructs a new list containing the elements of the specified collection ¢ and with name
name. This name can be used to identify the list in traces and reports.

LinkedListStat 17

LinkedList methods
See the JDK documentation for more information about these methods.
public void addFirst (E obj)
public void addLast (E obj)
public E getFirst()
public E getLast()
public E removeFirst()

public E removelLast()

18

Accumulate

A subclass of StatProbe, for collecting statistics on a variable that evolves in simulation
time, with a piecewise-constant trajectory. Each time the variable changes its value, the
method update must be called to inform the probe of the new value. The probe can be
reinitialized by init.

package umontreal.iro.lecuyer.simevents;

public class Accumulate extends StatProbe implements Cloneable

Constructors

public Accumulate()
Constructs a new Accumulate statistical probe using the default simulator and initializes it
by invoking init ().

public Accumulate (Simulator inSim)
Constructs a new Accumulate statistical probe linked to the given simulator, and initializes
it by invoking init ().

public Accumulate (String name)

Construct and initializes a new Accumulate statistical probe with name name and initial
time 0, using the default simulator.

public Accumulate (Simulator inSim, String name)

Construct and initializes a new Accumulate statistical probe with name name and initial
time O.

Methods

public void init()

Initializes the statistical collector and puts the current value of the corresponding variable
to 0. A call to init should normally be followed immediately by a call to update to give
the value of the variable at the initialization time.

public void init (double x)

Same as init followed by update(x).

public void update()

Updates the accumulator using the last value passed to update.

Accumulate 19

public void update (double x)

Gives a new observation x to the statistical collector. If broadcasting to observers is activated
for this object, this method will also transmit the new information to the registered observers
by invoking the methods notifyListeners.

public double getInitTime()
Returns the initialization time for this object. This is the simulation time when init was
called for the last time.

public double getLastTime()

Returns the last update time for this object. This is the simulation time of the last call to
update or the initialization time if update was never called after init.

public double getLastValue()

Returns the value passed to this probe by the last call to its update method (or the initial
value if update was never called after init).

public Simulator simulator()

Returns the simulator associated with this statistical probe.

public void setSimulator(Simulator sim)

Sets the simulator associated with this probe to sim. One should call init after this method
to reset the statistical probe.

public Accumulate clone()
Clone this object.

20

EventList

An interface for implementations of event lists. Different implementations are provided in
SSJ: doubly linked list, splay tree, Henrickson’s method, etc. The events in the event list
are objects of the class Event. The method Sim.init permits one to select the actual
implementation used in a simulation [I].

To allow the user to print the event list, the toString method from the Object class
should be reimplemented in all EventList implementations. It will return a string in the
following format: “Contents of the event list ewent list class :” for the first line and
each subsequent line has format “scheduled event time : event string”. The event string is
obtained by calling the toString method of the event objects. The string should not end
with the end-of-line character.

The following example is the event list of the bank example, printed at 10h30. See
examples.pdf for more information.

Contents of the event list SplayTree :
10.51 : BankEv$Arrival@cfb549
10.54 : BankEv$Departure@8a7efd

11 : BankEv$3086d4cl
14 : BankEv$40f9f9d8
15 : BankEv$50820dda

The event time (obtained by calling the Event.time) must not be modified by imple-
mentations of this interface because the Event class already takes care of that.

package umontreal.iro.lecuyer.simevents.eventlist;
public interface EventList extends Iterable<Event>

public boolean isEmpty();

Returns true if and only if the event list is empty (no event is scheduled).

public void clear();

Empties the event list, i.e., cancels all events.

public void add (Event ev);
Adds a new event in the event list, according to the time of ev. If the event list contains
events scheduled to happen at the same time as ev, ev must be added after all these events.
public void addFirst (Event ev);

Adds a new event at the beginning of the event list. The given event ev will occur at the
current simulation time.

EventList 21

public void addBefore (Event ev, Event other);

Same as add, but adds the new event ev immediately before the event other in the list.

public void addAfter (Event ev, Event other);

Same as add, but adds the new event ev immediately after the event other in the list.

public Event getFirst();

Returns the first event in the event list. If the event list is empty, returns null.

public Event getFirstOfClass (String cl);

Returns the first event of the class cl (a subclass of Event) in the event list. If no such
event are found, returns null.

public <E extends Event> E getFirstOfClass (Class<E> cl);

Returns the first event of the class E (a subclass of Event) in the event list. If no such event
are found, returns null.

public ListIterator<Event> listIterator();

Returns a list iterator over the elements of the class Event in this list.

public boolean remove (Event ev);

Removes the event ev from the event list (cancels this event). Returns true if and only if
the event removal has succeeded.

public Event removeFirst();

Removes the first event from the event list (to cancel or execute this event). Returns the
removed event. If the list is empty, then null is returned.

22

DoublyLinked

An implementation of EventList using a doubly linked linear list. Each event is stored into
a list node that contains a pointer to its following and preceding events. Adding an event
requires a linear search to keep the event list sorted by event time. Removing the first event
is done in constant time because it simply removes the first list node. List nodes are recycled
for increased memory management efficiency.

package umontreal.iro.lecuyer.simevents.eventlist;

public class DoublyLinked implements EventList

23
SplayTree

An implementation of EventList using a splay tree [3]. This tree is like a binary search
tree except that when it is modified, the affected node is moved to the top. The rebalancing
scheme is simpler than for a red black tree and can avoid the worst case of the linked list.
This gives a O(log(n)) average time for adding or removing an event, where n is the size of
the event list.

package umontreal.iro.lecuyer.simevents.eventlist;

public class SplayTree implements EventList

24

BinaryTree

An implementation of EventList using a binary search tree. Every event is stored into a
tree node which has left and right children. Using the event time as a comparator, the left
child is always smaller than its parent whereas the right is greater or equal. This allows
an average O(log(n)) time for adding an event and searching the first event, where n is the
number of events in the structure. There is less overhead for adding and removing events
than splay tree or red black tree. However, in the worst case, adding or removing could be
done in time proportional to n because the binary search tree can be turned into a linked
list.

package umontreal.iro.lecuyer.simevents.eventlist;

public class BinaryTree implements EventList

25

Henriksen

An implementation of EventList using the doubly-linked index list of Henriksen [2].

Events are stored in a normal doubly-linked list. An additionnal index array is added to
the structure to allow quick access to the events.

package umontreal.iro.lecuyer.simevents.eventlist;

public class Henriksen implements EventList

26

RedblackTree

An implementation of EventList using a red black tree, which is similar to a binary search
tree except that every node is colored red or black. When modifying the structure, the tree
is reorganized for the colors to satisfy rules that give an average O(log(n)) time for removing
the first event or inserting a new event, where n is the number of elements in the structure.
However, adding or removing events imply reorganizing the tree and requires more overhead
than a binary search tree.

The present implementation uses the Java 2 TreeMap class which implements a red black
tree for general usage. This event list implementation is not efficient.

package umontreal.iro.lecuyer.simevents.eventlist;

public class RedblackTree implements EventList

REFERENCES 27

References

[1] J. H. Kingston. Analysis of tree algorithms for the simulation event lists. Acta Infor-
matica, 22:15-33, 1985.

[2] J. H. Kingston. Analysis of Henriksen’s algorithm for the simulation event set. SIAM
Journal on Computing, 15:887-902, 1986.

[3] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the
Association for Computing Machinery, 32(3):652-686, 1985.

	Overview
	Sim
	Simulator
	Event
	Continuous
	ContinuousState
	ListWithStat
	LinkedListStat
	Accumulate
	EventList
	DoublyLinked
	SplayTree
	BinaryTree
	Henriksen
	RedblackTree

