
SSJ User’s Guide

Package util

General basic utilities

Version: September 11, 2007

This document describes a set of basic utilities used in the Java software developed in
the simulation laboratory of the DIRO, at the Université de Montréal. Many of these tools
were originally implemented in the Modula-2 language and have been translated in C and
then in Java, with some adaptations along the road.

September 11, 2007 CONTENTS 1

Contents

Num . 2

TextDataReader . 6

PrintfFormat . 9

TableFormat . 15

AbstractChrono . 17

SystemTimeChrono . 19

GlobalCPUTimeChrono . 20

ThreadCPUTimeChrono . 21

Chrono . 22

ChronoSingleThread . 23

TimeUnit . 24

ArithmeticMod . 26

BitVector . 28

BitMatrix . 31

RootFinder . 34

MultivariateFunction . 35

RatioFunction . 36

Misc . 37

JDBCManager . 38

ClassFinder . 43

NameConflictException . 45

Introspection . 46

TransformingList . 48

September 11, 2007 2

Num

This class provides a few constants and some methods to compute numerical quantities such
as factorials, combinations, gamma functions, and so on.

package umontreal.iro.lecuyer.util;

public class Num

Constants

public static final double DBL_EPSILON = 2.2204460492503131e-16;

Difference between 1.0 and the smallest double greater than 1.0.

public static final int DBL_MAX_EXP = 1024;

Largest int x such that 2x−1 is representable (approximately) as a double.

public static final int DBL_MIN_EXP = -1021;

Smallest int x such that 2x−1 is representable (approximately) as a normalised double.

public static final int DBL_MAX_10_EXP = 308;

Largest int x such that 10x is representable (approximately) as a double.

public static final double DBL_MIN = 2.2250738585072014e-308;

Smallest normalized positive floating-point double.

public static final double LN_DBL_MIN = -708.3964185322641;

Natural logarithm of DBL_MIN.

public static final int DBL_DIG = 15;

Number of decimal digits of precision in a double.

public static final double EBASE = 2.7182818284590452354;

The constant e.

public static final double EULER = 0.57721566490153286;

The Euler-Mascheroni constant.

public static final double RAC2 = 1.41421356237309504880;

The value of
√

2.

public static final double IRAC2 = 0.70710678118654752440;

The value of 1/
√

2.

September 11, 2007 Num 3

public static final double LN2 = 0.69314718055994530941;

The values of ln 2.

public static final double ILN2 = 1.44269504088896340737;

The values of 1/ ln 2.

public static final double MAXINTDOUBLE = 9007199254740992.0;

Largest integer n0 = 253 such that any integer n ≤ n0 is represented exactly as a double.

public static final double MAXTWOEXP = 64;

Powers of 2 up to MAXTWOEXP are stored exactly in the array TWOEXP.

public static final double TWOEXP[]

Contains the precomputed positive powers of 2. One has TWOEXP[j]= 2j , for j = 0, . . . , 64.

public static final double TEN_NEG_POW[]

Contains the precomputed negative powers of 10. One has TEN_NEG_POW[j]= 10−j , for
j = 0, . . . , 16.

Methods

public static double log2 (double x)

Returns log2(x).

public static double log1p (double x)

Deprecated: Use Math.log1p instead. Returns a value equivalent to log(1 + x) accurate
also for small x.

public static double factorial (int n)

Returns the value of n!.

public static double lnFactorial (int n)

Returns the value of ln(n!), the natural logarithm of factorial n. Gives 16 decimals of
precision (relative error < 0.5× 10−15).

public static double lnGamma (double x)

Returns the natural logarithm of the gamma function Γ(x) evaluated at x. Gives 16 decimals
of precision, but is implemented only for x > 0.

public static double digamma (double x)

Returns the logarithmic derivative of the Gamma function ψ(x) = Γ′(x)/Γ(x).

public static double trigamma (double x)

Returns the value of the trigamma function dψ(x)/dx, the derivative of the digamma func-
tion, evaluated at x.

September 11, 2007 Num 4

public static double tetragamma (double x)

Returns the value of the tetragamma function d2ψ(x)/d2x, the second derivative of the
digamma function, evaluated at x.

public static double combination (int n, int s)

Returns the value of
(
n
s

)
, the number of different combinations of s objects amongst n.

Uses an algorithm that prevents overflows (when computing factorials), if possible.

public static double[][] calcMatStirling (int m, int n)

Computes and returns the Stirling numbers of the second kind

M [i, j] =
{
j
i

}
for 0 ≤ i ≤ m and 0 ≤ i ≤ j ≤ n. (1)

public static double volumeSphere (double p, int t)

Returns the volume V of a sphere of radius 1 in t dimensions using the norm Lp. It is given
by the formula

V =
[2Γ(1 + 1/p)]t

Γ (1 + t/p)
, p > 0,

where Γ is the gamma function. The case of the sup norm L∞ is obtained by choosing
p = 0. Restrictions: p ≥ 0 and t ≥ 1.

public static double evalCheby (double S[], int N, double x)

Evaluates a series of Chebyshev polynomials Tj at x over the basic interval [−1, 1], using
the method of Clenshaw [1], i.e., computes and returns

y =
S0

2
+

N∑
j=1

SjTj(x).

public static double evalChebyStar (double S[], int N, double x)

Evaluates a series of shifted Chebyshev polynomials T ∗j at x over the basic interval [0, 1],
using the method of Clenshaw [1], i.e., computes and returns

y =
S0

2
+

N∑
j=1

SjT
∗
j (x).

public static double besselK025 (double x)

Returns the value of K1/4(x), where Kν is the modified Bessel’s function of the second kind.
The relative error on the returned value is less than 0.5× 10−6 for x > 10−300.

public static int multMod (int a, int s, int c, int m)

Returns (as+ c) mod m. Restriction: assumes that a, c, s < m.

September 11, 2007 Num 5

public static long multMod (long a, long s, long c, long m)

Returns (as+ c) mod m. Uses the class ArithmeticMod. Restriction: assumes that a, c, s <
m.

public static double multMod (double a, double s, double c, double m)

Returns (as+ c) mod m. Restriction: assumes that a, s, c are < m and a, s, c,m are < 235.

September 11, 2007 6

TextDataReader

Provides static methods to read data from text files.

package umontreal.iro.lecuyer.util;

public class TextDataReader

public static double[] readDoubleData (Reader input) throws IOException

Reads an array of double-precision values from the reader input. For each line of text
obtained from the given reader, this method trims whitespaces, and parses the remaining
text as a double-precision value. This method ignores every character other than the digits,
the plus and minus signs, the period (.), and the letters e and E. Moreover, lines starting
with a pound sign (#) are considered as comments and thus skipped. The method returns
an array containing all the parsed values.

public static double[] readDoubleData (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readDoubleData to
obtain an array of double-precision values from the resource.

public static double[] readDoubleData (File file) throws IOException

Opens the file referred to by the file object file, and calls readDoubleData to obtain an
array of double-precision values from the file.

public static double[] readDoubleData (String file) throws IOException

Opens the file with name file, and calls readDoubleData to obtain an array of double-
precision values from the file.

public static int[] readIntData (Reader input) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static int[] readIntData (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readIntData to obtain
an array of integers from the resource.

public static int[] readIntData (File file) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static int[] readIntData (String file) throws IOException

This is equivalent to readDoubleData, for reading integers.

public static String[] readStringData (Reader input) throws IOException

Reads an array of strings from the reader input. For each line of text obtained from the
given reader, this method trims leading and trailing whitespaces, and stores the remaining
string. Lines starting with a pound sign (#) are considered as comments and thus skipped.
The method returns an array containing all the read strings.

September 11, 2007 TextDataReader 7

public static String[] readStringData (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readStringData to
obtain an array of integers from the resource.

public static String[] readStringData (File file) throws IOException

This is equivalent to readDoubleData, for reading strings.

public static String[] readStringData (String file) throws IOException

This is equivalent to readDoubleData, for reading strings.

public static double[][] readDoubleData2D (Reader input) throws IOException

Uses the reader input to obtain a 2-dimensional array of double-precision values. For each
line of text obtained from the given reader, this method trims whitespaces, and parses the
remaining text as an array of double-precision values. Every character other than the digits,
the plus (+) and minus (-) signs, the period (.), and the letters e and E are ignored and
can be used to separate numbers on a line. Moreover, lines starting with a pound sign (#)
are considered as comments and thus skipped. The lines containing only a semicolon sign
(;) are considered as empty lines. The method returns a 2D array containing all the parsed
values. The returned array is not always rectangular.

public static double[][] readDoubleData2D (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readDoubleData2D to
obtain a matrix of double-precision values from the resource.

public static double[][] readDoubleData2D (File file) throws IOException

Opens the file referred to by the file object file, and calls readDoubleData2D to obtain a
matrix of double-precision values from the file.

public static double[][] readDoubleData2D (String file) throws IOException

Opens the file with name file, and calls readDoubleData2D to obtain a matrix of double-
precision values from the file.

public static int[][] readIntData2D (Reader input) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

public static int[][] readIntData2D (URL url) throws IOException

Connects to the URL referred to by the URL object url, and calls readDoubleData to
obtain a matrix of integers from the resource.

public static int[][] readIntData2D (File file) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

public static int[][] readIntData2D (String file) throws IOException

This is equivalent to readDoubleData2D, for reading integers.

September 11, 2007 TextDataReader 8

public static String[][] readCSVData (Reader input, char colDelim,
char stringDelim) throws IOException

Reads comma-separated values (CSV) from reader input, and returns a 2D array of strings
corresponding to the read data. Lines are delimited using line separators \r, \n, and \r\n.
Each line contains one or more values, separated by the column delimiter colDelim. If a
string of characters is surrounded with the string delimiter stringDelim, any line separator
and column separator appear in the string. The string delimiter can be inserted in such
a string by putting it twice. Usually, the column delimiter is the comma, and the string
delimiter is the quotation mark. The following example uses these default delimiters.

"One","Two","Three"
1,2,3
"String with "" delimiter",n,m

This produces a matrix of strings with dimensions 3× 3. The first row contains the strings
One, Two, and Three while the second row contains the strings 1, 2, and 3. The first column
of the last row contains the string String with " delimiter.

public static String[][] readCSVData (URL url, char colDelim,
char stringDelim) throws IOException

Connects to the URL referred to by the URL object url, and calls readCSVData to obtain
a matrix of strings from the resource.

public static String[][] readCSVData (File file, char colDelim,
char stringDelim) throws IOException

This is equivalent to readDoubleData2D, for reading strings.

public static String[][] readCSVData (String file, char colDelim,
char stringDelim) throws IOException

This is equivalent to readDoubleData2D, for reading strings.

September 11, 2007 9

PrintfFormat

This class acts like a StringBuffer which defines new types of append methods. It defines
certain functionalities of the ANSI C printf function that also can be accessed through
static methods. The information given here is strongly inspired from the man page of the C
printf function.

Most methods of this class format numbers for the English US locale only. One can use the
Formatter class available in the Java 5 API for performing locale-independent formatting.

package umontreal.iro.lecuyer.util;

public class PrintfFormat implements CharSequence, Appendable

Constructors

public PrintfFormat()

Constructs a new buffer object containing an empty string.

public PrintfFormat (int length)

Constructs a new buffer object with an initial capacity of length.

public PrintfFormat (String str)

Constructs a new buffer object containing the initial string str.

Methods

public PrintfFormat append (String str)

Appends str to the buffer.

public PrintfFormat append (int fieldwidth, String str)

Uses the s static method to append str to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (double x)

Appends x to the buffer.

public PrintfFormat append (int fieldwidth, double x)

Uses the f static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (int fieldwidth, int precision, double x)

Uses the f static method to append x to the buffer. A minimum of fieldwidth characters
will be used with the given precision.

September 11, 2007 PrintfFormat 10

public PrintfFormat append (int x)

Appends x to the buffer.

public PrintfFormat append (int fieldwidth, int x)

Uses the d static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (long x)

Appends x to the buffer.

public PrintfFormat append (int fieldwidth, long x)

Uses the d static method to append x to the buffer. A minimum of fieldwidth characters
will be used.

public PrintfFormat append (int fieldwidth, int accuracy, int precision,
double x)

Uses the format static method with the same four arguments to append x to the buffer.

public PrintfFormat append (char c)

Appends a single character to the buffer.

public void clear()

Clears the contents of the buffer.

public StringBuffer getBuffer()

Returns the StringBuffer associated with that object.

public String toString()

Converts the buffer into a String.

public static String s (String str)

Same as s (0, str). If the string str is null, it returns the string “null”.

public static String s (int fieldwidth, String str)

Formats the string str like the %s in the C printf function. The fieldwidth argument
gives the minimum length of the resulting string. If str is shorter than fieldwidth, it is
left-padded with spaces. If fieldwidth is negative, the string is right-padded with spaces
if necessary. The String will never be truncated. If str is null, it calls s (fieldwidth,
‘‘null’’).

The fieldwidth argument has the same effect for the other methods in this class.

Integers

public static String d (long x)

Same as d (0, 1, x).

September 11, 2007 PrintfFormat 11

public static String d (int fieldwidth, long x)

Same as d (fieldwidth, 1, x).

public static String d (int fieldwidth, int precision, long x)

Formats the long integer x into a string like %d in the C printf function. It converts its
argument to decimal notation, precision gives the minimum number of digits that must
appear; if the converted value requires fewer digits, it is padded on the left with zeros. When
zero is printed with an explicit precision 0, the output is empty.

If the one-argument form is used, a fieldwidth of 0 is assumed and a precision of 1 is
used. If the two-arguments method is used, a precision of 1 is assumed.

public static String format (long x)

Same as d (0, 1, x).

public static String format (int fieldwidth, long x)

Converts a long integer to a String with a minimum length of fieldwidth, the result
is right-padded with spaces if necessary but it is not truncated. If only one argument is
specified, a fieldwidth of 0 is assumed.

public static String formatBase (int b, long x)

Same as formatBase (0, b, x).

public static String formatBase (int fieldwidth, int b, long x)

Converts the integer x to a String representation in base b.

Restrictions: 2 ≤ b ≤ 10

Reals

public static String E (double x)

Same as E (0, 6, x).

public static String E (int fieldwidth, double x)

Same as E (fieldwidth, 6, x).

public static String E (int fieldwidth, int precision, double x)

Formats a double-precision number x like %E in C printf. The double argument is rounded
and converted in the style [-]d.dddE+-dd where there is one digit before the decimal-point
character and the number of digits after it is equal to the precision; if the precision is 0, no
decimal-point character appears. The exponent always contains at least two digits; if the
value is zero, the exponent is 00.

If the one-argument form is used, a fieldwidth of 0 and a precision of 6 are used. If the
two-arguments form is used, a precision of 6 is assumed.

September 11, 2007 PrintfFormat 12

public static String e (double x)

Same as e (0, 6, x).

public static String e (int fieldwidth, double x)

Same as e (fieldwidth, 6, x).

public static String e (int fieldwidth, int precision, double x)

The same as E, except that ‘e’ is used as the exponent character instead of ‘E’.

public static String f (double x)

Same as f (0, 6, x).

public static String f (int fieldwidth, double x)

Same as f (fieldwidth, 6, x).

public static String f (int fieldwidth, int precision, double x)

Formats the double-precision x into a string like %f in C printf. The argument is rounded
and converted to decimal notation in the style [-]ddd.ddd, where the number of digits
after the decimal-point character is equal to the precision specification. If the precision is
explicitly 0, no decimal-point character appears. If a decimal point appears, at least one
digit appears before it.

If the one-argument form is used, a fieldwidth of 0 and a precision of 6 are used. If the
two-arguments form is used, a precision of 6 is assumed.

public static String G (double x)

Same as G (0, 6, x).

public static String G (int fieldwidth, double x)

Same as G (fieldwidth, 6, x).

public static String G (int fieldwidth, int precision, double x)

Formats the double-precision x into a string like %G in C printf. The argument is converted
in style %f or %E. precision specifies the number of significant digits. If it is 0, it is treated
as 1. Style %E is used if the exponent from its conversion is less than −4 or greater than
or equal to precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

If the one-argument form is used, a fieldwidth of 0 and a precision of 6 are used. If the
two-arguments form is used, a precision of 6 is assumed.

public static String g (double x)

Same as g (0, 6, x).

public static String g (int fieldwidth, double x)

Same as g (fieldwidth, 6, x).

September 11, 2007 PrintfFormat 13

public static String g (int fieldwidth, int precision, double x)

The same as G, except that ‘e’ is used in the scientific notation.

public static String format (int fieldwidth, int accuracy, int precision,
double x)

Returns a String containing x. Uses a total of at least fieldwidth positions (including
the sign and point when they appear), accuracy digits after the decimal point and at
least precision significant digits. accuracy and precision must be strictly smaller than
fieldwidth. The number is rounded if necessary. If there is not enough space to format
the number in decimal notation with at least precision significant digits (accuracy or
fieldwidth is too small), it will be converted to scientific notation with at least precision
significant digits. In that case, fieldwidth is increased if necessary.

public static String format (Locale locale, int fieldwidth, int accuracy,
int precision, double x)

This method is equivalent to format, except it formats the given value for the locale locale.

Intervals

public static void formatWithError (int fieldwidth, int fieldwidtherr,
int accuracy, int precision, double x, double error, String[] res)

Stores a string containing x into res[0], and a string containing error into res[1], both
strings being formatted with the same notation. Uses a total of at least fieldwidth positions
(including the sign and point when they appear) for x, fieldwidtherr positions for error,
accuracy digits after the decimal point and at least precision significant digits. accuracy
and precision must be strictly smaller than fieldwidth. The numbers are rounded if nec-
essary. If there is not enough space to format x in decimal notation with at least precision
significant digits (accuracy or fieldwidth are too small), it will be converted to scientific
notation with at least precision significant digits. In that case, fieldwidth is increased if
necessary, and the error is also formatted in scientific notation.

public static void formatWithError (int fieldwidth, int fieldwidtherr,
int precision, double x, double error, String[] res)

Stores a string containing x into res[0], and a string containing error into res[1], both
strings being formatted with the same notation. This calls formatWithError with the
minimal accuracy for which the formatted string for error is non-zero. If error is 0, the
accuracy is 0. If this minimal accuracy causes the strings to be formatted using scientific
notation, this method increases the accuracy until the decimal notation can be used.

public static void formatWithError (Locale locale, int fieldwidth,
int fieldwidtherr, int accuracy, int precision, double x,
double error, String[] res)

This method is equivalent to formatWithError, except that it formats the given value and
error for the locale locale.

September 11, 2007 PrintfFormat 14

public static void formatWithError (Locale locale, int fieldwidth,
int fieldwidtherr, int precision, double x, double error,
String[] res)

This method is equivalent to formatWithError, except that it formats the given value and
error for the locale locale.

September 11, 2007 15

TableFormat

This class provides methods to format arrays and matrices into Strings in different styles.
This could be useful for printing arrays and subarrays, or for putting them in files for further
treatment by other softwares such as Mathematica, Matlab, etc.

package umontreal.iro.lecuyer.util;

public class TableFormat

Formating styles

public static final int PLAIN

Plain text matrix printing style

public static final int MATHEMATICA

Mathematica matrix printing style

public static final int MATLAB

Matlab matrix printing style

Functions to convert tables to String

public static String format (int V[], int n1, int n2, int k, int p)

Formats a String containing the elements n1 to n2 (inclusive) of table V, k elements per
line, p positions per element. If k = 1, the array index will also appear on the left of each
element, i.e., each line i will have the form i V[i].

public static String format (double V[], int n1, int n2,
int k, int p1, int p2, int p3)

Similar to the previous method, but for an array of double’s. Gives at least p1 positions
per element, p2 digits after the decimal point, and at least p3 significant digits.

public static String format (int[][] Mat, int i1, int i2,
int j1, int j2, int w, int p,
int style, String Name)

Formats a submatrix of integers.

public static String format (double[][] Mat, int i1, int i2,
int j1, int j2, int w, int p,
int style, String Name)

Formats the submatrix with lines i1 ≤ i ≤ i2 and columns j1 ≤ j ≤ j2 of the matrix Mat,
using the formatting style style. The elements are formated in w positions each, with a
precision of p digits. The string Name provides an identifier for the submatrix.

September 11, 2007 TableFormat 16

To be treated by Matlab, this string containing the matrix must be copied to a file with
extension .m. If the file is named poil.m, for example, it can be accessed by calling poil in
Matlab. For Mathematica, if the file is named poil, it will be read using << poil;.

September 11, 2007 17

AbstractChrono

AbstractChrono is a class that acts as an interface to the system clock and calculates the
CPU or system time consumed by parts of a program.

Every object of class AbstractChrono acts as an independent stopwatch. Several
AbstractChrono objects can run at any given time. The method init resets the stopwatch
to zero, getSeconds, getMinutes and getHours return its current reading, and format

converts this reading to a String. The returned value includes the execution time of the
method from AbstractChrono.

Below is an example of how it may be used. A stopwatch named timer is constructed
(and initialized). When 2.1 seconds of CPU time have been consumed, the stopwatch is read
and reset to zero. Then, after an additional 330 seconds (or 5.5 minutes) of CPU time, the
stopwatch is read again and the value is printed to the output in minutes.

AbstractChrono timer = new GlobalCPUTimeChrono();
... (suppose 2.1 CPU seconds are used here.)

double t = timer.getSeconds(); // Here, t = 2.1
timer.init();
t = timer.getSeconds(); // Here, t = 0.0

... (suppose 330 CPU seconds are used here.)
t = timer.getMinutes(); // Here, t = 5.5
System.out.println (timer.format()); // Prints: 0:5:30.00

package umontreal.iro.lecuyer.util;

public abstract class AbstractChrono

Timing functions

public void init()

Initializes this AbstractChrono to zero.

public double getSeconds()

Returns the CPU time in seconds used by the program since the last call to init for this
AbstractChrono.

public double getMinutes()

Returns the CPU time in minutes used by the program since the last call to init for this
AbstractChrono.

public double getHours()

Returns the CPU time in hours used by the program since the last call to init for this
AbstractChrono.

September 11, 2007 AbstractChrono 18

public String format()

Converts the CPU time used by the program since its last call to init for this AbstractChrono
to a String in the HH:MM:SS.xx format.

public static String format (double time)

Converts the time time, given in seconds, to a String in the HH:MM:SS.xx format.

September 11, 2007 19

SystemTimeChrono

Extends the AbstractChrono class to compute the total system time using Java’s builtin
System.nanoTime. The system can be used as a rough approximation of the CPU time
taken by a program if no other tasks are executed on the host while the program is running.

package umontreal.iro.lecuyer.util;

public class SystemTimeChrono extends AbstractChrono

Constructor

public SystemTimeChrono()

Constructs a new chrono object and initializes it to zero.

September 11, 2007 20

GlobalCPUTimeChrono

Extends the AbstractChrono class to compute the global CPU time used by the Java Virtual
Machine. This includes CPU time taken by any thread, including the garbage collector, class
loader, etc.

Part of this class is implemented in the C language and the implementation is unfor-
tunately operating system-dependent. The C functions for the current class have been
compiled on a 32-bit machine running Linux and will not work on 64-bit machines. For
a platform-independent CPU timer (valid only with Java–1.5 or later), one should use the
class ThreadCPUTimeChrono which is programmed directly in Java.

package umontreal.iro.lecuyer.util;

public class GlobalCPUTimeChrono extends AbstractChrono

Constructor

public GlobalCPUTimeChrono()

Constructs a Chrono object and initializes it to zero.

September 11, 2007 21

ThreadCPUTimeChrono

Extends the AbstractChrono class to compute the CPU time for a single thread. It is
available only under Java 1.5 which provides platform-independent facilities to get the CPU
time for a single thread through management API.

Note that this chrono might not work properly on some systems running Linux because
of a bug in Sun’s implementation or Linux kernel. For instance, this class unexpectedly
computes the global CPU time under Fedora Core 4, kernel 2.6.17 and JRE version 1.5.0-09.
With Fedora Core 6, kernel 2.6.20, the function is working properly. As a result, one should
not rely on this bug to get the global CPU time.

Note that the above bug does not prevent one from using this chrono to compute the
CPU time for a single-threaded application. In that case, the global CPU time corresponds
to the CPU time of the current thread.

Running timer fonctions when the associated thread is dead will return 0.

package umontreal.iro.lecuyer.util;

public class ThreadCPUTimeChrono extends AbstractChrono

Constructor

public ThreadCPUTimeChrono()

Constructs a ThreadCPUTimeChrono object associated with current thread and initializes it
to zero.

public ThreadCPUTimeChrono(Thread inThread)

Constructs a ThreadCPUTimeChrono object associated with the given Thread variable and
initializes it to zero.

September 11, 2007 22

Chrono

The Chrono class extends the AbstractChrono class and computes the CPU time for the
current thread only. This is the simplest way to use chronos. Classes AbstractChrono,
SystemTimeChrono, GlobalCPUTimeChrono and ThreadCPUTimeChrono provide different
chronos implementations. See these classes to learn more about SSJ chronos, if problems
appear with class Chrono.

package umontreal.iro.lecuyer.util;

public class Chrono extends AbstractChrono

Constructor

public Chrono()

Constructs a Chrono object and initializes it to zero.

Methods

public static Chrono createForSingleThread ()

Creates a Chrono instance adapted for a program using a single thread. Under Java 1.5, this
method returns an instance of ChronoSingleThread which can measure CPU time for one
thread. Under Java versions prior to 1.5, this returns an instance of this class. This method
must not be used to create a timer for a multi-threaded program, because the obtained CPU
times will differ depending on the used Java version.

September 11, 2007 23

ChronoSingleThread

This class is deprecated but kept for compatibility with older versions of SSJ. Chrono
should be used instead of ChronoSingleThread. The ChronoSingleThread class ex-
tends the AbstractChrono class and computes the CPU time for the current thread only.
This is the simplest way to use chronos. Classes AbstractChrono, SystemTimeChrono,
GlobalCPUTimeChrono and ThreadCPUTimeChrono provide different chronos implementa-
tions (see these classes to learn more about SSJ chronos).

package umontreal.iro.lecuyer.util;

public class ChronoSingleThread

Constructor

public ChronoSingleThread()

Constructs a ChronoSingleThread object and initializes it to zero.

September 11, 2007 24

TimeUnit

Represents a time unit for conversion of time durations. A time unit instance can be used
to get information about the time unit and as a selector to perform conversions. Each time
unit has a short name used when representing a time unit, a full descriptive name, and the
number of hours corresponding to one unit.

package umontreal.iro.lecuyer.util;

public enum TimeUnit

enum values

NANOSECOND

Represents a nanosecond which has short name ns.

MICROSECOND

Represents a microsecond which has short name us.

MILLISECOND

Represents a millisecond which has short name ms.

SECOND

Represents a second which has short name s.

MINUTE

Represents a minute which has short name min.

HOUR

Represents an hour which has short name h.

DAY

Represents a day which has short name d.

WEEK

Represents a week which has short name w.

September 11, 2007 TimeUnit 25

Methods

public String getShortName()

Returns the short name representing this unit in a string specifying a time duration.

public String getLongName()

Returns the long name of this time unit.

public String toString()

Calls getLongName.

public double getHours()

Returns this time unit represented in hours. This returns the number of hours corresponding
to one unit.

public static double convert (double value, TimeUnit srcUnit,
TimeUnit dstUnit)

Converts value expressed in time unit srcUnit to a time duration expressed in dstUnit
and returns the result of the conversion.

September 11, 2007 26

ArithmeticMod

This class provides facilities to compute multiplications of scalars, of vectors and of matrices
modulo m. All algorithms are present in three different versions. These allow operations on
double, int and long. The int and long versions work exactly like the double ones.

package umontreal.iro.lecuyer.util;

public class ArithmeticMod

Methods using double

public static double multModM (double a, double s, double c, double m)

Computes (a× s+ c) mod m. Where m must be smaller than 235. Works also if s or c are
negative. The result is always positive (and thus always between 0 and m - 1).

public static void matVecModM (double A[][], double s[], double v[],
double m)

Computes the result of A × s mod m and puts the result in v. Where s and v are both
column vectors. This method works even if s = v.

public static void matMatModM (double A[][], double B[][], double C[][],
double m)

Computes A× B mod m and puts the result in C. Works even if A = C, B = C or A = B = C.

public static void matTwoPowModM (double A[][], double B[][], double m,
int e)

Computes A2e mod m and puts the result in B. Works even if A = B.

public static void matPowModM (double A[][], double B[][], double m,
int c)

Computes Ac mod m and puts the result in B. Works even if A = B.

Methods using int

public static int multModM (int a, int s, int c, int m)

Computes (a×s+c) mod m. Works also if s or c are negative. The result is always positive
(and thus always between 0 and m - 1).

public static void matVecModM (int A[][], int s[], int v[], int m)

Exactly like matVecModM using double, but with int instead of double.

public static void matMatModM (int A[][], int B[][], int C[][], int m)

Exactly like matMatModM using double, but with int instead of double.

September 11, 2007 ArithmeticMod 27

public static void matTwoPowModM (int A[][], int B[][], int m, int e)

Exactly like matTwoPowModM using double, but with int instead of double.

public static void matPowModM (int A[][], int B[][], int m, int c)

Exactly like matPowModM using double, but with int instead of double.

Methods using long

public static long multModM (long a, long s, long c, long m)

Computes (a×s+c) mod m. Works also if s or c are negative. The result is always positive
(and thus always between 0 and m - 1).

public static void matVecModM (long A[][], long s[], long v[], long m)

Exactly like matVecModM using double, but with long instead of double.

public static void matMatModM (long A[][], long B[][], long C[][], long m)

Exactly like matMatModM using double, but with long instead of double.

public static void matTwoPowModM (long A[][], long B[][], long m, int e)

Exactly like matTwoPowModM using double, but with long instead of double.

public static void matPowModM (long A[][], long B[][], long m, int c)

Exactly like matPowModM using double, but with long instead of double.

September 11, 2007 28

BitVector

This class implements vectors of bits and the operations needed to use them. The vectors
can be of arbitrary length. The operations provided are all the binary operations available
to the int and long primitive types in Java.

All bit operations are present in two forms: a normal form and a self form. The normal
form returns a newly created object containing the result, while the self form puts the
result in the calling object (this). The return value of the self form is the calling object
itself. This is done to allow easier manipulation of the results, making it possible to chain
operations.

package umontreal.iro.lecuyer.util;

public class BitVector implements Serializable, Cloneable

Constructors

public BitVector (int length)

Creates a new BitVector of length length with all its bits set to 0.

public BitVector (int[] vect, int length)

Creates a new BitVector of length length using the data in vect. Component vect[0]
makes the 32 lowest order bits, with vect[1] being the 32 next lowest order bits, and so on.
The normal bit order is then used to fill the 32 bits (the first bit is the lowest order bit and
the last bit is largest order bit). Note that the sign bit is used as the largest order bit.

public BitVector (int[] vect)

Creates a new BitVector using the data in vect. The length of the BitVector is always
equals to 32 times the length of vect.

public BitVector (BitVector that)

Creates a copy of the BitVector that.

Methods

public Object clone()

Creates a copy of the BitVector.

public boolean equals (BitVector that)

Verifies if two BitVector’s have the same length and the same data.

public int size()

Returns the length of the BitVector.

September 11, 2007 BitVector 29

public void enlarge (int size, boolean filling)

Resizes the BitVector so that its length is equal to size. If the BitVector is enlarged,
then the newly added bits are given the value 1 if filling is set to true and 0 otherwise.

public void enlarge (int size)

Resizes the BitVector so that its length is equal to size. Any new bit added is set to 0.

public boolean getBool (int pos)

Gives the value of the bit in position pos. If the value is 1, returns true; otherwise, returns
false.

public void setBool (int pos, boolean value)

Sets the value of the bit in position pos. If value is equal to true, sets it to 1; otherwise,
sets it to 0.

public int getInt (int pos)

Returns an int containing all the bits in the interval [pos× 32, pos× 32 + 31].

public String toString()

Returns a string containing all the bits of the BitVector, starting with the highest order
bit and finishing with the lowest order bit. The bits are grouped by groups of 8 bits for ease
of reading.

public BitVector not()

Returns a BitVector which is the result of the not operator on the current BitVector. The
not operator is equivalent to the ~ operator in Java and thus swap all bits (bits previously
set to 0 become 1 and bits previously set to 1 become 0).

public BitVector selfNot()

Applies the not operator on the current BitVector and returns it.

public BitVector xor (BitVector that)

Returns a BitVector which is the result of the xor operator applied on this and that.
The xor operator is equivalent to the ^ operator in Java. All bits which were set to 0 in
one of the vector and to 1 in the other vector are set to 1. The others are set to 0. This is
equivalent to the addition in modulo 2 arithmetic.

public BitVector selfXor (BitVector that)

Applies the xor operator on this with that. Stores the result in this and returns it.

public BitVector and (BitVector that)

Returns a BitVector which is the result of the and operator with both the this and that
BitVector’s. The and operator is equivalent to the & operator in Java. Only bits which are
set to 1 in both this and that are set to 1 in the result, all the others are set to 0.

public BitVector selfAnd (BitVector that)

Applies the and operator on this with that. Stores the result in this and returns it.

September 11, 2007 BitVector 30

public BitVector or (BitVector that)

Returns a BitVector which is the result of the or operator with both the this and that
BitVector’s. The or operator is equivalent to the | operator in Java. Only bits which are
set to 0 in both this and that are set to to 0 in the result, all the others are set to 1.

public BitVector selfOr (BitVector that)

Applies the or operator on this with that. Stores the result in this and returns it.

public BitVector shift (int j)

Returns a BitVector equal to the original with all the bits shifted j positions to the right if
j is positive, and shifted j positions to the left if j is negative. The new bits that appears
to the left or to the right are set to 0. If j is positive, this operation is equivalent to the >>>
operator in Java, otherwise, it is equivalent to the << operator.

public BitVector selfShift (int j)

Shift all the bits of the current BitVector j positions to the right if j is positive, and j
positions to the left if j is negative. The new bits that appears to the left or to the rigth
are set to 0. Returns this.

public boolean scalarProduct (BitVector that)

Returns the scalar product of two BitVector’s modulo 2. It returns true if there is an odd
number of bits with a value of 1 in the result of the and operator applied on this and that,
and returns false otherwise.

September 11, 2007 31

BitMatrix

This class implements matrices of bits of arbitrary dimensions. Basic facilities for bits
operations, multiplications and exponentiations are provided.

package umontreal.iro.lecuyer.util;

public class BitMatrix implements Serializable, Cloneable

Constructors

public BitMatrix (int r, int c)

Creates a new BitMatrix with r rows and c columns filled with 0’s.

public BitMatrix (BitVector[] rows)

Creates a new BitMatrix using the data in rows. Each of the BitVector will be one of the
rows of the BitMatrix.

public BitMatrix (int[][] data, int r, int c)

Creates a new BitMatrix with r rows and c columns using the data in data. Note that the
orders of the bits for the rows are using the same order than for the BitVector. This does
mean that the first bit is the lowest order bit of the last int in the row and the last bit is
the highest order bit of the first int int the row.

public BitMatrix (BitMatrix that)

Copy constructor.

Methods

public Object clone()

Creates a copy of the BitMatrix.

public boolean equals (BitMatrix that)

Verifies that this and that are strictly identical. They must both have the same dimensions
and data.

public String toString()

Creates a String containing all the data of the BitMatrix. The result is displayed in a
matrix form, with each row being put on a different line. Note that the bit at (0,0) is at the
upper left of the matrix, while the bit at (0) in a BitVector is the least significant bit.

public String printData()

Creates a String containing all the data of the BitMatrix. The data is displayed in the same
format as are the int[][] in Java code. This allows the user to print the representation of

September 11, 2007 BitMatrix 32

a BitMatrix to be put, directly in the source code, in the constructor BitMatrix(int[][],
int, int). The output is not designed to be human-readable.

public int numRows()

Returns the number of rows of the BitMatrix.

public int numColumns()

Returns the number of columns of the BitMatrix.

public boolean getBool (int row, int column)

Returns the value of the bit in the specified row and column. If the value is 1, return true.
If it is 0, return false.

public void setBool (int row, int column, boolean value)

Changes the value of the bit in the specified row and column. If value is true, changes it
to 1. If value is false changes it to 0.

public BitMatrix transpose()

Returns the transposed matrix. The rows and columns are interchanged.

public BitMatrix not()

Returns the BitMatrix resulting from the application of the not operator on the original
BitMatrix. The effect is to swap all the bits of the BitMatrix, turning all 0 into 1 and all
1 into 0.

public BitMatrix and (BitMatrix that)

Returns the BitMatrix resulting from the application of the and operator on the original
BitMatrix and that. Only bits which were at 1 in both BitMatrix are set at 1 in the result.
All others are set to 0.

public BitMatrix or (BitMatrix that)

Returns the BitMatrix resulting from the application of the or operator on the original
BitMatrix and that. Only bits which were at 0 in both BitMatrix are set at 0 in the
result. All others are set to 1.

public BitMatrix xor (BitMatrix that)

Returns the BitMatrix resulting from the application of the xor operator on the original
BitMatrix and that. Only bits which were at 1 in only one of the two BitMatrix are set
at 1 in the result. All others are set to 0.

public BitVector multiply (BitVector vect)

Multiplies the column BitVector by a BitMatrix and returns the result. The result is A×v,
where A is the BitMatrix, and v is the BitVector.

public int multiply (int vect)

Multiplies vect, seen as a column BitVector, by a BitMatrix. (See BitVector to see the
conversion between int and BitVector.) The result is A × v, where A is the BitMatrix,
and v is the BitVector.

September 11, 2007 BitMatrix 33

public BitMatrix multiply (BitMatrix that)

Multiplies two BitMatrix’s together. The result is A×B, where A is the this BitMatrix
and B is the that BitMatrix.

public BitMatrix power (long p)

Raises the BitMatrix to the power p.

public BitMatrix power2e (int e)

Raises the BitMatrix to power 2e.

Nested Class

public class IncompatibleDimensionException extends RuntimeException

Runtime exception raised when the dimensions of the BitMatrix are not appropriate for the
operation.

September 11, 2007 34

RootFinder

This class provides methods to solve non-linear equations.

package umontreal.iro.lecuyer.util;

public class RootFinder

Methods

public static double brentDekker (double a, double b,
MathFunction f, double tol)

Computes a root x of the function in f using the Brent-Dekker method. The interval [a, b]
must contain the root x. The calculations are done with an approximate relative precision
tol. Returns x such that f(x) = 0.

September 11, 2007 35

MultivariateFunction

Represents a function of multiple variables. This interface specifies a method evaluate

that computes a g(x) function, where x = (x0, . . . , xd−1) ∈ Rd. It also specifies a method
evaluateGradient for computing its gradient ∇g(x).

The dimension d can be fixed or variable. When d is fixed, the methods specified by this
interface always take the same number of arguments. This is the case, for example, with a
ratio of two variables. When d is variable, the implementation can compute the function for
a vector x of any length. This can happen for a product or sum of variables.

The methods of this interface take a variable number of arguments to accomodate the
common case of fixed dimension with more convenience; the programmer can call the method
without creating an array. For the generic case, however, one can replace the arguments with
an array.

package umontreal.iro.lecuyer.util;

public interface MultivariateFunction

public int getDimension();

Returns d, the dimension of the function computed by this implementation. If the dimension
is not fixed, this method must return a negative value.

public double evaluate (double... x);

Computes the function g(boldx) for the vector x. The length of the given array must corre-
spond to the dimension of this function. The method must compute and return the result of
the function without modifying the elements in x since the array can be reused for further
computation.

public double evaluateGradient (int i, double... x);

Computes ∂g(boldx)/∂xi, the derivative of g(boldx) with respect to xi. The length of the
given array must correspond to the dimension of this function. The method must compute
and return the result of the derivative without modifying the elements in x since the array
can be reused for further computations, e.g., the gradient ∇g(x).

September 11, 2007 36

RatioFunction

Represents a function computing a ratio of two values.

package umontreal.iro.lecuyer.util;

public class RatioFunction implements MultivariateFunction

Constructors

public RatioFunction()

Constructs a new ratio function.

public RatioFunction (double zeroOverZero)

Constructs a new ratio function that returns zeroOverZero for the special case of 0/0.
See the getZeroOverZeroValue method for more information. The default value of
zeroOverZero is Double.NaN.

Methods

public double getZeroOverZeroValue()

Returns the value returned by evaluate in the case where the 0/0 function is calculated.
The default value for 0/0 is Double.NaN.

Generally, 0/0 is undefined, and therefore associated with the Double.NaN constant, meaning
not-a-number. However, in certain applications, it can be defined differently to accomodate
some special cases. For exemple, in a queueing system, if there are no arrivals, no customers
are served, lost, queued, etc. As a result, many performance measures of interest turn out
to be 0/0. Specifically, the loss probability, i.e., the ratio of lost customers over the number
of arrivals, should be 0 if there is no arrival; in this case, 0/0 means 0. On the other hand,
the service level, i.e., the fraction of customers waiting less than a fixed threshold, could be
fixed to 1 if there is no arrival.

public void setZeroOverZeroValue (double zeroOverZero)

Sets the value returned by evaluate for the undefined function 0/0 to zeroOverZero. See
getZeroOverZeroValue for more information.

September 11, 2007 37

Misc

This class provides miscellaneous functions that are hard to classify. Some may be moved
to another class in the future.

package umontreal.iro.lecuyer.util;

public class Misc

Methods

public static double quickSelect (double[] t, int n, int k)

Returns the kth smallest item of the array t of size n.

public static int quickSelect (int[] t, int n, int k)

Returns the kth smallest item of the array t of size n.

public static int getTimeInterval (double[] times, int start,
int end, double t)

Returns the index of the time interval corresponding to time t. Let t0 ≤ · · · ≤ tn be
simulation times stored in a subset of times. This method uses binary search to determine
the smallest value i for which ti ≤ t < ti+1, and returns i. The value of ti is stored in
times[start+i] whereas n is defined as end - start. If t < t0, this returns −1. If t ≥ tn,
this returns n. Otherwise, the returned value is greater than or equal to 0, and smaller than
or equal to n− 1. start and end are only used to set lower and upper limits of the search
in the times array; the index space of the returned value always starts at 0. Note that if
the elements of times with indices start, . . . , end are not sorted in non-decreasing order,
the behavior of this method is undefined.

public static void interpol (int n, double[] X, double[] Y, double[] C)

Given the n + 1 distinct points (x0, y0), (x1, y1), . . . , (xn, yn) [with X[0] = xi and similarly
for Y and C], this function computes the n+1 coefficients C[i] of the Newton interpolating
polynomial P (x) of degree n passing through these points:

P (x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·+ cn(x− x0)(x− x1) · · · (x− xn−1).

public static double evalPoly (int n, double[] X, double[] C, double z)

Given n, X and C as described in interpol(n, X, Y, C), this function returns the value
of the interpolating polynomial evaluated at z.

September 11, 2007 38

JDBCManager

This class provides some facilities to connect to a SQL database and to retrieve data stored
in it. JDBC provides a standardized interface for accessing a database independently of a
specific database management system (DBMS). The user of JDBC must create a Connection

object used to send SQL queries to the underlying DBMS, but the creation of the connection
adds a DBMS-specific portion in the application. This class helps the developer in moving
the DBMS-specific information out of the source code by storing it in a properties file. The
methods in this class can read such a properties file and establish the JDBC connection.
The connection can be made by using a DataSource obtained through a JNDI server, or by
a JDBC URI associated with a driver class. Therefore, the properties used to connect to the
database must be a JNDI name (jdbc.jndi-name), or a driver to load (jdbc.driver) with
the URI of a database (jdbc.uri).

jdbc.driver=com.mysql.jdbc.Driver

jdbc.uri=jdbc:mysql://mysql.iro.umontreal.ca/database?user=foo&password=bar

The connection is established using the connectToDatabase method. Shortcut methods
are also available to read the properties from a file or a resource before establishing the
connection. This class also provides shortcut methods to read data from a database and to
copy the data into Java arrays.

package umontreal.iro.lecuyer.util;

public class JDBCManager

Methods

public static Connection connectToDatabase (Properties prop)
throws SQLException

Connects to the database using the properties prop and returns the an object representing
the connection. The properties stored in prop must be a JNDI name (jdbc.jndi-name),
or the name of a driver (jdbc.driver) to load and the URI of the database (jdbc.uri).
When a JNDI name is given, this method constructs a context using the nullary constructor
of InitialContext, uses the context to get a DataSource object, and uses the data source
to obtain a connection. This method assumes that JNDI is configured correctly; see the
class InitialContext for more information about configuring JNDI. If no JNDI name is
specified, the method looks for a JDBC URI. If a driver class name is specified along with the
URI, the corresponding driver is loaded and registered with the JDBC DriverManager. The
driver manager is then used to obtain the connection using the URI. This method throws an
SQLException if the connection failed and an IllegalArgumentException if the properties
do not contain the required values.

September 11, 2007 JDBCManager 39

public static Connection connectToDatabase (InputStream is)
throws IOException, SQLException

Returns a connection to the database using the properties read from stream is. This method
loads the properties from the given stream, and calls connectToDatabase to establish the
connection.

public static Connection connectToDatabase (URL url)
throws IOException, SQLException

Equivalent to connectToDatabase (url.openStream()).

public static Connection connectToDatabase (File file)
throws IOException, SQLException

Equivalent to connectToDatabase (new FileInputStream (file)).

public static Connection connectToDatabase (String fileName)
throws IOException, SQLException

Equivalent to connectToDatabase (new FileInputStream (fileName)).

public static Connection connectToDatabaseFromResource (String resource)
throws IOException, SQLException

Uses connectToDatabase with the stream obtained from the resource resource. This
method searches the file resource on the class path, opens the first resource found, and
extracts properties from it. It then uses connectToDatabase to establish the connection.

public static double[] readDoubleData (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into an array of double-precision values. This
method uses the statement stmt to execute the given query, and assumes that the first
column of the result set contains double-precision values. Each row of the result set then
becomes an element of an array of double-precision values which is returned by this method.
This method throws an SQLException if the query is not valid.

public static double[] readDoubleData (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into an array of double-precision values. This
method uses the active connection connection to create a statement, and passes this state-
ment, with the query, to readDoubleData, which returns an array of double-precision values.

public static double[] readDoubleData (Statement stmt, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readDoubleData (stmt, "SELECT column FROM table").

public static double[] readDoubleData (Connection connection,
String table, String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readDoubleData (connection, "SELECT column FROM table").

September 11, 2007 JDBCManager 40

public static int[] readIntData (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into an array of integers. This method uses the
statement stmt to execute the given query, and assumes that the first column of the result
set contains integer values. Each row of the result set then becomes an element of an array
of integers which is returned by this method. This method throws an SQLException if the
query is not valid. The given statement stmt must not be set up to produce forward-only
result sets.

public static int[] readIntData (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into an array of integers. This method uses the
active connection connection to create a statement, and passes this statement, with the
query, to readIntData, which returns an array of integers.

public static int[] readIntData (Statement stmt, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readIntData (stmt, "SELECT column FROM table").

public static int[] readIntData (Connection connection, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readIntData (connection, "SELECT column FROM table").

public static Object[] readObjectData (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into an array of objects. This method uses the
statement stmt to execute the given query, and extracts values from the first column of
the obtained result set by using the getObject method. Each row of the result set then
becomes an element of an array of objects which is returned by this method. The type of
the objects in the array depends on the column type of the result set, which depends on the
database and query. This method throws an SQLException if the query is not valid. The
given statement stmt must not be set up to produce forward-only result sets.

public static Object[] readObjectData (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into an array of objects. This method uses the
active connection connection to create a statement, and passes this statement, with the
query, to readObjectData, which returns an array of integers.

public static Object[] readObjectData (Statement stmt, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readObjectData (stmt, "SELECT column FROM table").

September 11, 2007 JDBCManager 41

public static Object[] readObjectData (Connection connection, String table,
String column)

throws SQLException

Returns the values of the column column of the table table. This method is equivalent to
readObjectData (connection, "SELECT column FROM table").

public static double[][] readDoubleData2D (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of double-precision
values. This method uses the statement stmt to execute the given query, and assumes that
the columns of the result set contain double-precision values. Each row of the result set then
becomes a row of a 2D array of double-precision values which is returned by this method.
This method throws an SQLException if the query is not valid. The given statement stmt
must not be set up to produce forward-only result sets.

public static double[][] readDoubleData2D (Connection connection,
String query)

throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of double-precision
values. This method uses the active connection connection to create a statement, and
passes this statement, with the query, to readDoubleData2D, which returns a 2D array of
double-precision values.

public static double[][] readDoubleData2DTable (Statement stmt,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readDoubleData2D (stmt, "SELECT * FROM table").

public static double[][] readDoubleData2DTable (Connection connection,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readDoubleData2D (connection, "SELECT * FROM table").

public static int[][] readIntData2D (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of integers. This
method uses the statement stmt to execute the given query, and assumes that the columns
of the result set contain integers. Each row of the result set then becomes a row of a 2D array
of integers which is returned by this method. This method throws an SQLException if the
query is not valid. The given statement stmt must not be set up to produce forward-only
result sets.

public static int[][] readIntData2D (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of integers. This
method uses the active connection connection to create a statement, and passes this state-
ment, with the query, to readIntData2D, which returns a 2D array of integers.

September 11, 2007 JDBCManager 42

public static int[][] readIntData2DTable (Statement stmt, String table)
throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readIntData2D (stmt, "SELECT * FROM table").

public static int[][] readIntData2DTable (Connection connection,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readIntData2D (connection, "SELECT * FROM table").

public static Object[][] readObjectData2D (Statement stmt, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of objects. This
method uses the statement stmt to execute the given query, and extracts values from the
obtained result set by using the getObject method. Each row of the result set then becomes
a row of a 2D array of objects which is returned by this method. The type of the objects in
the 2D array depends on the column types of the result set, which depend on the database
and query. This method throws an SQLException if the query is not valid. The given
statement stmt must not be set up to produce forward-only result sets.

public static Object[][] readObjectData2D (Connection connection, String query)
throws SQLException

Copies the result of the SQL query query into a rectangular 2D array of integers. This
method uses the active connection connection to create a statement, and passes this state-
ment, with the query, to readObjectData2D, which returns a 2D array of integers.

public static Object[][] readObjectData2DTable (Statement stmt, String table)
throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readObjectData2D (stmt, "SELECT * FROM table").

public static Object[][] readObjectData2DTable (Connection connection,
String table)

throws SQLException

Returns the values of the columns of the table table. This method is equivalent to
readObjectData2D (connection, "SELECT * FROM table").

September 11, 2007 43

ClassFinder

Utility class used to convert a simple class name to a fully qualified class object. The
Class class can be used to obtain information about a class (its name, its fields, methods,
constructors, etc.), and to construct objects, even if the exact class is known at runtime only.
It provides a forName static method converting a string to a Class, but the given string
must be a fully qualified name.

Sometimes, configuration files may need to contain Java class names. After they are
extracted from the file, these class names are given to forName to be converted into Class

objects. Unfortunately, only fully qualified class names will be accepted as input, which
clutters configuration files, especially if long package names are used. This class permits the
definition of a set of import declarations in a way similar to the Java Language Specification
[2]. It provides methods to convert a simple class name to a Class object and to generate a
simple name from a Class object, based on the import rules.

The first step for using a class finder is to construct an instance of this class. Then, one
needs to retrieve the initially empty list of import declarations by using getImports, and
update it with the actual import declarations. Then, the method findClass can find a class
using the import declarations. For example, the following code retrieves the class object for
the List class in package java.util

ClassFinder cf = new ClassFinder();
cf.getImports().add ("java.util.*");
Class<?> listClass = cf.findClass ("List");

package umontreal.iro.lecuyer.util;

public class ClassFinder implements Cloneable, java.io.Serializable

private List<List<String>> imports

Contains the saved import lists. Each element of this list is a nested List containing
String’s, each string containing the fully qualified name of an imported package or class.

public ClassFinder()

Constructs a new class finder with an empty list of import declarations.

public List<String> getImports()

Returns the current list of import declarations. This list may contain only String’s of the
form java.class.name or java.package.name.*.

public void saveImports()

Saves the current import list on the import stack. This method makes a copy of the list re-
turned by getImports and puts it on top of a stack to be restored later by restoreImports.

public void restoreImports()

Restores the list of import declarations. This method removes the last list of import decla-
rations from the stack. If the stack contains only one list, this list is cleared.

September 11, 2007 ClassFinder 44

public Class<?> findClass (String name) throws
ClassNotFoundException, NameConflictException

Tries to find the class corresponding to the simple name name. The method first considers
the argument as a fully qualified class name and calls forName (name). If the class cannot be
found, it considers the argument as a simple name. A simple name refers to a class without
specifying the package declaring it. To convert simple names to qualified names, the method
iterates through all the strings in the list returned by getImports, applying the same rules
as a Java compiler to resolve the class name. However, if an imported package or class does
not exist, it will be ignored whereas the compiler would stop with an error.

For the class with simple name name to be loaded, it must be imported explicitly (single-type
import) or one of the imported packages must contain it (type import on-demand). If the
class with name name is imported explicitly, this import declaration has precedence over
any imported packages. If several import declaration match the given simple name, e.g.,
if several fully qualified names with the same simple name are imported, or if a class with
simple name name exists in several packages, a NameConflictException is thrown.

public String getSimpleName (Class<?> cls)

Returns the simple name of the class cls that can be used when the imports contained in
this class finder are used. For example, if java.lang.String.class is given to this method,
String is returned if java.lang.* is among the import declarations.

Note: this method does not try to find name conflicts. This operation is performed by
findClass only. For example, if the list of imported declarations contains foo.bar.* and
test.Foo, and the simple name for test.Foo is queried, the method returns Foo even if the
package foo.bar contains a Foo class.

public ClassFinder clone()

Clones this class finder, and copies its lists of import declarations.

September 11, 2007 45

NameConflictException

This exception is thrown by a ClassFinder when two or more fully qualified class names
can be associated with a simple class name.

package umontreal.iro.lecuyer.util;

public class NameConflictException extends Exception

Constructors

public NameConflictException()

Constructs a new name conflict exception.

public NameConflictException (String message)

Constructs a new name conflict exception with message message.

public NameConflictException (ClassFinder finder, String name,
String message)

Constructs a new name conflict exception with class finder finder, simple name name, and
message message.

Methods

public ClassFinder getClassFinder()

Returns the class finder associated with this exception.

public String getName()

Returns the simple name associated with this exception.

September 11, 2007 46

Introspection

Provides utility methods for introspection using Java Reflection API.

package umontreal.iro.lecuyer.util;

public class Introspection

public static Method[] getMethods (Class<?> c)

Returns all the methods declared and inherited by a class. This is similar to getMethods
except that it enumerates non-public methods as well as public ones. This method uses
getDeclaredMethods to get the declared methods of c. It also gets the declared methods
of superclasses. If a method is defined in a superclass and overriden in a subclass, only the
overriden method will be in the returned array.

Note that since this method uses getDeclaredMethods, it can throw a SecurityException
if a security manager is present.

public static boolean sameSignature (Method m1, Method m2)

Determines if two methods m1 and m2 share the same signature. For the signature to be
identical, methods must have the same number of parameters and the same parameter types.

public static Field[] getFields (Class<?> c)

Returns all the fields declared and inherited by a class. This is similar to getFields
except that it enumerates non-public fields as well as public ones. This method uses
getDeclaredFields to get the declared fields of c. It also gets the declared fields of super-
classes and implemented interfaces.

Note that since this method uses getDeclaredFields, it can throw a SecurityException
if a security manager is present.

public static Method getMethod (Class<?> c, String name, Class[] pt)
throws NoSuchMethodException

This is like getMethod, except that it can return non-public methods.

public static Field getField (Class<?> c, String name)
throws NoSuchFieldException

This is like getField, except that it can return non-public fields.

Note that since this method uses getDeclaredField, it can throw a SecurityException if
a security manager is present.

public static String getFieldName (Object val)

Returns the field name corresponding to the value of an enumerated type val. This method
gets the class of val and scans its fields to find a public static and final field containing val.
If such a field is found, its name is returned. Otherwise, null is returned.

September 11, 2007 Introspection 47

public static <T> T valueOf (Class<T> cls, String name)

Returns the field of class cls corresponding to the name name. This method looks for a
public, static, and final field with name name and returns its value. If no appropriate field
can be found, an IllegalArgumentException is thrown.

public static <T> T valueOfIgnoreCase (Class<T> cls, String name)

Similar to valueOf (cls, name), with case insensitive field name look-up. If cls defines
several fields with the same case insensitive name name, an IllegalArgumentException is
thrown.

September 11, 2007 48

TransformingList

Represents a list that dynamically transforms the elements of another list. This abstract
class defines a list containing an inner list of elements of a certain type, and provides facilities
to convert these inner elements to outer elements of another type. A concrete subclass simply
needs to provide methods for converting between the inner and the outer types.

package umontreal.iro.lecuyer.util;

public abstract class TransformingList<OE,IE> extends AbstractList<OE>

public TransformingList (List<IE> fromList)

Creates a new transforming list wrapping the inner list fromList.

public abstract OE convertFromInnerType (IE e)

Converts an element in the inner list to an element of the outer type.

public abstract IE convertToInnerType (OE e)

Converts an element of the outer type to an element for the inner list.

September 11, 2007 REFERENCES 49

References

[1] C. W. Clenshaw. Chebychev series for mathematical functions. National Physical
Laboratory Mathematical Tables 5, Her Majesty’s Stationery Office, London, 1962.

[2] J. Gosling, B. Joy, and G. L. Steele Jr. The Java Language Specification. Addison-
Wesley, second edition, 2000. Also available from http://java.sun.com/docs/books/

jls.

[3] D. E. Knuth. The Art of Computer Programming, Vol. 1. Addison-Wesley, Reading,
MA, second edition, 1973.

http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/jls

	Num
	TextDataReader
	PrintfFormat
	TableFormat
	AbstractChrono
	SystemTimeChrono
	GlobalCPUTimeChrono
	ThreadCPUTimeChrono
	Chrono
	ChronoSingleThread
	TimeUnit
	ArithmeticMod
	BitVector
	BitMatrix
	RootFinder
	MultivariateFunction
	RatioFunction
	Misc
	JDBCManager
	ClassFinder
	NameConflictException
	Introspection
	TransformingList

