
SSJ User’s Guide

Package hups

Tools for Quasi-Monte Carlo
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This package provides classes implementing highly uniform point sets (HUPS) and tools
for their randomization. These point sets can be used for quasi-Monte Carlo integration.
Randomized quasi-Monte Carlo point sets can in fact replace streams of uniform random
numbers in a simulation, for the purpose of reducing the variance of the estimator.



September 11, 2007 CONTENTS 1

Contents

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

PointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

PointSetIterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ContainerPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CachedPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

SubsetOfPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

PaddedPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

AntitheticPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

RandShiftedPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

BakerTransformedPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CycleBasedPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

LCGPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

CycleBasedPointSetBase2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

F2wStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

F2wCycleBasedLFSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F2wCycleBasedPolyLCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

DigitalNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

DigitalSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

DigitalNetFromFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

FaureSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

DigitalNetBase2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

DigitalSequenceBase2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

DigitalNetBase2FromFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

SobolSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

NiedSequenceBase2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

NiedXingSequenceBase2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

F2wNetLFSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

F2wNetPolyLCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

RadicalInverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

HammersleyPointSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

HaltonSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Rank1Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

KorobovLattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

KorobovLatticeSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



September 11, 2007 CONTENTS 2

Overview

Monte Carlo and quasi-Monte Carlo

This package provides classes implementing highly uniform point sets (HUPS) over the s-
dimensional unit hypercube [0, 1)s, and tools for their randomization. The terminology
low-discrepancy sequence (LDS) is often used for infinite sequences of points such that the
discrepancy between the distribution of the first n points of the sequence and the uniform
distribution converges to zero at a certain rate when n→∞ [26]. HUPS and LDS are used
for quasi-Monte Carlo integration, as we now briefly explain. See, e.g., [8, 9, 12, 21, 18, 28,
26, 34, 38] for further details.

Suppose we want to estimate the integral of a function f defined over the s-dimensional
unit hypercube,

µ =

∫
[0,1)s

f(u)du. (1)

Practically any mathematical expectation that can be estimated by simulation can be written
in this way, usually for a very complicated f and sometimes for s = ∞. Indeed, the source of
randomness of stochastic simulations is usually a stream of real numbers u = (u0, u1, u2, . . .)
whose purpose is to imitate i.i.d. U(0, 1) random variables. These real numbers are trans-
formed in complicated ways to produce the estimator. Thus, the dimension s of the integral
(1) represents the number of calls to the uniform random number generator if that number
is deterministic. If it is random and unbounded, we take s = ∞. In the latter case, however,
we can assume that the actual number of calls is finite with probability one (otherwise the
simulation may never end).

We consider an estimator of µ of the form

Qn =
1

n

n−1∑
i=0

f(ui), (2)

which is the average of f over the point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)s.

With the Monte Carlo (MC) method, the ui’s are i.i.d. random vectors uniformly dis-
tributed over [0, 1)s. Then, Qn is an unbiased estimator of µ with variance σ2/n, where

σ2 =

∫
[0,1)s

f 2(u)du− µ2, (3)

and it obeys a central-limit theorem if σ2 <∞.

Quasi-Monte Carlo (QMC) methods use point sets Pn that are more evenly distributed
over the unit hypercube than typical random points. We call them highly uniform point sets
(HUPS). The aim is to reduce the size of the integration error Qn−µ. Two important classes
of methods for constructing such point sets are digital nets and integration lattices [26, 34,
21, 9]. Both are implemented in this package, in various flavors.
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Elementary constructions

To give an idea of how HUPS and LDS can be constructed, we start with a simple one-
dimensional example. If s = 1 and n is fixed, very simple highly uniform construc-
tions are the point sets Pn = {0, 1/n, . . . , (n − 1)/n} and the shifted version P ′

n =
{1/(2n), 3/(2n), . . . , (2n− 1)/(2n)}.

In s > 1 dimensions, the simplest extensions would be as follows. Let n = ds for some
integer d and define Pn as the Cartesian product of s copies of the one-dimensional sets Pd;
that is, Pn = {(u0, . . . , us−1) : uj ∈ {0, 1/d, . . . , (d − 1)/d} for each j}, and similarly for
P ′

n. The point sets thus obtained are regular rectangular grids. Unfortunately, this approach
breaks down rapidly when s gets large, because n must increase exponentially fast with s for
fixed d. Another important drawback is that when Pn is projected over lower-dimensional
subspaces, several points are projected onto each other and become redundant [21].

A better idea is to construct a point set Pn in s dimensions such that each one-dimensional
projection of Pn is the set of values {0, 1/n, . . . , (n− 1)/n}. Of course, these values should
not be visited in the same order for all coordinates, because otherwise all the points would lie
on the diagonal line going from (0, . . . , 0) to (1, . . . , 1). In other words, for each coordinate
j, 0 ≤ j < s, we must define a different permutation of the integers {0, . . . , n − 1} and
visit the values {0, 1/n, . . . , (n − 1)/n} in the order determined by that permutation. The
trick is to select those permutations in a way that Pn itself is highly uniform over [0, 1)s in
a well-defined sense (to be determined). This is what most construction methods attempt
to achieve. Before looking at concrete ways of defining such permutations, we introduce a
related issue: what to do if n is not fixed.

For s = 1, a simple way of filling up the unit interval [0, 1) uniformly is via the low-
discrepancy sequence 0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16, . . . , called the van
der Corput sequence in base 2. More generally, select an integer b ≥ 2, called the base. The
radical inverse function in base b, ψb : N → [0, 1), is defined as follows. If i is a k-digit
integer in base b with digital b-ary expansion

i = a0 + a1b+ . . .+ ak−1b
k−1,

then
ψb(i) = a0b

−1 + a1b
−2 + · · ·+ ak−1b

−k.

For a given b, ψb(0), ψb(1), ψb(2), . . . is called the van der Corput sequence in base b. This
sequence fills up the unit interval [0, 1) quite uniformly. For example, for b = 2 we obtain
the sequence mentioned above and for b = 3 we obtain 0, 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9,
8/9, 1/27, 10/27, 19/27, . . . . Moreover, for two relatively prime bases b1 and b2, the two
sequences have no value in common except 0.

For s > 1, one could either take different (relatively prime) bases for the different co-
ordinates, or take the same basis b but permute the successive values using a different
permutation for each coordinate. These permutations are usually selected in a way that for
every integer k, the first bk values that are enumerated remain the same (they are the values
of ψb(i) for i = 0, . . . , bk − 1), but they are enumerated in a different order. Several digital
net constructions (to be defined later) fit this framework.
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If we decide to take different bases, the most natural choice is to take the jth smallest
prime, bj, as a base for coordinate j−1; that is, base 2 for coordinate 0, base 3 for coordinate
1, base 5 for coordinate 2, and so on. The infinite sequence thus defined, where point i is

ui = (ψb1(i), ψb2(i), . . . , ψbs(i)) (4)

for i ≥ 0, was proposed in [10] and is called the Halton sequence. One drawback of this
sequence is that for large s, the base bs becomes quite large.

In the case where n is fixed, we can always take i/n as the first coordinate of point i. In
particular, the Hammersley point set with n points in s dimensions contains the points

ui = (i/n, ψb1(i), ψb2(i), . . . , ψbs−1(i)), (5)

for i = 0, . . . , n − 1 [11]. Historically, Halton sequences were defined as extensions of Ham-
mersley point sets.

Digital nets

Digital nets and sequences are an important class of HUPS and LDS constructions. Most
concrete implementations, e.g., those proposed by Sobol’, Faure, Niederreiter, and Nieder-
reiter and Xing, are linear digital nets and sequences, defined as follows (see also [26, 38,
21]).

Let b ≥ 2 be an arbitrary integer (usually a prime number), called the base. A net that
contains n = bk points in s dimensions is defined via s generator matrices C0, . . . ,Cs−1,
which are (in theory) ∞× k matrices whose elements are in Zb = {0, . . . , b− 1}. The matrix
Cj is used for coordinate j of all the points, for j ≥ 0. To define the ith point ui, for
i = 0, . . . , bk − 1, write the digital expansion of i in base b and multiply the vector of its
digits by Cj to obtain the digits of the expansion of ui,j, the jth coordinate of ui. That is,

i =
k−1∑
`=0

ai,`b
`, (6)

ui,j,1

ui,j,2
...

 = Cj


ai,0

ai,1
...

ai,k−1

 , (7)

ui,j =
∞∑

`=1

ui,j,`b
−`, (8)

ui = (ui,0, . . . , ui,s−1). (9)

In practice, the expansion in (8) is truncated to the first r digits for some positive integer r,
so each matrix Cj is actually truncated to a r × k matrix. Typically r is equal to k, or is
slightly larger, or is selected so that br is near 231.
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Usually, the first k lines of each Cj form a nonsingular k× k matrix. Then, the n output
values for coordinate j, u0,j, . . . , un−1,j, when truncated to their first k fractional digits in
base b, are a permutation of the numbers 0, 1/n, . . . , (n− 1)/n. Different coordinates simply
use different permutations, implemented via the matrices Cj.

When the first k lines of Cj form the identity and the other lines are zero, the first n
output values are the first n elements of the van der Corput sequence in base b. If we reverse
the order of the columns of that matrix Cj (i.e., column c will contain a one in line k− c+1
and zeros elsewhere, for 0 ≤ c < k), we obtain the output values 0, 1/n, . . . , (n − 1)/n in
that order. With a slight abuse of language, we shall call this first matrix (with the identity
followed by lines of zeros) the identity and the second one (with the columns in reverse order)
the reflected identity. It is customary to take C0 as the identity for digital sequences, and
often for digital nets as well. But for digital nets (where n is fixed in advance), one can take
C0 as the reflected identity instead, then C1 as the identity, and so on. That is, the matrix
Cj for the digital net is taken as the matrix Cj−1 of the digital sequence. Our package often
gives the choice.

For digital sequences, the matrices Cj actually have an infinite number of columns,
although only the first k columns are needed to generate the first bk points. So in practice,
we never need to store more than a finite number of columns at a time. Whenever we find
that we need more than bk points for the current value of k, we can simply increase k and
add the corresponding columns to the matrices Cj.

The classes DigitalNet and DigitalSequence implement generic digital nets and se-
quences. Specific instances are constructed in subclasses of these two classes.

Lattice Rules

An integration lattice is a discrete (but infinite) subset of Rs of the form

Ls =

{
v =

s∑
j=1

hjvj such that each hj ∈ Z

}
,

where v1, . . . ,vs ∈ Rs are linearly independent over R and Zs ⊆ Ls. This last condition
means that Ls must contain all integer vectors, and this implies that Ls is periodic with
period 1 along each of the s coordinates. The approximation of µ by Qn with the point set
Pn = Ls ∩ [0, 1)s is called a lattice rule [16, 34]. The value of n is the number of points of
the lattice that are in the unit hypercube [0, 1)s.

Let V be the matrix whose rows are the basis vectors v1, · · · ,vs and V−1 its inverse.
One has Zs ⊆ Ls if and only if all entries of V−1 are integer. When this holds, n = det(V−1)
and all entries of V are multiples of 1/n.

The rank of the lattice is the smallest r such that one can find a basis of the form
v1, . . . ,vr, er+1, · · · , es, where ej is the jth unit vector in s dimensions. In particular,
a lattice rule of rank 1 has a basis of the form v1 = (a1, . . . , as)/n and vj = ej for
j > 1, where aj ∈ Zn for each j. It is a Korobov rule if v1 has the special form
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v1 = (1, a, a2 mod n, . . . , as−1 mod n)/n for some a ∈ Zn. The point set Pn of a
Korobov lattice rule can also be written as Pn = {(x1, . . . , xs)/n such that x1 ∈ Zn and
xj = axj−1 mod n for all j > 1}. This is the set of all vectors of successive values produced
by a linear congruential generator (LCG) with modulus n and multiplier a, from all possi-
ble initial states, including 0. In this case, the points are easy to enumerate by using the
recurrence.

Cycle-based point sets

Certain types of point sets are defined pretty much like random number generators: choose
a finite state space S, a transition function f : S → S, an output function g : S → [0, 1),
and define

Pn = {u = (u0, u1, . . .) : s0 ∈ S, sj = f(sj−1), and uj = g(sj) for all j}. (10)

This is the set of all vectors of successive output values produced by the recurrence defined by
f and the output function g, from all possible initial states. The value of n is the cardinality
of S and the dimension s is infinite. We could also have n = ∞ (an infinite sequence) if S is
infinite but denumerable and ordered (so we know in which order to enumerate the points).

Let us assume that n is finite and that for each s0 ∈ S, the recurrence sj = f(sj−1) is
purely periodic, i.e., there is always an integer j such that sj = s0. The smallest such j,
called the period length, depends in general on s0. Thus, the state space S is partitioned
into a finite number of cycles. The successive coordinates of any point u ∈ Pn are periodic
with period length equal to the length of the cycle that contains s0 (and the following sj’s).

One way of implementing such a point set while avoiding to recompute f and g each time
a coordinate is needed is to store explicitly all the cycles of the recurrence, in the form of
a list of cycles. We can store either the successive uj’s directly, or the successive sj’s, over
each cycle. The class CycleBasedPointSet provides the framework for doing that.

For example, a Korobov lattice point set is defined via the recurrence xj = axj−1 mod n
and output function uj = xj/n. If n is prime and a is a primitive element modulo n, then
there are two cycles: one of period 1 that contains only 0, and the other of period n − 1.
For more general n and a, there will be more cycles. The class LCGPointSet constructs this
type of point set and stores explicitly the successive values of uj over the different cycles.

There are cases where n is a power of two, say n = 2k, and where the state sj is
represented as a k-bit string. In that context, it is often more convenient to store the
successive sj’s instead of the successive uj’s, over the set of cycles (e.g., if a random digital
shift in base 2 is to be applied to randomize the points, it can be performed by applying
a bitwise xor directly to sj). When generating the coordinates, the sj’s can be interpreted
as 2k-bit integers and multiplied by 2−k to produce the output. This is supported by the
class CycleBasedPointSetBase2. Special instances of this class are usually based on linear
recurrences modulo 2 and they include the Korobov-type polynomial lattice rules [17, 19, 22,
24, 31].
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Randomized quasi-Monte Carlo

In their original versions, these HUPS are deterministic, and the corresponding QMC meth-
ods give a deterministic integration error that is difficult to estimate. In randomized QMC
methods, Pn is randomized, preferably in a way that it retains its high uniformity over
[0, 1)s when taken as a set, while each of its points has the uniform distribution over [0, 1)s

when taken individually. Then, Qn becomes an unbiased estimator of µ, hopefully with
smaller variance than the standard MC estimator. To estimate the variance and compute
a confidence interval on µ, one can apply m independent randomizations to the same Pn,
and compute X̄m and S2

m,x, the sample mean and sample variance of the m corresponding
(independent) copies of Qn. Then, E[X̄m] = µ and E[S2

m,x] = Var[Qn] = mVar[X̄m] [20].

Two examples of such randomizations are the random shift modulo 1, proposed in [4] and
implemented in class RandShiftedPointSet, and the random digital shift in base b, described
and implemented in class DigitalNet. These randomizations are also incorporated directly
in certain types of point sets such as CycleBasedPointSet, CycleBasedPointSetBase2, etc.

In the random shift modulo 1, we generate a single point u uniformly over [0, 1)s and
add it to each point of Pn, coordinate-wise, modulo 1. Since all points of Pn are shifted by
the same amount, the set retains most of its structure and uniformity.

For the random digital shift in base b, we generate again a single u = (u1, . . . , us)
uniformly over [0, 1)s, write the digital expansion in base b of each of its coordinates, say
uj =

∑∞
`=1 dj,`b

−`, then add dj,` modulo b to the `th digit of the digital expansion in base
b of the jth coordinate of each point ui ∈ Pn. For b = 2, the digit-wise addition modulo b
becomes a bitwise exclusive-or, which is fast to perform on a computer.

An interesting property of the digital shift in base b is that if the hypercube [0, 1)s is
partitioned into bq1+···+qs rectangular boxes of the same size by partitioning the jth axis
into bqj equal parts for each j, for some integers qj ≥ 0 (such a partition is called a q-
equidissection in base b of the unit hypercube, where q = (q1, . . . , qs)), then the number of
boxes that contain m points, for each integer m, is unchanged by the randomization. In
particular, if each box contains the same number of points of Pn before the randomization,
then it also does after the randomization. In this case, we say that Pn is q-equidistributed
in base b. Several other randomization methods exist and most are adapted to special types
of point sets; see, e.g., DigitalNet and [29].

Point set implementations and enumeration tools

Let ui = (ui,0, ui,1, . . . , ui,s−1) be the elements of the point set Pn, for i = 0, . . . , n− 1. Both
the number of points n and the dimension s can be finite or infinite. The point set can
be viewed as a two-dimensional array whose element (i, j) contains ui,j, the coordinate j of
point i. In the implementations of typical point sets, the values ui,j are not stored explicitly
in a two-dimensional array, but pertinent information is organized so that the points and
their coordinates can be generated efficiently. The base class for point sets is the abstract
class PointSet.
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To enumerate the successive points or the successive coordinates of a given point, we
use point set iterators, which resemble the iterators defined in Java collections, except
that they loop over bi-dimensional sets. Their general behavior is defined in the inter-
face PointSetIterator. Several independent iterators can coexist at any given time for the
same point set. Each one maintains a current point index and a current coordinate index,
which are incremented by one when the iterator advances to the next point or the next co-
ordinate. Both are initialized to 0. Each subclass of PointSet has its own implementation
of PointSetIterator and has a method iterator that creates and returns a new point set
iterator of the correct type.

An important feature of the PointSetIterator interface is that it extends the RandomStream
interface. This means that any point set iterator can be used in place of a random stream
that is supposed to generate i.i.d. U(0, 1) random variables, anywhere in a simulation pro-
gram. It then becomes very easy to replace the (pseudo)random numbers by the coordinates
ui,j of a randomized HUPS without changing the internal code of the simulation program.

Transformed point sets and containers

HUPS are often transformed either deterministically or randomly. Deterministic transfor-
mations can be applied to improve the uniformity, or to eliminate some points or coordinates
(i.e., selecting subsets), or to concatenate point sets (padding), or to take an antithetic ver-
sion of a point set, etc. Random transformations are used for randomized QMC. They are
also useful when the average of a uniformity measure of interest over the outcomes of a cer-
tain type of randomization is much better than the worst case and may be better than the
uniformity measure of the original point set. When a point set is transformed, we often want
to keep the original as well, and we may want to apply different types of transformations or
different independent randomizations to the same point set.

This can be achieved via container point sets, which are defined in terms of another point
set to which they keep a reference and apply certain transformations. ContainerPointSet

is the base class for such containers. One example is RandShiftedPointSet, which applies
a random shift modulo 1 to the point set that it contains. Of course, the contained point set
can be a container itself and this can be done recursively, but too many levels of recursiveness
may impair the performance (speed).

Examples

To be done...
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PointSet

This abstract class defines the basic methods for accessing and manipulating point sets. A
point set can be represented as a two-dimensional array, whose element (i, j) contains ui,j,
the coordinate j of point i. Each coordinate ui,j is assumed to be in the unit interval [0, 1].
Whether the values 0 and 1 can occur may depend on the actual implementation of the point
set.

All points have the same number of coordinates (their dimension) and this number can
be queried by getDimension. The number of points is queried by getNumPoints. The
points and coordinates are both numbered starting from 0 and their number can actually be
infinite.

The iterator method provides a point set iterator which permits one to enumerate
the points and their coordinates. Several iterators over the same point set can coexist at
any given time. These iterators are instances of a hidden inner-class that implements the
PointSetIterator interface. The default implementation of iterator provided here relies
on the method getCoordinate to access the coordinates directly. However, this approach
is rarely efficient. Specialized implementations that dramatically improve the performance
are provided in subclasses of PointSet. The PointSetIterator interface actually extends
the RandomStream interface, so that the iterator can also be seen as a RandomStream and
used wherever such a stream is required for generating uniform random numbers. This
permits one to easily replace pseudorandom numbers by the coordinates of a selected set
of highly-uniform points, i.e., to replace Monte Carlo by quasi-Monte Carlo in a simulation
program.

This abstract class has only one abstract method: getCoordinate. Providing an im-
plementation for this method is already sufficient for the subclass to work. However, in
practically all cases, efficiency can be dramatically improved by overwriting iterator to
provide a custom iterator that does not necessarily rely on getCoordinate. In fact, di-
rect use of getCoordinate to access the coordinates is discouraged. One should access the
coordinates only via the iterators.

The built-in range checks require some extra time and also assumes that nobody ever uses
negative indices (Java does not offer unsigned integers). If getCoordinate is not accessed
directly by the user, it may be implemented without range checks.

package umontreal.iro.lecuyer.hups;

public abstract class PointSet

Methods

public int getDimension()

Returns the dimension (number of available coordinates) of the point set. If the dimension
is actually infinite, Integer.MAX_VALUE is returned.
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public int getNumPoints()

Returns the number of points. If this number is actually infinite, Integer.MAX_VALUE is
returned.

public abstract double getCoordinate (int i, int j);

Returns ui,j , the coordinate j of the point i.

public PointSetIterator iterator()

Constructs and returns a point set iterator. The default implementation returns an iterator
that uses the method getCoordinate (i,j) to iterate over the points and coordinates, but
subclasses can reimplement it for better efficiency.

public void addRandomShift (int d1, int d2, RandomStream stream)

This method does nothing for this generic class. In some subclasses, it adds a random shift
to all the points of the point set, using stream stream to generate the random numbers, for
coordinates d1 to d2-1.

public void addRandomShift (RandomStream stream)

Similar to addRandomShift (0, d2, stream), with d2 the dimension of the current random
shift. This method does nothing for this generic class.

public void clearRandomShift()

Erases the current random shift, if any.

public void randomize (int d1, int d2, RandomStream stream)

By default, this method simply calls addRandomShift(d1, d2, stream).

public void randomize (RandomStream stream)

By default, this method simply calls addRandomShift(stream).

public void unrandomize()

By default, this method simply calls clearRandomShift().

public String toString()

Formats a string that contains the information about the point set.

public String formatPoints()

Same as invoking formatPoints with n and d equal to the number of points and the dimen-
sion, respectively.

public String formatPoints (int n, int d)

Formats a string that displays the same information as returned by toString, together with
the first d coordinates of the first n points. If the number of points is less than n or the
dimension is less than d, the default implementation throws an exception. Of course, this
method should be used only for small values of n and d.
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PointSetIterator

Objects of classes that implement this interface are iterators that permit one to enumerate
(or observe) the successive points of a point set and the successive coordinates of these points.
Each PointSetIterator is associated with a given point set and maintains a current point
index i and a current coordinate index j, which are both initialized to zero.

Successive coordinates can be accessed one or many at a time by the methods nextCoor-
dinate and nextCoordinates, respectively. The current coordinate index j can be set
explicitely by setCurCoordIndex and resetCurCoordIndex. Similar methods are available
for resetting and accessing the current point. The method nextPoint permits one to enu-
merate the successive points in natural order.

This class also implements the RandomStream interface. This permits one to replace ran-
dom numbers by the coordinates of (randomized) quasi-Monte Carlo points without changing
the code that calls the generators in a simulation program. That is, the same simulation
program can be used for both Monte Carlo and quasi-Monte Carlo simulations. The method
nextDouble does exactly the same as nextCoordinate, it returns the current coordinate
of the current point and advances the current coordinate by one. The substreams corre-
spond to the points, so resetStartSubstream resets the current point coordinate to zero,
resetNextSubstream resets the iterator to the next point, and resetStartStream resets
the iterator to the first point of the point set.

There can be several iterators over the same point set. These iterators are independent
from each other. Classes that implement this interface must maintain enough information
so that each iterator is unaffected by other iterator’s operations. However, the iterator does
not need to be independent of the underlying point set. If the point set is modified (e.g.,
randomized), the iterator may continue to work as usual.

Point set iterators are implemented as inner classes because this gives a direct access to
the private members (or variables) of the class. This is important for efficiency. They are
quite similar to the iterators in Java collections.

package umontreal.iro.lecuyer.hups;

public interface PointSetIterator extends RandomStream

public void setCurCoordIndex (int j);

Sets the current coordinate index to j, so that the next calls to nextCoordinate or
nextCoordinates will return the values ui,j , ui,j+1, . . ., where i is the index of the current
point.

public void resetCurCoordIndex();

Equivalent to setCurCoordIndex (0).

public int getCurCoordIndex();

Returns the index j of the current coordinate. This may be useful, e.g., for testing if enough
coordinates are still available.
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public boolean hasNextCoordinate();

Returns true if the current point has another coordinate. This can be useful for testing if
coordinates are still available.

public double nextCoordinate();

Returns the current coordinate ui,j and advances to the next one. If no current coordinate
is available (either because the current point index has reached the number of points or
because the current coordinate index has reached the number of dimensions), it throws a
NoSuchElementException.

public void nextCoordinates (double[] p, int d);

Returns the next d coordinates of the current point in p and advances the current coordinate
index by d. If the remaining number of coordinates is too small, a NoSuchElementException
is thrown, as in nextCoordinate.

public void setCurPointIndex (int i);

Resets the current point index to i and the current coordinate index to zero. If i is larger
or equal to the number of points, an exception will not be raised here, but only later if we
ask for a new coordinate or point.

public void resetCurPointIndex();

Equivalent to setCurPointIndex (0).

public int resetToNextPoint();

Increases the current point index by 1 and returns its new value. If there is no more point,
an exception will be raised only if we ask for a new coordinate or point later on.

public int getCurPointIndex();

Returns the index i of the current point. This can be useful, e.g., for caching point sets.

public boolean hasNextPoint();

Returns true if there is a next point. This can be useful for testing if points are still available.

public int nextPoint (double[] p, int d);

Returns the first d coordinates of the current point in p, advances to the next point, and
returns the index of the new current point. Even if the current coordinate index is 0, the
point returned starts from coordinate 0. After obtaining the last point via this method,
the current point index (returned by the method) is equal to the number of points, so it is
no longer a valid point index. An exception will then be raised if we attempt to generate
additional points or coordinates.

Specialized implementations of this method often allow for increased efficiency, e.g., for cycle-
based point sets where the cycles (but not the points) are stored explicitly or for digital nets
by allowing non-incremental point enumerations via Gray-code counters.
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ContainerPointSet

This acts as a generic base class for all container classes that contain a point set and
apply some kind of transformation to the coordinates to define a new point set. One
example of such transformation is the antithetic map, applied by the container class
AntitheticPointSet, where each output coordinate ui,j is transformed into 1−ui,j. Another
example is RandShiftedPointSet.

The class implements a specialized type of iterator for container point sets. This type
of iterator contains itself an iterator for the containee and uses it to access the points and
coordinates internally, instead of maintaining itself indices for the current point and current
coordinate.

package umontreal.iro.lecuyer.hups;

public abstract class ContainerPointSet extends PointSet

protected void init (PointSet P0)

Initializes the container point set which will contain point set P0. This method must be
called by the constructor of any class inheriting from ContainerPointSet.
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CachedPointSet

This container class caches a point set by precomputing and storing its points locally in an
array. This can be used to speed up computations when using a small low-dimensional point
set more than once.

After the points are stored in the array, this class uses the default methods and the
default iterator type provided by the base class PointSet. This is one of the rare cases

where direct use of the getCoordinate method is efficient. 1

package umontreal.iro.lecuyer.hups;

public class CachedPointSet extends PointSet

Constructor

public CachedPointSet (PointSet P, int n, int dim)

Creates a new PointSet object that contains an array storing the first dim coordinates of
the first n points of P. The original point set P itself is not modified.

public CachedPointSet (PointSet P)

Creates a new PointSet object that contains an array storing the points of P. The number
of points and their dimension are the same as in the original point set. Both must be finite.

1 From Pierre: We could also implement an iterator that directly returns x[i][j] instead of calling
getCoordinate, for slightly better efficiency. On the other hand, even better efficiency can be achieved by
getting an entire point at a time in an array.
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SubsetOfPointSet

This container class permits one to select a subset of a point set. This is done by selecting
a range or providing an array of either point or coordinate indices. A typical application of
a range selection is to make the number of points or the dimension finite. It is also possible
to provide, for example, a random permutation in the selection of components.

Selecting a new subset of points or coordinates overwrites the previous selection. The
specification of a subset with respect to the points is independent from selecting a subset
with respect to the coordinates. The number of points and the dimension are adapted to the
current selection and all indices still start from 0, i.e., the subset works just like an ordinary
point set.

When the points or coordinates ranges are changed, existing iterators become invalid.
They should be reconstructed or reset to avoid inconsistencies.

package umontreal.iro.lecuyer.hups;

public class SubsetOfPointSet extends PointSet

Constructor

public SubsetOfPointSet (PointSet P)

Constructs a new PointSet object, initially identical to P, and from which a subset of the
points and/or a subset of the coordinates is to be extracted.

Methods

public void selectPointsRange (int from, int to)

Selects the points numbered from “from” to “to - 1” from the original point set.

public void selectPoints (int[] pointIndices, int numPoints)

Selects the numPoints points whose numbers are provided in the array pointIndices.

public void selectCoordinatesRange (int from, int to)

Selects the coordinates from “from” to “to - 1” from the original point set.

public void selectCoordinates (int[] coordIndices, int numCoord)

Selects the numCoord coordinates whose numbers are provided in the array coordIndices.

2

2 From Pierre: Code à reviser.
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PaddedPointSet

This container class realizes padded point sets, constructed by taking some coordinates from
a point set P1, other coordinates from a point set P2, and so on. This can be used to
implement latin supercube sampling [28], for example. After calling the constructor to cre-
ate the structure, component point sets can be padded to it by calling padPointSet or
padPointSetPermute.

Only sets with the same number of points can be padded. Point sets with too many
points or coordinates can be trimmed down by using the class SubsetOfPointSet before
they are padded. Infinite-dimensional point sets are allowed, but once one is padded, no
additional point set can be padded.

The points of each padded set can be permuted randomly, independently across the
padded sets. If such a random permutation is desired, the point set should be padded via
padPointSetPermute. When calling randomize, random permutations are generated for all
point sets that have been padded by padPointSetPermute.

package umontreal.iro.lecuyer.hups;

public class PaddedPointSet extends PointSet

Constructor

public PaddedPointSet (int maxPointSets)

Constructs a structure for padding at most maxPointSets point sets. This structure is
initially empty and will eventually contain the different point sets that are padded.

Methods

public void padPointSet (PointSet P)

Pads the point set P to the present structure.

public void padPointSetPermute (PointSet P)

Pads the point set P, which is assumed to be finite. A random permutation will be generated
(when calling randomize) and used to access the coordinates taken from the points of P (i.e.,
these points are randomly permuted).
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AntitheticPointSet

This container class provides antithetic points. That is, 1 − ui,j is returned in place of
coordinate ui,j. To generate regular and antithetic variates with a point set p, e.g., for
variance reduction, one can define an AntitheticPointSet object pa that contains p, and
then generate the regular variates with p and the antithetic variates with pa.

package umontreal.iro.lecuyer.hups;

public class AntitheticPointSet extends ContainerPointSet

Constructor

public AntitheticPointSet (PointSet P)

Constructs an antithetic point set from the given point set P.
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RandShiftedPointSet

This container class embodies a point set to which a random shift modulo 1 is applied (i.e.,
a single uniform random point is added to all points, modulo 1, to randomize the inner point
set).

When calling addRandomShift, a new random shift will be generated. This shift is
represented by a vector of d uniforms over (0, 1), where d is the current dimension of the
shift.

package umontreal.iro.lecuyer.hups;

public class RandShiftedPointSet extends ContainerPointSet

Constructor

public RandShiftedPointSet (PointSet P, int dimShift, RandomStream stream)

Constructs a structure to contain a randomly shifted version of P. The random shifts will
be generated in up to dimShift dimensions, using stream stream.

Methods

public int getShiftDimension()

Returns the number of dimensions of the current random shift.

public void addRandomShift (int d1, int d2, RandomStream stream)

Changes the stream used for the random shifts to stream, then refreshes the shift for coor-
dinates d1 to d2-1.

public void addRandomShift (RandomStream stream)

Changes the stream used for the random shifts to stream, then refreshes all coordinates of
the random shift, up to its current dimension.

public void addRandomShift (int d1, int d2)

Refreshes the random shift (generates new uniform values for the random shift coordinates)
for coordinates d1 to d2-1.

public void addRandomShift()

Refreshes all coordinates of the random shift, up to its current dimension.
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BakerTransformedPointSet

This container class embodies a point set to which a Baker transformation is applied (see,
e.g., [13]). It transforms each coordinate u into 2u if u ≤ 1/2 and 2(1− u) if u > 1/2.

package umontreal.iro.lecuyer.hups;

public class BakerTransformedPointSet extends ContainerPointSet

Constructor

public BakerTransformedPointSet (PointSet P)

Constructs a Baker-transformed point set from the given point set P.
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CycleBasedPointSet

This abstract class provides the basic structures for storing and manipulating a highly uni-
form point set defined by a set of cycles. The s-dimensional points are all the vectors of s
successive values found in any of the cycles, from any starting point. Since this is defined
for any positive integer s, the points effectively have an infinite number of dimensions. The
number of points, n, is the sum of lengths of all the cycles. The cycles of the point set are
simply stored as a list of arrays, where each array contains the successive values for a given
cycle. By default, the values are stored in double.

This structure is convenient for implementing recurrence-based point sets, where the point
set in s dimensions is defined as the set of all vectors of s successive values of a periodic
recurrence, from all its possible initial states.

package umontreal.iro.lecuyer.hups;

public abstract class CycleBasedPointSet extends PointSet

public void addRandomShift (int d1, int d2, RandomStream stream)

Adds a random shift to all the points of the point set, using stream stream to generate the
random numbers, for coordinates d1 to d2 - 1. This applies an addition modulo 1 of a
single random point to all the points.

protected void addCycle (AbstractList c)

Adds the cycle c to the list of all cycles. This method is used by subclass constructors to
fill up the list of cycles.
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LCGPointSet

Implements a recurrence-based point set defined via a linear congruential recurrence of the
form xi = axi−1 mod n and ui = xi/n. The implementation is done by storing the values of
ui over the set of all cycles of the recurrence.

package umontreal.iro.lecuyer.hups;

public class LCGPointSet extends CycleBasedPointSet

Constructors

public LCGPointSet (int n, int a)

Constructs and stores the set of cycles for an LCG with modulus n and multiplier a. If the
LCG has full period length n − 1, there are two cycles, the first one containing only 0 and
the second one of period length n− 1.

public LCGPointSet (int b, int e, int c, int a)

Constructs and stores the set of cycles for an LCG with modulus n = be + c and multiplier
a.

public int geta ()

Returns the value of the multiplier a.
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CycleBasedPointSetBase2

Similar to CycleBasedPointSet, except that the successive values in the cycles are stored as
integers in the range {0, . . . , 2k − 1}, where 1 ≤ k ≤ 31. The output values ui,j are obtained
by dividing these integer values by 2k. Point sets where the successive coordinates of each
point are obtained via linear recurrences modulo 2 (e.g., linear feedback shift registers or
Korobov-type polynomial lattice rules) are naturally expressed in this form. Storing the
integers 2kui,j instead of the ui,j themselves makes it easier to apply randomizations such
as digital random shifts in base 2, which are applied to the bits before transforming the
value to a real number ui,j. When a random digital shift is performed, it applies a bitwise
exclusive-or of all the points with a single random point.

package umontreal.iro.lecuyer.hups;

public abstract class CycleBasedPointSetBase2 extends CycleBasedPointSet

public void addRandomShift (int d1, int d2, RandomStream stream)

Adds a random digital shift in base 2 to all the points of the point set, using stream stream
to generate the random numbers, for coordinates d1 to d2 - 1. This applies a bitwise
exclusive-or of all the points with a single random point.
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F2wStructure

This class implements methods and fields needed by the classes F2wNetLFSR, F2wNetPolyLCG,
F2wCycleBasedLFSR and F2wCycleBasedPolyLCG. It also stores the parameters of these
point sets which will contain 2rw points (see the meaning of r and w below). The parameters
can be stored as a polynomial P (z) over F2w [z]

P (z) = zr +
r∑

i=1

biz
r−i

where bi ∈ F2w for i = 1, . . . , r. Let ζ be the root of an irreducible polynomial Q(z) ∈ F2[z].
It is well known that ζ is a generator of the finite field F2w . The elements of F2w are
represented using the polynomial ordered basis (1, ζ, . . . , ζw−1).

In this class, only the non-zero coefficients of P (z) are stored. It is stored as

P (z) = zr +
nbcoeff∑

i=0

coeff[i]znocoeff[i]

where the coefficients in coeff[] represent the non-zero coefficients bi of P (z) using the
polynomial basis. The finite field F2w used is defined by the polynomial

Q(z) = zw +
w∑

i=1

aiz
w−i

where ai ∈ F2, for i = 1, . . . , w. Polynomial Q is stored as the bit vector modQ = (aw, . . . , a1).

The class also stores the parameter step that is used by the classes F2wNetLFSR,
F2wNetPolyLCG, F2wCycleBasedLFSR and F2wCycleBasedPolyLCG. This parameter is such
that the implementation of the recurrence will output a value at every step iterations.

package umontreal.iro.lecuyer.hups;

public class F2wStructure

Constructors

F2wStructure (int w, int r, int modQ, int step, int nbcoeff,
int coeff[], int nocoeff[])

Constructs a F2wStructure object that contains the parameters of a polynomial in F2w [z],
as well as a stepping parameter.

F2wStructure (String filename, int no)

Constructs a polynomial in F2w [z] after reading its parameters from file filename; the
parameters of this polynomial are stored at line number no of filename. If a file named
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filename can be found relative to the program’s directory, then the polynomial will be read
from this file; otherwise, it will be read from the file named filename in the Jar archive. The
files are kept in different directories depending on the criteria used in the searches for the
parameters defining the polynomials. The different criteria for the searches and the theory
behind it are described in [32, 30]. The existing files and the number of polynomials they
contain are given in the following tables. The first table below contains files in subdirectory
LFSR_equid_max. The name of each file indicates the value of r and w for the polynomials.
For example, file f2wR2_W5.dat in directory LFSR_equid_max contains the parameters of
2358 polynomials with r = 2 and w = 5. The argument filename should include the name
of its directory. For example, to use the 5-th polynomial of file f2wR2_W5.dat in directory
LFSR_equid_max, one must call F2wStructure("LFSR_equid_max/f2wR2_W5.dat", 5).

Methods

int getLog2N ()
This method returns the product rw.

int multiply (int a, int b)
Method that multiplies two elements in F2w .

public static void print (String filename)
Prints the content of file filename. See the constructor above for the conditions on
filename.

public String toString ()
This method returns a string containing the polynomial P (z) and the stepping parameter.

Directory LFSR_equid_max

Filename Num of poly.

f2wR2_W5.dat 2358

f2wR2_W6.dat 1618

f2wR2_W7.dat 507

f2wR2_W8.dat 26

f2wR2_W9.dat 3

f2wR3_W4.dat 369

f2wR3_W5.dat 26

f2wR3_W6.dat 1

f2wR4_W3.dat 117

f2wR4_W4.dat 1

f2wR5_W2.dat 165

f2wR5_W3.dat 1

f2wR6_W2.dat 36

f2wR6_W3.dat 1

f2wR7_W2.dat 10

f2wR8_W2.dat 11

f2wR9_W2.dat 1

Directory LFSR_equid_sum

Filename Num of poly.

f2wR2_W5.dat 2276

f2wR2_W6.dat 1121

f2wR2_W7.dat 474

f2wR2_W8.dat 37

f2wR2_W9.dat 6

f2wR3_W4.dat 381

f2wR3_W5.dat 65

f2wR3_W6.dat 7

f2wR4_W3.dat 154

f2wR4_W4.dat 2

f2wR5_W2.dat 688

f2wR5_W3.dat 5

f2wR6_W2.dat 70

f2wR6_W3.dat 1

f2wR7_W2.dat 9

f2wR8_W2.dat 3

f2wR9_W2.dat 3
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Directory LFSR_mindist_max

Filename Num of poly.

f2wR2_W5.dat 1

f2wR2_W6.dat 1

f2wR2_W7.dat 2

f2wR2_W8.dat 2

f2wR2_W9.dat 1

f2wR3_W4.dat 2

f2wR3_W5.dat 2

f2wR3_W6.dat 1

f2wR4_W3.dat 1

f2wR4_W4.dat 1

f2wR5_W2.dat 2

f2wR5_W3.dat 1

f2wR6_W2.dat 4

f2wR6_W3.dat 1

f2wR7_W2.dat 1

f2wR8_W2.dat 1

f2wR9_W2.dat 1

Directory LFSR_mindist_sum

Filename Num of poly.

f2wR2_W5.dat 1

f2wR2_W6.dat 1

f2wR2_W7.dat 1

f2wR2_W8.dat 1

f2wR2_W9.dat 1

f2wR3_W4.dat 1

f2wR3_W5.dat 1

f2wR3_W6.dat 1

f2wR4_W3.dat 1

f2wR4_W4.dat 2

f2wR5_W2.dat 2

f2wR5_W3.dat 2

f2wR6_W2.dat 1

f2wR6_W3.dat 1

f2wR7_W2.dat 2

f2wR8_W2.dat 1

f2wR9_W2.dat 2

Directory LFSR_tvalue_max

Filename Num of poly.

f2wR2_W5.dat 7

f2wR2_W6.dat 1

f2wR2_W7.dat 1

f2wR2_W8.dat 1

f2wR2_W9.dat 1

f2wR3_W4.dat 1

f2wR3_W5.dat 1

f2wR3_W6.dat 1

f2wR4_W3.dat 2

f2wR4_W4.dat 1

f2wR5_W2.dat 14

f2wR5_W3.dat 1

f2wR6_W2.dat 2

f2wR6_W3.dat 1

f2wR7_W2.dat 1

f2wR8_W2.dat 1

f2wR9_W2.dat 1

Directory LFSR_tvalue_sum

Filename Num of poly.

f2wR2_W5.dat 15

f2wR2_W6.dat 1

f2wR2_W7.dat 1

f2wR2_W8.dat 2

f2wR2_W9.dat 1

f2wR3_W4.dat 1

f2wR3_W5.dat 1

f2wR3_W6.dat 1

f2wR4_W3.dat 2

f2wR4_W4.dat 1

f2wR5_W2.dat 13

f2wR5_W3.dat 2

f2wR6_W2.dat 12

f2wR6_W3.dat 1

f2wR7_W2.dat 1

f2wR8_W2.dat 1

f2wR9_W2.dat 1
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F2wCycleBasedLFSR

This class creates a point set based upon a linear feedback shift register sequence. The
recurrence used to produce the point set is

mn =
r∑

i=1

bimn−i

where mn ∈ F2w , n ≥ 0 and bi ∈ F2w . There is a polynomial in F2w [z] associated with this
recurrence called the characteristic polynomial. It is

P (z) = zr +
r∑

i=1

biz
r−i.

In the implementation, this polynomial is stored in an object F2wStructure.

Let x = (x(0), . . . , x(p−1)) ∈ Fp
2 be a p-bit vector. Let us define the function φ(x) =∑p

i=1 2−ix(i−1). The point set in t dimensions produced by this class is{
(φ(y0), φ(ys), . . . , φ(ys(t−1)) : (v0, . . . ,vr−1) ∈ Frw

2

}
where yn = trunch(vn,vn+1, . . .), vn is the representation of mn under the polynomial basis
of F2w over F2, and h = wb31/wc. The parameter s is called the stepping parameter of the
recurrence.

package umontreal.iro.lecuyer.hups;

public class F2wCycleBasedLFSR extends CycleBasedPointSetBase2

Constructors

public F2wCycleBasedLFSR (int w, int r, int modQ, int step, int nbcoeff,
int coeff[], int nocoeff[])

Constructs a point set with 2rw points. See the description of the class F2wStructure for
the meaning of the parameters.

public F2wCycleBasedLFSR (String filename, int no)

Constructs a point set after reading its parameters from file filename; the parameters are
located at line numbered no of filename. The available files are listed in the description of
class F2wStructure.
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F2wCycleBasedPolyLCG

This class creates a point set based upon a linear congruential sequence in the finite field
F2w [z]/P (z). The recurrence is

qn(z) = zsqn−1(z) mod P (z)

where P (z) ∈ F2w [z] has degree r and qn(z) = qn,1z
r−1 + · · · + qn,r ∈ F2w [z]/P (z). The

parameter s is called the stepping parameter of the recurrence. The polynomial P (z) is not
necessarily the characteristic polynomial of this recurrence, but it can still be used to store
the parameters of the recurrence. In the implementation, it is stored in an object of the class
F2wStructure. See the description of this class for more details on how the polynomial is
stored.

Let x = (x(0), . . . , x(p−1)) ∈ Fp
2 be a p-bit vector. Let us define the function φ(x) =∑p

i=1 2−ix(i−1). The point set in t dimensions produced by this class is

{(φ(y0), φ(y1), . . . , φ(yt−1) : (q0,1, . . . ,q0,r−1) ∈ Frw
2 }

where yn = (qn,1, . . . ,qn,r), qn,i is the representation of qn,i under the polynomial basis of
F2w over F2.

package umontreal.iro.lecuyer.hups;

public class F2wCycleBasedPolyLCG extends CycleBasedPointSetBase2

Constructors

public F2wCycleBasedPolyLCG (int w, int r, int modQ, int step, int nbcoeff,
int coeff[], int nocoeff[])

Constructs a point set with 2rw points. See the description of the class F2wStructure for
the meaning of the parameters.

public F2wCycleBasedPolyLCG (String filename, int no)

Constructs a point set after reading its parameters from file filename; the parameters are
located at line numbered no of filename. The available files are listed in the description of
class F2wStructure.
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DigitalNet

This class provides the basic structures for storing and manipulating linear digital nets in
base b, for an arbitrary base b ≥ 2. We recall that a net contains n = bk points in s
dimensions, where the ith point ui, for i = 0, . . . , bk − 1, is defined as follows:

i =
k−1∑
`=0

ai,`b
`,

ui,j,1

ui,j,2
...

 = Cj


ai,0

ai,1
...

ai,k−1

 ,

ui,j =
∞∑

`=1

ui,j,`b
−`,

ui = (ui,0, . . . , ui,s−1).

In our implementation, the matrices Cj are r × k, so the expansion of ui,j is truncated to
its first r terms. The points are stored implicitly by storing the generator matrices Cj in a
large two-dimensional array of integers, with srk elements.

For general b, the element (l, c) of Cj (counting elements from 0) is stored at position
[jk + c][l] in this array.

The points ui are enumerated using the Gray code technique as proposed in [1, 38] (see
also [9, 15]). With this technique, the b-ary representation of i, ai = (ai,0, . . . , ai,k−1), is
replaced in Equation (7) by a Gray code representation of i, gi = (gi,0, . . . , gi,k−1). The
Gray code gi used here is defined by gi,k−1 = ai,k−1 and gi,` = (ai,` − ai,`+1) mod b for ` =
0, . . . , k − 2. It has the property that gi = (gi,0, . . . , gi,k−1) and gi+1 = (gi+1,0, . . . , gi+1,k−1)
differ only in the position of the smallest index ` such that ai,` < b − 1, and we have
gi+1,` = (gi,` + 1) mod b in that position.

This Gray code representation permits a more efficient enumeration of the points by
the iterators. It changes the order in which the points ui are enumerated, but the first bm

points remain the same for every integer m. The ith point of the sequence with the Gray
enumeration is the i′th point of the original enumeration, where i′ is the integer whose b-ary
representation ai′ is given by the Gray code gi. To enumerate all the points successively,
we never need to compute the Gray codes explicitly. It suffices to know the position ` of
the Gray code digit that changes at each step, and this can be found quickly from the b-ary
representation ai. The digits of each coordinate j of the current point can be updated by
adding column ` of the generator matrix Cj to the old digits, modulo b.

One should avoid using the method getCoordinate(i, j) for arbitrary values of i and j,
because this is much slower than using an iterator to access successive coordinates.
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Digital nets can be randomized in various ways [25, 6, 21, 29]. Several types of random-
izations specialized for nets are implemented directly in this class.

A simple but important randomization is the random digital shift in base b, defined as
follows: replace each digit ui,j,` in (8) by (ui,j,`+dj,`) mod b, where the dj,`’s are i.i.d. uniform
over {0, . . . , b− 1}. This is equivalent to applying a single random shift to all the points in
a formal series representation of their coordinates [21, 24]. In practice, the digital shift is
truncated to w digits, for some integer w ≥ r. Applying a digital shift does not change the
equidistribution and (t,m, s)-net properties of a point set [15, 19, 24]. Moreover, with the
random shift, each point is uniformly distributed over the unit hypercube (but the points
are not independent, of course).

A second class of randomizations specialized for digital nets are the linear matrix scram-
bles [25, 6, 15, 29], which multiply the matrices Cj by a random invertible matrix Mj,
modulo b. There are several variants, depending on how Mj is generated, and on whether
Cj is multiplied on the left or on the right. In our implementation, the linear matrix
scrambles are incorporated directly into the matrices Cj (as in [15]), so they do not slow
down the enumeration of points. Methods are available for applying linear matrix scrambles
and for removing these randomizations. These methods generate the appropriate random
numbers and make the corresponding changes to the Cj’s. A copy of the original Cj’s is
maintained, so the point set can be returned to its original unscrambled state at any time.
When a new linear matrix scramble is applied, it is always applied to the original generator
matrices. The method resetGeneratorMatrices removes the current matrix scramble by
resetting the generator matrices to their original state. On the other hand, the method
eraseOriginalGeneratorMatrices replaces the original generator matrices by the current
ones, making the changes permanent. This is useful if one wishes to apply two or more linear
matrix scrambles on top of each other.

Linear matrix scrambles are usually combined with a random digital shift; this com-
bination is called an affine matrix scramble [29]. These two randomizations are applied
via separate methods. The linear matrix scrambles are incorporated into the matrices Cj

whereas the digital random shift is stored and applied separately, independently of the other
scramblings.

Applying a digital shift or a linear matrix scramble to a digital net invalidates all iterators
for that randomized point, because each iterator uses a cached copy of the current point,
which is updated only when the current point index of that iterator changes, and the update
also depends on the cached copy of the previous point. After applying any kind of scrambling,
the iterators must be reinitialized to the initial point by invoking resetCurPointIndex or
reinstantiated by the iterator method (this is not done automatically).

package umontreal.iro.lecuyer.hups;

public class DigitalNet extends PointSet

Constructor

public DigitalNet ()
Empty constructor.
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Methods

public double getCoordinateNoGray (int i, int j)

Returns ui,j , the coordinate j of point i, the points being enumerated in the standard order
(no Gray code).

public PointSetIterator iteratorNoGray()

This iterator does not use the Gray code. Thus the points are enumerated in the order of
their first coordinate before randomization.

public void addRandomShift (int d1, int d2, RandomStream stream)

Adds a random digital shift to all the points of the point set, using stream stream to generate
the random numbers. For each coordinate j from d1 to d2-1, the shift vector (dj,0, . . . , dj,k−1)
is generated uniformly over {0, . . . , b−1}k and added modulo b to the digits of all the points.
After adding a digital shift, all iterators must be reconstructed or reset to zero.

public void addRandomShift (RandomStream stream)

Same as addRandomShift(0, dim, stream), where dim is the dimension of the digital net.

public void leftMatrixScramble (RandomStream stream)

Applies a linear scramble by multiplying each Cj on the left by a w ×w nonsingular lower-
triangular matrix Mj , as suggested by Matoušek [25] and implemented by Hong and Hicker-
nell [15]. The diagonal entries of each matrix Mj are generated uniformly over {1, . . . , b−1},
the entries below the diagonal are generated uniformly over {0, . . . , b− 1}, and all these en-
tries are generated independently. This means that in base b = 2, all diagonal elements are
equal to 1.

public void leftMatrixScrambleDiag (RandomStream stream)

Similar to leftMatrixScramble except that all the off-diagonal elements of the Mj are 0.

public void leftMatrixScrambleFaurePermut (RandomStream stream, int sb)

Similar to leftMatrixScramble except that the diagonal elements of each matrix Mj are
chosen from a restricted set of the best integers as calculated by Faure [?]. They are generated
uniformly over the first sb elements of array F , where F is made up of a permutation of the
integers [1..(b − 1)]. These integers are sorted by increasing order of the upper bounds of
the extreme discrepancy for the given integer.

public void leftMatrixScrambleFaurePermutDiag (RandomStream stream,
int sb)

Similar to leftMatrixScrambleFaurePermut except that all off-diagonal elements are 0.

public void leftMatrixScrambleFaurePermutAll (RandomStream stream,
int sb)

Similar to leftMatrixScrambleFaurePermut except that the elements under the diagonal
are also chosen from the same restricted set as the diagonal elements.
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public void iBinomialMatrixScramble (RandomStream stream)

Applies the i-binomial matrix scramble proposed by Tezuka [39] (see also [29]). This
multiplies each Cj on the left by a w × w nonsingular lower-triangular matrix Mj as in
leftMatrixScramble, but with the additional constraint that all entries on any given diag-
onal or subdiagonal of Mj are identical.

public void iBinomialMatrixScrambleFaurePermut (RandomStream stream,
int sb)

Similar to iBinomialMatrixScramble except that the diagonal elements of each matrix Mj

are chosen as in leftMatrixScrambleFaurePermut.

public void iBinomialMatrixScrambleFaurePermutDiag (RandomStream stream,
int sb)

Similar to iBinomialMatrixScrambleFaurePermut except that all the off-diagonal elements
are 0.

public void iBinomialMatrixScrambleFaurePermutAll (RandomStream stream,
int sb)

Similar to iBinomialMatrixScrambleFaurePermut except that the elements under the di-
agonal are also chosen from the same restricted set as the diagonal elements.

public void stripedMatrixScramble (RandomStream stream)

Applies the striped matrix scramble proposed by Owen [29]. It multiplies each Cj on the left
by a w × w nonsingular lower-triangular matrix Mj as in leftMatrixScramble, but with
the additional constraint that in any column, all entries below the diagonal are equal to the
diagonal entry, which is generated randomly over {1, . . . , b − 1}. Note that for b = 2, the
matrices Mj become deterministic, with all entries on and below the diagonal equal to 1.

public void stripedMatrixScrambleFaurePermutAll (RandomStream stream,
int sb)

Similar to stripedMatrixScramble except that the elements on and under the diagonal of
each matrix Mj are chosen as in leftMatrixScrambleFaurePermut.

public void rightMatrixScramble (RandomStream stream)

Applies a linear scramble by multiplying each Cj on the right by a single k× k nonsingular
upper-triangular matrix M, as suggested by Faure and Tezuka [6] (see also [15]). The
diagonal entries of the matrix M are generated uniformly over {1, . . . , b−1}, the entries above
the diagonal are generated uniformly over {0, . . . , b − 1}, and all the entries are generated
independently. The effect of this scramble is only to change the order in which the points
are generated. If one computes the average value of a function over all the points of a given
digital net, or over a number of points that is a power of the basis, then this scramble makes
no difference.

public void resetGeneratorMatrices()

Restores the original generator matrices. This removes the current linear matrix scrambles.
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public void eraseOriginalGeneratorMatrices()

Erases the original generator matrices and replaces them by the current ones. The current
linear matrix scrambles thus become permanent. This is useful if we want to apply several
scrambles in succession to a given digital net.

public void printGeneratorMatrices (int s)

Prints the generator matrices in standard form for dimensions 1 to s.
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DigitalSequence

This abstract class describes methods specific to digital sequences. Concrete classes must
implement the extendSequence method that increases the number of points of the digital
sequence. Calling the methods toNet or toNetShiftCj will transform the digital sequence
into a digital net, which has a fixed number of points n.

package umontreal.iro.lecuyer.hups;

public abstract class DigitalSequence extends DigitalNet

public abstract void extendSequence (int k);

Increases the number of points to n = bk from now on.

public DigitalNet toNet()

Transforms this digital sequence into a digital net without changing the coordinates of the
points. Returns the digital net.

public DigitalNet toNetShiftCj()

Transforms this digital sequence into a digital net by adding one dimension and shifting all
coordinates by one position. The first coordinate of point i is i/n, where n is the total number
of points. Thus if the coordinates of a point of the digital sequence were (x0, x1, x2, . . . , xs−1),
then the coordinates of the point of the digital net will be (i/n, x0, x1, . . . , xs−1). In other
words, for the digital net, C0 is the reflected identity and for j ≥ 1, the Cj used is the Cj−1

of the digital sequence. If the digital sequence uses a digital shift, then the digital net will
include the digital shift with one more dimension also. Returns the digital net.

public PointSetIterator iteratorShift()

Similar to iterator, except that the first coordinate of the points is i/n, the second co-
ordinate is obtained via the generating matrix C0, the next one via C1, and so on. Thus,
this iterator shifts all coordinates of each point one position to the right and sets the first
coordinate of point i to i/n, so that the points enumerated with this iterator have one more
dimension. A digital shift, if present, will have one more dimension also. This iterator uses
the Gray code.

public PointSetIterator iteratorShiftNoGray()

This iterator shifts all coordinates of each point one position to the right and sets the first
coordinate of point i to i/n, so that the points enumerated with this iterator have one more
dimension. This iterator does not use the Gray code; the points are enumerated in the order
of their first coordinate before randomization. A digital shift, if present, will have one more
dimension also.
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DigitalNetFromFile

This class allows us to read the parameters defining a digital net either from a file, or from
a URL address on the World Wide Web. The parameters used in building the net are those
defined in class DigitalNet. The format of the data files must be the following:

// Any number of comment lines starting with //

b // Base

k // Number of columns

r // Maximal number of rows

n // Number of points = bk

s // Maximal dimension of points

// dim = 1

c11 c21 · · · cr1
c12 c22 · · · cr2

...

c1k c2k · · · crk

// dim = 2
...

// dim = s
c11 c21 · · · cr1
c12 c22 · · · cr2

...

c1k c2k · · · crk

The figure above gives the general format of the data file needed by DigitalNetFromFile.
The values of the parameters on the left must appear in the file as integers. On the right of
each parameter, there is an optional comment that is disregarded by the reader program. In
general, the Java line comments // are accepted anywhere and will ensure that the rest of
the line is dropped by the reader. Blank lines are also disregarded by the reader program.
For each dimension, there must be a k × r matrix of integers in {0, 1, . . . , b− 1} (note that
the matrices must appear in transposed form).

The predefined files in SSJ are kept in different directories depending on the criteria
used in the searches for the parameters defining the digital net. Each file contains the
parameters for a specific digital net. One may get a list of all available files in a direc-
tory by using method listDir below. The name of the files gives information about the
main parameters of the digital net. For example, the file named Edel/OOA2/B3S13R9C9St6

contains the parameters for a digital net proposed by Yves Edel (see http://www.mathi.

http://www.mathi.uni-heidelberg.de/~yves/Matritzen/OOAs
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uni-heidelberg.de/~yves/Matritzen/OOAs) based on ordered orthogonal arrays; the dig-
ital net has base B = 3, dimension S = 13, the generating matrices have R = 9 rows and
C = 9 columns, and the strength of the net is St = 6. At the moment, there are no exist-
ing subdirectories of predefined files in SSJ; the files have all been stocked at the address
http://www.iro.umontreal.ca/~simardr/ssj/data.html.

package umontreal.iro.lecuyer.hups;

public class DigitalNetFromFile extends DigitalNet

Constructors

public DigitalNetFromFile (String filename, int r1, int w, int s1)
throws MalformedURLException, IOException

Constructs a digital net after reading its parameters from file filename. If a file named
filename can be found relative to the program’s directory, then the parameters will be read
from this file; otherwise, they will be read from the file named filename in the ssj.jar
archive. If filename is a URL string, it will be read on the World Wide Web. For ex-
ample, to construct a digital net from the parameters in file B3S13R9C9St6 in the current
directory, one must give the string "B3S13R9C9St6" as argument to the constructor. As an
example of a file read from the WWW, one may give as argument to the constructor the string
‘‘http://www.iro.umontreal.ca/~simardr/ssj/data/Edel/OOA3/B3S13R6C6St4’’. Pa-
rameter w gives the number of digits of resolution, r1 is the number of rows, and s1 is the
dimension. Restrictions: s1 must be less than the maximal dimension, and r1 less than the
maximal number of rows in the data file. Also w ≥ r1.

public DigitalNetFromFile (String filename, int s)
throws MalformedURLException, IOException

Same as DigitalNetFromFile(filename, r, r, s) where s is the dimension and r is given
in data file filename.

Methods

public String toStringDetailed()

Writes the parameters and the generating matrices of this digital net to a string. This is
useful to check that the file parameters have been read correctly.

public static String listDir (String dirname) throws IOException

Lists all files (or directories) in directory dirname. Only relative pathnames should be used.
The files are parameter files used in defining digital nets. For example, calling listDir("")
will give the list of the main data directory in SSJ, while calling listDir("Edel/OOA2")
will give the list of all files in directory Edel/OOA2.

public static void listDirHTML (String dirname, String filename)
throws IOException

Creates a list of all data files in directory dirname and writes that list in format HTML in
output file filename. Each data file contains the parameters required to build a digital net.

http://www.mathi.uni-heidelberg.de/~yves/Matritzen/OOAs
http://www.mathi.uni-heidelberg.de/~yves/Matritzen/OOAs
http://www.iro.umontreal.ca/~simardr/ssj/data.html
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The resulting list contains a line for each data file giving the name of the file, the base, the
dimension, the number of rows and the number of columns of the corresponding digital net.
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FaureSequence

This class implements digital nets or digital sequences formed by the first n = bk points
of the Faure sequence in base b. Values of n up to 231 are allowed. One has r = k. The
generator matrices are

Cj = Pj mod b (11)

for j = 0, . . . , s − 1, where P is a k × k upper triangular matrix whose entry (l, c) is the
number of combinations of l objects among c,

(
c
l

)
, for l ≤ c and is 0 for l > c. The matrix C0

is the identity, C1 = P, and the other Cj’s can be defined recursively via Cj = PCj−1 mod b.
Our implementation uses the recursion(

c

l

)
=

(
c− 1

l

)
+

(
c− 1

l − 1

)
(12)

to evaluate the binomial coefficients in the matrices Cj, as suggested by Fox [7] (see also [9],
page 301). The entries xj,l,c of Cj are computed as follows:

xj,c,c = 1 for c = 0, . . . , k − 1,

xj,0,c = jxj,0,c−1 for c = 1, . . . , k − 1,

xj,l,c = xj,l−1,c−1 + jxj,l,c−1 for 2 ≤ c < l ≤ k − 1,

xj,l,c = 0 for c > l or l ≥ k.

For any integer m > 0 and ν ≥ 0, if we look at the vector (ui,j,1, . . . , ui,j,m) (the first m
digits of coordinate j of the output) when i goes from νbm to (ν+1)bm−1, this vector takes
each of its bm possible values exactly once. In particular, for ν = 0, ui,j visits each value
in the set {0, 1/bm, 2/bm, . . . , (bm − 1)/bm} exactly once, so all one-dimensional projections
of the point set are identical. However, the values are visited in a different order for the
different values of j (otherwise all coordinates would be identical). For j = 0, they are visited
in the same order as in the van der Corput sequence in base b.

An important property of Faure nets is that for any integers m > 0 and ν ≥ 0, the point
set {ui for i = νbm, . . . , (ν + 1)bm − 1} is a (0,m, s)-net in base b. In particular, for n = bk,
the first n points form a (0, k, s)-net in base b. The Faure nets are also projection-regular
and dimension-stationary (see [21] for definitions of these properties).

To obtain digital nets from the generalized Faure sequence [38], where Pj is left-multiplied
by some invertible matrix Aj, it suffices to apply an appropriate matrix scramble (e.g., via
leftMatrixScramble). This changes the order in which ui,j visits its different values, for
each coordinate j, but does not change the set of values that are visited. The (0,m, s)-net
property stated above remains valid.

package umontreal.iro.lecuyer.hups;

public class FaureSequence extends DigitalSequence
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Constructors

public FaureSequence (int b, int k, int r, int w, int dim)

Constructs a digital net in base b, with n = bk points and w output digits, in dim dimensions.
The points are the first n points of the Faure sequence. The generator matrices Cj are r×k.
Unless, one plans to apply a randomization on more than k digits (e.g., a random digital
shift for w > k digits, or a linear scramble yielding r > k digits), one should take w = r = k
for better computational efficiency. Restrictions: dim ≤ 500 and bk ≤ 231.

public FaureSequence (int n, int dim)

Same as FaureSequence(b, k, w, w, dim) with base b equal to the smallest prime larger
or equal to dim, and with at least n points. The values of k, r, and w are taken as
k = dlogb ne and r = w = max(k, b30/ log2 bc).
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DigitalNetBase2

A special case of DigitalNet for the base b = 2. The implementation exploit the binary
nature of computers and is much more efficient than for the general case. Binary expansions
are easy to obtain because the computer already uses them internally. The generator matrices
Cj are stored in a large array of size sk. The c-th column of Cj, for c = 0, . . . , k − 1, is
stored at position jk + c of that array, as a 32-bit integer. For all derived classes, the above
32-bit integer must be of the form [00 · · ·C0C1 · · ·Cr−1]. The value of k cannot exceed 31
(32 is not allowed because Java does not have 32-bit unsigned integers). The value of w is

always 31. 3

The random digital shift in base 2 corresponds to a random XOR. It can be applied via
the method addRandomShift.

package umontreal.iro.lecuyer.hups;

public class DigitalNetBase2 extends DigitalNet

public void printGeneratorMatrices (int s)

Prints the generator matrices as bit matrices in standard form for dimensions 1 to s.

public void printGeneratorMatricesTrans (int s)

Prints the generator matrices transposed in the form of integers for dimensions 1 to s. Each
integer corresponds to a column of bits.

public PointSetIterator iteratorNoGray()

This iterator does not use the Gray code. Thus the points are enumerated in the order of
their first coordinate before randomization.

3 From Pierre: In this implementation, w is always used in place of r so the value of r is not used.
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DigitalSequenceBase2

This abstract class describes methods specific to digital sequences in base 2. Concrete
classes must implement the extendSequence method that increases the number of points of
the digital sequence. Calling the methods toNet or toNetShiftCj will transform the digital
sequence into a digital net, which has a fixed number of points n.

package umontreal.iro.lecuyer.hups;

public abstract class DigitalSequenceBase2 extends DigitalNetBase2

public abstract void extendSequence (int k);

Increases the number of points to n = 2k from now on.

public DigitalNetBase2 toNet()

Transforms this digital sequence into a digital net without changing the coordinates of the
points. Returns the digital net.

public DigitalNetBase2 toNetShiftCj()

Transforms this digital sequence into a digital net by adding one dimension and shifting all
coordinates by one position. The first coordinate of point i is i/n, where n is the total number
of points. Thus if the coordinates of a point of the digital sequence were (x0, x1, x2, . . . , xs−1),
then the coordinates of the point of the digital net will be (i/n, x0, x1, . . . , xs−1). In other
words, for the digital net, C0 is the reflected identity and for j ≥ 1, the Cj used is the Cj−1

of the digital sequence. If the digital sequence uses a digital shift, then the digital net will
include the digital shift with one more dimension also. Returns the digital net.

public PointSetIterator iteratorShift()

Similar to iterator, except that the first coordinate of the points is i/n, the second co-
ordinate is obtained via the generating matrix C0, the next one via C1, and so on. Thus,
this iterator shifts all coordinates of each point one position to the right and sets the first
coordinate of point i to i/n, so that the points enumerated with this iterator have one more
dimension. A digital shift, if present, will have one more dimension also. This iterator uses
the Gray code.

public PointSetIterator iteratorShiftNoGray()

This iterator shifts all coordinates of each point one position to the right and sets the first
coordinate of point i to i/n, so that the points enumerated with this iterator have one more
dimension. This iterator does not use the Gray code: the points are enumerated in the order
of their first coordinate before randomization. A digital shift, if present, will have one more
dimension also.
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DigitalNetBase2FromFile

This class allows us to read the parameters defining a digital net in base 2 either from
a file, or from a URL address on the World Wide Web. See the documentation in
DigitalNetFromFile. The parameters used in building the net are those defined in class
DigitalNetBase2. The format of the data files must be the following (where B is any Cj):

// Any number of comment lines starting with //

2 // Base

k // Number of columns

r // Number of rows

n // Number of points = 2k

s // Dimension of points

// dim = 1

a1 // = 230B11 + 229B21 + · · ·+ 231−rBr1

a2 // = 230B12 + 229B22 + · · ·+ 231−rBr2
...

ak

// dim = 2
...

// dim = s
a1

a2
...

ak

For each dimension j, there must be a k-vector of 32-bit integers (the ai) corresponding
to the columns of Cj. The correspondance is such that integer ai = 230(Cj)1i + 229(Cj)2i +
· · ·+ 231−r(Cj)ri.

package umontreal.iro.lecuyer.hups;

public class DigitalNetBase2FromFile extends DigitalNetBase2

Constructor

public DigitalNetBase2FromFile (String filename, int r1, int w, int s1)
throws IOException, MalformedURLException

Constructs a digital net in base 2 after reading its parameters from file filename. See the
documentation in DigitalNetFromFile. Parameter w gives the number of bits of resolution,
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r1 is the number of rows, and s1 is the dimension. Restrictions: s1 must be less than the
maximal dimension, and r1 less than the maximal number of rows in the data file. Also w
≥ r1.

public DigitalNetBase2FromFile (String filename, int s1)
throws IOException, MalformedURLException

Same as DigitalNetBase2FromFile(filename, r, 31, s1) where s1 is the dimension and
r is given in data file filename.

Methods

public String toStringDetailed()

Writes the parameters and the generating matrices of this digital net to a string. This is
useful to check that the file parameters have been read correctly.

public static String listDir (String dirname) throws IOException

Lists all files (or directories) in directory dirname. Only relative pathnames should be used.
The files are parameter files used in defining digital nets. For example, calling listDir("")
will give the list of the main data directory in SSJ, while calling listDir("Edel/OOA2")
will give the list of all files in directory Edel/OOA2.
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SobolSequence

This class implements digital nets or digital sequences in base 2 formed by the first n = 2k

points of a Sobol’ sequence [35, 36]. Values of n up to 231 are allowed, in a maximum of 360
dimensions.

In Sobol’s proposal, the generator matrices Cj are upper triangular matrices defined by
a set of direction numbers

vj,c = mj,c2
−c =

c∑
l=1

vj,c,l2
−l,

where each mj,c is an odd integer smaller than 2c, for c = 1, . . . , k and j = 0, . . . , s− 1. The
digit vj,c,l is the element (l, c) of Cj, so vj,c represents column c of Cj. One can also write

mj,c =
c∑

l=1

vj,c,l2
c−l,

so column c of Cj contains the c digits of the binary expansion of mj,c, from the most to the
least significant, followed by w− c zeros, where w is the number of output digits. Since each
mj,c is odd, the first k rows of each Cj form a non-singular upper triangular matrix whose
diagonal elements are all ones.

For each dimension j, the integers mj,c are defined by selecting a primitive polynomial
over F2 of degree cj,

fj(z) = zcj + aj,1z
cj−1 + · · ·+ aj,cj

,

and the first cj integers mj,0, . . . ,mj,cj−1. Then the following integers mj,cj
,mj,cj+1, . . . are

determined by the recurrence

mj,c = 2aj,1mj,c−1 ⊕ · · · ⊕ 2cj−1aj,cj−1mj,c−cj+1 ⊕ 2cjmj,c−cj
⊕mj,c−cj

for c ≥ cj, or equivalently,

vj,c,l = aj,1vj,c−1,l ⊕ · · · ⊕ aj,cj−1vj,c−cj+1,l ⊕ vj,c−cj ,l ⊕ vj,c−cj ,l+cj

for l ≥ 0, where ⊕ means bitwise exclusive or (i.e., bitwise addition modulo 2). Sobol’ [35]
has shown that with this construction, if the primitive polynomials fj(z) are all distinct,
one obtains a (t, s)-sequence whose t-value does not exceed c0 + · · ·+ cs−1 + 1− s. He then
suggested to list the set of all primitive polynomials over F2 by increasing order of degree,
starting with f0(z) ≡ 1 (whose corresponding matrix C0 is the identity), and take fj(z) as
the (j + 1)th polynomial in the list, for j ≥ 0.

This list of primitive polynomials, as well as default choices for the direction numbers,
are stored in precomputed tables. The ordered list of primitive polynomials is the same as in
[23] and was taken from Florent Chabaud’s web site, at http://fchabaud.free.fr/. Each
polynomial fj(z) is stored in the form of the integer 2cj + aj,12

cj−1 + · · ·+ aj,cj
, whose binary

representation gives the polynomial coefficients.

http://fchabaud.free.fr/
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For the set of direction numbers, there are several possibilities, based on different selection
criteria. The original values proposed by Sobol’, and implemented in the code of Bratley and
Fox [2] for j ≤ 40, were selected in terms of his properties A and A′, which are equivalent to
s-distribution with one and two bits of accuracy, respectively. The default direction numbers

used here have been taken from [23]. For j ≤ 40, they are the same as in [2]. 4

package umontreal.iro.lecuyer.hups;

public class SobolSequence extends DigitalSequenceBase2

Constructors

public SobolSequence (int k, int w, int dim)

Constructs a new digital net with n = 2k points and w = 31 output digits, in dim dimensions,
formed by taking the first n points of the Sobol’ sequence. The generator matrices Cj are
w × k. Restrictions: 0 ≤ k ≤ 30 and k ≤ w.

public SobolSequence (int n, int dim)

Constructs a Sobol point set with at least n points in dim dimensions. Equivalent to
SobolSequence (k, 31, dim) with k = dlog2 ne.

4 From Pierre: We should eventually have other choices for the direction numbers.
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NiedSequenceBase2

This class implements digital sequences constructed from the Niederreiter sequence in base
2. For details on these point sets, see [3].

package umontreal.iro.lecuyer.hups;

public class NiedSequenceBase2 extends DigitalSequenceBase2

Constructor

public NiedSequenceBase2 (int k, int w, int dim)

Constructs a new digital sequence in base 2 from the first n = 2k points of the Niederreiter
sequence, with w output digits, in dim dimensions. The generator matrices Cj are w × k.
Restrictions: 0 ≤ k ≤ 30, k ≤ w, and dim ≤ 318.
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NiedXingSequenceBase2

This class implements digital sequences based on the Niederreiter-Xing sequence in base 2.
For details on these point sets, see [27, 33].

package umontreal.iro.lecuyer.hups;

public class NiedXingSequenceBase2 extends DigitalSequenceBase2

Constructors

public NiedXingSequenceBase2 (int k, int w, int dim)

Constructs a new Niederreiter-Xing digital sequence in base 2 with n = 2k points and w
output digits, in dim dimensions. The generator matrices Cj are w × k and the numbers
making the bit matrices are taken from Pirsic’s site. The bit matrices from Pirsic’s site
are transposed to be consistent with SSJ, and at most 30 bits of the matrices are used.
Restrictions: 0 ≤ k ≤ 30, k ≤ w, and dim ≤ 32.

http://www.ricam.oeaw.ac.at/people/page/pirsic/niedxing/index.html
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F2wNetLFSR

This class implements a digital net in base 2 starting from a linear feedback shift register
generator. It is exactly the same point set as the one defined in the class F2wCycleBasedLFSR.
See the description of this class for more details on the way the point set is constructed.

Constructing a point set using this class, instead of using F2wCycleBasedLFSR, makes
SSJ construct a digital net in base 2. This is useful if one wants to randomize using one of
the randomizations included in the class DigitalNet.

package umontreal.iro.lecuyer.hups;

public class F2wNetLFSR extends DigitalNetBase2

Constructors

public F2wNetLFSR (int w, int r, int modQ, int step, int nbcoeff,
int coeff[], int nocoeff[], int dim)

Constructs a point set with 2rw points. See the description of the class F2wStructure for
the meaning of the parameters.

public F2wNetLFSR (String filename, int no, int dim)

Constructs a point set after reading its parameters from file filename; the parameters are
located at line numbered no of filename. The available files are listed in the description of
class F2wStructure.
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F2wNetPolyLCG

This class implements a digital net in base 2 starting from a polynomial LCG in F2w [z]/P (z).
It is exactly the same point set as the one defined in the class F2wCycleBasedPolyLCG. See
the description of this class for more details on the way the point set is constructed.

Constructing a point set using this class, instead of using F2wCycleBasedPolyLCG, makes
SSJ construct a digital net in base 2. This is useful if one wants to randomize using one of
the randomizations included in the class DigitalNet.

Note: This class in not operational yet!

package umontreal.iro.lecuyer.hups;

public class F2wNetPolyLCG extends DigitalNetBase2

Constructors

public F2wNetPolyLCG (int type, int w, int r, int modQ, int step,
int nbcoeff, int coeff[], int nocoeff[], int dim)

Constructs a point set with 2rw points. See the description of the class F2wStructure for
the meaning of the parameters.

public F2wNetPolyLCG (String filename, int no, int dim)

Constructs a point set after reading its parameters from file filename; the parameters are
located at line numbered no of filename. The available files are listed in the description of
class F2wStructure.
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RadicalInverse

This class implements basic methods for working with radical inverses of integers in an
arbitrary basis b. These methods are used in classes that implement point sets and sequences
based on the van der Corput sequence (the Hammersley nets and the Halton sequence, for
example).

We recall that for a k-digit integer i whose digital b-ary expansion is

i = a0 + a1b+ . . .+ ak−1b
k−1,

the radical inverse in base b is

ψb(i) = a0b
−1 + a1b

−2 + · · ·+ ak−1b
−k. (13)

The van der Corput sequence in base b is the sequence ψb(0), ψb(1), ψb(2), . . .

Note that ψb(i) cannot always be represented exactly as a floating-point number on the
computer (e.g., if b is not a power of two). For an exact representation, one can use the
integer

bkψb(i) = ak−1 + · · ·+ a1b
k−2 + a0b

k−1,

which we called the integer radical inverse representation. This representation is simply a
mirror image of the digits of the usual b-ary representation of i.

It is common practice to permute locally the values of the van der Corput sequence. One
way of doing this is to apply a permutation to the digits of i before computing ψb(i). That
is, for a permutation π of the digits {0, . . . , b− 1},

ψb(i) =
k−1∑
r=0

arb
−r−1

is replaced by
k−1∑
r=0

π(ar)b
−r−1.

Applying such a permutation only changes the order in which the values of ψb(i) are enu-
merated. For every integer k, the first bk values that are enumerated remain the same (they
are the values of ψb(i) for i = 0, . . . , bk − 1), but they are enumerated in a different order.
Often, different permutations π will be applied for different coordinates of a point set.

The permutation π can be deterministic or random. One (deterministic) possibility
implemented here is the Faure permutation σb of {0, . . . , b− 1} defined as follows [5]. For
b = 2, take σ = I, the identical permutation. For even b = 2c > 2, take

σ[i] = 2τ [i] i = 0, 1, . . . , c− 1 (14)

σ[i+ c] = 2τ [i] + 1 i = 0, 1, . . . , c− 1 (15)
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where τ [i] is the Faure permutation for base c. For odd b = 2c+ 1, take

σ[c] = c (16)

σ[i] = τ [i], if 0 ≤ τ [i] < c (17)

σ[i] = τ [i] + 1, if c ≤ τ [i] < 2c (18)

for 0 ≤ i < c, and take

σ[i] = τ [i− 1], if 0 ≤ τ [i− 1] < c (19)

σ[i] = τ [i− 1] + 1, if c ≤ τ [i− 1] < 2c (20)

for c < i ≤ 2c, and where τ [i] is the Faure permutation for base c. The Faure permutations
give very small discrepancies (amongst the best known today) for small bases.

package umontreal.iro.lecuyer.hups;

public class RadicalInverse

Constructor

public RadicalInverse (int b, double x0)

Initializes the base of this object to b and its first value of x to x0.

Methods

public static int[] getPrimes (int n)

Provides an elementary method for obtaining the first n prime numbers larger than 1.
Creates and returns an array that contains these numbers. This is useful for determining
the prime bases for the different coordinates of the Halton sequence and Hammersley nets.

public static double radicalInverse (int b, long i)

Computes the radical inverse of i in base b. If i =
∑k−1

r=0 arb
r, the method computes and

returns

x =
k−1∑
r=0

arb
−r−1.

public static double nextRadicalInverse (double invb, double x)

A fast method that incrementally computes the radical inverse xi+1 in base b from xi = x
= ψb(i), using addition with rigthward carry. The parameter invb is equal to 1/b. Using
long incremental streams (i.e., calling this method several times in a row) cause increasing
inaccuracy in x. Thus the user should recompute the radical inverse directly by calling
radicalInverse every once in a while (i.e. in every few thousand calls).
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public double nextRadicalInverse ()

A fast method that incrementally computes the radical inverse xi+1 in base b from xi =
ψb(i), using addition with rigthward carry as described in [40]. Since using long incremental
streams (i.e., calling this method several times in a row) cause increasing inaccuracy in x,
the method recomputes the radical inverse directly from i by calling radicalInverse once
in every 1000 calls.

public static void reverseDigits (int k, int bdigits[], int idigits[])

Given the k b-ary digits of i in bdigits, returns the k digits of the integer radical inverse of
i in idigits. This simply reverses the order of the digits.

public static int integerRadicalInverse (int b, int i)

Computes the integer radical inverse of i in base b, equal to bkψb(i) if i has k b-ary digits.

public static int nextRadicalInverseDigits (int b, int k, int idigits[])

Given the k digits of the integer radical inverse of i in bdigits, in base b, this method
replaces them by the digits of the integer radical inverse of i+ 1 and returns their number.
The array must be large enough to hold this new number of digits.

public static void getFaurePermutation (int b, int[] pi)

Computes the Faure permutation [5] σb of the set {0, . . . , b − 1} and puts it in array pi.
See the description in the introduction above.

public static double permutedRadicalInverse (int b, int[] pi, int i)

Computes the radical inverse of i in base b, where the digits are permuted using the permu-
tation π. If i =

∑k−1
r=0 arb

r, the method will compute and return

x =
k−1∑
r=0

π[ar]b−r−1.
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HammersleyPointSet

This class implements Hammersley point sets, which are defined as follows. Let 2 = b1 <
b2 < · · · denote the sequence of all prime numbers by increasing order. The Hammersley
point set with n points in s dimensions contains the points

ui = (i/n, ψb1(i), ψb2(i), . . . , ψbs−1(i)), (21)

for i = 0, . . . , n − 1, where ψb is the radical inverse function in base b, defined in
RadicalInverse. This class is not a subclass of DigitalNet, because the basis is not
the same for all coordinates. We do obtain a net in a generalized sense if n = bk1

1 = bk2
2 =

· · · = b
ks−1

s−1 for some integers k1, . . . , ks−1.

The points of a Hammersley point set can be “scrambled” by applying a permutation to
the digits of i before computing each coordinate via (5). If

i = a0 + a1bj + . . .+ akj−1b
kj−1
j ,

and πj is a permutation of the digits {0, . . . , bj − 1}, then

ψbj
(i) =

kj−1∑
r=0

arb
−r−1
j

is replaced in (5) by

ui,j =

kj−1∑
r=0

πj[ar]b
−r−1
j .

The permutations πj can be deterministic or random. One (deterministic) possibility im-
plemented here is to use the Faure permutation of {0, . . . , bj} for πj, for each coordinate
j > 0.

package umontreal.iro.lecuyer.hups;

public class HammersleyPointSet extends PointSet

Constructor

public HammersleyPointSet (int n, int dim)

Constructs a new Hammersley point set with n points in dim dimensions.
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Methods

public void addFaurePermutations()

Permutes the digits using Faure permutations for all coordinates. After the method is called,
the coordinates ui,j are generated via

ui,j =
k−1∑
r=0

πj [ar]b−r−1
j ,

for j = 1, . . . , s− 1 and ui,0 = i/n, where πj is the Faure permutation of {0, . . . , bj − 1}.

public void ErasePermutations()

Erases the Faure permutations: from now on, the digits will not be Faure permuted.
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HaltonSequence

This class implements the sequence of Halton [10], which is essentially a modification of
Hammersley nets for producing an infinite sequence of points having low discrepancy. The
ith point in s dimensions is

ui = (ψb1(i), ψb2(i), . . . , ψbs(i)), (22)

for i = 0, 1, 2, . . ., where ψb is the radical inverse function in base b, defined in class
RadicalInverse, and where 2 = b1 < · · · < bs are the s smallest prime numbers in in-
creasing order.

A fast method is implemented to generate randomized Halton sequences [37, 40], starting
from an arbitrary points x0.

The points can be “scrambled” by applying a permutation to the digits of i before com-
puting each coordinate via (4), in the same way as for the class HammersleyPointSet, for
all coordinates j ≥ 0.

package umontreal.iro.lecuyer.hups;

public class HaltonSequence extends PointSet

Constructor

public HaltonSequence (int dim)

Constructs a new Halton sequence in dim dimensions.

Methods

public void init (double[] x0)

Initializes the Halton sequence starting at point x0. The dimension of x0 must be at least
as large as the dimension of this object.

public void addFaurePermutations()

Permutes the digits using Faure permutations for all coordinates. After the method is called,
the coordinates ui,j are generated via

ui,j =
k−1∑
r=0

πj [ar]b−r−1
j ,

for j = 0, . . . , s− 1, where πj is the Faure permutation of {0, . . . , bj − 1}.

public void ErasePermutations()

Erases the Faure permutations: from now on, the digits will not be Faure permuted.
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Rank1Lattice

This class implements point sets defined by integration lattices of rank 1, defined as fol-
lows [34]. One selects an arbitrary positive integer n and a s-dimensional integer vector
(a0, . . . , as−1), where 0 ≤ aj < n for each j. Usually, a0 = 1. The points are defined by

ui = (i/n)(a0, a1, . . . , as−1) mod 1 (23)

for i = 0, . . . , n−1. These n points are distinct provided that n and the aj’s have no common
factor.

package umontreal.iro.lecuyer.hups;

public class Rank1Lattice extends PointSet

Constructor

public Rank1Lattice (int n, int[] a, int s)

Instantiates a Rank1Lattice with n points and lattice vector a of dimension s.

public void addRandomShift (int d1, int d2, RandomStream stream)

Adds a random shift to all the points of the point set, using stream stream to generate the
random numbers. For each coordinate j from d1 to d2-1, the shift dj is generated uniformly
over [0, 1) and added modulo 1 to all the coordinates of all the points.

public void clearRandomShift()

Clears the random shift.
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KorobovLattice

This class implements Korobov lattices, which are the same point sets as in class LCGPointSet,
but implemented differently. The parameters are the modulus n and the multiplier a, for
arbitrary integers 1 < a < n. The number of points is n, their dimension is s, and they are
defined by

ui = (i/n)(1, a, a2, . . . , as−1) mod 1

for i = 0, . . . , n− 1.

It is also possible to build a “shifted” Korobov lattice with the first t coordinates rejected.
The s-dimensionnal points are then defined as

ui = (i/n)(at, at+1, at+2, . . . , at+s−1) mod 1

for i = 0, . . . , n− 1 and fixed t.

package umontreal.iro.lecuyer.hups;

public class KorobovLattice extends Rank1Lattice

Constructors

public KorobovLattice (int n, int a, int s)

Instantiates a Korobov lattice point set with modulus n and multiplier a in dimension s.

public KorobovLattice (int n, int a, int s, int t)

Instantiates a shifted Korobov lattice point set with modulus n and multiplier a in dimension
s. The first t coordinates of a standard Korobov lattice are dropped as described above.
The case t = 0 corresponds to the standard Korobov lattice.
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KorobovLatticeSequence

6

This class implements Korobov lattice sequences, defined as follows. One selects a basis
b and a (large) multiplier a. For each integer k ≥ 0, we may consider the n-point Korobov
lattice with modulus n = bk and multiplier ã = a mod n. Its points have the form

ui = (ai(1, a, a2, . . .) mod n)/n = (ãi(1, ã, ã2, . . .) mod n)/n (24)

for i = 0, . . . , n− 1. For k = 0, 1, . . ., we have an increasing sequence of lattices contained in
one another.

These embedded lattices contain an infinite sequence of points that can be enumerated
as follows [14]:

ui = ψb(i)
(
1, a, a2, . . .

)
mod 1. (25)

where ψb(i) is the radical inverse function in base b, defined in RadicalInverse. The first
n = bk points in this sequence are exactly the same as the n points in (24), for each k ≥ 0.

package umontreal.iro.lecuyer.hups;

public class KorobovLatticeSequence extends KorobovLattice

Constructor

public KorobovLatticeSequence (int b, int a)

Constructs a new lattice sequence with base b and generator = a.

6 From Pierre: This class is not yet fully implemented
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