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A method of finding pattern similarities between two sequences is given. Two 
portions, one from each sequence, are similar if they are close in the metric space 
of evolutionary distances. The method allows a complete list to be made of all pairs 
of intervals, one from each of two given sequences, such that each pair displays a 
maximum local degree of similarity, an& if the lengths of the given sequences are 
m and n, then the procedure takes on the order of tnn computational steps. This 
result lends itself to finding similarities by computer between pairs of biological 
sequences, such as proteins and nucleic acids. 

1. INTR~DU~~~~N 

The principal object of this paper is to introduce an algorithm for 
finding each pair of regions, one in a given finite sequence A and the other 
in a given finite sequence B, such that the two regions most resemble each 
other. A region will consist of consecutive terms of a sequence, and the 
degree of resemblance between two such regions will be the smallness of 
the evolutionary distance between them. This distance is a metric, which 
was introduced by Ulam [4] and is discussed in detail in Refs. [ I- 3, 51. 

An algorithm for computing evolutionary distance is well known, having 
been discovered independently in two contexts: one of them [2, 31 as a 
means of estimating the ancestral relationship between genetic sequences, 
and the other [l] as a means of estimating the relatedness between strings 
of symbols which differ by random errors of transcription. Both are cases 
of finite sequences, subject to mutations, insertions, and deletions of terms. 
The algorithm, when applied to sequences of lengths m and n, takes on the 
order of mn steps to compute the distance between them. It is reviewed in 
Section 2. Then, in the remainder of the paper it is shown that it takes 
essentially the same computation time mn to recognize all pairs of inter- 
vals, one from each sequence, which most resemble each other, in a sense 
still to be made precise, 
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2. EVOLUTIONARY DISTANCE 

It is shown in Ref. [3] that a set of finite sequences can be made into a 
metric space in the following manner: 

(i) Each finite sequence A corresponds to the class x of all infinite 
sequences, each of which contains A as a subsequence and has the neutral 
element 1 in every other position. 

(ii) The terms of every sequence A, as well as the neutral element 1, 
belong to a given metric space, in which the distance between any two 
elements, u and b, is denoted by d(a, b). 

(iii) The evolutionary distance d(A, B) between any two sequences is 
defined as 

in which the minimum is taken over every pair of sequences 

( a*,a2,...),(b,,b*,...) 

in 2 and g, respectively. 

The idea underlying the above definition is to insert neutral elements in 
sequences A and B, so as to bring like terms into alignment and to have 
terms which are unmatched aligned with neutral elements. We achieve this 
by considering all alignments and choosing those in which the term-by-term 
distances add up to a minimum. Abstractly, an alignment is a sequence of 
pairs, each being a term of A or a neutral element followed by a term of B 
or a neutral element. If the terms of A and B are numbered consecutively, 
then an alignment is expressible as a sequence of number pairs, a neutral 
element being represented by a repetition of the number of the term before 
it. There is no need to align two neutral elements. Therefore, in going from 
one number pair to the next, one number or both always increase by 1. 
Accordingly, the known facts [l-3] about evolutionary distances can be 
expressed in convenient mathematical terms by regarding an alignment as 
a path of adjoining positions in a matrix whose row and column numbers 
increase monotonically as the path is followed. 

For the purposes of this paper apath in a matrix is a monotone sequence 
of matrix positions, in which each consecutive pair is of one of the three 
forms 

(i - l,A, (iA 

(i - l,j - l),(i,j), 

(i,i - I), (iA. 
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When two sequences a, . . . a, and b, . . . b,, are under consideration, there 
are three known values, d(a,, l), d(ai, bj), and d(1, bj), associated respec- 
tively with the three two-term paths listed above. Accordingly, we can 
define the value associated with a path as the sum of the values associated 
with all its successive pairs. Then the value of d(a, . . . a,, b, . . . b,) can be 
characterized simply as the smallest value associated with any path from 
(0,O) to (m, n). Also in this terminology it is easy to state and prove the 
known algorithm [l-3] for calculating the distance d(a, . . . a,, b, . . . b,) in 
mn steps: 

Construct the matrix (d( a, . . . ai, b r . . . bj)), with (i,j) ranging from (0,O) 
to (m,n), as follows: If i = 0 or j = 0, which means a,. . . ai = 1 or 
b , . . . bj = 1, where 1 is the empty sequence, then the matrix values are 

d(l,l) = 0. 

d(a, . . . ai, 1) = x d(ah, 1). 
h=l 

d(l,b,... bj) = i d(l,b,). 
h-l 

To determine d(a, . . . ai, b, . . . bj) in general, consider each path from (0,O) 
to (i,j). It must pass through (i - l,j), (i - 1,j - l), or (i,j - 1). There- 
fore, if we make the inductive assumption that we know the smallest values 
associated with any paths from (0,O) to each of these three intermediate 
positions, then we know that the smallest value d(a, . . . ai, b, . . . bj) associa- 
ted with any path from (0,O) to (i,j) is equal to the minimum of the three 
values 

d(a ,... ai-,,b ,... bj) + d(a,,l), 

d(a ,...ai-,,b,...bj-,)+d(ai,bj), 

4a l...ai,b ,... bj-1) + d(l,bj)* 

Therefore, to calculate d(a, . . . a,, 6, . . . b,), which is the value in the lower 
right comer of the matrix, we have to construct the whole matrix, which 
takes mn steps, each of which involves choosing the smallest of three 
values. 

3. FINDING PATTERN A IN SEQUENCE B 

Consider two finite sequences, A and B, expressed explicitly by ala2 . . . Q, 
and blbz.. . b,, respectively, and think of A as being much shorter than B. 
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Let the notation Z c B mean that Z is an interval in B of the form 

where 1 I p I q I n. One way to find every interval Z c B for which the 
evolutionary distance d(A, I) is an absolute minimum would be to calcu- 
late the distance between A and each one of the n(n - 1)/2 intervals in B. 
Since a distance calculation takes on the order of mn steps, the above 
procedure would take on the order of mn3 steps. 

Two preliminary theorems are given in this section. Theorem 1 replaces 
the above procedure by an algorithm which takes mn steps, and Theorem 2 
solves the same problem under the more general condition that d(A, I) be 
a local minimum. 

DEFINITTON 1. Let d be the evolutionary distance; then sequence A 
most resembles Z c B, if 

d(A,Z) I d(A,J) 

for all J c B. 

THEOREM 1. The sequences a,a2.. .a,,, and b,b, . . . b,, are giuen. The 
following procedure determines each interval brb,, , . . . be such that a,a2. . . a,,, 
most resembles br br + , . . . be: 

(i) Construct an (m + 1) X (n + 1) matrix (e(i, j)) by an induction, in 
which the initial values are 

e(i,O) = i d(a,, 1) 
h=l 

for i= I,2 ,..., m andj=O,l,..., n, and the remaining values are de- 
termined by making e( i, j) equal to the smallest of the three values 

e(i - 1,j) + d(a,, 1). 

e(i - 1,j - 1) + d(ai,bi), 

e(i,j - 1) + d(l,bi). 

(ii) In the last row of the matrix find each position q at which there is a 
minimum entry, that is, where 

e(m,q) = s$ne(m,h); 

then b, is the last term of one of the desired intervals. 
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(iii) In the first row of the matrix find each position p, such that 
e(O,p - 1) is connected by a sequence of inductive steps to e(m, q). (The 
inductiw steps, referred to here, are those characterized in step (i).) Then 

bpbp+l-- b4 is one of the desired intervals, ail of which may be found in this 
manner. 

Proof Let (m, h) be any position in the last row of the matrix con- 
structed in part (i) of the theorem. Using the path terminology, we can 
state that e(m, h) is the smallest value associated with any path starting at 
a position in the first row and ending at the position (m, h). This statement 
can be proved by induction. The fact that 

e(0, h) = 0 

for all h is explained by including within the definition of path any path 
which starts and ends at the same position and giving it the value zero. 
Next, assume that e(i - l,j), e( i - 1,j - l), and e(i,j - 1) are the 
smallest values associated with any paths starting in the first row and 
ending at positions (i - l,j), (i - 1,j - l), and (i,j - l), respectively. 
Then, since every path to (i, j) passes through one of the three positions, 
just given, the smallest value associated with any path from the first row to 
(i, j) must be the minimum of the three values, 

e(i - 1,j) + d(a,, l), 

e(i - 1,j - 1) + d(ai,bi), 

e(i,j - 1) + d(l, bj), 

which agrees with the inductive step used in the construction of e(i, j) in 
the theorem. 

It follows that e(m, q), as defined in part (ii) of the theorem, is the 
smallest value associated with any path from the first row to the last row of 
the matrix. If one such path is chosen, as was done in part (iii) of the 
theorem, its initial position being denoted by (0,~ - l), then the value 
e(m, q), associated with it, is bound to be the smallest value associated 
with any path from (0,~ - 1) to (m, q), which in turn is equal to 

d(u ,... a,,b,...b,), 

as observed in Section 2. In other words, if b,, . . . b4 is written as Z, then 
d(A, I) is the smallest value associated with any path from the first to the 
last row of the matrix. For any other interval J c B, the distance d(A, J) is 
equal to the value associated with some path from the first to the last row 
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of the matrix. Therefore, 

which means that A most resembles I c B. This proves the theorem. 

DEFINITION 2. Let d be the evolutionary distance; then sequence A 
most resembles I c B locally, if 

d(A,Z) I d(A,H) 

and 

d(A,I) I d(A,J) 

for all H and J, where H c Z c J c B. 

In the above definition the use of the word ZocaIZy is justified by the fact 
that I belongs to a family 92 of neighboring intervals such that A most 
resembles I in the global sense of Definition 1 relative to %. More 
precisely, 

d(A,I) I d(A,J) 

for all J E %. The exact set % over which Definition 2 guarantees the 
above inequality can be characterized as follows: Recall that d(A, I) is the 
smallest value associated with a family of paths. Hence, there will be one 
or more paths which actually take that value. If such a path is described 
(for the moment) as an I-path, then J E 5% if, and only if, there is a J-path 
which intersects an Z-path. This fact will emerge during the proof of the 
next theorem. 

THEOREM 2. The sequences a,az . . . a,,, and b,bz . . . b,, are given. The 
following procedure determines each interval bP bP + , . . . bq such that a,az . . . a,,, 
most resembles bP bP + , . . . bq locally: 

(i) Construct the matrix (e(i,j)) as in Theorem 1. Here (i,j) ranges from 
(QO) to Cm, n). 

(ii) Construct the matrix (f(i,j)), where (i,j) ranges from (1,l) to 
(m + 1, n + 1) by an induction in which the initial values are 

m-i 

f(i,n + 1) = 2 d(a,-,,, l), 
h-0 

f(m + l,j) = 0 

for i= 1,2 ,..., m and j- 1,2 ,..., n + 1, and the remaining ualues are 
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determined by making f( i, j) equal to the smallest of the three values 

f(i + l,j) + d(ai, I), 

f(i + 1,j + 1) -t d(a,,bj), 

f(i,j + 1) + d(l,bj). 

(iii) Select a monotone sequence 

(0,~ - l), . . . , (m,q) 

of positions in the e-matrix and the corresponding sequence (ah numbers 1 
greater ) 

OYP),..., (m + l,q + 1) 

of positions in the f-matrix, such that each value except the first in 

e(O,p - l),...,e(m,q) 

is determined by an inductive step from its immediate predecessor and each 
value except the last in 

f(l,P) ,...,f(m + l,q + 1) 

is determined by an inductive step from its immediate successor. Then 

bpbjl+P be is one of the desired intervals, all of which may be found in this 
manner. 

Before proving the above theorem, let us consider the following exam- 
ple: Find all intervals in abcacac, which bcab most resembles, first in the 
absolute sense, then in the local sense. Let the set 

{l,a,b,c) 

be a metric space, determined by 

d(x,y) = 0, ifx=y, 

= 1, ifx#y. 

The matrices (e(i, j)) and (f(i, j)) are shown in Fig. 1. The line segments in 
these matrices mark the pairs of matrix positions which are joined by 
inductive steps. In the first matrix every path from the first row to the last 
(made up of segments, going straight down or down at an angle or to the 
right) corresponds to a sequence of inductive steps by which the value at 
the end of the path is determined. In the last row there are two positions in 
which the minimum value 1 is taken, and there are two paths leading to 
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labcacac 

abcacacl 

these positions. It follows from Theorem 1 that the two intervals ZW and 
bcac in the sequence abcacac are those which the sequence bcab most 
resembles. 

The intervals in abcacac which bcac most resembles locally are found, 
according to Theorem 2, by selecting those paths from the first to the last 
row which are common to both matrices. The intervals corresponding to 
such paths are ab, bca, bcac, aca, acac, ca (the second time ca appears), 
and cat (the second time cat appears). The values at the ends of the paths 
tell us that 

d( bca, bcab) = d( bcac, bcab) = 1 

and that 

d(ab,bcab) = d(aca,bcab) = d(acac,bcab) = d(ca,bcab) 

= d(cac,bcab) = 2. 

Even though the last five distances are not absolute minima, they are local 
minima in the sense that no widening or narrowing of the intervals in 
question will cause their distances from bcab to decrease. Note, however, 
that if the intervals ca and cat had been taken from abcacac at their first 
appearance, rather than second, then each one could have been widened 
by putting b at the left end, so as to decrease its distance from bcab. Taken 
this way, d(ca, bcab) and d(cac, bcab) are not local minima. 

Proof of Theorem 2. Let Z be an interval b,b,+, . . . bq which has been 
constructed according to the theorem. It must be shown for any J c Z that 

d(A,Z) I d(A,J) 

and for any H, such that Z c H, that 

d(A,Z) 5 d(A,H). 

Let us prove the second case, since both are proved in the same way. 
The matrices (e(i,j)) and (f(i,j)) are both constructed by filling the 

squares shown in Fig. 2. The e-values are filled inductively, starting in the 
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bl bz b3 bq-1 bn 1 

FIGURE 2 

first row and column, and the f-values are filled, starting in the last row 
and column. The path drawn from the column headed by bP-, to the 
column headed by bq symbolizes the sequence of adjoining matrix posi- 
tions, by which Z was defined, and the other path, starting further to the 
left and ending further to the right, symbolizes a sequence of adjoining 
matrix positions, which are determined by the inductive procedure for the 
distanc42 between a,+. . . a,,, and any interval H, which contains I. The two 
paths must cross. Each path is made up of segments, which go from one 
matrix position to an adjoining one, and each segment has a number 
associated with it, which is the absolute value of the difference between the 
values in the two matrix positions, joined by the segment. This number is 
the increment corresponding to an inductive step and is the same, whether 
we are speaking of the e-matrix, the f-matrix, or the distance matrix. The 
parts of each path in the diagram are given numbers, x, x’, y, t, and z’, 
which are the totals of the numbers, belonging to the segments in them. 
Therefore, if a,a2.. . a,,, is denoted by A, we have 

d(A,Z)=x+y+z 

and 

d(A,H) = x’ +y + z’. 

The position at the lower end of the part marked x would have the value x 
in it in the e-matrix. Of all paths, which start in the top row and end at this 
position, x is the smallest number which can be associated with the path. 
Therefore, x I x’. Likewise, by the nature of the&matrix we have z -< z’. 
Therefore, 

d(A,Z) I d(A,H). 

Similarly, for J c Z 

d(A,Z) I d(A,J). 

Therefore, A most resembles Z c B locally. 
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It remains to be shown that every Z c B which A most resembles may be 
found by the selection procedure defined in part (iii) of the theorem. 

Suppose A most resembles bp.. . b4 locally. Then, if the interval is 
lengthened or shortened at the right end to produce bp . . . b,, 

d(A,b,... b& 5 d(A,b,...b,). 

This holds for any s, which implies that 

d(A,bp...b,) = e(m,q). 

Likewise, 

d(A,b,... bq) = f(l,~). 

But, d(A,b,,... b,) is the value associated with some path in the e-matrix 
from (0,~ - 1) to (m, q). This path conforms with the selection described 
in part (iii) of the theorem. 

4. FINDING PATTERNS COMMON TO A AND B 

A and B are finite sequences. The results of the last section can be 
adapted to the problem of finding intervals, Z c A and J c B, such that Z 
most resembles J locally. The first step in this direction is to redefine the 
e-matrix and the f-matrix. 

LetA = a,~,... a,andB= b,b,... b,. The (m + 1) x (n + 1) matrices 
(e(W) ad Mid) are defined by the same inductive steps as before, but 
now all the initial values are zero. 

e(i,j) = 0, whenever i = 0 orj = 0, 

f(i9.i) = 0, whenever i =m+ lorj=n+ 1. 

These matrices have the following meaning in terms of evolutionary 
distances: e(Q) is the shortest evolutionary distance between a1u2.. . ai 
and a partial sequence of b,bz . . . bj or between b,b2.. . bj and a partial 
sequence of a,az.. . a,, whichever is less. That is, 

e(i,j) = min{d(a,. . .ai, b,. . . bj): g = 1 or h = 1}, 

and, correspondingly, 

f(i,j) = min{d(ai...a,,bj...bh):g= morh = n}. 
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Now let us consider how these two functions will enter into the defini- 
tion of a “local resemblance” between two intervals, up . . . a, and bq . . . b, in 
A and B, respectively. If both intervals are extended to the left until a, or 
b, is reached, then the smallest possible distance 

d(a,...u,-,,b,...b,-,), 

between the left extensions, where g = 1 or h = 1, is equal to e(P - 1, q - 
l), and the corresponding distance between their right extensions is f( r + 
1,s + 1). Accordingly, a pair of intervals has three distances associated 
with it, the evolutionary distance 

d(u,...u,,b,...b,) 

and two complementuty distances e(p - 1, q - 1) and f(r + 1,s + 1). In 
the forthcoming definition of two intervals which “most resemble each 
other locally” a necessary condition will be that, if one or both intervals 
are changed at the left end, such that the complementary distance at that 
end remains fixed, then the evolutionary distance between them will 
increase or remain the same. The same is true if one or both intervals are 
changed at the right end. To be more explicit, 

d(u,...u,,b,...b,) I d(ui...u,,bi...bs), (1) 

provided i and j are chosen so that 

e(i - 1,j - 1) = e(P - 1,q - I), (2) 

and 

d(u,...u,,b,...b,) < d(up...uj,bq...bj) 

provided i and j are chosen so that 

f(i + 1,j + 1) =f(r + 1,s + 1). 

(3) 

(4) 

The above condition is not sufficient for our definition of local resem- 
blance, because the values of the complementary distances belong to a 
discrete set, so that there may be no way or very few ways to vary two 
intervals and have the complementary distances take exactly the same 
values. Therefore, it becomes necessary to add corrective terms on the 
right side of inequalities (1) and (3), which will vanish when eqs. (2) and (4) 
hold. Suppose we wish to change the left ends of the intervals, but there 
are no values, i and j, such that 

e(p - l,q - 1) = e(i - l,j - 1). 
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Then, inequality (1) can be extended as follows: 

d(U,...U,,b,... b,) 5 d(Ui.. .Ur,bi.. .b,) 

+ [e(i - 1,j - 1) - e(p - 1,q - l)]. 

Then Eq. (2) is no longer needed, because the corrective term will vanish 
whenever it holds. 

DEFINITION 3. Let d denote evolutionary distance, and for any two 
sequences 

a*fQ.. . a,&b,b,...b,, 

let 

e(i,j) + min{d(a,...ai, b,,...b]): g = 1 or h = 1}, 

f(i,j) = min{d(a,. . .aB,bj.. . b,): g = m or h = ?i}. 

Then interval aP . . . a, most resembles interval b4. . . b, locui(~, if 

d(u,...a,,b,...b,) I d(ai...a,,bj...bS) 

+ [ e(i - 1,j - 1) - e(p - 1,q - l)] 

fori= 1,2 ,..., r+ landj= 1,2 ,..., s+ Land 

d(u,...a,,b,...b,) 5 d(uP...ai,b4’...bi) 

+ [f(i + 1,j + 1) -f(r + 1,s + l)] 

for i = p - l,p, . . . , m and j = q - 1, q, . . . , n. (It is a notational conven- 
tion that ai. . . a, is the empty sequence, denoted by 1, when i = r + 1. 
Likewise, b,, , . . . b,, aP. . . up-r, and b4. . . b4-, equal 1.) 

The following theorem provides an algorithm for determining all inter- 
vals I c A and J c B which most resemble each other locally. 

THEOREM 3. Let d &note evolutionary distance, and for any two se- 
quences 

a,az.. . a,&b,b2...b,, 

let the matrices (e(i,j)) and (f(i,j)) be constructed us follows: If i = 0 or 
J ’ = 0, then e(i,j) = 0, andfor i = 1,2, . . . , m undj = 1,2,. . . , n the value of 
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e( i, j) is the smallest of 

e(i - 1,j) + d(a,, 1). 

e(i - 1,j - 1) + d(ai,bj). 

e(i,j - 1) + d(l,bj) 

Zf i = m + 1 or j = n + 1, then f(i,j) = 0, and for i = 1,2 ,..., m and 
j= 1,2 , . . . , n the value of f( i, j) is the smallest of 

f(i + 1,j) + d(u,, 1). 

f(i + 1,j + 1) + d(ui,bj). 

f(i,j + 1) + d(l,bj). 

Then interval ur . . . a, most resembles inter& b4. . . b, locally if, and only if, 
there exists a monotone sequence 

of pairs such that 
(P - l,q - l),...,(r,s) 

(i) each term except the first in 

e(p - l,q - l),...,e(r,s) 
is derivable from the term immediately preceding it by one of the inductive 
steps allowed to be used in the construction, described above, of the matrix 

(e(i,j)>; and 
(ii) with every number in the sequence of pairs increased by 1, each term 

except the lust in 

f(P94)9.-., f(r + 1,s + 1) 

is derivable from the term immediately following it by one of the inductive 
steps allowed to be used in the construction, described above, of the matrix 

(f(ij))- 

The above theorem furnishes an algorithm for determining every pair of 
intervals, one from a,. . .a, and the other from b, . . . b,,, which most 
resemble each other locally. The procedure is to compute all the matrix 
values, which takes on the order of mn steps. As the matrices are being 
evaluated, a pair of e-matrix positions 

(47jl),(i29.h) 
is earmarked provided it is linked by an allowable inductive step in the 
construction of the e-matrix and provided also the corresponding pair 

(il + l,j, + l),(i, + l,j, + 1) 
of f-matrix positions is linked by an allowable inductive step in the 
construction of the f-matrix. When this procedure is over, if 

(p - l,q - l),...,(r,s) 
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is any sequence of positions, in which every successive pair has been 
earmarked, then up.. .a, and b,. . . b, is a pair of intervals which most 
resemble each other locally. 

Proof of Theorem 3. It is evident that e(i,j), as constructed in the 
present theorem, equals the minimum value associated with any path from 
(g, h) to (i,j) for which g = 0 or h = 0. 

For a particular choice of (g, h) the minimum value associated with any 
path from (g, h) to (r’,j) is equal to 

Therefore, 

d(a,+, . ..ai.bh+, . . . bj). 

e(i,j) =min{d(a,+,...ai,b,,+,...bi):g=Oorh =0}, 

which shows that the characterizations of e(i,j) in Definition 3 and 
Theorem 3 are equivalent. 

Let us now assume that the sequence 

(P - l,q - l),...,(r,s) 

exists, as described in the theorem, and show that this implies the condi- 
tions of Definition 3. 

The sequence implies that e(r,s) is equal to the value associated with a 
path which passes through (p - 1, q - l), which means that it may be 
separated into two parts: 

e(r,s) = e(p - 1,q - 1) + d(a,...a,,b,...b,). 

The fact that e(r,s) is the minimum value associated with any path to 
(r, S) implies that for any (i, j) 

e(r,s) I e(i - 1,j - 1) + d(ai.. .al,bj.. .b,). 

This, combined with the equation above, gives the first inequality of 
Definition 3. The second inequality follows from the symmetry of the 
theorem with respect to the e-matrix and thef-matrix. 

To prove the converse of the theorem, we assume that the inequalities of 
Definition 2 hold. In the first one let i = r + 1 and j = s + 1, and in the 
second let i = p - 1 and j = q - 1. Then 

e(p - 1,q - 1) + d(a,...a,,b,...b,) I e(r,s) 

and 

d(a,...a,,b,... b,) +f(r + 1,s + 1) If(p,q). 
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Equality holds in both cases, because e(r,s) and f(p, q) are minima. 
Therefore, there exist paths 

. . ..(P - l,q - 1) . . . . (r,s), 

(P,4),.-*, (r+ 1,s + l),..., 

the values associated with them being e(r, s) and f(p, q), respectively. This 
means that the positions 

(P - l,q - l),...,(r,s) 

satisfy conditions (i) and (ii) of the theorem. 
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