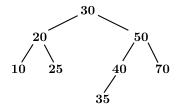
Universidade Federal de Pernambuco Centro de Informática Bacharelado em Sistemas de Informação

IF969 Algoritmos e Estruturas de Dados — 2013.2

Prof. Paulo Fonseca



SEGUNDA PROVA — 12 de Fevereiro de 2014

- Esta prova contém 04 (quatro) questões.
- A duração da prova é de 1h40.

QUESTÃO 1 (2.5 pts)

Considere a BST a seguir.

Represente a BST resultante das seguintes operações realizadas sobre a árvore acima:

$$+37 - 40 + 23 - 30$$

onde "+X" significa "inserir o valor X" e "-X" significa "remover o valor X".

QUESTÃO 2 (2.5 pts)

Considere o vetor V = (4, 8, 1, 6, 3, 2, 7, 5, 9). Represente:

- a) A max-heap binária resultante das inserções sucessivas dos elementos de V (na mesma ordem em que aparecem no vetor);
- b) A max-heap binária resultante da construção bottom-up com a função max-heapify.

QUESTÃO 3 (2.5 pts)

Considere o grafo dado pela seguinte lista de adjacências:

$$\begin{array}{lll} 1 \to (2,3) & & 3 \to (2,5,6) & & 5 \to (1,2,6) \\ 2 \to (4) & & 4 \to (1) & & 6 \to () \end{array}$$

Complete o diagrama a seguir correspondente ao percurso em largura a partir do vértice 1,

Ordem	P (marcados)	Q (fila)	V (visitados)
1	100000	(1)	()
:	:	•	:

sendo

Ordem: a ordem de execução

P: o array booleano dos vértices marcados (enfileirados) para visita

Q: a fila de vértices a visitar

V: os vértices visitados segundo ordem de visita.

QUESTÃO 4 (2,5 pts)

Considere o problema da mochila (0/1 Knapsack sem reposição) para a seguinte entrada:

Item	1	2	3	4	5
Peso (w)	3	2	1	2	4
$\overline{\text{Valor}(v)}$	25	20	10	15	40

Capacidade da mochila: K = 7

- a) Exiba a tabela de programação dinâmica correspondente à solução dessa instância do problema.
- b) Indique quais itens compõem solução ótima, representando na matriz de PD as células percorridas para obter-se essa solução.