SSJ: Stochastic Simulation in Java

Overview

Version: September 12, 2007

SSJ is a Java library for stochastic simulation, developed in the Département d’Informa-
tique et de Recherche Opérationnelle (DIRO), at the Université de Montréal. It provides
facilities for generating uniform and nonuniform random variates, computing different mea-
sures related to probability distributions, performing goodness-of-fit tests, applying quasi-
Monte Carlo methods, collecting statistics (elementary), and programming discrete-event
simulations with both events and processes. Additional Java packages are also developed on

top of SSJ for simulation applications in finance, call centers management, communication
networks, etc.



September 12, 2007 1

Introduction and overview

Simulation models can be implemented in many ways [4]. One can use general-purpose pro-
gramming languages such as FORTRAN, C, C++, Java, or specialized simulation languages
such as GPSS, SIMAN, and SIMSCRIPT. The general-purpose languages may be more fa-
miliar to the programmer, but usually do not have the necessary built-in tools to perform
simulation. Implementing a model can become complex and tedious. Specialized simulation
languages must be learned before models can be implemented, and they are not as widely
available and supported as the most popular general-purpose languages.

Over the past few decades, commercial simulation tools with point-and-click graphical
user interfaces such as Arena, Automod, Witness, and many others, have become by far the
most widely used tools to develop simulation models. Among their main advantages, these
tools do not require knowledge of a programming language, provide graphical animation,
have automatic facilities to collect statistics and perform experiments, and can sometimes
perform optimization to a certain extent. On the other hand, these specialized simulation
tools, especially the point-and-click tools, are often too restrictive, because they are usually
targeted at a limited class of models. With these tools, simulating a system whose logic is
complicated or unconventional may become quite difficult. All the graphical and automatic
devices also tend to slow down the simulation significantly. Fast execution times are impor-
tant for example in a context of optimization, where thousands of variants of a base system
may have to be simulated, or for on-line applications where a fast response time is required.

SSJ is an organized set of packages whose purpose is to facilitate simulation programming
in the Java language. A first description was given in [5]. Some of the tools can also be used
for modeling (e.g., selecting and fitting distributions).  As these lines are being written,
SSJ is still growing. Several new packages, classes, and methods will certainly be added in
forthcoming years and others will be refined.

The facilities offered are grouped into different packages, each one having its own user’s
guide, in the form of a PDF file. There is also a set of commented examples of simulation
programs in a separate directory with its own guide. Programs are given for some of the
examples used in the books of Law and Kelton [4] and Glasserman [I], for instance. The
best way to learn about SSJ, at the beginning, is probably to study these examples and
refer to the user guides of the different packages when needed. The PDF files are the official
documentation. There is also a simplified on-line documentation in HTML format, produced
via javadoc.

The packages currently offered are the following:

util contains utility classes used in the implementation of SSJ, and which are of-
ten useful elsewhere. For example, there are timers (for CPU usage), utilities
to read or format numbers and arrays from/to text, operations on binary vec-
tors and matrices, some mathematical functions and constants, root-finding
tools, facilities for SQL database interface, and so on.

probdist contains a set of Java classes providing methods to compute mass,
density, distribution, complementary distribution, and inverse distribution



September 12, 2007 2

functions for many discrete and continuous probability distributions, as well
as estimating the parameters of these distributions.

probdistmulti contains a set of Java classes providing methods to compute
mass, density, distribution, complementary distribution, for some multi-
dimensionnal discrete and continuous probability distributions.

randvar provides a collection of classes for non-uniform random variate genera-
tion, primarily from standard distributions.

randvarmulti provides a collection of classes for random number generators for
some multi-dimensional distributions.

rong provides facilities for generating uniform random numbers over the interval
(0, 1), or over a given range of integer values, and other types of simple random
objects such as random permutations.

hups provides classes implementing highly uniform point sets and sequences
(HUPS), also called low-discrepancy sets and sequences, and tools for their
randomization.

gof contains tools for performing univariate goodness-of-fit (GOF) statistical
tests.

stat provides elementary tools for collecting statistics and computing confidence
intervals.

stat.list this subpackage of stat provides support to manage lists of statistical
collectors.

simevents provides and manages the event-driven simulation facilities as well as
the simulation clock. Can manage several simulations in parallel, in the same
program.

simevents.eventlist this subpackage of simevents offers several kinds of event
list implementations.

simprocs provides and manages the process-driven simulation facilities.

functions contains classes that allow one to pass an arbitrary function of one
variable as argument to a method and to apply elementary mathematical
operations on generic functions.

Dependence on other libraries

SSJ uses some classes from the Colt library. The probdist package also use an external
linear algebra library and an optimization package to compute maximum likelihood estima-
tors. Finally, an interface to the UNURAN library is offered. We now describe these external
libraries.

The Colt library, developed at the Centre Européen de Recherche Nucléaire (CERN) in
Geneva [2], is a large library that provides a wide range of facilities for high performance


http://dsd.lbl.gov/~hoschek/colt/

September 12, 2007 3

scientific and technical computing in Java. SSJ uses the class DoubleArrayList from Colt
in a few of its classes, namely in packages stat and hups. The reason is that this class
provides a very efficient and convenient implementation of an (automatically) extensible
array of double, together with several methods for computing statistics for the observations
stored in the array (see, e.g., Descriptive). The Colt library is distributed with the SSJ
package. Here is the Colt License Agreement copied from the Colt web site:

Colt License Agreement

Packages cern.colt* , cern.jet*, cern.clhep
Copyright (c) 1999 CERN - European Organization for Nuclear Research.

Permission to use, copy, modify, distribute and sell this software and its documentation
for any purpose is hereby granted without fee, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation. CERN makes no representations about the suitability of this
software for any purpose. It is provided ”as is” without expressed or implied warranty.

SSJ also provides an interface to the UNURAN  library for nonuniform random number
generation [6], in the randvar package. UNURAN does not have to be installed to be used
with SSJ, because it is linked statically with the appropriate SSJ native library. However,
the UNURAN documentation will be required to take full advantage of the library.

The linear_algebra library is based on public domain LINPACK routines. They were
translated from Fortran to Java by Steve Verrill at the USDA Forest Products Laboratory
Madison, Wisconsin, USA. This software is also in the public domain and is included in the
SSJ distribution as the Blas.jar archive, which must be in the CLASSPATH environment
variable. It is used only in the probdist package to compute maximum likelihood estimators.

The optimization package of Steve Verrill includes Java translations of the MINPACK
routines [3] for nonlinear least squares problems as well as UNCMIN routines [7] for uncon-
strained optimization. They were translated from Fortran to Java by Steve Verrill and are
in the public domain. They are included in the SSJ distribution as the optimization.jar
archive, which must be in the CLASSPATH environment variable. It is used only in the
probdist package to compute maximum likelihood estimators.

Acknowledgments

SSJ was designed and implemented under the supervision of Pierre L’Ecuyer, with the con-
tribution of the following persons

Mathieu Bague, Sylvain Bonnet, Eric Buist, Yves Edel, Regina H. S. Hong,
Alexander Keller, Pierre L’Ecuyer, Etienne Marcotte, Lakhdar Meliani, Ab-
delazziz Milib, Francois Panneton, Richard Simard, Pierre-Alexandre Trem-
blay, Jean Vaucher.


http://statistik.wu-wien.ac.at/unuran/
http://www.iro.umontreal.ca/~simardr/Uncmin_f77/Minpack_f77.html
http://www.iro.umontreal.ca/~simardr/Uncmin_f77/Uncmin_f77.html

September 12, 2007 REFERENCES 4

Its development has been supported by NSERC-Canada grant No. ODGP0110050,

NATEQ-Québec grant No. 02ER3218, a Killam fellowship, and a Canada Research Chair to
the author.

References

1]

2]

P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New
York, 2004.

Wolfgang Hoschek. The Colt Distribution: Open Source Libraries for High Performance
Scientific and Technical Computing in Java. CERN, Geneva, 2004. Available at http:
//dsd.1bl.gov/ hoschek/colt/.

J. J. Moré and B. S. Garbow and K. E. Hillstrom. User Guide for MINPACK-1, Report
ANL-80-74. Argonne, Illinois, USA, 1980. See http://www-fp.mcs.anl.gov/otc/
Guide/softwareGuide/Blurbs/minpack.html.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

P. ’Ecuyer, L. Meliani, and J. Vaucher. SSJ: A framework for stochastic simulation in
Java. In E. Yiicesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, editors, Proceedings
of the 2002 Winter Simulation Conference, pages 234-242. IEEE Press, 2002.

J. Leydold and W. Hérmann. UNURAN—A Library for Universal Non-Uniform Random
Number Generators, 2002. Available at http://statistik.wu-wien.ac.at/unuran.

R. B. Schnabel. UNCMIN— Unconstrained Optimization Package, FORTRAN. Univer-
sity of Colorado at Boulder. See http://www.ici.ro/camo/unconstr/uncmin.htm.


http://dsd.lbl.gov/~hoschek/colt/
http://dsd.lbl.gov/~hoschek/colt/
http://www-fp.mcs.anl.gov/otc/Guide/softwareGuide/Blurbs/minpack.html
http://www-fp.mcs.anl.gov/otc/Guide/softwareGuide/Blurbs/minpack.html
http://statistik.wu-wien.ac.at/unuran
http://www.ici.ro/camo/unconstr/uncmin.htm

