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Abstract

We present a linear time and space suffix array (SA) construction algorithm called
the SA-IS algorithm. The SA-IS algorithm is novel because of the LMS-substrings
used for the problem reduction and the pure induced-sorting (specially coined for this
algorithm) used to propagate the order of suffixes as well as that of LMS-substrings,
which makes the algorithm almost purely relying on induced sorting at both its crucial
steps. The pure induced-sorting renders the algorithm an elegant design and in turn a
surprisingly compact implementation which consists of less than 100 lines of C code. The
experimental results demonstrate that this newly proposed algorithm yields noticeably
better time and space efficiencies than all the currently published linear time algorithms
for SA construction.

1 Introduction

A suffix of a string is a substring ending at the last character of the string. A suffix array
for a given string is an array of specially arranged indexes pointing to all the suffixes of
the string ascendingly sorted according to their lexicographical order. Suffix arrays were
first introduced by Manber and Myers in SODA’90 [5] as a space efficient alternative to
suffix trees. Since then, suffix arrays have been used as fundamental data structures in a
broad spectrum of applications, e.g., data indexing, compressing, retrieving, storing and
processing. Very recently, the research on both time and space more efficient suffix array
construction algorithms (SACAs) has become an increasingly hotter pursuit due to the
growing need of constructions of suffix arrays for large-scale applications, e.g., web searching
and biological genome database, where the magnitude of huge datasets is measured often
in billions of characters [1,2,6,7]. The fastest linear SACA algorithm among all the latest
results obtained so far is the KA algorithm from Aluru and Ko [4].

The framework of the KA algorithm can be recapitulated as the following 3-step
recursive process. 1) First the input string is reduced into a smaller string capturing only
S-substrings using more compact coding words of them, so that the original problem is
divided into a reduced part and an unreduced part. This step is commonly known as
substring naming for all the algorithms sharing the same recursive framework. 2) Then the
suffix array of the reduced problem is recursively computed. To be specific, if the suffix array
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of the reduced problem is not immediately obtainable, it will further trigger a recursive call
to solve the reduced problem. Otherwise, the recursion is terminated. 3) Finally as the
recursive calls returning level by level, the order of the suffixes of the reduced problem is
propagated to the suffix array of the unreduced problem all the way back to the original
problem.

The elegance of the KA algorithm lies in the step 3 where a new concept called induced
sorting has been proposed to efficiently sort suffixes in unreduced problems at all levels of the
recursive calls. The intuition behind the induced sorting is that the significant redundancies
buried in the suffixes that nest one in another can be used to propagate the order of certain
representative suffixes to their left-hand longer neighbours. However, compared with its
close competitor the KS algorithm [3] which shares a similar recursive framework, the
KA algorithm suffers a relatively complicated step 1, where the selected varying-length S-
substrings need to be sorted and re-named by their order indexes, which turns out to be the
bottleneck of the KA algorithm (or any algorithm relying on induced sorting at step 3). For
this task, Ko and Aluru proposed to use the S-distance lists where each list contains all the
characters with the same S-distance to facilitate the sorting. Maintaining the S-distance
lists, however, demands not only extra space but also an involved subroutine to process it,
which is well evidenced by Ko’s sample implementation of the KA algorithm with over 1000
lines in C, as opposed to only about 100 lines of the KS algorithm.

In this paper, we discuss a novel linear SACA called the SA-IS algorithm which differs
from the KA algorithm in two aspects. First, the SA-IS samples the leftmost S-type (LMS)
substrings (will be formally defined in section 2) instead of S-substrings (Due to space limit,
we refer readers to their seminal paper [4] for its more detailed discussion). Since LMS-
substrings are likely longer blocks than S-substrings, our algorithm can reduce problem
faster than the KA algorithm. Second, the SA-IS uses induced-sorting NOT ONLY in
step 3 to induce the ordering of the unreduced problem, BUT ALSO in step 1 to induce
the ordering of the reduced problem. The new algorithm is presented and analyzed in
Sections 2-3, followed by a running example in Section 4 and an experimental study for
performance evaluation in Section 5. Finally, Section 6 gives the closing remarks.

2 Our Solution

SA-IS(S, SA)

� S is the input string;
� SA is the output suffix array of S;
t: array [0..n − 1] of boolean;
S1: array [0..n1 − 1] of integer;
P1: array [0..n1 − 1] of integer;
B: array [0..‖Σ(S)‖ − 1] of integer;

1 Scan S once to classify all the characters as L- or S-type into t;
2 Scan t once to find all the LMS-substrings in S into P1;
3 Induced sort all the LMS-substrings using P1 and B;
4 Name each LMS-substring in S by its bucket index to get a new shortened string S1;
5 if Each character in S1 is unique
6 then
7 Directly compute SA1 from S1;
8 else
9 SA-IS(S1, SA1); � where recursive call happens

10 Induce SA from SA1;
11 return

Figure 1: The algorithm framework for induced sorting suffix array in linear time/space, where
Σ(S) denotes the alphabet of S.
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2.1 Algorithm Framework Our linear suffix array sorting algorithm SA-IS is outlined
in Fig. 1. Lines 1-4 first produce the reduced problem, which is then solved recursively by
Lines 5-9, and finally from the solution of the reduced problem, Line 10 induces the final
solution for the original problem. The time and space bottleneck of this algorithm resides
at reducing the problem in Lines 1-4.

2.2 Reducing the Problem Let S be a string of n characters, represented by an array
indexed by [0..n − 1]. For presentation simplicity, S is supposed to be terminated by a
sentinel $, which is the unique lexicographically smallest character in S. Let suf(S, i) be
the suffix in S starting at S[i] and running to the sentinel. A suffix suf(S, i) is said to
be S- or L-type if suf(S, i) < suf(S, i + 1) or suf(S, i) > suf(S, i + 1), respectively. The
last suffix suf(S, n− 1) consisting of only the single character $ (the sentinel) is defined as
S-type. Correspondingly, we can classify a character S[i] to be S- or L-type if suf(S, i) is S-
or L-type, respectively. From the above definitions, we observe the following properties: (i)
S[i] is S-type if (i.1) S[i] < S[i + 1] or (i.2) S[i] = S[i + 1] and suf(S, i + 1) is S-type; and
(ii) S[i] is L-type if (ii.1) S[i] > S[i + 1] or (ii.2) S[i] = S[i + 1] and suf(S, i + 1) is L-type.
These properties suggest that by scanning S once from right to left, we can determine the
type of each character in O(1) time and fill out the type array t in O(n) time. Further, we
introduce two new concepts called LMS character and LMS-substring as following.

Definition 2.1. (LMS character) A character S[i], i ∈ [1, n − 1], is called leftmost S-type
(LMS) if S[i] is S-type and S[i − 1] is L-type.

Definition 2.2. (LMS-substring) A LMS-substring is (i) a substring S[i..j] with both S[i]
and S[j] being LMS characters, and there is no other LMS character in the substring, for
i �= j; or (ii) the sentinel itself.

Intuitively, if we treat the LMS-substrings as basic blocks of the string, and if we can
efficiently sort all the LMS-substrings, then we can use the order index of each LMS-
substring as its name, and replace all the LMS-substrings in S by their names. As a result,
S can be represented by a shorter string, denoted by S1, thus the problem size can be
reduced to facilitate solving the problem in a manner of divide-and-conquer. Now, we
define the order for any two LMS-substrings.

Definition 2.3. (Substring Order) To determine the order of any two LMS-substrings, we
compare their corresponding characters from left to right: for each pair of characters, we
compare their lexicographical values first, and next their types if the two characters are of
the same lexicographical value, where the S-type is of higher priority than the L-type.

From this order definition for LMS-substring, we see that two LMS-substrings can
be of the same order index, i.e. the same name, iif they are equal in terms of lengths,
characters and types. When S[i] = S[j], we assign a higher priority to S-type because
suf(S, i) > suf(S, j) if suf(S, i) is S-type and suf(S, j) is L-type.

To sort all the LMS-substrings, we don’t need extra physical space; instead, we simply
maintain a pointer array P1, which contains the pointers for all the LMS-substrings in S.
This can be done by scanning S (or t) once from right to left in O(n) time.

Definition 2.4. (Sample Pointer Array) P1 is an array containing the pointers for all the
LMS-substrings in S preserving their original positional order.
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Suppose we have all the LMS-substrings sorted into the buckets in their lexicographical
orders where all the LMS-substrings in a bucket are identical. Then we name each item
of P1 by the index of its bucket to produce a new string S1. Here, we say two equal-size
substrings S[i..j] and S[i′..j′] are identical iif S[i + k] = S[i′ + k] and t[i + k] = t[i′ + k], for
k ∈ [0, j − i]. We have the following observation on S1.

Lemma 2.1. (1/2 Reduction Ratio) ‖S1‖ is at most half of ‖S‖, i.e. n1 ≤ �n/2�.

Proof. The first character in S must not be LMS and no any two consecutive characters in
S are both LMS.

Lemma 2.2. (Sentinel) The last character of S1 is the unique smallest character in S1.

Proof. From the definition of LMS character, S[n − 1] must be a LMS character and the
LMS-substring starting at S[n − 1] must be the unique smallest among all sampled by P1.

Lemma 2.3. (Coverage) For S1[i] = S1[j], there must be P1[i+1]−P1[i] = P1[j+1]−P1[j].

Proof. Given S1[i] = S1[j], from the definition of S1, there must be (1) S[P1[i]..P1[i + 1]] =
S[P1[j]..P1[j + 1]] and (2) t[P1[i]..P1[i + 1]] = t[P1[j]..P1[j + 1]]. Hence, the two LMS-
substrings in S starting at S[P1[i]] and S[P1[j]] must have the same length.

Lemma 2.4. (Order Preservation) The relative order of any two suffixes suf(S1, i) and
suf(S1, j) in S1 is the same as that of suf(S,P1[i]) and suf(S,P1[j]) in S.

Proof. The proof is due to the following consideration on two cases:

• Case 1: S1[i] �= S1[j]. There must be a pair of characters in the two substrings of either
different lexicographical values or different types. Given the former, the statement is
obviously correct. For the latter, because we assume the S-type is of higher priority
(see Definition 2.3), the statement is also correct.

• Case 2: S1[i] = S1[j]. In this case, the order of suf(S1, i) and suf(S1, j) is determined
by the order of suf(S1, i + 1) and suf(S1, j + 1). The same argument can be
recursively applied on S1[i + 1] = S1[j + 1], ..., S1[i + k − 1] = S1[j + k − 1] until
S1[i + k] �= S1[j + k]. Because S1[i..i + k − 1] = S1[j..j + k − 1], from Lemma 2.3,
P1[i + k] − P1[i] = P1[j + k] − P1[j], i.e. the lengths of substrings S[P1[i]..P1[i + k]]
and S[P1[j]..P1[j + k]] are the same. Thus, sorting S1[i..i+ k] and S1[j..j + k] is equal
to sorting S[P1[i]..P1[i + k]] and S[P1[j]..P1[j + k]]. Hence, the statement is correct.

This lemma suggests that to sort all the LMS-suffixes in S, we can sort S1 instead.
As S1 is at least 1/2 shorter than S, the computation on S1 can be done in one half the
complexity for S. Let SA and SA1 be the suffix arrays for S and S1, respectively. Assume
SA1 has been solved, we proceed to show how to induce SA from SA1 in linear time/space.

2.3 Inducing SA from SA1 As defined, SA maintains the indexes of all the suffixes of
S according to their lexicographical order. Trivially, we can see that in SA, the pointers
for all the suffixes starting with a same character must span consecutively. Let’s call a sub-
array in SA for all the suffixes with a same first character as a bucket. Further, there must
be no tie between any two suffixes sharing the identical character but of different types.
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Therefore, in the same bucket, all the suffixes of the same type are clustered together, and
the S-type suffixes are behind, i.e. to the right of the L-type suffixes. Hence, each bucket
can be further split into two sub-buckets for the L- and S-type buckets respectively.

Further, when we say to put an item SA1[i] to its bucket in SA, it means that we put
P1[SA1[i]] to the bucket in SA for the suffix suf(S,P1[SA1[i]]) in S. With these notations,
we describe our algorithm for inducing SA from SA1 in linear time/space as below:

1. Find the end of each S-type bucket; put all the items of SA1 into their corresponding
S-type buckets in SA, with their relative orders unchanged as that in SA1;

2. Find the head of each L-type bucket in SA; scan SA from head to end, for each item
SA[i], if S[SA[i]− 1] is L-type, put SA[i]− 1 to the current head of the L-type bucket
for S[SA[i] − 1] and forward the current head one item to the right.

3. Find the end of each S-type bucket in SA; scan SA from end to head, for each item
SA[i], if S[SA[i] − 1] is S-type, put SA[i] − 1 to the current end of the S-type bucket
for S[SA[i] − 1] and forward the current end one item to the left.

Obviously, each of the above steps can be done in linear time. We now consider the
correctness of this inducing algorithm by investigating each of the three steps in reversed
order. First the correctness of step 3, which is about how to sort all the suffixes from the
sorted L-type suffixes by induction, is endorsed by the Lemma 3 established in [4].

Lemma 2.5. [4] Given all the L-type (or S-type) suffixes of S sorted, all the suffixes of S
can be sorted in O(n) time.

In our context, Lemma 2.5 can be translated into the following statement.

Lemma 2.6. Given all the L-type suffixes of S sorted, all the suffixes of S can be sorted by
step 3 in O(n) time.

From the above lemma, we have the below result to support the correctness of step 2.

Lemma 2.7. Given all the LMS suffixes of S sorted, all the L-type suffixes of S can be
sorted by the step 2 in O(n) time.

Proof. From Lemma 2.5, if all the S-type suffixes have been sorted, we can sort all the (S-
and L-type) suffixes by traversing SA once from left to right in O(n) time through induction.
Notice that not every S-type suffix is useful for induced sorting the L-type suffixes; instead a
S-type suffix is useful only when it is also a LMS suffix. In order words, the correct order of
all the LMS suffixes suffice to induce the order of all the L-type suffixes in O(n) time/space.

The first step is to put all the sorted LMS suffixes into their S-type buckets in SA, from
ends to heads. Hence, from lemma 2.7, step 2 will sort all the L-type suffixes correctly; and
from the lemma 2.6, step 3 will sort all the suffixes from the sorted L-type suffixes.

2.4 Induced Sorting Substrings In the above discussion, we have safely assumed that
how to sort substrings is not an issue. However, it turns out that this is the step that we had
made the SA-IS algorithm to further optimize the KA algorithm and others. As we have
mentioned earlier, sorting the variable-size S- or L-substrings constitutes the bottleneck
of the KA algorithm, and solving it demands the usage of a S-distance list structure and
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correspondingly an involved algorithm to process the data structure. However, surprisingly
we discovered that this seemingly difficult problem can be easily solved by using induced
sorting too, i.e. the induced-sorting idea originally used in the KA algorithm for inducing
the order of suffixes SA from SA1 can be extended to induce the order of substrings.
Specifically, we only need to make a single change to the algorithm in the section 2.3 in
order to efficiently sort all the variable-length LMS-substrings. This single change is to
revise step 1 to: Find the end of each S-type bucket; put all the LMS suffixes in S into their
S-type buckets in SA according to their first characters.

To facilitate the following discussion, let’s define a LMS-prefix pre(S, i) to be (1) a single
LMS character; or (2) the prefix S[i..k] in suf(S, i) where S[k] is the first LMS character
after S[i]. Similarly, we define a LMS-prefix pre(S, i) to be S- or L-type if suf(S, i) is
S- or L-type, respectively. From this definition, any L-type LMS-prefix has at least two
characters. We establish the following result for sorting all the non-size-one LMS-prefixes.

Theorem 2.1. The above modified induced sorting algorithm will correctly sort all the non-
size-one LMS-prefixes and the sentinel.

Proof. Initially, in step 1, all the size-one S-type LMS-prefixes are put into their buckets in
SA. Now, all the LMS-prefixes in SA are sorted in their order.

We next prove, by induction, step 2 will sort all the L-type LMS-prefixes. When we
append the first L-type LMS-prefix to its bucket, it must be sorted correctly with all the
existing S-type LMS-prefixes. We assume this step has correctly sorted k L-type LMS-
prefixes, where k ≥ 1, and suppose contrary that when we append the (k + 1)th L-type
LMS-prefix pre(S, i) to the current head of its bucket, there is already another greater
L-type LMS-prefix pre(S, j) in front of (i.e. on the left hand side of) pre(S, i). In this
case, we must have S[i] = S[j], pre(S, j + 1) > pre(S, i + 1) and pre(S, j + 1) is in front
of pre(S, i + 1) in SA. This implies that when we scanned SA from left to right, before
appending pre(S, i) to its bucket, we must have seen the LMS-prefixes being not sorted
correctly. This contradicts our assumption. As a result, all the L-type and the size-one
S-type LMS-prefixes are sorted in their correct order by this step.

Now we prove step 3 will sort all the non-size-one LMS-prefixes, which is conducted
symmetrically to that for step 2. When we append the first S-type LMS-prefix to its
bucket, it must be sorted correctly with all the existing L-type LMS-prefixes. Notice that
in step 1, all the size-one LMS-prefixes were put into the ends of their buckets. Hence,
in this step, when we append a non-size-one S-type LMS-prefix to the current end of its
bucket, it will overwrite the size-one LMS-prefix already there, if there is any. Assume
this step has correctly sorted k S-type LMS-prefixes, for k ≥ 1, and suppose contrary that
when we append the (k + 1)th S-type LMS-prefix pre(S, i) to the current end of its bucket,
there is already another less S-type LMS-prefix pre(S, j) behind (i.e. on the right hand
side of) pre(S, i). In this case, we must have S[i] = S[j], pre(S, j + 1) < pre(S, i + 1) and
pre(S, j + 1) is behind pre(S, i + 1) in SA. This implies that when we scanned SA from
right to left, before appending pre(S, i) to its bucket, we must have seen the non-size-one
LMS-prefixes are not sorted correctly. This contradicts our assumption. As a result, all the
non-size-one LMS-prefixes and the sentinel (which is unique and was sorted into its bucket
in step 1) are sorted in their correct order by this step.

From this theorem, we can immediately derive the following two results. (1) Any LMS-
substring is also a non-size-one LMS-prefix or the sentinel; given all the non-size-one LMS-
prefixes and the sentinel ordered, all the LMS-substrings are ordered too. (2) Any S-
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substring is a prefix of a non-size-one LMS-prefix or the sentinel; given all the LMS-prefixes
and the sentinel ordered, all the S-substrings are ordered too. Hence, our algorithm for
induced sorting all the non-size-one LMS-prefixes and the sentinel can be used for sorting
the LMS-substrings in our SA-IS algorithm in Fig. 1, as well as for sorting the S- or L-
substrings in the KA algorithm. It is clear that the induced sorting algorithm has been
heavily used in both the renaming step and the propagating step, while only one round
bucket sort is needed to usher the rest induced-sorting. That is the reason why we say the
SA-IS algorithm almost purely relies on induced sorting.

3 Complexity Analysis

Theorem 3.1. (Time/Space Complexities) Given S is of a constant or integer alphabet,
the time and space complexities for the algorithm SA-IS in Fig. 1 to compute SA(S) are
O(n) and O(n	log n
) bits, respectively.

Proof. Because the problem is reduced at least 1/2 at each recursion, we have the time
complexity governed by the equation below, where the reduced problem is of size at most
�n/2�. The first O(n) in the equation counts for reducing the problem and inducing the
final solution from the reduced problem.

T (n) = T (�n/2�) + O(n) = O(n)
The space complexity is dominated by the space needed to store the suffix array for the

reduced problem at each iteration. Because the size of suffix array at the first iteration is
upper bounded by n	log n
 bits, and decreases at least a half for each iteration thereafter,
the space complexity is obvious O(n	log n
) bits.

To investigate the accurate space requirement, we show in Fig. 2 a space allocation
scheme, where the worst-case space consumption at each level is proportional to the total
length of bars at this level, and the bars for different levels are arranged vertically. In this
figure, we have not shown the spaces for the input string S and the type array t, the former
is fixed for a given S and the later varies from level to level. Let Si and ti denote the string
and the type array at level i, respectively. If we keep ti throughout the lifetime of Si, i.e.,
ti is freed only when we return to the upper level i − 1, we need at most 2n bits for all the
type arrays in the worst-case. However, we can also free ti when we are going to the level
i + 1, and restore ti from Si when we return from the level i + 1. In this way, we need at
most n bits to reuse for all the type arrays. Because the space consumed by the type arrays
is negligible when compared with SA, it is omitted in the figure.

SA1

S1 S2 SA2 B2

S1 B1

Level 2

SA0 B0Level 0

Level 1

Figure 2: The worst-case space requirement at each recursion level.

The space at each level consists of two components: SAi for the suffix array of Si, and
Bi the bucket array at level i. In the worst case, each array requires a space as large as
Si (when the alphabet of Si is integer). For S with an integer alphabet, the peak space is
at the top level. Meanwhile, for constant alphabet of S, B0 and B1 are O(1) and O(n),
respectively, so the maximum space is required by the 2nd level when n increases. Hence,
the space requirement is as follows, where the type arrays occupy n bits in both cases.
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Corollary 3.1. The worst-case working space requirements for SA-IS in Fig. 1 to compute
the suffix array of S are: (1) 0.5n log n + n + O(1) bits, for the alphabet of S is constant;
and (2) n log n + n + O(1) bits, for the alphabet of S is integer.

For the algorithm’s space requirement in practice, we have the below probabilistic result.

Theorem 3.2. Given the probabilities for each character to be S- or L-type are i.i.d as 1/2,
the mean size of a non-sentinel LMS-substring is 4, i.e, the reduction ratio is at most 1/3.

Proof. Let’s consider a non-sentinel LMS-substring S[i..j], where i < j. By the definition,
S[i] and S[j] are LMS characters, and there must be at least one L-type character S[k]
in between them. Given the i.i.d probability of 1/2 for each character to be S- or L-type,
the mean number of L-type characters in between S[k] and S[j] is governed by a geometry
distribution with the mean of 1. Hence, the mean size of S[i..j] is 4. Because all the LMS-
substrings are located consecutively, the end of a LMS-substring is also the head of another
succeeding LMS-substring. This implies that the mean size of a non-sentinel LMS-substring
excluding its end is 3, resulting in the reduction ratio not greater than 1/3.

This theorem and Fig. 2 imply that if the probabilities for a character in S to be S- or
L-type are equal and the alphabet of S is constant, the maximum space for our algorithm
is contributed to the level 1 where |S1| ≤ n/3. Hence, the maximum working space is
determined by the type arrays, which can be n + O(1) bits in the worst case. As we will
see from the experiment, this theorem well approximates the results on realistic data.

4 A Running Example

We provide below a running example of the induced sorting algorithm on naming all the
LMS-substrings of a sample string S = mmiissiissiippii$, where $ is the sentinel. First,
we scan S from right to left to produce the type array t at line 2, and all the LMS suffixes
in S are marked by ‘∗’ under t. Then, we continue to run the algorithm step by step:

Step 1: The LMS suffixes are 2, 6, 10 and 16. There are 5 buckets, namely $, i, m, p
and s, for all the suffixes marked by their first characters as shown in lines 5 and 6. We
initialize SA by setting all its items to be -1 and then scan S from left to right to put all the
LMS suffixes into their buckets according to their first characters. Noted that the sorting
in this step is not required to be stable, the suffixes belonging to a bucket can be put into
the bucket in any order. In this example, we record the end of each bucket, and the LMS
suffixes are put into the bucket from end to head. Hence, in the bucket for ‘i’, we put the
suffixes first 2, next 6 and then 10. Now, SA contains all the size-one LMS-prefixes sorted.

Step 2: We first find and mark the head of each bucket with ‘∧’, and then start to scan
SA from left to right, for which the current item of SA being visited is marked by ‘@’.
When we are visiting SA[0] = 16 in line 9, we check the type array t to know S[15] = i
is L-type. Hence, suffix 15 is appended to the bucket for ‘i’, and the current head of the
bucket is forwarded one step to the right. In line 13, the scanning reaches SA[2] = 14. As
S[13] = p is L-type, we put suffix 13 to the bucket for ‘p’, and forward the bucket’s head
one step. To continue scanning SA, we can get all the L-type LMS-prefixes sorted in SA
as shown in line 28, where ‘∧’ between two buckets means that the left bucket is full.

Step 3: In this step, we induced sorting all non-size-one LMS-prefixes from the sorted
L-type prefixes. We first mark the end of each bucket and then scan SA from right to left.
At SA[16] = 4, we see S[3] = i is S-type, and then put suffix 3 into the bucket for ‘i’ and
forward the bucket’s current end one step to the left. When we visit the next character,
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i.e. SA[15] = 8, we see S[7] = i is S-type, and then we put suffix 7 to the bucket for ‘i’ and
forward the bucket head one step to the left. To continue scanning SA in this way, all the
LMS-prefixes are sorted in their order shown in line 43. Given all the non-size-one LMS-
prefixes and the sentinel are sorted in SA, we scan SA once from left to right to calculate
the name for each LMS-substring. As a result, we get the shortened string S1 shown in line
45, where the names for the suffixes 2, 6, 10 and 16 are 2, 2, 1, 0, respectively.

00 Index: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

01 S: m m i i s s i i s s i i p p i i $

02 t: L L S S L L S S L L S S L L L L S

03 LMS: * * * *

04 Step 1:

05 Bucket: $ i m p s

06 SA: {16} {-1 -1 -1 -1 -1 10 06 02} {-1 -1} {-1 -1} {-1 -1 -1 -1}

07 Step 2:

08 SA: {16} {-1 -1 -1 -1 -1 10 06 02} {-1 -1} {-1 -1} {-1 -1 -1 -1}

09 @^ ^ ^ ^ ^

10 {16} {15 -1 -1 -1 -1 10 06 02} {-1 -1} {-1 -1} {-1 -1 -1 -1}

11 ^ @ ^ ^ ^ ^

12 {16} {15 14 -1 -1 -1 10 06 02} {-1 -1} {-1 -1} {-1 -1 -1 -1}

13 ^ @ ^ ^ ^ ^

14 {16} {15 14 -1 -1 -1 10 06 02} {-1 -1} {13 -1} {-1 -1 -1 -1}

15 ^ ^ @ ^ ^ ^

16 {16} {15 14 -1 -1 -1 10 06 02} {-1 -1} {13 -1} {09 -1 -1 -1}

17 ^ ^ @ ^ ^ ^

18 {16} {15 14 -1 -1 -1 10 06 02} {-1 -1} {13 -1} {09 05 -1 -1}

19 ^ ^ @ ^ ^ ^

20 {16} {15 14 -1 -1 -1 10 06 02} {01 -1} {13 -1} {09 05 -1 -1}

21 ^ ^ @ ^ ^ ^

22 {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 -1} {09 05 -1 -1}

23 ^ ^ ^ @ ^ ^

24 {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 12} {09 05 -1 -1}

25 ^ ^ ^ ^ @ ^

26 {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 12} {09 05 08 -1}

27 ^ ^ ^ ^ @ ^

28 {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 12} {09 05 08 04}

29 ^ ^ ^ ^ ^

30 Step 3:

31 SA: {16} {15 14 -1 -1 -1 10 06 02} {01 00} {13 12} {09 05 08 04}

32 ^ ^ ^ ^ @^

33 {16} {15 14 -1 -1 -1 10 06 03} {01 00} {13 12} {09 05 08 04}

34 ^ ^ ^ ^ @ ^

35 {16} {15 14 -1 -1 -1 10 07 03} {01 00} {13 12} {09 05 08 04}

36 ^ ^ ^ @^ ^

37 {16} {15 14 -1 -1 -1 11 07 03} {01 00} {13 12} {09 05 08 04}

38 ^ ^ @ ^ ^ ^

39 {16} {15 14 -1 -1 02 11 07 03} {01 00} {13 12} {09 05 08 04}

40 ^ ^ @ ^ ^ ^

41 {16} {15 14 -1 06 02 11 07 03} {01 00} {13 12} {09 05 08 04}

42 ^ ^ @ ^ ^ ^

43 {16} {15 14 10 06 02 11 07 03} {01 00} {13 12} {09 05 08 04}

44 ^ ^ ^ ^ ^

45 S1: 2 2 1 0

5 Experiments

All the datasets used were downloaded from the Manzini-Ferragina [6] corpora, the ad
hoc benchmark repository for suffix array construction and compression algorithms. The
experiments were performed on Linux (Sabayon Linux distribution) with AMD Athlon(tm)
64x2 Dual Core Processor 4200+ 2.20GHz and 2.00GB RAM. All the programs were
implemented in C/C++ and compiled by g++ with the -O3 option.

The performance measurements are the costs of time and space, recursion depth and
mean reduction ratio. The time for each algorithm is the mean of 3 runs, and the space is
the heap peak measured by using the memusage command to fire the running of each
program. The total time (in seconds) and space (in million bytes, MBytes) for each
algorithm are the sums of the times and spaces used to run the algorithm for all the
input data, respectively. The mean time (in seconds per MBytes) and space (in bytes per
character) for each algorithm are the total time and space divided by the total number of
characters in all input data. Table 1 shows the results of the experiments. For comparison
convenience, we normalize all the results by that from IS. To understand the differences of
time and space used in the two algorithms we also record and compare the recursion depths
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(the number of iterations) and mean reduction ratios (the mean of reduction ratios for all
iterations) of the two algorithms. Intuitively, the smaller the reduction ratio, the less the
number of recursions, and the faster and better the algorithm. Our IS algorithm achieves
all the best results among all measurements for all datasets.

Table 1: Experimental Results: Time, Space, Recursion Depth and Ratio
Data ‖Σ‖ Characters Description Time (Seconds) Space (MBytes) Depth Ratio

IS KA IS KA IS KA IS KA
world 94 2 473 400 CIA world fact book 1.3 1.9 12.70 21.24 6 6 .32 .42
bible 63 4 047 392 King James Bible 2.7 3.51 20.86 34.45 6 6 .34 .45
chr22 4 34 553 758 Human chromosome 22 24.7 33.41 178.09 289.97 6 8 .31 .43
E.coli 4 4 638 690 Escherichia coli genome 2.8 3.98 24.29 40.01 7 8 .32 .42
sprot 66 109 617 186 SwissProt V34 database 94.6 132.89 554.58 930.06 7 9 .31 .45
etext 146 105 277 340 Project Gutenberg 101 149.67 542.17 907.34 11 12 .33 .45
howto 197 39 422 105 Linux Howto files 30.4 42.85 203.16 331.54 9 13 .32 .45
Total 300 029 871 257.5 368.21 1535.85 2554.61 52 62 2.25 3.07
Mean 0.86 1.23 5.12 8.51 7.43 8.86 .32 .44
Norm. 1 1.43 1 1.66 1 1.19 1 1.38

In this experiment, the implementation of IS keeps the type array ti throughout the
lifetime of Si at level i, which may lead to a usage of up to 2n bits in the worst case, i.e.
0.25 byte per character. As a result, the mean space is 5.12 bytes per character shown in
table 1. Such a space complexity is approaching the space extreme (at least 5n bytes [6])
for suffix array construction, which leaves the margin for further improvement negligible.

6 Closing Remarks

For more details of the SA-IS algorithm, our technical report “Two Efficient Algorithms
for Linear Suffix Array Construction” is available at http://www.cs.sysu.edu.cn/nong/. It
is also worth noting that our SA-IS algorithm has been adopted in two other projects:
1)Burrows-Wheeler Alignment Tool (BWA) at http://maq.sourceforge.net/bwa-man.shtml,
where IS is the default algorithm for constructing BWT index; and 2)In-place Update of Suf-
fix Array while Recoding Words (http://www.irisa.fr/symbiose/mgalle/suffix array update)
by the Symbiose Project Team at INRIA/Irisa. Finally, we appreciate Mori as an indepen-
dent party to have re-implemented our SA-IS algorithm and performed more extensive
experiments. His experimental results published at http://yuta.256.googlepages.com/sais
confirm that the SA-IS algorithm is currently the most time and space efficient algorithm
among all the published linear algorithms for SA construction.
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