SSJ User’s Guide

Package gof
Goodness-of-fit test Statistics

Version: September 14, 2007

This package provides facilities for performing and reporting different types of univariate
goodness-of-fit statistical tests.

September 14, 2007 CONTENTS 1

Contents
[. C oA/ 2
FDIST 4
FBarl 8
GOISTAT .« o o o 10

September 14, 2007 CONTENTS 2

Overview

This package contains tools for performing univariate goodness-of-fit (GOF) statistical tests.
Static methods for computing (or approximating) the distribution function F(x) of certain
GOF test statistics, as well as their complementary distribution function F(z) =1 — F(z),
are implemented in classes FDist and FBar. Tools for computing the GOF test statistics and
the corresponding p-values, and for formating the results, are provided in classes GofStat
and GofFormat.

We are concerned here with GOF' test statistics for testing the hypothesis Hy that a
sample of N observations X, ..., Xy comes from a given univariate probability distribution
F'. We consider tests such as those of Kolmogorov-Smirnov, Anderson-Darling, Cramer-von
Mises, etc. These test statistics generally measure, in different ways, the distance between
a continuous distribution function F' and the empirical distribution function (EDF) Fy of
Xq,...,Xn. They are also called EDF test statistics. The observations X; are usually
transformed into U; = F(X;), which satisfy 0 < U; < 1 and which follow the U(0, 1)
distribution under Hy. (This is called the probability integral transformation.) Methods for
applying this transformation, as well as other types of transformations, to the observations
X, or U; are provided in GofStat.

Then the GOF tests are applied to the U; sorted by increasing order. The corresponding
p-values are easily computed by calling the appropriate static methods in FDist. If a GOF
test statistic Y has a continuous distribution under Hy and takes the value y, its (right)
p-value is defined as p = P[Y >y | Ho]. The test usually rejects H if p is deemed too close
to 0 (for a one-sided test) or too close to 0 or 1 (for a two-sided test).

In the case where Y has a discrete distribution under Hy, we distinguish the right p-value
pr = P[Y >y | Ho| and the left p-value p;, = P]Y <y | Ho]. We then define the p-value for
a two-sided test as

DRs if pr < pr
p = 1 —pr, if pr > pr and pr < 0.5 (1)
0.5 otherwise.

Why such a definition? Consider for example a Poisson random variable Y with mean 1
under Hy. If Y takes the value 0, the right p-value is pr = P[Y > 0 | Ho] = 1. In the
uniform case, this would obviously lead to rejecting Hy on the basis that the p-value is too
close to 1. However, P[Y =0 | Ho|] = 1/e =~ 0.368, so it does not really make sense to reject
Hy in this case. In fact, the left p-value here is p;, = 0.368, and the p-value computed with
the above definition is p = 1 — p;, = 0.632. Note that if p;, is very small, in this definition,
p becomes close to 1. If the left p-value was defined as p;, = 1 — pr = P[Y < y | Ho|, this
would also lead to problems. In the example, one would have p;, = 0 in that case.

A very common type of test in the discrete case is the chi-square test, which applies when
the possible outcomes are partitioned into a finite number of categories. Suppose there are k
categories and that each observation belongs to category @ with probability p;, for 0 <17 < k.

September 14, 2007 CONTENTS 3

If there are n independent observations, the expected number of observations in category 4
is e; = np;, and the chi-square test statistic is defined as

=y ook)

€

where o0; is the actual number of observations in category ¢. Assuming that all e;’s
are large enough (a popular rule of thumb asks for e; > 5 for each i), X? follows ap-
proximately the chi-square distribution with & — 1 degrees of freedom [15]. The class
GofStat.OutcomeCategoriesChi2, a nested class defined inside the GofStat class, provides
tools to automatically regroup categories in the cases where some e;’s are too small.

The class GofFormat contains methods used to format results of GOF test statistics, or to
apply several such tests simultaneously to a given data set and format the results to produce
a report that also contains the p-values of all these tests. A C version of this class is actually
used extensively in the package TestUO1, which applies statistical tests to random number
generators [I12]. The class also provides tools to plot an empirical or theoretical distribution
function, by creating a data file that contains a graphic plot in a format compatible with a
given software.

September 14, 2007 4

FDist

This class provides methods to compute (or approximate) the distribution functions of var-
ious types of goodness-of-fit test statistics. All the methods in this class return F(x) for
some probability distribution. Recall that the distribution function of a continuous random
variable X with density f is

F(z) = PIX < a] = / " f(a)da (3)

while that of a discrete random variable X with mass function f over the set of integers is

F(z) = P[X <z] = Zf (4)

S=—00

Most distributions are implemented only in standardized form here, i.e., with the location
parameter set to 0 and the scale parameter set to 1. To shift the distribution by zy and
rescale by ¢, it suffices to replace x by (z — xg)/c in the argument when calling the function.

package umontreal.iro.lecuyer.gof;

public class FDist

public static double kolmogorovSmirnovPlus (int N, double x)
Returns p(z) = P[D}; < z], where

Dy = sup [Fn(s)—F(s)]" ()
—00<s<00
is the positive Kolmogorov-Smirnov statistic for a sample of size N whose empirical dis-
tribution function is Fp, under the hypothesis that the observations follow a continuous
distribution function F. (Recall that = represents max(0,x), the positive part of z.) The
statistic
Dy= suwp [F(s)— En(s)* (6)
—00<s<0o0
has the same distribution as DX,. Methods for computing these statistics are available in
class GofStat. The distribution function of D]J\r, can be approximated via the following

expressions:

[N(1-2)]

PD}<a] = 1l—z Y, (7) <Jz+x>il<1—]@—x>Ni (7)

=0
[Nz

- :CZ()(x>j<1_1<f+x>N_j_l (8)
e g)

2 (; _ 19gxz + QN;”T4>) + O(Nﬂ . 9)

Q

September 14, 2007 FDist b

Formula and can be found in [5], equations (2.1.12) and (2.1.16), while (9) can
be found in [3]. Formula contains less terms than when x < 0.5, but becomes
numerically unstable as Nz increases, because its terms alternate in sign and become large
(in absolute value) compared to their sum. The approximation @D is simpler to compute
and excellent when Nz is large. Our implementation uses when Nz < 6.5, when
Nz > 6.5 and N < 100, and @D when Nx > 6.5 and N > 100. The relative error
on p(z) = P[DY, < x] is always less than 1075, and the relative error on 1 — p(x) is less
than 107! when 1 — p(z) > 10719, The absolute error on 1 — p(z) is less than 107! when
1—p(z) < 10710

public static double kolmogorovSmirnov (int N, double x)

Returns p(z) = P[Dy < x|, where Dy = max(D};, Dy) is the two-sided Kolmogorov-
Smirnov statistic for a sample of size Nand where D]J\r, and D} are defined in and @
Uses the approximation given in corollary Z of [3], page 356. This approximation improves
when N increase or x goes away from 0. If z < 1/(2N), the method returns 0. Otherwise,
if the value obtained is less than 0.15, the table “Lower Tail” of [16] is used, with linear
interpolation. The error on p(x) is less than 1 percent (approximately) for N > 100. For
N =1, the method returns the exact value P[D; < z] =2x — 1 for 1/2 <z < 1.

Warning: for 1 < N < 10 or z in the lower tail, the approximation is bad. But the precision
is at least 1 decimal digit nearly everywhere.

public static double kolmogorovSmirnovPlusJumpOne (int N, double a,
double x)
Similar to kolmogorovSmirnovPlus but for the case where the distribution function F' has
a jump of size a at a given point xg, is zero at the left of xg, and is continuous at the right
of 9. The Kolmogorov-Smirnov statistic is defined in that case as

Dj(a) = sup (FN(Ffl(u)) — u) = max (j/N—F(Vy)). (10)
a<u<l [1+aN<j<N
where V(y), ..., V) are the observations sorted by increasing order. The method returns an

approximation of P[Dy(a) < z] computed via

o (NG () 1

The current implementation uses formula when N(xz +a) < 6.5 and x 4+ a < 0.5, and
uses when Nz > 6.5 or z 4+ a > 0.5.
Restriction: 0 < a < 1.

public static double cramerVonMises (int N, double x)

Returns an approximation of P[W% < x|, where W3 is the Cramér-von Mises statistic
(see [16] (17, 2, B]) defined in (19), for a sample of independent uniforms over (0,1). The

September 14, 2007 FDist 6

approximation is based on the distribution function of W? = limy_. W]%, , which has the
following series expansion derived by Anderson and Darling [2]:

J

where K, is the modified Bessel function of the second kind. To correct for the deviation
between P(W% < x) and P(W? < z), we add a correction in 1/N, obtained empirically by
simulation. For N = 10, 20, 40, the error is less than 0.002, 0.001, and 0.0005, respectively,
while for N > 100 it is less than 0.0005. For N — oo, we estimate that the method returns at
least 6 decimal digits of precision. For N = 1, the method computes the exact distribution:

PWE<z)=2/x—1/12 for 1/12<x < 1/3.

public static double watsonU (int N, double x)

Returns P[U? < z], where U? is the Watson statistic defined in in the limit when
N — oo, for a sample of independent uniforms over (0,1). Only this limiting distribution
(when N — o0) is implemented. It is given by

PU?<z) = 1+2) (-1 2’me (13)
=1

This sum converges extremely fast except for small x, where alternating successive terms
give rise to numerical instability. But with the Poisson summation formula [10], the sum
can be transformed to

PP <o) = | = ie—@jﬂf/“ (14)

B T 4
7=0

which can be used for small z. The current implementation uses for x > 0.15, and
for x < 0.15. The absolute difference between the returned value and P[UZ, < z] is
estimated to be less than 0.01 for N > 8. For the trivial case N = 1, always returns 0.5.

public static double watsonG (int N, double x)

Returns an approximation of P[Gy < z], where Gy is the Watson statistic defined in
, for a sample of independent uniforms over (0,1). The approximation is computed in
a similar way as for cramerVonMises. To implement this method, a table of the values of
g(x) =limy_.oc P[Gn < z] and of its derivative was first computed by numerical integration.
For x < 1.5, the method uses this table with cubic spline interpolation. For x > 1.5, it uses
the empirical curve g(z) = 1 — e!97292_ A correction of order 1/ VN, obtained empirically
from 107 simulation runs with N = 256 and also implemented as an interpolation table
with an exponential tail, is then added. The absolute error is estimated to be less than
0.01, 0.005, 0.002, 0.0008, 0.0005, 0.0005, 0.0005 for N = 16, 32, 64, 128, 256, 512, 1024,
respectively. For the trivial case N = 1, always returns 0.5.

public static double andersonDarling (int N, double x)

Returns P[A% < x|, where A% is the Anderson-Darling statistic [2] defined in (23), for
a sample of independent uniforms over (0,1). The approximation is computed similarly

September 14, 2007 FDist 7

as for cramerVonMises. To implement this method, an interpolation table of the values
of g(z) = limy_.oo P[A% <] was first computed by numerical integration. Then a linear
correction in 1/N, obtained by simulation, was added. For x < 5.0, the method approximates
gn(z) = P[A% < z] by interpolation. For z > 5.0 (the tail of the distribution), it uses
the empirical curve gy(z) ~ 1 — ¢~ 1:062=056 _ o—=1.062=1.03 /N " \which includes an empirical
correction in 1/N. The absolute error on gy (z) is estimated to be less than 0.001 for N > 6,
For N =2, 3, 4, 6, it is estimated to be less than 0.04, 0.01, 0.005, 0.002, respectively. For
N =1, the method returns the exact value, gy(z) = v1 — 4e=*~1 for x > In(4) — 1.

public static double scan (int N, double d, int m)

Returns F(m), the distribution function of the scan statistic with parameters N and d,
evaluated at m. For a description of this statistic and its distribution, see scan, which
computes its complementary distribution F(m) =1— F(m — 1).

September 14, 2007 8

FBar

This class is similar to FDist, except that it provides static methods to compute or approx-
imate the complementary distribution function of X, which we define as F|(z) = P[X > 1],
instead of F(x) = P[X < x]. Note that with our definition of F', one has F(z) = 1— F(x) for
continuous distributions and F(z) = 1 — F(x — 1) for discrete distributions over the integers.

This is non-standard but we find it convenient.

For more details about the specific distributions, see the class FDist. When F(x) is very
close to 1, these methods generally provide much more precise values of F'(z) than using
1 — F(z) where F(z) is computed by a method from FDist.

package umontreal.iro.lecuyer.gof;

public class FBar

public static double kolmogorovSmirnov (int n, double x)

Returns 1.0 — FDist.kolmogorovSmirnov (n, x).

public static double kolmogorovSmirnovPlus (int n, double x)
Returns 1.0 — FDist.kolmogorovSmirnovPlus (n, x).

public static double cramerVonMises (int n, double x)
Returns 1.0 — FDist.cramerVonMises (n, x).

public static double watsonU (int n, double x)
Returns 1.0 — FDist.watsonU (n, x).

public static double watsonG (int n, double x)
Returns 1.0 — FDist.watsonG (n, x).

public static double andersonDarling (int n, double x)
Returns 1.0 — FDist.andersonDarling (n, x).

public static double scan (int n, double d, int m)
Return P[Sn(d) > m|, where Sy(d) is the scan statistic(see [0l [7] and scan), defined as

Sn(d)= sup nly, y+d, (15)
0<y<1—d

where d is a constant in (0,1), n[y, y + d] is the number of observations falling inside the
interval [y, y + d], from a sample of N i.i.d. U(0, 1) random variables. One has (see [I]),

N
P[Sn(d) > m] ~ (% _N- 1) b(m) +2 3 b(i) (16)

exp|—0%k? /2]

dv2m

Q

21— ®(0k)) + 0k (17)

September 14, 2007 FBar 9

where ® is the standard normal distribution function.

b(i) = (N)diu—d)N‘i,

]

[d
0 = —
1-d’

= Y

For d <1/2, is exact for m > N/2, but only an approximation otherwise. The approx-
imation is good when Nd? is large or when d > 0.3 and N > 50. In other cases, this
implementation sometimes use the approximation proposed by Glaz [6]. For more informa-
tion, see [IL [0, [19]. The approximation returned by this function is generally good when it
is close to 0, but is not very reliable when it exceeds, say, 0.4.

If m < (N + 1)d, the method returns 1. Else, if Nd < 10, it returns the approximation
given by Glaz [6]. If Nd > 10, it computes or and returns the result if it does not
exceed 0.4, otherwise it computes the approximation from [6], returns it if it is less than 1.0,
and returns 1.0 otherwise. The relative error can reach 10% when Nd < 10 or when the
returned value is less than 0.4. For m > Nd and Nd > 10, a returned value that exceeds
0.4 should be regarded as unreliable. For m = 3, the returned values are totally unreliable.
(There may be an error in the original formulae in [6]).

Restrictions: N > 2 and d < 1/2.

September 14, 2007 10
GofStat

THIS CLASS WILL BE REWRITTEN AND SIMPLIFIED IN THE NEAR
FUTURE. This class provides methods to compute several types of EDF goodness-of-fit
test statistics and to apply certain transformations to a set of observations. This includes
the probability integral transformation U; = F(X;), as well as the power ratio and iterated
spacings transformations [I8]. Here, U, ..., Un—1) stand for N observations Uy,...,Un_1
sorted by increasing order, where 0 < U; < 1.

Note: This class uses the Colt library.

package umontreal.iro.lecuyer.gof;

public class GofStat

Transforming the observations

public static DoubleArrayList unifTransform (DoubleArrayList data,
ContinuousDistribution dist)
Applies the transformation U; = F(V;) for 0 < i < N, where F' is a continuous distribution
function, and returns the result as an array of length N. V represents the N observations
contained in data, and U, the returned transformed observations. If data contains random
variables from the distribution function dist, then the result will contain uniform random
variables over [0, 1].

public static DoubleArraylList unifTransform (DoubleArraylist data,
DiscreteDistribution dist)
Applies the transformation U; = F(V;) for 0 < i < N, where F is a discrete distribution
function, and returns the result as an array of length N. V represents the N observations
contained in data, and U, the returned transformed observations.

Note: If V are the values of random variables with distribution function dist, then the
result will contain the values of discrete random variables distributed over the set of values
taken by dist, not uniform random variables over [0, 1].

public static void diff (IntArrayList sortedData, IntArrayList spacings,
int nl, int n2, int a, int b)

Assumes that the real-valued observations Uy, ...,Un_1 contained in sortedData are al-
ready sorted in increasing order and computes the differences between the successive obser-
vations. Let D be the differences returned in spacings. The difference U; — U;—; is put in
D; for nl1 < i <= n2, whereas U, — a is put into D, and b — U2 is put into Dyoy1. The
number of observations must be greater or equal than n2, we must have nl1 < n2, and nl
and n2 are greater than 0. The size of spacings will be at least N +1 after the call returns.

September 14, 2007 GofStat 11

public static void diff (DoubleArrayList sortedData,
DoubleArraylist spacings,
int nl, int n2, double a, double b)
Same as method diff (IntArrayList,IntArraylist,int,int,int,int), but for the con-
tinuous case.

public static void iterateSpacings (DoubleArrayList data,
DoubleArraylList spacings)
Applies one iteration of the iterated spacings transformation [9) [18]. Let U be the N obser-
vations contained into data, and let S be the spacings contained into spacings, Assumes
that S[0..N] contains the spacings between N real numbers Up,...,Uyx_1 in the interval
[0,1]. These spacings are defined by

Si=Upy — Uiy, 1 <i<N,

where Uy = 0, Un_1) = 1, and U(g),...,Up_1), are the U; sorted in increasing order.
These spacings may have been obtained by calling diff. This method transforms the spac-
ings into new spacings, by a variant of the method described in section 11 of [14] and also
by Stephens [18]: it sorts Sy, ..., Sy to obtain Sy < Sy < S(g) < -+ < S(y, computes
the weighted differences

So = (N + 1)5(0),
S1 = N(Su) — S0)
Sy = (N-=1)(Se —Su),

S = Sy —Swv-1)

and computes V; = Sy + 51 +---+5; for 0 < i < N. It then returns Sp,..., Sy in S[0..N]
and Vp,...,Vy in V[1..N].

Under the assumption that the U; are i.i.d. U(0,1), the new S; can be considered as a new
set of spacings having the same distribution as the original spacings, and the V; are a new
sample of i.i.d. U(0,1) random variables, sorted by increasing order.

This transformation is useful to detect clustering in a data set: A pair of observations that
are close to each other is transformed into an observation close to zero. A data set with
unusually clustered observations is thus transformed to a data set with an accumulation of
observations near zero, which is easily detected by the Anderson-Darling GOF test.

public static void powerRatios (DoubleArrayList sortedData)

Applies the power ratios transformation W described in section 8.4 of Stephens [18]. Let
U be the N observations contained into sortedData. Assumes that U[0...N — 1] contains
N real numbers U(g), ..., U—_1) from the interval [0, 1], already sorted in increasing order,
and computes the transformations:

Ui = (Uw/Uap)™, i=0,...,N -1,

with Uy = 1. These U/ are sorted in increasing order and put back in U[1...N]. If the
Uy are ii.d. U(0, 1) sorted by increasing order, then the U] are also i.i.d. U(0,1).

September 14, 2007 GofStat 12

This transformation is useful to detect clustering, as explained in iterateSpacings, except
that here a pair of observations close to each other is transformed into an observation close
to 1. An accumulation of observations near 1 is also easily detected by the Anderson-Darling
GOF test.

Partitions for the chi-square tests

public static class OutcomeCategoriesChi2

This class helps managing the partitions of possible outcomes into categories for applying
chi-square tests. It permits one to automatically regroup categories to make sure that the
expected number of observations in each category is large enough. To use this facility,
one must first construct an OutcomeCategoriesChi2 object by passing to the constructor
the expected number of observations for each original category. Then, calling the method
regroupCategories will regroup categories in a way that the expected number of observa-
tions in each category reaches a given threshold minExp. Experts in statistics recommend
that minExp be always larger than or equal to 5 for the chi-square test to be valid. Thus,
minExp = 10 is a safe value to use. After the call, nbExp gives the expected numbers in the
new categories and loc[i] gives the relocation of category i, for each 7. That is, loc[i]
= j means that category 7 has been merged with category j because its original expected
number was too small, and nbExp[i] has been added to nbExp[j] and then set to zero. In
this case, all observations that previously belonged to category ¢ are redirected to category
j. The variable nbCategories gives the final number of categories, smin contains the new
index of the lowest category, and smax the new index of the highest category.

public int nbCategories;

Total number of categories.

public int smin;

Minimum index for valid expected numbers in the array nbExp.

public int smax;

Maximum index for valid expected numbers in the array nbExp.

public double[] nbExp;

Expected number of observations for each category.

public int[] loc;

loc[i] gives the relocation of the category i in the nbExp array.

public OutcomeCategoriesChi2 (double[] nbExp)

Constructs an OutcomeCategoriesChi2 object using the array nbExp for the number
of expected observations in each category. The smin and smax fields are set to 0 and
(n — 1) respectively, where n is the length of array nbExp. The loc field is set such that
loc[i]=1i for each i. The field nbCategories is set to n.

September 14, 2007 GofStat 13

public OutcomeCategoriesChi2 (double[] nbExp, int smin, int smax)

Constructs an OutcomeCategoriesChi2 object using the given nbExp expected observa-
tions array. Only the expected numbers from the smin to smax (inclusive) indices will
be considered valid. The loc field is set such that loc[i]=i for each i in the interval
[smin, smax]. All loc[i] for i < smin are set to smin, and all loc[i] for i > smax
are set to smax. The field nbCategories is set to (smax - smin + 1).

public OutcomeCategoriesChi2 (double[] nbExp, int[] loc,
int smin, int smax, int nbCat)

Constructs an OutcomeCategoriesChi2 object. The field nbCategories is set to nbCat.

public void regroupCategories (double minExp)

Regroup categories as explained earlier, so that the expected number of observations in
each category is at least minExp. We usually choose minExp = 10.

public String toString()
Provides a report on the categories. @ @

Computing EDF test statistics

public static double chi2 (double[] nbExp, int[] count,
int smin, int smax)
Computes and returns the chi-square statistic for the observations o; in count [smin. . .smax],
for which the corresponding expected values e; are in nbExp [smin. . .smax]. Assuming that
1 goes from 1 to k, where k = smax-smin+1 is the number of categories, the chi-square

statistic is defined as i

0; — €;)?

2o e 18

> (18)
=1

Under the hypothesis that the e; are the correct expectations and if these e; are large enough,

X2 follows approximately the chi-square distribution with & — 1 degrees of freedom. If some

of the e; are too small, one can use OutcomeCategoriesChi2 to regroup categories.

public static double chi2 (IntArraylList data, DiscreteDistributionInt dist,
int smin, int smax, double minExp, int[] m)
Computes and returns the chi-square statistic for the observations stored in data, assuming
that these observations follow the discrete distribution dist. For dist, we assume that there
is one set S = {a,a+1,...,b—1,b}, where a < b and a > 0, for which p(s) > 0if s € S and
p(s) = 0 otherwise.

! From Pierre: Ceci me semble un peu étrange. On devrait faire abstraction du fait qu’il y a eu regroupe-
ment ou pas. Si pas encore de regroupement, on devrait avoir loc[i]=i et nbCategories = au nombre original
de categories.

2 From Richard: J’ai complétement réécrit cette fonction.

September 14, 2007 GofStat 14

Generally, it is not possible to divide the integers in intervals satisfying nP(ap < s < a1) =
nP(a; < s <a)=---=nP(aj_1 < s < aj) for a discrete distribution, where n is the sample
size, i.e., the number of observations stored into data. To perform a general chi-square test,
the method starts from smin and finds the first non-negligible probability p(s) > €, where € =
DiscreteDistributionInt.EPSILON. It uses smax to allocate an array storing the number
of expected observations (np(s)) for each s > smin. Starting from s = smin, the np(s)
terms are computed and the allocated array grows if required until a negligible probability
term is found. This gives the number of expected elements for each category, where an
outcome category corresponds here to an interval in which sample observations could lie.
The categories are regrouped to have at least minExp observations per category. If m is not
null, the first element of the array will be set to the number of categories after regrouping.
The method then counts the number of samples in each categories and calls chi2 to get the
chi-square test statistic. We usually choose minExp = 10.

public static double chi2Equal (double nbExp, int[] count,
int smin, int smax)

Similar to chi2, except that the expected number of observations per category is assumed
to be the same for all categories, and equal to nbExp.

public static double chi2Equal (DoubleArraylList data, double minExp)

Computes the chi-square statistic for a continuous distribution. Here, the equiprobable
case can be used. Assuming that data contains observations coming from the uniform
distribution, the [0, 1] interval is divided into 1/p subintervals, where p = minExp/n, n being
the sample size, i.e., the number of observations stored in data. For each subinterval, the
method counts the number of contained observations and the chi-square statistic is computed
using chi2Equal. We usually choose minExp = 10.

public static double chi2Equal (DoubleArrayList data)
Equivalent to chi2Equal (data, 10).

public static int scan (DoubleArraylList sortedData, double d)

Computes and returns the scan statistic Sy (d), defined in (15]). Let U be the N observations
contained into sortedData. The N observations in U[0..N — 1] must be real numbers in
the interval [0, 1], sorted in increasing order. (See FBar.scan for the distribution function

of Sy(d)).

public static double cramerVonMises (DoubleArraylList sortedData)
Computes and returns the Cramér-von Mises statistic W% (see [Bl [16, [17]), defined by

W = 12N+Z<U(J ‘7+05)> , (19)

assuming that sortedData contains U, ..., Unv_1) sorted in increasing order.
public static double watsonG (DoubleArrayList sortedData)
Computes and returns the Watson statistic G (see [20, 4]), defined by

Gy = VN max {(j+1)/N-Uy +Uyx—1/2} (20)
0<j<N-1

September 14, 2007 GofStat 15

= VN (DL +TUn—-1/2),

where Uy is the average of the observations U(;), assuming that sortedData contains the
sorted U, ..., Un—1)-

public static double watsonU (DoubleArraylList sortedData)
Computes and returns the Watson statistic U% (see [5, 16l [17]), defined by

N—-1 . 2
Wy = 1ON +]Z% U(j) — N , (21)
Uy = Wi-N(Uy-1/2)% (22)

where Uy is the average of the observations U(;), assuming that sortedData contains the

i)
sorted Uy, ..., Un—1)-

public static double EPSILONAD = Num.DBL_EPSILON / 2.0;
Used by andersonDarling.

public static double andersonDarling (DoubleArraylList sortedData)
Computes and returns the Anderson-Darling statistic A% (see [I3, 17, 2]), defined by

N-1

1 , .
A3 = —-N-— v D> {25+ 1) In(U) + (2N = 1= 2j) In(1 - Uy)) },
j=0
assuming that sortedData contains U,...,Un_1).

When computing A?V, all observations U; are projected to the interval [e, 1 — €] for some
€ > 0, in order to avoid numerical overflow when taking the logarithm of U; or 1 — U;. The
variable EPSILONAD gives the value of €. Num.DBL_EPSILON is usually 27°2.

public static double[] kolmogorovSmirnov (DoubleArrayList sortedData)
Computes the Kolmogorov-Smirnov (KS) test statistics DX,, Dy, and Dy defined by

+ _ .
Dy = Jnax (G +1/N=Ugy) . (23)
Dy = max (Uy —i/N), (24)
Dy = max (DY,Dy). (25)
and returns an array of length 3 that contains their values at positions 0, 1, and 2, respec-
tively.
These statistics compare the empirical distribution of Uy, ..., U(y), which are assumed to

be in sortedData, with the uniform distribution.

public static double[] kolmogorovSmirnovJumpOne (DoubleArrayList sortedData,
double a)

Compute the KS statistics D (a) and Dy (a) defined in the description of the method FDist
.kolmogorovSmirnovPlusJumpOne, assuming that F' is the uniform distribution over [0, 1]

September 14, 2007 GofStat 16

and that U),...,Uy) are in sortedData. Returns an array of length 2 that contains their
values at positions 0 and 1, respectively.

public static double pDisc (double pL, double pR)

Computes a variant of the p-value p whenever a test statistic has a discrete probability
distribution. This p-value is defined as follows:

pr = PlY <y
pr = P[Y >y]
PR, if pr < pr,
p = 1-pr, if pr > pr, and pr, < 0.5
0.5 otherwise.

The function takes p;, and pr as input and returns p.

September 14, 2007 17

GofFormat

This class contains methods used to format results of GOF test statistics, or to apply a series
of tests simultaneously and format the results. It is in fact a translation from C to Java of
a set of functions that were specially written for the implementation of TestUO1, a software
package for testing uniform random number generators [12].

Strictly speaking, applying several tests simultaneously makes the p-values “invalid” in
the sense that the probability of having at least one p-value less than 0.01, say, is larger
than 0.01. One must therefore be careful with the interpretation of these p-values (one could
use, e.g., the Bonferroni inequality [11]). Applying simultaneous tests is convenient in some
situations, such as in screening experiments for detecting statistical deficiencies in random
number generators. In that context, rejection of the null hypothesis typically occurs with
extremely small p-values (e.g., less than 107'%), and the interpretation is quite obvious in
this case.

The class also provides tools to plot an empirical or theoretical distribution function, by
creating a data file that contains a graphic plot in a format compatible with the software
specified by the environment variable graphSoft.

Note: This class uses the Colt library.

package umontreal.iro.lecuyer.gof;

public class GofFormat

Plotting distribution functions

public static final int GNUPLQOT
Data file format used for plotting functions with Gnuplot.

public static final int MATHEMATICA

Data file format used for creating graphics with Mathematica.

public static int graphSoft = GNUPLOT;

Environment variable that selects the type of software to be used for plotting the graphs of
functions. The data files produced by graphFunc and graphDistUnif will be in a format
suitable for this selected software. The default value is GNUPLOT. To display a graphic in
file £ using gnuplot, for example, one can use the command “plot f with steps, x with
lines” in gnuplot.

September 14, 2007 GofFormat 18

public static String graphFunc (ContinuousDistribution dist, double a,

double b, int m, int mono, String desc)
Prints data to plot the graph of function F' over the interval [a,b], and returns the result
as a String. dist.cdf (x) or dist.barF (x) returns the value of F' at z, and that F
is either non-decreasing or non-increasing. If mono = 1, the method will verify that F' is
non-decreasing; if mono = —1, it will verify that F is non-increasing. (This is useful to verify
if F' is effectively a sensible approximation to a distribution function or its complementary in
the given interval.) The String desc should give a short caption for the graphic plot. The
method computes the m+1 points (z;, F(z;)), where z; = a+i(b—a)/m fori =0,1,...,m,
and formats these points into a String in a format suitable for the software specified by
graphSoft.

public static String graphDistUnif (DoubleArrayList data, String desc)

Formats data to plot the empirical distribution of Uy, ..., Uy), which are assumed to be
in datal[0...N-1], and to compare it with the uniform distribution. The two endpoints
(0,0) and (1, 1) are always included in the plot. The string desc should give a short caption
for the graphic plot. The data is printed in a format suitable for the software specified by
graphSoft.

Computing and printing p-values for EDF test statistics

public static double EPSILONP = 1.0E-15;

Environment variable used in formatpO to determine which p-values are too close to 0 or 1
to be printed explicitly. If EPSILONP = ¢, then any p-value (or significance level) less than e
or larger than 1 — € is not written explicitly; the program simply writes “eps” or “1-eps”.
The default value is 10715,

public static double SUSPECTP = 0.01;

Environment variable used in formatpl to determine which p-values should be marked as
suspect when printing test results. If SUSPECTP = «, then any p-value (or significance level)
less than « or larger than 1 — «v is considered suspect and is “singled out” by formatpl. The
default value is 0.01.

public static String formatpO (double p)

Returns the significance level (or p-value) p of a test, in the format “1 — p” if p is close to
1, and p otherwise. Uses the environment variable EPSILONP and replaces p by € when it is
too small.

public static String formatpl (double p)

Returns the string “Significance level of test : 7, then calls formatpO to print p,
and adds the marker “xx**” if p is considered suspect (uses the environment variable
RSUSPECTP for thiS).

September 14, 2007 GofFormat 19

public static String formatp2 (double x, double p)

Returns x on a single line, then go to the next line and calls formatpl.

public static String formatp3 (String testName, double x, double p)

Formats the test statistic x for a test named testName with p-value p. The first line of
the returned string contains the name of the test and the statistic whereas the second line
contains its significance level. The formated values of x and p are aligned.

public static String formatChi2 (int k, int d, double chi2)

Computes the p-value of the chi-square statistic chi2 for a test with k intervals. Uses d
decimal digits of precision in the calculations. The result of the test is returned as a string.
The p-value is computed using pDisc.

public static String formatKS (int n, double dp,
double dm, double d)

Computes the p-values of the three Kolmogorov-Smirnov statistics D}G, Dy, and Dy, whose
values are in dp, dm, d, respectively, assuming a sample of size n. Then formats these
statistics and their p-values using formatp2 for each one.

public static String formatKS (DoubleArraylist data,
ContinuousDistribution dist)

Computes the KS test statistics to compare the empirical distribution of the observations in
data with the theoretical distribution dist and formats the results.

public static String formatKSJumpOne (int n, double a, double dp)

Similar to formatKS, but for the KS statistic DE(a) defined in 1’ Writes a header,
computes the p-value and calls formatp2.

public static String formatKSJumpOne (DoubleArraylist data,
ContinuousDistribution dist,
double a)

Similar to formatKs, but for D};(a) defined in .

Applying several tests at once and printing results

Higher-level tools for applying several EDF goodness-of-fit tests simultaneously are of-
fered here. The environment variable activeTests specifies which tests in this list are to
be performed when asking for several simultaneous tests via the functions activeTests,
formatActiveTests, etc.

public static final int KSP = O;

Kolmogorov-Smirnov+ test

public static final int KSM = 1;

Kolmogorov-Smirnov— test

September 14, 2007 GofFormat 20

public static final int KS = 2;
Kolmogorov-Smirnov test

public static final int AD = 3;
Anderson-Darling test

public static final int CM = 4;
Cramér-von Mises test

public static final int WG = 5;
Watson G test

public static final int WU = 6;

Watson U test

public static final int MEAN = 7;

Mean

public static final int COR = 8;

Correlation

public static final int NTESTTYPES = 9;
Total number of test types

public static final String[] TESTNAMES

Name of each testType test. Could be used for printing the test results, for example.

public static boolean[] activeTests

The set of EDF tests that are to be performed when calling the methods activeTests,
formatActiveTests, etc. By default, this set contains KSP, KSM, and AD. Note: MEAN and
COR are always excluded from this set of active tests.

public static void tests (DoubleArrayList sortedData, double[] sVal)

Computes all EDF test statistics enumerated above (except COR) to compare the empir-
ical distribution of Uy, ...,U-1) with the uniform distribution, assuming that these
sorted observations are in sortedData. If N > 1, returns sVal with the values of the
KS statistics D;{,, Dy, and Dy, of the Cramér-von Mises statistic W]%,, Watson’s Gy and
UJQV7 Anderson-Darling’s A%, and the average of the U;’s, respectively. If N = 1, only puts
1—sortedData.get (0) in sVal[KSP]. Calling this method is more efficient than computing
these statistics separately by calling the corresponding methods in GofStat.

public static void tests (DoubleArrayList data,
ContinuousDistribution dist, double[] sVal)
The observations V' are in data, not necessarily sorted, and their empirical distribution is
compared with the continuous distribution dist. If N = 1, only puts data.get (0) in
sVal [MEAN], and 1 —dist.cdf (data.get (0)) in sVall[KSP].

September 14, 2007 GofFormat 21

public static void activeTests (DoubleArrayList sortedData,
double[] sVal, double[] pVal)
Computes the EDF test statistics by calling tests, then computes the p-values of those that
currently belong to activeTests, and return these quantities in sVal and pVal, respectively.
Assumes that Ug),...,Un_1) are in sortedData and that we want to compare their em-
pirical distribution with the uniform distribution. If N = 1, only puts 1 — sortedData.get
(0) in sVal[KSP], pVal[KSP], and pVal[MEAN].

public static void activeTests (DoubleArraylist data,
ContinuousDistribution dist,
double[] sVal, double[] pVal)
The observations are in data, not necessarily sorted, and we want to compare their empirical
distribution with the distribution dist. If N = 1, only puts data.get(0) in sVal [MEAN],
and 1 —dist.cdf (data.get (0)) in sVal[KSP], pVall[KSP], and pVal [MEAN].

public static String formatActiveTests (int n, double[] sVal,
double[] pVal)
Gets the p-values of the active EDF test statistics, which are in activeTests. It is assumed
that the values of these statistics and their p-values are already computed, in sVal and pVal,
and that the sample size is n. These statistics and p-values are formated using formatp2 for
each one. If n=1, prints only pVal [KSP] using formatpl.

public static String iterSpacingsTests (DoubleArraylList sortedData, int k,
boolean printval, boolean graph,
PrintWriter f)
Repeats the following k times: Applies the GofStat.iterateSpacings transformation to
the Ug), - .., Uv—1), assuming that these observations are in sortedData, then computes the
EDF test statistics and calls activeTests after each transformation. The function returns
the original array sortedData (the transformations are applied on a copy of sortedData).
If printval = true, stores all the values into the returned String after each iteration. If
graph = true, calls graphDistUnif after each iteration to print to stream f the data for
plotting the distribution function of the Uj;.

public static String iterPowRatioTests (DoubleArraylList sortedData, int k,
boolean printval, boolean graph,
PrintWriter f)

Similar to iterSpacingsTests, but with the GofStat.powerRatios transformation.

September 14, 2007 REFERENCES 22

References

1]

[10]
[11]

[12]

[13]

[14]

[15]

N. H. Anderson and D. M. Titterington. A comparison of two statistics for detecting
clustering in one dimension. Journal of Statistical Computation and Simulation, 53:103—
125, 1995.

T. W. Anderson and D. A. Darling. Asymptotic theory of certain goodness of fit criteria
based on stochastic processes. Annals of Mathematical Statistics, 23:193-212, 1952.

D. A. Darling. On the theorems of Kolmogorov-Smirnov. Theory of Probability and Its
Applications, V(4):356-360, 1960.

D. A. Darling. On the asymptotic distribution of Watson’s statistic. The Annals of
Statistics, 11(4):1263-1266, 1983.

J. Durbin. Distribution Theory for Tests Based on the Sample Distribution Func-
tion. STAM CBMS-NSF Regional Conference Series in Applied Mathematics. STAM,
Philadelphia, PA, 1973.

J. Glaz. Approximations and bounds for the distribution of the scan statistic. Journal
of the American Statistical Association, 84:560-566, 1989.

J. Glaz, J. Naus, and S. Wallenstein. Scan statistics. Springer Series in Statistics.
Springer, New York, NY, 2001.

M. Knott. The distribution of the Cramér-von Mises statistic for small sample sizes.
Journal of the Royal Statistical Society B, 36:430-438, 1974.

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, Reading, MA, third edition, 1998.

S. Lang. FElliptic functions. Addison-Wesley, Reading, Mass., 1973.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

P. ’Ecuyer and R. Simard. TestU01: A Software Library in ANSI C for Empirical
Testing of Random Number Generators, 2002. Software user’s guide. Available at
http://www.iro.umontreal.ca/ lecuyer.

P. A. W. Lewis. Distribution of the Anderson-Darling statistic. Annals of Mathematical
Statistics, 32:1118-1124, 1961.

G. Marsaglia. A current view of random number generators. In Computer Science and
Statistics, Sizteenth Symposium on the Interface, pages 3—10, North-Holland, Amster-
dam, 1985. Elsevier Science Publishers.

T. R. C. Read and N. A. C. Cressie. Goodness-of-Fit Statistics for Discrete Multivariate
Data. Springer Series in Statistics. Springer-Verlag, New York, NY, 1988.

http://www.iro.umontreal.ca/~lecuyer

September 14, 2007 REFERENCES 23

[16]

[17]

[18]

[19]

[20]

M. A. Stephens. Use of the Kolmogorov-Smirnov, Cramér-Von Mises and related
statistics without extensive tables. Journal of the Royal Statistical Society, Series B,
33(1):115-122, 1970.

M. S. Stephens. Tests based on EDF statistics. In R. B. D’Agostino and M. S. Stephens,
editors, Goodness-of-Fit Techniques. Marcel Dekker, New York and Basel, 1986.

M. S. Stephens. Tests for the uniform distribution. In R. B. D’Agostino and M. S.
Stephens, editors, Goodness-of-Fit Techniques, pages 331-366. Marcel Dekker, New
York and Basel, 1986.

S. R. Wallenstein and N. Neff. An approximation for the distribution of the scan
statistic. Statistics in Medicine, 6:197-207, 1987.

G. S. Watson. Optimal invariant tests for uniformity. In Studies in Probability and
Statistics, pages 121-127. North Holland, Amsterdam, 1976.

	Overview
	FDist
	FBar
	GofStat
	GofFormat

