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Abstract—We present, in this paper, two efficient algorithms for linear time suffix array construction. These two algorithms achieve

their linear time complexities, using the techniques of divide-and-conquer, and recursion. What distinguish the proposed algorithms

from other linear time suffix array construction algorithms (SACAs) are the variable-length leftmost S-type (LMS) substrings and the

fixed-length d-critical substrings sampled for problem reduction, and the simple algorithms for sorting these sampled substrings: the

induced sorting algorithm for the variable-length LMS substrings and the radix sorting algorithm for the fixed-length d-critical

substrings. The very simple sorting mechanisms render our algorithms an elegant design framework, and, in turn, the surprisingly

succinct implementations. The fully functional sample implementations of our proposed algorithms require only around 100 lines of

C code for each, which is only 1=10 of the implementation of the KA [1] algorithm and comparable to that of the KS [2] algorithm. The

experimental results demonstrate that these two newly proposed algorithms yield the best time and space efficiencies among all the

existing linear time SACAs.

Index Terms—Suffix array, linear time, divide-and-conquer.

Ç

1 INTRODUCTION

THE concept of suffix arrays was introduced by Manber
and Myers in SODA’90 [3] and SICOMP’93 [4] as a space

efficient alternative to suffix trees, and since then has been
well-recognized as a fundamental data structure, useful for a
broad spectrum of applications, e.g., data indexing, retriev-
ing, storing, and processing. For an n-character string,
denoted by S, its suffix array, denoted by SAðSÞ, is an array
of indices pointing to all the suffixes of S, sorted according to
their ascending(or descending) lexicographical order. The
suffix array of S itself requires only ndlogne-bit space.
However, different suffix array construction algorithms
(SACAs) may require significantly different space and time
complexities. During the past decade, a plethora of re-
searches have been devoted to developing SACAs that are
both time and space efficient, for which we recommend a
thorough survey from Puglisi [5]. Very recently, the research
on time and space efficient SACAs has become an even hotter
pursuit; due to that, constructions of suffix arrays are needed
for large-scale applications, e.g., web searching and biologi-
cal genome database, where the magnitude of a huge data set
is measured often in billions of characters [6], [7], [8], [9], [10].
Time and space efficient linear time algorithms are crucial for

large-scale applications to have predictable worst-case
performance. Our interest, herein, is limited to linear time
suffix array construction only.

1.1 Prior-Arts

The three well-known linear time SACAs up to date are the
KS [11], [2], KA [12], [1], and KSP [13] algorithms, all
contemporarily reported in 2003. All of them are of linear
time for an input string of either constant or integer
alphabets, where a constant alphabet is of size Oð1Þ and
an integer alphabet consists of the characters in ½0; nOð1Þ�.
Among them, the KSP algorithm appears to mimic Farach’s
work [14] on suffix trees in using a very similar and complex
merging step; thus it does not gain popularity in practice.

The KS algorithm consists of three straightforward steps
[11], [2]:

1. A size-n string S (represented by an array indexed by
½0::n� 1�) is reduced to S1 by naming each size-3
substring S½i::iþ 2� for i mod 3 6¼ 0 as an integer of
size dlogne bits, which can be done in OðnÞ time by
simply running three passes radix sort on all the
sampled fixed-size substrings. As a result, we split the
original problem of size n, i.e., S, to a reduced
problem of size 2n=3, i.e., S1, and the remaining
problem of size n=3. Then, the suffix array of S1 is
constructed by further reductions, using 2=3-recur-
sion repeatedly.

2. Construct the suffix array of the remaining problem in
OðnÞ time, using induction from the suffix array of S1.

3. Merge the two suffix arrays by a simple compar-
ison-based algorithm in OðnÞ time to produce the
final result.

The KS algorithm requires a linear time given by T ðnÞ ¼
T ðd2n=3eÞ þOðnÞ ¼ OðnÞ and an extra working space of at
least n integers, where each integer is of dlog2 ne bits. Herein,
we define working space as the extra space needed in addition
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to the input string and the output suffix array (which are
universally needed for any SACA published so far).

The key idea of the KA algorithm lies in classifying all
the suffixes in the string S into two classes for problem
reduction: L-type and S-type, which, to some degree, is a
variant of the type-A/B suffix classification method,
formerly proposed by Itoh and Tanaka [15]. The L/S-type
suffix classification can be done in OðnÞ time by simply
scanning S from right to left. A character S½i� is said to be
L-type and S-type, if the suffix S½i::n� 1� is L-type and
S-type, respectively. Based on the classified suffixes of
L-type and S-type, a S-substring is defined as any substring
S½i::j�, j > i, satisfying that S½i� and S½j� are the only two
S-type characters in S½i::j�. Similarly, an L-substring S½i::j�,
j > i satisfies that S½i� and S½j� are the only two L-type
characters in S½i::j�. Since the definitions of L-type and
S-type substrings (see Section 3.2 for the precise definitions)
are symmetric, it is safe to assume that there are fewer
S-substrings; otherwise, L-substrings will be used instead.
Given this assumption, the KA algorithm is composed of
the following three steps [12], [1]:

1. By naming all the S-substrings in S in OðnÞ time, the
original problem S is split into a reduced problem S1

of size at most n=2 and a remaining problem of size
at least n=2, where the reduced and remaining
problems consist of all the S-type and L-type suffixes
in S, respectively. The suffix array of S1 is con-
structed by further reductions, using 1=2-recursion
repeatedly.

2. Construct in OðnÞ time the suffix array of the
remaining problem, i.e., the suffix array of all the
L-type suffixes in S, using induction from the suffix
array of S1.

3. Merge the two suffix arrays for S1 and the remaining
problem, i.e., the SAs for all the S-type and L-type
suffixes of S, respectively, in OðnÞ time to produce
the final result.

The merging step in the KA algorithm is very simple,
benefited from this fact observed in [12], [1] for any string.
That is, for any two suffixes of L-type and S-type, respec-
tively, if their beginning characters are identical, the L-type
suffix must be smaller than the S-type one. Hence, merging
the two suffix arrays for the reduced and remaining
problems can be done by scanning them once with simple
character and type comparisons. The KA algorithm has a
linear time given by T ðnÞ ¼ T ðdn=2eÞ þOðnÞ ¼ OðnÞ, and a
working space of 3n bytes plus 1:25n bits for a string not
longer than 232 [12].

Due to the space limit, we refer readers who are new to
suffix arrays to [5] for more related backgrounds.

1.2 Remarks

Both the KS and KA algorithms share a similar divide-
and-conquer framework, which comprises linear-time
problem reduction, recursion, remaining problem induc-
tion, and merging. To be more specific, the framework
works as follows:

1. First, the input string is reduced into a smaller
string, so that the original problem is divided into a
reduced part and a remaining part.

2. Then the suffix array of the reduced problem is
recursively computed.

3. Based on the result of the previous step, the suffix
array of the remaining problem is induced.

4. Finally, the two suffix arrays are merged as the final
result.

In order to reduce the problem in Step 1, the selected
substrings, either the triplets in the KS algorithm or the S or
L-substrings in the KA algorithm, need to be sorted and
renamed by their order indices. This step is commonly
known as substring naming. In Step 2, if the suffix array of the
reduced problem is not immediately obtainable, a recursive
call is further triggered to solve the reduced problem.

The two algorithms differ from each other in how to
select substrings for reducing the problem. The KS algo-
rithm selects the fixed-length substrings that are separated
by the fixed intervals; thus the problem size is reduced at
each iteration in a constant reduction ratio of 2/3. In the
meanwhile, the KA algorithm selects the S or L-substrings,
which have varying lengths subject to the specific char-
acteristics of a given string. The reduction ratio of the
KA algorithm is always not more than 1/2 due to the
symmetric definitions of L and S-type suffixes. Herein,
reduction ratio is defined as the size of the new child
problem against that of its parent. Due to better reduction
ratio (1=2 versus 2=3), the KA algorithm is expected to run
faster than the KS algorithm and use less space, which has
been confirmed by the performance evaluation studies
independently carried out by Puglisi [16] and Lee [17].

It appears that the KA algorithm is faster in problem
reduction; however, the sampled S-substrings (or symme-
trically, L-substrings) may have different and unpredictable
lengths, which makes the design of algorithm for problem
reduction in the KA algorithm far more complicated than
that in the KS algorithm, where the fixed length substrings
are sampled and sorted. For accomplishing this task, Ko
and Aluru [12], [1] proposed to use the S-distance lists
where each list contains all the suffixes with the same
S-distance, and the S-distance for a suffix S½i::n� 1� is the
distance from S½i� to the nearest S-type character to its left
(excluding S½i�). However, maintaining the S-distance lists
demands not only extra space but also additional time.
Moreover, the S-distance lists complicate the whole algor-
ithm’s design, which is well-evidenced by the sample
implementations of the KS and KA algorithms; the former is
embodied within only around 100 lines in C, whereas the
latter uses far more than 1,000 lines. In this sense, the
KS algorithm is much more elegant than the KA algorithm.
Therefore, how to name the variable-length S-substrings has
been identified as the performance and design bottleneck in
the KA algorithm.

1.3 What Is New

Recently, we proposed in DCC’09 [18] and CPM’09 [19]
two new linear time SACAs that sample the variable-
length leftmost S-type (LMS) substrings (Definition 3.2)
and fixed-length d-critical substrings (Definition 4.3), and
use the very simple induced sorting and radix sorting
methods to sort the sampled substrings, respectively. Since
the LMS and d-critical substrings are statistically longer
than the L or S-substrings, our algorithms achieve an even
better mean reduction ratio, and thus run faster than the
KA algorithm.
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For our algorithm sampling the fixed-length d-critical
substrings, sorting the sample substrings can be done using
a very simple radix sorting algorithm, for their lengths are
identical. For our another algorithm sampling variable-
length LMS substrings, we do not need to use any heavy
data structure like S-distance lists in the KA algorithm, but
simply employ a new induced-sorting method to address
the bottleneck problem of sorting the variable-length LMS
substrings.

In the rest of this paper, Section 2 first introduces some
basic notations for presenting our two algorithms. Further,
these two new algorithms are presented and analyzed in
Sections 3 and 4, respectively, followed by an extensive
performance evaluation in Section 5. Finally, Section 6
concludes our results.

2 BASIC NOTATIONS

We introduce, in this section, some basic notations,
commonly used in the presentations of our two algorithms.

Let S be a string of n characters stored in an array
½0::n� 1�, and �ðSÞ be the alphabet of S. For a substring
S½i�S½iþ 1� . . .S½j� in S, we denote it as S½i::j�. For presenta-
tion simplicity, S is supposed to be terminated by a sentinel
$, which is the unique lexicographically smallest character
in S (using a sentinel is widely adopted in the literatures for
SACAs [5]).

Let sufðS; iÞ be the suffix in S starting at S½i� and
running to the sentinel. A suffix sufðS; iÞ is said to be
S-type or L-type, if sufðS; iÞ < sufðS; iþ 1Þ or sufðS; iÞ >
sufðS; iþ 1Þ, respectively. The last suffix sufðS; n� 1Þ
consisting of only the single character $ (the sentinel) is
defined as S-type. Correspondingly, we can classify a
character S½i� to be S-type or L-type, if sufðS; iÞ is S-type or
L-type, respectively. To store the type of every character/
suffix, we introduce an n-bit boolean array t, where t½i�
records the type of character S½i� as well as suffix sufðS; iÞ:
1 for S-type and 0 for L-type. From the S-type and L-type
definitions, we observe the following properties: (i) S½i� is
S-type, if (i.1) S½i� < S½iþ 1� or (i.2) S½i� ¼ S½iþ 1� and
sufðS; iþ 1Þ is S-type; and (ii) S½i� is L-type, if (ii.1) S½i� >
S½iþ 1� or (ii.2) S½i� ¼ S½iþ 1� and sufðS; iþ 1Þ is L-type.
These properties suggest that by scanning S once from right
to left, we can determine the type of each character/suffix
in Oð1Þ time and fill out the type array t in OðnÞ time.

As defined earlier, SAðSÞ (the notation of SA is used for it
when there is no confusion in the context), i.e., the suffix
array of S, stores the indices of all the suffixes of S according
to their lexicographical order. Trivially, we can see that in
SA, the pointers for all the suffixes, starting with a same
character, must span consecutively. Let’s call a subarray in
SA for all the suffixes with the same first character as a bucket,
where the head and the end of a bucket refer to the first and the
last items of the bucket, respectively. Further, there must be
no tie between any two suffixes sharing the identical
character but of different types. That is, in the same bucket,
all the suffixes of the same type are clustered together, and
the S-type suffixes are behind, i.e., to the right of the L-type
suffixes [12], [1]. Hence, each bucket can be further split into
two subbuckets with respect to the types of suffixes inside:
the L and S-type buckets, where the L-type bucket is on the
left of the S-type bucket.

Before going further, we would remind readers that the

exact definitions of the two common symbols, P1 and S1, for

presenting our two algorithms, are different in their

respective contexts.

3 ALGORITHM I: INDUCED SORTING

VARIABLE-LENGTH LMS-SUBSTRINGS

3.1 Algorithm Framework

The framework of our linear time suffix array, sorting

algorithm SA-IS that samples and sorts the variable-length

LMS-substrings, is outlined in Fig. 1. Lines 1-4 first produce

the reduced problem, which is then solved recursively by

Lines 5-9, and finally from the solution of the reduced

problem, Line 10 induces the final solution for the original

problem. The time and space bottleneck of this algorithm

resides at reducing the problem in Lines 1-4. In the rest of

this section, we further describe each step in more details.

3.2 Reducing the Problem

We start by introducing the terms of leftmost S-type (LMS)

character, suffix, and substring as follows:

Definition 3.1. (LMS Character/Suffix) A character S½i�, i 2
½1; n� 1� is called LMS, if S½i� is S-type and S½i� 1� is L-type.

A suffix sufðS; iÞ is called LMS, if S½i� is an LMS character.

Definition 3.2. (LMS-Substring) An LMS-substring is (i) a

substring S½i::j� with both S½i� and S½j�, being LMS

characters, and there is no other LMS character in the

substring, for i 6¼ j; or (ii) the sentinel itself.

Intuitively, if we treat the LMS-substrings as basic blocks

of the string, and if we can efficiently sort all the LMS-

substrings, then we can use the order index of each LMS-

substring as its name, and replace all the LMS-substrings in

S by their names. As a result, S can be represented by a

shorter string, denoted by S1, thus the problem size can be

reduced to facilitate solving the problem in a manner of

divide-and-conquer. Now, we define the order for any two

LMS-substrings.
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Definition 3.3. (Substring Order) To determine the order of any
two LMS-substrings, we compare their corresponding char-
acters from left to right; for each pair of characters, we compare
their lexicographical values first, and next their types if the
two characters are of the same lexicographical value, where the
S-type is of higher priority than the L-type.

From this order definition for LMS-substring, we see that
two LMS-substrings can be of the same order index, i.e., the
same name, if and only if they are equal in terms of lengths,
characters, and types. Assigning the S-type character a
higher priority is based on a property directly from the
definitions of L-type and S-type suffixes in [12]:
sufðS; iÞ > sufðS; jÞ, if (1) S½i� > S½j�, or (2) S½i� ¼ S½j�,
sufðS; iÞ and sufðS; jÞ are S-type and L-type, respectively.

To sort all the LMS-substrings, no extra physical space is
needed for storing them. Instead, we simply maintain a
pointer array, denoted by P1, which contains the pointers
for all the LMS-substrings in S and can be made by
scanning S (or t) once from right to left in OðnÞ time.

Definition 3.4. (Sample Pointer Array) P1 is an array contain-
ing the pointers for all the LMS-substrings in S with their
original positional order being preserved.

Suppose, we have all the LMS-substrings sorted in the
buckets in their lexicographical order, where all the LMS-
substrings in a bucket are identical, then we name each item
of P1 by the index of its bucket to produce a new string S1.
Here, we say two equal-size substrings S½i::j� and S½i0::j0�
are identical, if and only if S½iþ k� ¼ S½i0 þ k� and
t½iþ k� ¼ t½i0 þ k�, for k 2 ½0; j� i�. We have the following
observation on S1.

Lemma 3.5. (1/2 Reduction Ratio) kS1k is at most half of kSk,
i.e., n1 � bn=2c.

Proof. The first character in S must not be LMS, while the
last must be LMS. Moreover, there are at least three
characters in each nonsentinel LMS-substring, and any
two neighboring LMS-substrings overlap on a common
character. tu

Lemma 3.6. (Sentinel) The last character of S1 must be the
unique smallest character in S1.

Proof. From Defintion 3.2, we know that the single-character
LMS-substring, i.e., the sentinel, must be the unique
smallest among all the sampled LMS-substrings in P1. tu

The above two lemmas state that the size of S1 is at most
half of that of S, and S1 is terminated by a unique smallest
sentinel too.

Lemma 3.7. (Coverage) For any two characters S1½i� ¼ S1½j�,
there must be P1½iþ 1� � P1½i� ¼ P1½jþ 1� � P1½j�.

Proof. Given S1½i� ¼ S1½j�, from the definition of S1, there
must be (1) S½P1½i�::P1½iþ 1�� ¼ S½P1½j�::P1½jþ 1�� and
(2) t½P1½i�::P1½iþ 1�� ¼ t½P1½j�::P1½jþ 1��. Hence, the two
LMS-substrings in S starting at S½P1½i�� and S½P1½j��
must have the same length. tu

Lemma 3.8. (Order Preservation) The relative order of any two
suffixes sufðS1; iÞ and sufðS1; jÞ in S1 is the same as that of
sufðS; P1½i�Þ and sufðS; P1½j�Þ in S.

Proof. The proof is due to the following consideration for

the following two cases:

. Case 1: S1½i� 6¼ S1½j�. There must be a pair of
characters in the two substrings of either different
lexicographical values or different types. Given
the former, it is obvious that the statement is
correct. For the latter, because we assume that the
S-type is of higher priority (see Definition 3.3), the
statement is also correct.

. Case 2: S1½i� ¼ S1½j�. In this case, the order of
sufðS1; iÞ and sufðS1; jÞ is determined by the
order of sufðS1; iþ 1Þ and sufðS1; jþ 1Þ. The
same argument can be recursively conducted on
S1½iþ 1� ¼ S1½jþ 1�, S1½iþ 2� ¼ S1½jþ 2�; . . .S1½iþ
k� 1� ¼ S1½jþ k� 1� until S1½iþ k� 6¼ S1½jþ k�.
Because that S1½i::iþ k� 1� ¼ S1½j::jþ k� 1�,
from Lemma 3.7, we must have P1½iþ k� �
P1½i� ¼ P1½jþ k� � P1½j�, i .e . , the substr ings
S½P1½i�::P1½iþ k�� and S½P1½j�::P1½jþ k�� are of the
same length. This suggests that sorting S1½i::iþ k�
and S1½j::jþ k� is equal to sorting S½P1½i�::P1½iþ k��
and S½P1½j�::P1½jþ k��. Hence, the statement is
correct in this case, too. tu

This lemma suggests that in order to sort all the LMS-

suffixes in S, we can sort S1 instead. Because S1 is at least 1/2

shorter than S, the computation on S1 can be done with less

than one half the complexity for S. Let SA and SA1 be the

suffix arrays for S and S1, respectively, and let us assume

SA1 has been solved. Now, we proceed to show how to

induce SA from SA1 in linear time.

3.3 Inducing SA from SA1

We describe below our algorithm for inducing SA from SA1

in linear time.
A3.3 Algorithm for Inducing SA from SA1 in SA-IS

1. Initialize each item of SA as -1. Find the end of each
bucket in SA for all the suffixes in S. Scan SA1 once
from right to left, put P1½SA1½i�� to the current end of
the bucket for sufðS; P1½SA1½i��Þ in SA and forward
the bucket’s end one item to the left.

2. Find the head of each bucket in SA for all the
suffixes in S. Scan SA from left to right, for each
nonnegative item SA½i�, if S½SA½i� � 1� is L-type, then
put SA½i� � 1 to the current head of the bucket for
sufðS; SA½i� � 1Þ and forward that bucket’s head one
item to the right.

3. Find the end of each bucket in SA for all the suffixes
in S. Scan SA from right to left, for each nonnegative
item SA½i�, if S½SA½i� � 1� is S-type, then put SA½i� �
1 to the current end of the bucket for sufðS; SA½i� �
1Þ and forward that bucket’s end one item to the left.

Obviously, each of the above steps can be done in linear

time OðnÞ. We now consider the correctness of this inducing

algorithm by investigating each of the three steps in their

reversed order. First the correctness of Step 3, which is

about how to sort all the suffixes from the sorted L-type

suffixes by induction, is endorsed by Lemma 3 established

in [12] for supporting the KA algorithm, cited as below.
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Lemma 3.9. [12] Given all the L-type (or S-type) suffixes of S

sorted, all the suffixes of S can be sorted in OðnÞ time.

In our context, Lemma 3.9 can be translated into the

statement below.

Lemma 3.10. Given all the L-type suffixes of S sorted, all the

suffixes of S can be sorted by Step 3 in OðnÞ time.

From the above lemma, we have the following result to

support the correctness of Step 2.

Lemma 3.11. Given all the LMS suffixes of S sorted, all the

L-type suffixes of S can be sorted by Step 2 in OðnÞ time.

Proof. From Lemma 3.9, we know that given all the S-type

suffixes having been sorted in SA, we can sort all the

(S-type and L-type) suffixes by traversing SA once from

left to right in OðnÞ time through induction. Notice that

not every S-type suffix is useful for induced sorting the

L-type suffixes; instead, an S-type suffix is useful only

when it is also an LMS suffix. In order words, the correct

order of all the LMS suffixes suffices to induce the order

of all the L-type suffixes in OðnÞ time. tu

3.4 Induced Sorting LMS-Substrings

This part is dedicated to addressing the most challenging

problem in the whole design of algorithm SA-IS: how to

efficiently sort all the variable-size LMS-substrings. In the

KA algorithm, sorting the variable-size S or L-substrings

constitutes the bottleneck of the whole algorithm, and

solving it, demands the usage of S-distance lists. Never-

theless, our solution does not need to use the cumbersome

S-distance lists. Instead, we solve this once difficult problem

by using the same induced sorting idea, originally used in

the algorithm A3.3 in Section 3.3. Specifically, we only need

to make a single change to the first step of A3.3 in order to

efficiently sort all the variable-length LMS-substrings, as

shown below.
A3.4 Algorithm for Induced Sorting LMS-Substrings

1. Initialize each item of SA as -1. Find the end of each
bucket in SA for all the suffixes in S. Put the indices
of all the LMS-suffixes in S into their buckets in SA,
from the end to the head in each bucket. This is done
by scanning S once from left to right (or right to left)
and performing the following operations inOð1Þ time
for each scanned LMS suffix: put the suffix’s index to
the current end of its bucket in SA and forward that
bucket’s end one item to the left.

2. The same as Step 2 in the algorithm A3.3.
3. The same as Step 3 in the algorithm A3.3.

To facilitate the following discussion, let us define an

LMS-prefix preðS; iÞ of sufðS; iÞ to be 1) the sentinel itself

when i ¼ n� 1; or 2) the prefix S½i::k� in sufðS; iÞ, where

i 6¼ n� 1, k > i and S½k� is the first LMS character after S½i�.
Similarly, we define an LMS-prefix preðS; iÞ to be S-type or

L-type, if sufðS; iÞ is S-type or L-type, respectively. We

further to establish the following result for sorting all the

LMS-prefixes.

Theorem 3.12. The algorithm A3.4 for induced sorting LMS-
substrings will correctly sort all the LMS-prefixes of S into
SA.

Proof. Initially, in the first step, all the LMS suffixes are
put into their buckets in SA. Now, there is only one
LMS-prefix in SA, i.e., the sentinel, which is sorted
correctly.

We next prove, by induction, the second step will sort
all the L-type LMS-prefixes. When we append the first
L-type LMS-prefix to its bucket, it must be sorted
correctly with all the existing S-type LMS-prefixes
already in SA. Suppose, this step has correctly sorted
k L-type LMS-prefixes, where k > 1. We show by
contradiction that the next L-type LMS-prefix will be
sorted correctly. Suppose that, when we append the
(kþ 1)th L-type LMS-prefix preðS; iÞ to the current head
of its bucket, there is already another greater L-type
LMS-prefix preðS; jÞ in front of (i.e., on the left hand side
of) preðS; iÞ. In this case, we must have S½i� ¼ S½j�,
preðS; jþ 1Þ > preðS; iþ 1Þ, and preðS; jþ 1Þ is in front
of preðS; iþ 1Þ in SA. This implies that when we scanned
SA from left to right, before appending preðS; iÞ to its
bucket, we must have seen the LMS-prefixes in SA being
not sorted correctly. This contradicts our assumption. As
a result, all the L-type LMS-prefixes and the sentinel are
sorted in their correct order by this step.

Now we prove that the third step will further sort all
the LMS-prefixes. This step is being conducted similar to
what we have done in the second step. When we append
the first S-type LMS-prefix to its bucket, it must be sorted
correctly with all the existing L-type LMS-prefixes
already in SA. Notice that in the first step, all the LMS
suffixes were put into of their buckets from the ends to the
heads. Hence, in this step, when we append an S-type
LMS-prefix to the current end of its S-type bucket, it will
overwrite the LMS suffix already there, if there is any.
Suppose, this step has correctly sorted k S-type LMS-
prefixes, for k > 1. We show by contradiction that the next
S-type LMS-prefix will be sorted correctly. Suppose that,
when we append the (kþ 1)th S-type LMS-prefix preðS; iÞ
to the current end of its bucket, there is already another
smaller S-type LMS-prefix preðS; jÞ behind (i.e., on the
right hand side of) preðS; iÞ. In this case, we must have
S½i� ¼ S½j�, preðS; jþ 1Þ < preðS; iþ 1Þ, and preðS; jþ 1Þ
is behind preðS; iþ 1Þ in SA. This implies that when we
scanned SA from right to left, before appending preðS; iÞ
to its bucket, we must have seen the LMS-prefixes in SA
being not sorted correctly. This contradicts our assump-
tion. As a result, all the LMS-prefixes are sorted in their
correct order by this step. tu

From this theorem, we can immediately derive the
following two results: 1) Every LMS-substring is also an
LMS-prefix, given all the LMS-prefixes are ordered, all the
LMS-substrings are ordered too. 2) Every S-substring is a
prefix of an LMS-prefix, given all the LMS-prefixes are
ordered, all the S-substrings are ordered too. Hence, our
algorithm for induced sorting LMS-substrings can be used
for sorting all the LMS-substrings in our SA-IS algorithm
in Fig. 4, as well as for sorting the S or L-substrings in the
KA algorithm.
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3.5 Example

We provide in Fig. 2 a running example of the algorithm

A3.4 for induced sorting and naming all the LMS-sub-

strings of a sample string S ¼ mmiissiissiippii$, where $ is

the sentinel. First, we scan S from right to left to produce

the type array t at line 3, and all the LMS-suffixes in S are

marked by ’�’ under t. Then, we continue to run the

algorithm step by step:

. Step 1: The LMS-suffixes are 2, 6, 10, and 16. There
are five buckets for all the suffixes marked by their
first characters, i.e., $, i, m, p, and s, respectively.
Each bucket is delimited by a pair of braces, as
shown in lines 6 and 7. We initialize SA by setting all
its items to be -1, and then scan S from left to right to
put the indices of all the LMS-suffixes into their
buckets. In this step, we record the end of each
bucket, and the LMS-suffixes are put into the bucket
from the end to the head. Hence, in the bucket for
“i,” we put the suffixes first 2, next 6, and last 10.
Now, the sentinel, which is the only single-character
LMS-prefix, is sorted to its correct position 0 in SA.

. Step 2: All the L-type LMS-prefixes are induced
sorted in this step. We first find the head of each
bucket. The current head of a bucket is marked by
the symbol “^” under the bucket. Now, we scan SA
from left to right, for which the current item of SA

being visited is marked by the symbol “@.” When
we are visiting SA½0� ¼ 16 in line 10, we check the
type array t to know S½15� ¼ i is L-type. Hence, 15 is
appended to the current head of bucket for “i,” and
the bucket’s head is forwarded one step to the right.
In line 15, the scanning reaches SA½2� ¼ 14, and see
that S½13� ¼ p is L-type, then we put 13 to the current
head of bucket for “p,” and forward the bucket’s
head one step to the right. To repeat scanning SA in
this way, we can get all the L-type LMS-prefixes and
the sentinel sorted in SA, as shown in line 28, where
a symbol “^” between two buckets means that the
left bucket is fully filled by L-type LMS-prefixes.

. Step 3: In this step, we induced sort all the LMS-
prefixes from the sorted L-type prefixes. We first
mark the end of each bucket and then scan SA from
right to left. At SA½16� ¼ 4, we see S½3� ¼ i is S-type,
then put 3 to the current end of bucket for “i” and
forward the bucket’s end one step to the left. When
we visit the next character, i.e., S½15� ¼ 8, we see
S½7� ¼ i is S-type, then we put 7 to the current end of
bucket for “i,” and forward the bucket’s end one step
to the left. Notice that the LMS-prefixes 3 and 7
overwrote the LMS-suffixes 2 and 6 that were
formerly stored in the bucket by the first step,
respectively. To repeat scanning SA in this way, all
the LMS-prefixes are sorted in their order shown in
line 44. (Notice that the sentinel was put into its
bucket in the first step, and will not be overwritten
by any character in this step, for, it is the last
character in the string.)

. Given all the LMS-prefixes are sorted in SA, we scan
SA once from left to right to compute the name for
each LMS-substring starting from 0, where the order
of any two neighboring LMS-substrings in SA is
determined by comparing the lexicographical values
and types of their characters one by one, using
Definition 3.3. As a result, we get the shortened string
S1 shown in line 46, where the names for the LMS-
substrings 2, 6, 10, and 16 are 2, 2, 1, 0, respectively.

3.6 Complexity Analysis for SA-IS

Theorem 3.13. (Time/Space Complexities) Given S is of a

constant or integer alphabet, the time and space complexities

for the algorithm SA-IS in Fig. 4 to compute SAðSÞ are OðnÞ
and Oðn lognÞ bits, respectively.

Proof. Because the problem is reduced at least 1/2 at each

recursion, we have the time complexity governed by the

equation below, where the reduced problem is of size at

most bn=2c. The first OðnÞ in the equation counts for

reducing the problem and inducing the final solution

from the reduced problem

T ðnÞ ¼ T ðbn=2cÞ þOðnÞ ¼ OðnÞ:

The space complexity is dominated by the space
needed to store the suffix array for the reduced problem
at each iteration. Because the size of suffix array at the
first iteration is upper bounded by ndlogne bits, and
decreases at least a half for each iteration thereafter, the
space complexity is obvious Oðn lognÞ bits. tu
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To investigate the accurate space requirement, we show
in Fig. 3 a space allocation scheme, where the worst-case
space consumption at each level is proportional to the total
length of bars at this level, and the bars for different levels
are arranged vertically. In this figure, we have not shown
the spaces for the input string S and the type array t—the
former is fixed for a given S, and the latter varies from level
to level. Let Si and ti denote the string and the type array at
level i, respectively. If we keep ti throughout the lifetime of
Si, i.e., ti is freed only when we return to the upper level
i� 1. we need at most 2n bits for all the type arrays in the
worst-case. However, we can also free ti when we are going
to the level iþ 1, and restore ti from Si when we return
from the level iþ 1. In this way, we need at most n bits to be
reused for all the type arrays. Because the space consumed
by the type arrays is negligible when compared with SA, it
is omitted in the figure.

The space at each level consists of two components: SAi

for the suffix array of Si, and Bi the bucket array at level i,
respectively. In the worst case, each array requires a space
as large as Si (when the alphabet of Si is integer). For S with
an integer alphabet, the peak space is observed at the top
level. However, if the alphabet of S is constant, B0 and B1

are Oð1Þ and OðnÞ, respectively, resulting in the maximum
space required by the second level when n increases. Hence,
we have the space requirement as following, where n bits in
both cases are counted for the type arrays:

Corollary 3.14. The worst-case working space requirements for
SA-IS in Fig. 4 to compute the suffix array of S are:
1) 0:5n lognþ nþOð1Þ bits, for the alphabet of S is constant;
and 2) n lognþ nþOð1Þ bits, for the alphabet of S is integer.

For the space requirement of the algorithm in practice,
we have the below a probabilistic result.

Theorem 3.15. Given the probabilities for each character to be
S-type or L-type are i.i.d as 1/2, the mean size of a
nonsentinel LMS-substring is four, i.e, the reduction ratio is
not greater than 1/3.

Proof. Let us consider a nonsentinel LMS substring S½i::j�,
where i < j. From the definition of LMS-substring, we
know that this substring must contain two LMS char-
acters: one is the head, and other is the end. Moreover,
there must be at least one L-type character S½k� in between
S½i� and S½j�. Given the i.i.d probability of 1/2 for each
character to be S-type or L-type, the mean number of
L-type characters in betweenS½k� andS½j� is governed by a
geometry distribution with the mean of 1. Hence, the
mean size of S½i::j� is four. Because all the LMS-substrings
are located consecutively, the end of one is also the head of
another succeeding. This implies that the mean size of a
nonsentinel LMS-substring excluding its end is three,
resulting in the reduction ratio not greater than 1/3. tu

This theorem together with Fig. 3 implies that, if the
probabilities for a character in S to be S-type or L-type are
equal and the alphabet of S is constant, the maximum space
for our algorithm is contributed to level 1, where jS1j � n=3.
Hence, the maximum working space is determined by the
type arrays, which is nþOð1Þ bits in the worst case. As we
will see in Section 5, this theorem well approximates the
results on realistic data.

4 ALGORITHM II: RADIX SORTING FIXED-LENGTH

D-CRITICAL SUBSTRINGS

In this section, the second proposed algorithm called SA-DS
for linear time suffix array construction is presented. We
first introduce the concept of d-critical character, which
builds the basis of the SA-DS algorithm.

4.1 Critical Character

Definition 4.1. (Critical Character/Suffix) A character S½i� is
said to be d-critical, where d � 2, if and only if 1) S½i� is a
LMS-character; or else 2) S½i� d� is a d-critical character,
S½iþ 1� is not an LMS-character and no character in S½i�
dþ 1::i� 1� is d-critical. A suffix sufðS; iÞ is called d-critical
if S½i� is a d-critical character.

For notation convenience, let d1 ¼ dþ 1 for the rest of
this section.

Definition 4.2. (Neighboring Critical Characters) A pair of
d-critical characters S½i� and S½j� are said to be two
neighboring d-critical characters in S, if there is no other
d-critical character in between them.

Definition 4.3. (Critical Substring) The substring S½i::iþ d1�
is said to be the d-critical substring for the d-critical
character S½i� in S. For i � n� d1, S½i::iþ d1� ¼
S½i::n� 2�fS½n� 1�gd1�ðn�2�iÞ, where fS½n� 1�gx denotes
that S½n� 1� is repeated x times.

To simplify the discussion, we use �C�dðSÞ to denote the
d-critical substring array for S, which contains all the
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d-critical substrings in S, one substring per item, consecu-
tively arranged according to their original positional order in
S. From the above definitions, we have the following
immediate observations:

Proposition 4.4. In S, 1) every LMS character is a d-critical
character; and 2) the last character must be a d-critical character,
and the first character must not be a d-critical character.

Proposition 4.5. Given S½i� is a d-critical character, both S½i� 1�
and S½iþ 1� are not d-critical characters.

Lemma 4.6. The distance between any two neighboring d-critical
characters S½i� and S½j� in S must be in ½2; d1�, i.e.,
j� i 2 ½2; d1�, where d � 2 and i < j.

Proof. From Proposition 4.5, given S½i� is a d-critical
character, S½iþ 1� must not be a d-critical character. In
other words, the first d-critical character on the right
hand of S½i� may be any in S½iþ 2; iþ d1�, but must not
be S½iþ 1�. tu

4.2 Algorithm Framework

Our linear time suffix array sorting algorithm SA-DS is
outlined in Fig. 4. Lines 1-4 first produce the reduced
problem, which is then solved recursively by Lines 5-9, and
finally from the solution of the reduced problem, Line 10
induces the final solution for the original problem. The
time and space bottleneck of this algorithm resides at
reducing the problem in Lines 1-4. In the rest of this
section, we further describe in more details about the
operations in each step.

4.3 Reducing the Problem

With the concept of d-critical character/suffix, here comes
the key idea to reduce the problem into another that is at
least half smaller. First, we introduce an integer array P1 to
maintain the pointers for all the sampled d-critical sub-
strings for reducing the problem.

Definition 4.7. (Sample Pointer Array) The array P1 contains the
sample pointers for all the d-critical substrings in S preserving
their original positional order, i.e., S½P1½i�::P1½i� þ d1� is a
d-critical substring.

From the definitions of P1 and �C�d, immediately we
have �C�d ¼ fS½P1½i�::P1½i� þ d1�ji 2 ½0; n1Þg, where n1 de-
notes the size (or cardinality) of �C�d. Hereafter, we simply
consider P1 at pointer level, but the underneath compar-
isons for its items lie in the substrings in �C�d. Provided
with the type array t (defined in Section 2), we can traverse t
once from left to right to compute P1 in OðnÞ time.

Definition 4.8. (Siblings) P1½i� and S½P1½i�::P1½i� þ d1� are said
as a pair of siblings.

Let !ðS; iÞ be the !-weighting function of S½i�, defined as
!ðS; iÞ ¼ 2S½i� þ t½i�, and let S! denote the !-weighted string
of S, where S!½i� ¼ !ðS; iÞ. Now, bucket sort all the items of
P1 by their !-weighted siblings (i.e., S!½P1½i�::P1½i� þ d1� for
P1½i�) in increasing order. Then name each item of P1 by the
index of its bucket to produce a string S1, where all the
buckets are indexed from 0. Here, we have the following
observations on S1:

Lemma 4.9. (Sentinel) The last character of S1 must be the

unique smallest character in S1.

Proof. From Proposition 4.4, we know that S½n� 1� must be
a d-critical character, and the d-critical substring starting
at S½n� 1� must be the unique smallest among all

sampled by P1. tu
Lemma 4.10. (1/2 Reduction Ratio) kS1k is at most half of kSk,

i.e., n1 � bn=2c.
Proof. From Proposition 4.4, S½0� must not be a d-critical

character. We know from Lemma 4.6 the distance
between any two neighboring d-critical characters is at
least two, which immediately completes the proof. tu
The above two lemmas state that, S1 is at least half

smaller than S and terminated by an unique smallest
sentinel too.

Theorem 4.11. (Coverage) For any two characters S1½i� ¼ S1½j�,
there must be P1½iþ 1� � P1½i� ¼ P1½jþ 1� � P1½j�.

Proof. Given S1½i� ¼ S1½j�, from the definition of S1, there

must be 1) S½P1½i�::P1½iþ 1�� ¼ S½P1½j�::P1½jþ 1�� and
2) t½P1½i�::P1½iþ 1�� ¼ t½P1½j�::P1½jþ 1��. Given 1) and 2)
are satisfied, let i0 ¼ P1½i� þ 1 and j0 ¼ P1½j� þ 1. We have

the below observations:

. Any character in S½i0::i0 þ d1� is an LMS character.
In this case, given S1½i� ¼ S1½j�, we must have
P1½iþ 1� ¼ P1½jþ 1�.

. No character in S½i0::i0 þ d1� is an LMS character.
In this case, both i0 þ d and j0 þ d must be in P1.

In either case, we have P1½iþ 1� � P1½i� ¼
P1½jþ 1� �P1½j�. tu

Theorem 4.12. (Order Preservation) The relative order of any

two suffixes sufðS1; iÞ and sufðS1; jÞ in S1 is the same as that

of sufðS; P1½i�Þ and sufðS; P1½j�Þ in S.

Proof. The proof is due to the following considerations for
the following two cases:

. Case 1: S1½i� 6¼ S1½j�. In this case, it is trivial to see
that the statement is correct.

. Case 2: S1½i� ¼ S1½j�. In this case, the order of
sufðS1; iÞ and sufðS1; jÞ is determined by the
order of sufðS1; iþ 1Þ and sufðS1; jþ 1Þ. The
same argument can be recursively conducted on
S1½iþ 1� ¼ S1½jþ 1�, S1½iþ 2� ¼ S1½jþ 2�; . . .S1½iþ
k� 1� ¼ S1½jþ k� 1� until a k is reached that
m a k e s S1½iþ k� 6¼ S1½jþ k�. B e c a u s e t h a t
S1½i::iþ k� 1� ¼ S1½j::jþ k� 1�, f r o m T h e o -
rem 4.11, we must have P1½iþ k� � P1½i� ¼ P1½jþ
k� � P1½j�, i.e., the substrings S½P1½i�::P1½iþ k�� and
S½P1½j�::P1½jþ k�� are of the same length. This
suggests that sorting S1½i::iþ k� and S1½j::jþ k� is
equal to sorting S½P1½i�::P1½iþ k� þ d1� and
S½P1½j�::P1½jþ k� þ d1�. Hence, the statement is
correct in this case, too. tu

This theorem suggests that in order to find the orders for
all the d-critical suffixes in S, we can sort S1 instead.
Because the size of S1 is at most 1/2 of that of S, the
computation on S1 can be done within about one half the
complexity for S. In the following sections, we will show
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how to bucket sort and name the items of P1, i.e., the two
crucial subtasks of computing S1.

4.4 Sorting and Naming P1

To bucket sort and name all the items of P1, intuitively, we
need at least three integer arrays of at most 2n1 þ n integers
in total: two arrays of size n1 used as the alternating buffers
for bucket sorting P1, and another of size n for storing the
bucket pointers, where 2n1 � n. The array of bucket
pointers needs to be of size n, because each character of
P1 is in the range ½0; n� 1�. The space needed for sorting P1

constitutes the space bottleneck for our algorithm. To
further improve the space efficiency, we can use the
following �-weighting scheme for bucket sorting P1 instead.

Definition 4.13. (�-Weighted Substring) The �-weighted sub-
string S� ½i::j� in S is defined as S� ½i::j� ¼ S½i::j� 1�S!½j�.

For any two �-weighted substrings, we have the result
below.

Lemma 4.14. Given S�½i::iþ k� < S�½j::jþ k� and S½i::iþ k� ¼
S½j::jþ k�, we must have tðS; iþ xÞ � tðS; jþ xÞ for any
x 2 ½0; k�.

Proof. From the given condition, there must be tðS; iþ kÞ <
tðS; jþ kÞ. If S½iþ k� 1� ¼ S½iþ k�, we must have tðS; iþ
k� 1Þ ¼ tðS; iþ kÞ and tðS; jþ k� 1Þ ¼ tðS; jþ kÞ, i.e.,
tðS; iþ k� 1Þ < tðS; jþ k� 1Þ. If S½iþ k� 1� 6¼ S½iþ k�,
because S½iþ k� 1� ¼ S½jþ k � 1�, we must have
tðS; iþ k� 1Þ ¼ tðS; jþ k� 1Þ. Hence, in both cases,
tðS; iþ k� 1Þ � tðS; jþ k� 1Þ. The proof is completed
by applying the analogous arguments to tðS; iþ k� 2Þ,
tðS; iþ k� 3Þ . . . , and tðS; iÞ. tu

By replacing S!½i::j� with S�½i::j� as the weight of P1½i� for
bucket sorting P1 to produce S1, we have the following
result.

Theorem 4.15. (�-Order Equivalence) 1) Given S�½P1½i�::P1½i� þ
d1� ¼ S�½P1½j�::P1½j� þ d1�, there must be S!½P1½i�::P1½i� þ
d1� ¼ S!½P1½j�::P1½j� þ d1�; and 2) given S�½P1½i�::P1½i� þ
d1� < S�½P1½j�::P1½j� þ d1�, there must be S!½P1½i�::P1½i� þ
d1� < S!½P1½j�::P1½j� þ d1�.

Proof. Let i0 ¼ P1½i� and j0 ¼ P1½j�. If S�½i0::i0 þ d1� ¼
S�½j0::j0 þ d1�, we must have S½i0::i0 þ d1� ¼ S½j0::j0 þ d1�
a n d tðS; i0 þ d1Þ ¼ tðS; j0 þ d1Þ, i . e . , S!½i0::i0 þ d1� ¼
S!½j0::j0 þ d1�. Further, if S!½i0 þ d1� ¼ S!½j0 þ d1� and
S½i0 þ d� ¼ S½j0 þ d�, we must have tðS; i0 þ dÞ ¼ tðS; j0 þ
dÞ as well as S!ði0 þ dÞ ¼ S!ðj0 þ dÞ, and so on for the
other characters in the two substrings. Therefore, we
must have S!½i0::i0 þ d1� ¼ S!½j0::j0 þ d1�. When S� ½i0::i0 þ
d1� < S�½j0::j0 þ d1�, we consider these two cases:

. I f S½i0::i0 þ d1� 6¼ S½j0::j0 þ d1�, g iven S� ½i0::i0 þ
d1� < S�½j0::j0 þ d1�, there must be S½i0::i0 þ d1� <
S½j0::j0 þ d1� from the definition of �-weighted
substring (Definition 4.13), which yields S!½i0::i0 þ
d1� < S!½j0::j0 þ d1� from the definition of S!.

. If S½i0::i0 þ d1� ¼ S½j0::j0 þ d1�, we must have
tðS; i0 þ d1Þ ¼ 0 and tðS; j0 þ d1Þ ¼ 1. Further,
from Lemma 4.14, we have tðS; i0 þ xÞ � tðS; j0 þ
xÞ for any x 2 ½0; d1�, resulting in S!½i0::i0 þ d1� <
S!½j0::j0 þ d1�.

Hence, we complete the proof. tu

Theorem 4.15 suggests that, to determine the order of
two !-weighted d-critical substrings, we can use their
�-weighted counterparts instead. As a result, we need to
compare the characters’ types only for the last characters of
two d-critical substrings. Therefore, sorting all the items of
P1, according to the last characters of their �-weighted
siblings, can be decomposed into two passes in sequence:
1) bucket sort according to the types of these characters;
and 2) bucket sort according to the characters themselves.
Notice that the sorting of all the �-weighted substrings is
not required to be stable, hence we can use a fast method
to sort the last characters of these substrings. In Step 1,
there are only two buckets, one for the L-type characters
and the other for the S-type characters. This naturally
suggests that Step 1 can be done by traversing all the
characters only once to examine their L/S-types and put
them into their buckets accordingly.

To bucket sort the �-weighted substrings, we only need
an array of �ðSÞ or n1 integers to maintain the bucket
information at the first or second iterations, respectively.
Now, provided with P1, t, and S, we can compute S1, i.e.,
the reduced problem, using the two-step algorithm de-
scribed below:

. Step 1: Bucket sort all the elements of P1 into another
array P 01 by their corresponding siblings (i.e., fixed-
size d-critical substrings) in S, with �ðSÞ buckets.
The sorting is done through dþ 2 passes, in a manner
of least-significant-character-first. This step requires
a time complexity of Oðdn1Þ ¼ Oðn1Þ, for d ¼ Oð1Þ.

. Step 2: Compute the names for all the elements in P 01
(as well as P1). This job can be done by a simple
algorithm described as following:

- allocate an array tmp of size n, where each item
is an integer in ½0; n� 1�,

- initialize all the items of tmp to be �1,
- scan P 01 once from left to right to compute all the

names for the items of P 01, by setting tmp½P 01½i��
with the index of bucket that P 01½i� belonging to,
and

- pack all the nonnegative elements in tmp into
the buffer of P 01, by traversing tmp once. Now,
the buffer of P 01 stores the string of S1.

One problem with Step 2 in the above algorithm is that,
in addition to P 01 and S1, it uses a large space of n integers
(each integer is of dlogne bits) for tmp. Alternatively, we can
use another space-efficient algorithm for this job by reusing
tmp for P 01 and S1, described as following. Let us define a
logical array tmpe ¼ ftmp½i�ji%2 ¼ 0g for the first n1 even
items of tmp, where tmpe is said to be a logical array for its
physical buffer is distributed into the first n1 even items of
tmp, i.e., its physical buffer is not spatially continuous.

Suppose that P 01 is initially stored in the first n1 items of
tmp, we first copy P 01 into tmpe and set tmp½j� ¼ �1 for any
tmp½j� 62 tmpe, i.e., distribute P 01 into the first even items of
tmp. Next, we scan tmpe from left to right to compute the
names for all the items of tmpe. For each tmpe½i�, we record
its name as following: 1) if tmpe½i� is even, set tmp½tmpe½i� �
1� with the name, or else, set tmp½tmpe½i�� with the name.
Now, all the items of S1 are stored in the nonnegative odd
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items of tmp in their correct relative positional orders. At
last, we traverse tmp once to compact all the nonnegative
odd items into S1. Using this method for Step 2, tmp is
reused for accommodating both P 01 and S1, resulting in that
only one n-integer array is required for storing them.

4.5 Inducing SA from SAðS1Þ
Once again, let SA1 be the suffix array of S1. The algorithm
for inducing SA from SA1 in SA-DS is similar to the
algorithm A3.3 in Section 3.3, different only in the first step
as shown below:

A4.5 Algorithm for Inducing SA from SA1 in SA-DS

1. Initialize each item of SA as -1. Find the end of each
bucket in SA for all the suffixes in S. Scan SA1 once
from right to left, if sufðS; P1½SA1½i��Þ is an LMS
suffix then put P1½SA1½i�� to the current end of the
bucket for sufðS; P1½SA1½i��Þ in SA and forward the
bucket’s end one item to the left.

2. The same as Step 2 in the algorithm A3.3.
3. The same as Step 3 in the algorithm A3.3.

Let us consider the correctness of the above algorithm.
Notice that an LMS-suffix is also a d-critical suffix, then all
the LMS-suffixes of S must be sampled in S1, and hence
ordered in SA1. Therefore, the first steps of algorithms A.4.5
and A3.3 are equivalent in the sense that they will fill the
array SA with all the LMS-suffixes of S identically. That is,
the resulting SA for these two steps are the same. Because
the last two steps in both algorithms are exactly the same
and the algorithm A3.3 can induced sort SA from SA1, the
algorithm A.4.5 must do the same job too.

4.6 Example

To help readers grasp the core idea of the proposed
algorithm, in Fig. 5, we have dumped the intermediate
status of the data structures used in our SA-DS algorithm
with d ¼ 2 when it runs on a string S ¼ mmiissiissiippii$,
where $ is the sentinel.

In this example, our algorithm uses only two levels of
recursions, i.e., the recursion depth is two. For each recursion,
the algorithm starts from sampling all the d-critical char-
acters into P1, then proceeds to bucket sort all the elements of
P1 by their corresponding �-weighted siblings (2-critical
substrings in S), which is done by dþ 2 ¼ 4 passes of bucket
sort. The result for each pass is shown one after another in the
figure, where the sorting is not stable. Having sorted P1, the
names for all the items of P1 are computed, resulting in the
reduced string S1. Further, we recursively compute SAðS1Þ
and then induce SAðSÞ from it.

4.7 Practical Strategies

We propose several techniques to further improve the
time/space efficiencies of our SA-DS algorithm in practice.
Without loss of generality, we assume a 32-bit machine and
each integer consumes 4 bytes.

4.7.1 General Strategy: Reusing the Buffer for SAðSÞ
From the algorithm framework in Fig. 4, we see that the
algorithm consists of three steps in sequence: 1) sorting P1,
2) naming all the items of P1 to obtain S1, and 3) inducing
SAðSÞ from SAðS1Þ. Notice that SAðSÞ is an array of
n integers, and both P1 and S1 have n1 integers, where
2n1 � n, we can reuse the buffer for SAðSÞ for the first two
steps too.

4.7.2 Strategy 1: Storing the LS-Type Array

Each element of the LS-type array for S is 1-bit, and a total
of at most nð1þ 1=2þ 1=4þ :::þ log�1 nÞ < 2n bits are
required by the LS-type arrays for all the recursions.
Hence, we can use the two most-significant-bits (MSBs) of
SAðSÞ½i� for storing the L/S-type of S½i�. Recalling that the
space for each integer is allocated in units of 4-byte instead
of bits, the two MSBs of an integer are always available for
us in this case. This is because in computing SAðSÞ, our
algorithm running on a 32-bit machine that requires at least
5n bytes, where 4n for the items (each is a 4-byte integer) in
SAðSÞ and n for the input string (usually one byte per
character). Therefore, the maximum size nmax of the input
string must satisfy 5nmax < 232, resulting in nmax < 232=5
and lognmax < 30. In order words, 30-bits are enough for
each item of SAðSÞ. However, for implementation conve-
nience, we can simply store the LS-type arrays, using bit
arrays of maximum 2n bits in total, i.e., 0:25n bytes.

4.7.3 Strategy 2: Bucket Sorting P1

Given the buffers for P1 and S1. To bucket sort P1, we can
use another array B in Fig. 4 for maintaining the buckets,
where the size of B is determined by the alphabet size of the
input string S. Even the original input string S is of a
constant alphabet. After the first iteration, we will have S1

as the input string for the next iteration. Since S1 has an
integer alphabet that can be as large as n1 in the worst case,
B may require a maximum space up to n1 � bn=2c integers.
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To prevent B from growing with n1, instead of sorting
characters—each character is of 4 bytes—in each pass of
bucket sorting the d-critical substrings, we simply sort each
character with two passes, i.e., the bucket sorting is
performed on units of 2-byte. The time complexity for
bucket sorting all the fixed size d-critical substrings at each
iteration is linearly proportional to the total number of
characters for these substrings. Since each d-critical sub-
string is of dþ 2 characters and the number of substrings
decreases at least half per iteration, the total number of
characters sorted at all the iterations is upper bounded by
Oððdþ 2Þð1=2þ 1=4þ :::þ log�1 nÞÞ ¼ OðdnÞ, which is OðnÞ
given d ¼ Oð1Þ. Hence, the time complexity for bucket
sorting in this way remains linear OðnÞ. For n � 232, the
entire bucket sorting process will be half slowed down.
However, the space for B can be fixed to 65,536 integers, i.e.,
Oð1Þ. When n > 232, despite the size of each integer is
increased, the same idea can also be applied. In respect to
whether the alphabet of S is constant or integer, the peak
space requirement for bucket sorting in the whole algorithm
will occur as below:

. For S originated from a constant alphabet, the peak
space occurs when further reducing S1 at the second
iteration, which requires an extra space of n1 integers,
where each integer is of dlogn1e bits. In this case, we
can bucket sort on units of ddlogn1e=2e bits.

. For S originated from an integer alphabet, the peak
space occurs when reducing S at the 1st iteration,
which requires an extra space of n integers, each
integer of dlogne bits. In this case, we can bucket sort
on units of ddlogne=2e bits.

In both cases, given n > 232, the required extra spaces in
the worst case are not more than 1=216 of the spaces for their
suffix arrays, respectively, and thus negligible. Hence, in
summary, bucket sorting for problem reduction at each
iteration can always be done using an extra working space
of Oð1Þ only, independent of n.

4.7.4 Strategy 3: Inducing the Final Result

In the inducing algorithm described above, a buffer B is
needed for dynamically recording the current head/end of
each bucket. However, in order to save more space, we can
use an alternative inducing algorithm, which requires only
the buffer for SAðS1Þ and needs no B when inducing
SAðS1Þ. This idea is to name the elements of P1 in a different
way: once all the items of P1 have been sorted into their
buckets, we can name each item of P1 by the end1 of its
bucket to produce S1. To be more precise, this is because the
MSB of each item in SA1 and S1 is unused (when the
strategy 1 is not applied). Given that each item of S1 points
to the end of its bucket in the array of SA1, the inducing can
be done in this way: when an empty bucket in SA1 is
inserted the first item S1½i� at SA1½j�, we set SA1½j� ¼ i and
mark the MSB of SA1½j� by 1 to indicate that SA1½j� and S1½i�
are borrowed for maintaining the bucket end. At the end of
each inducing stage, we can restore the items in S1 and SA1

to their correct values in this way: scan SA1 from left to
right, for each SA1½i� with its MSB as 1, let S1½SA½i�� ¼ i and
reset the MSB of SA1½i� as 0.

4.8 Complexity Analysis for SA-DS

Theorem 4.16. (Time/Space Complexities) Given S is of a
constant or integer alphabet, the time and space complexities
for the algorithm SA-DS in Fig. 4 to compute SAðSÞ are OðnÞ
and Oðn lognÞ bits, respectively.

Proof. Because the problem is reduced at least 1/2 at each
recursion, we have the time complexity governed by the
equation below, where the reduced problem is of size at
most bn=2c. The first OðnÞ in the equation counts for
reducing the problem and inducing the final solution
from the reduced problem

T ðnÞ ¼ T ðbn=2cÞ þOðnÞ ¼ OðnÞ:

The space complexity is obvious Oðn lognÞ bits, for the
size of each array used at the first iteration is upper
bounded by ndlogne bits, and decreases at least a half for
each iteration thereafter. tu

Corollary 4.17. (Working Space) The SA-DS algorithm can
construct the suffix array for a size-n string S with a constant
or integer alphabet, using OðnÞ time and a working space of
only 0:25nþOð1Þ bytes, where the characters of the integer
alphabet are in ½0::n� 1�.

Proof. The key technique is to design the SA-DS algorithm
with the general strategy and the strategies 2-3 in
Section 4.7. Naturally, we can allocate an LS-type array
at each iteration, which requires in total a space of 2n bits
for the type arrays at all the iterations. However, the
2n bits can be further reduced to n bits by trading with
time as following. At each iteration, before going to the
next iteration, we release the type array for the current
iteration; after returning from the next iteration, we can
scan the string (of the current iteration) once to
reproduce the type array for inducing the final result
for the current iteration.

Despite �ðSÞ is constant or integer, after the first
iteration, the SA-DS algorithm will work on the
shortened strings of integer alphabets. In other words,
for all the iterations except the first iteration, the SA-DS
algorithm will consume the same space, no matter �ðSÞ
is constant or integer. Hence, in respect to �ðSÞ, we
consider the following two cases at the first iteration:

. Constant alphabet: In this case, we can use an
array of size Oð1Þ to maintain the bucket for
inducing the final result at the first iteration, i.e.,
the strategy 3 is not applied at the first iteration.
As a result, the least working space can be
0:125nþOð1Þ bytes.

. Integer alphabet: In this case, before the first
iteration, we bucket sort all the characters of S
and rename each character of S to be the end of its
bucket. Under the assumption that �ðSÞ is in
½0::n� 1�, this can be done in OðnÞ time and using
only the space of SAðSÞ plus Oð1Þ. Then we
execute the SA-DS algorithm to compute SAðSÞ
recursively. After returning from the second
iteration, in addition to the n-bit LS-type array,
we allocate one more array of n bits, one bit for
use with each item of the array SAðSÞ. This n-bit
array is used in combination with the array SAðSÞ
and S to apply the strategy 3. Hence, the working
space is 0:25nþOð1Þ bytes.
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The peak space requirement of the whole algorithm
occurs when inducing the final result at the first
iteration. Hence, a working space of 0:25nþOð1Þ bytes
is sufficient. tu
We have coded in C a sample implementation for

approaching the results stated in Corollary 4.17, i.e., the
DS2 algorithm in the experiment section.

5 EXPERIMENTS

The algorithms investigated in our experiments are KS, KA
and our algorithms IS, DS1, and DS2, where IS is the SA-IS
algorithm, DS1 and DS2 are two variants of the SA-DS
algorithm trading off differently between space and time,
with d ¼ 3 and enhanced by the practical strategies proposed
in Section 4.7. The algorithms DS1 and DS2 use different
settings of strategies: DS1 uses the general strategy only,
whereas DS2 uses the strategies 2 and 3, in addition to the
general strategy. Specifically, for d ¼ 3, each substring sorted
by the DS1 and DS2 algorithms has a fixed length of five
characters, we sort the substrings at the first iteration in three
passes, using a bucket of 65,536 integers (instead of sorting in
five passes with a bucket of 256 integers). The performance
measurements to be investigated are the time/space com-
plexities, recursion depth, and mean reduction ratio.

The data sets in Table 1 used in our experiment were
downloaded from the popular benchmark repositories for
SACAs, including the Canterbury [20] and Manzini-Ferragi-
na [6] corpora. These data sets are of constant alphabets with
sizes smaller than 256, and one byte is consumed by each
character. Among them, only the last two files “alphabet”
and “random” are artificial. The experiments were per-
formed on a machine with AMD Athlon(tm) 64x2 Dual Core
Processor 4200+ 2.20GHz and 2.00GB RAM, and the
operating system was Linux (Sabayon Linux distribution).

All the algorithms were implemented in C++ and
compiled by g++ with the option of -O3. The KS algorithm
was downloaded from Sanders’s website [21]. For the KA
algorithm, we use an improved version from Yuta Mori2

for the original KA code (at Ko’s website [22]). Our
algorithms IS, DS1, and DS2 were embodied in less than
100, 150, and 250 effective lines of code, respectively; all are
available on request.

5.1 Time and Space

The time for each algorithm is the mean of three runs, and
the space is the heap peak measured by using the
memusage command to start the running of each program.
The total time (in seconds) and space (in million bytes,
MBytes) for each algorithm are the sums of the times and
spaces consumed by running the algorithm for all the input
data, respectively. The mean time (measured in seconds per
MBytes) and space (in bytes per character of the input
string) for each algorithm are the total time and space
divided by the total number of characters.

Tables 2 and 3 show the statistic time and space results
collected from the experiments, respectively, where the best
results are typeset in the bold fonts. For comparison
convenience, we also normalize all the results by the best
results. In the program for the KS algorithm, each character
of the input string S is stored as a 4-byte integer, and the
buffer for SAðSÞ is not reused for the others.3 For a more
accurate comparison, we subtract 7n bytes from the space
results measured for the KS algorithm in the experiments,
since we are sure 7n space can be trivially saved using some
engineering tricks.

From these two tables, we see that all the best time and
space performances are achieved by our IS and DS2
algorithms, respectively. Specifically, in average, the IS
algorithm is three times (300 percent) faster than the KS,
and 43 percent faster than the KA. The mean space of
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2. The reason for us to use this improved version instead was that the
original KA code was observed to cause segment faults or simply go dead
when testing on files “howto” and “etext99,” and Mori’s version is the only
robust implementation of the KA algorithm that we could obtain to
complete our experiments. Please notice that according to one external
reviewer, for all inputs Mori’s implementation performed better than other
known versions of the KA algorithm.

3. Notice that there exists a prominent discrepancy for the KS algorithm
between its theoretical analysis and the results from its implementation in
the experiment. As for this discrepancy, we are aware that this
implementation might aim at achieving the best time complexity by
pushing the space complexity to its extreme.

TABLE 1
Data Used in the Experiments

TABLE 2
Time

TABLE 3
Space



24:3n for the KS algorithm in our experiments is about
twice of the 10-13n for another space efficient implementa-
tion of the KS algorithm by Puglisi [5]. Even assuming the
better 10-13n space, the KS algorithm still uses a space
more than twice of that used by any of our algorithms. The
KA algorithm in our experiments is more time and space
efficient than the KS algorithm, this observation agrees
with the observations from the others [5], [17], however,
which still uses over 67 percent more space than ours.

In the space table, we see that DS1 and DS2 use more
space than IS does for the small files “pic,” “alphabet,” and
“random.” This is due to the bucket of 65,536 integers used
at the first iteration, i.e., 262,144 bytes. The size of this
bucket is constant for any input string, and thus can be
counted as Oð1Þ. If this bucket is deducted from the total
space consumption, the space used by DS1 and DS2 for
these three files are around 5:2n bytes too, which is well
coincided with the earlier analysis.

5.2 Recursion Depth and Reduction Ratio

Table 4 shows the recursion depths and problem reduction
ratios. These results are machine-independent and determi-
nistic for the given input strings. The recursion depth is
defined as the number of iterations, and the mean reduction
ratio is the sum of reduction ratios for all iterations divided
by the number of iterations. Obviously, for the reduction
ratio, the smaller, the faster and better. For an overall
comparison, we also give the total for the recursion depth
and reduction ratio for each algorithm and the means for
both, where the former is the sum of all corresponding
results and the latter is the former divided by the number of
individual input data sets, i.e., 10. Because the recursion
depths and reduction ratios for the algorithm DS1 and DS2
are identical for each given input string, the results for these
two algorithms are listed in the two columns marked with
the title of DS. As observed from this table, our IS algorithm
achieves all the best results. The reduction ratio of KS is
more than double of that for the IS. This well coincides with
their time results in Table 2, where the IS runs more than
twice faster than the KS.

In this table, the reduction ratio for IS on “alphabet” is
0.2. This is explained as following. The data set “alphabet”
consists of repetitions of [a-z]. In the first iteration, it is
reduced with a reduction ratio of 1=26 � 0:04; in the second
iteration, because all the nonsentinel characters are iden-
tical, the reduction ratio can be regarded as 0. Because the
mean ratio is the average of the total ratio over the iteration

number, i.e., we have 0:04=2 ¼ 0:2 in this case. Similarly, the
reduction ratio for KA on “alphabet” can be explained in
the same way.

An interesting observation also from this table is that, for
the input file “random,” the DS algorithm has only one
recursion, which is one level less than the IS algorithm. This
well explains why the DS algorithm runs faster than the
IS algorithm for input file “random” in Table 2, which is the
only case in our experiments that the best time was not
achieved by the latter. For the random data, the DS
algorithm turns out to converge faster than the IS algorithm,
and hence runs faster.

5.3 Discussion

Theorem 3.15 shows that if the S-type and L-type
characters are randomly distributed in the string, the
reduction ratio will not be greater than 1/3. However, in
practice, the characters of a string usually exhibit certain
statistical correlations, which will likely render a smaller
reduction ratio, e.g., the mean of 0.29 for IS in Table 4.
Because all the strings in the experiments are of constant
alphabets, from Fig. 3, the maximum space of our IS
algorithm is observed at level 1. Given the mean reduction
ratio 0.29, the space for SA is sufficient for accommodating
S1, SA1, and B1 of IS. In this experiment, the implementa-
tion of IS keeps the type array ti throughout the lifetime of
Si at level i, which could lead to a usage of up to 2n bits in
the worst case, i.e., 0.25 byte per character. Hence, we see
the mean space of 5.37 bytes per character for the IS
algorithm in Table 3. Such a space complexity is
approaching the space extreme for suffix array construc-
tion (i.e., 5 bytes per character in this case).

6 CLOSING REMARKS

Our proposed algorithms have been adopted by the other
parties in their projects, e.g., [23], [24]. In particular, Yuta
Mori has optimized the coding of the SA-IS algorithm, and
conducted an extensive performance evaluation study [25]
for the SA-IS algorithm versus the other well-known linear
and super-linear time SACAs, i.e., the Difference-Cover [26],
Deep-Shallow sorting [6], KA [1], and Larsson-Sadakane
[27] algorithms. The optimized implementation of SA-IS
was observed to be the most time and space efficient from
his experiment results.

APPENDIX

I: Sample Implementation of Algorithm SA-IS

A sample natural implementation of our SA-IS algorithm
can be found in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TC.2010.188.
In less than 100 lines of C code for demonstration purpose,
which is also the source code used in our experiment.

II: Sample Implementation of Algorithm SA-DS

The source code located at the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TC.2010.188 is to give a sample implementation in C for
our SA-DS algorithm with d ¼ 3, i.e., the length of a d-critical
substring is dþ 2 ¼ 5. Since both the KS algorithm and
ours sort fixed-size substrings, for reader’s convenience of
comparison, we intended to code the program with a
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Recursion Depth and Reduction Ratio



structure similar to that for the KS algorithm [21], wherever

applicable. This sample implementation uses an extra

working space of at most 2:25nþOð1Þ bytes, in addition to

the input string and the output suffix array.
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