
A Space-Economical Suffix Tree Construction Algorithm

E D W A R D M. M O C R E I G H T

Xerox Polo Alto Research Center, Palo Alto, California

AaSTRXCeV. A new algorithm is presented for constructing auxiliary digital search trees to aid in
e x a c t - m a t c h substrlng searching. This algorithm has the same asymptotic running time bound as
previously published algorithms, but is more economical in space. Some implementation considera-
tions are discussed, and new work on the modification of these search trees in response to incremental
changes in the strings they index (the update problem) is presented.

KEY WORDS AND PHRASES: pattern matching algorithms, searching, search trees, context search,
substring search, analysis of algorithms

ca CATEGORIES: 3.74, 4 34, 5 32

Introduction

A number of computer applications need a basic function which locates a specific sub-
string of characters within a longer main string. The most obvious such application is
context searching within a text editor. Other applications include automatic command
completion by the keyboard handling executive of an operating system, and limited
pattern matching used in speech recognition [2]. This basic function is also useful as a
building block in the construction of more sophisticated pattern matches.

The naive algorithm to implement this function simply at tempts to match the sub-
string against the main string in all possible alignments. I t is straightforward but can
be slow since, for example, the program might reverify the fact tha t position 17 in the
main string is the character a almost as often as the number of characters in the substring
(consider the substring a a a a a a a b) . An asymptotically more efficient algorithm was
discovered by Knuth, Pratt , and Morris in 1970 [5]. I t involves preprocessing the sub-
string into a search automaton and then feeding the main string into the search auto-
maton, one character at a time. In both of these algorithms the average search time is at
least linear in the length of the main string.

I f one were expecting to do many substring searches in the same main string, it would
be worthwhile to build an auxiliary index to that main string to aid in the searches. A
useful index structure which can be constructed in time linear in the length of the main
string, and yet which enables substring searches to be completed in time linear in the
length of the substring, was first discovered by Weiner [8].

In addition, his auxiliary index structure permits one easily to answer several new
questions about the main string itself. For example, what is the longest substring of the
main string which occurs in two places? in k places? One can also transmit (or store) a
message with excerpts from the main string in minimum time (or spaco) by a dynamic
programming process which for each position of the message finds the longest excerpt of
the message which begins there and is a substring of the main string. This latter app}i-
cation motivated Weiner's original discovery.

Copyright (~) 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Assoc iat ion for Computing Machinery.
Author's address" Xerox Polo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304.

Jouraal of the Amociation for Computing Machinery, Vol. 23, No. 2, April 1976, pp. 262-272.

A Space-Economical SuJix Tree Construction Algorithm 263

Section 2 presents Algorithm M, an algorithm for constructing an index structure
functionally equivalent to Weiner's, but requiring about 25 percent less data space.
Section 3 discusses several implementation alternatives and includes a detailed space
analysis. Section 4 shows that minor changes to the main string usually result in minor
changes to the auxiliary index to the main string, and that incrementally updating the
index is usually more efficient than recomputing it. This result is particularly relevant
to the context of a dynamically changing database, as with a text editor.

Algorithm M

This section is an exposition of a new algorithm, called Algorithm M, for mapping a
finite string S of characters into an auxiliary index to S in the form of a digital search
tree T whose paths are the suffixes of S, and whose terminal nodes correspond uniquely
to positions within S. The algorithm requires that:

SI. The final character of S may not appear elsewhere in S.
If a string does not satisfy S1, it can be extended to a string which does by padding it
with a new character. For example, the string abab is not acceptable, but it can be padded
to the acceptable string ababe. If a string S satisfies S1, then no suffix of S is a prefix
of a different suffix of S. This results in the existence of a terminal node in T for each
suffix of S, since any two suffixes of S eventually go their separate ways in T.

Let n represent the length of the string S. To enable Algorithm M to operate in time
and space linear in n, three constraints are placed on the form of T. Together their effect
is that a tree T representing S is a multiway Patricia tree [3] and thus contains at most
n nonterminal nodes.

T1. An arc of T may represent any nonempty substring of S.
T2. Each nonterminal node of T, except the root, must have at least two offspring

arcs.
T3. The strings represented by sibling arcs of T must begin with d~fferent charac-

ters.

As an example, Algorithm M would map the string ababc (hereafter called S) into
the tree shown in Figure 1. Because of constraints T2 and T3, this mapping is unique
up to order among siblings. A Yew definitions and conventions are appropriate here.

Let ~ be the alphabet of characters used in S. Roman letters will be used to denote
single characters of ~, while Greek letters will denote (possibly empty) finite sequences
or strings of characters from ~. In our depictions of trees a straight line will denote a
single arc and a wavy line will denote a nonempty sequence of arcs whose detail is being
suppressed as irrelevant.

A partial path is defined as a (downward) connected sequence of tree arcs which begins
at the root of the tree.

A path is defined as a partial path which terminates at a terminal node.
Constraints S1, T2, and T3 guarantee that a partied path may he named unambiguously

by concatenating the strings on its arcs.
The locus of a string is the node at the end of the partial path (if caW) named by the

string.

a

FiG. I

~ 4 E D W A R D M. M c C R E I G H T

To\ O
\

steep l
\
\
TI

\ \\ abab l

\
\
\
\

steep 2
\
\

T 2
\

\
\
\
\
\

step\ 3

T3

\
\
\

step 4

a
T~ a c c

\
\
\

ab \ ab
T5

a

(a) (b)

F I G . 2

An extension of a string a is any string of which a is a prefix.
The extended locus of a string a is the locus of the shortset extension of a whose locus

is defined.
The contracted locus of a string ~ is the locus of the longest prefix of • whose locus is

defined.
Algorithm M begins with an empty tree To and enters paths corresponding to the

suffixes of S one at a time, from longest to shortest. The tree T corresponding to our
example string S (aba be) would be constructed by the algorithm in the steps shown in
Figure 2, one step per suffix of S:

We define sure to be the suffix of S beginning at character position i. (Position 1 is
defined to be the leftmost character of S, so suf~ is S.) During step z the algorithm in-
serts a path corresponding to the string s u L into the tree T,_i to produce the tree T , .
We define head , as the longest prefix of suf , which is also a prefix of s u f j , for some
j < i. Equivalently, head , is the longest prefix of s u L whose extended locus exists
within the tree T,-1. We define tail, as suf , -- h e a d , . In our example, suf~ = abe,
head3 = ab, and tai|3 = e. Constraint $1 assures us tha t tai l , is not empty. To insert
suf , into the tree T , - i , the extended locus of head , in T,-i is found, a new nonterminal
node is constructed to split the incoming arc and become the locus of h e a d , if necessary,
and finally a new arc labeled tai l , is constructed from that nonterminal node to a new
terminal node.

For example, consider step 3, which transforms T2 to T3 in Figure 2. The algorithm
must insert suf3. By tracing this string within T2, it sees that head3 is ab, that the
extended locus of a b is the leftmost terminal node, and that its incoming arc (labeled
ababe) must be split. The algorithm splits the arc into two parts, labeled ab and abe,
by inserting a new nonterminal node. A new arc labeled e, or tail3, is then added from
that nonterminM node to a new terminal node.

A Space-Economical Su.Bix Tree Construction Algorithm 265

If the algorithm is to be efficient, an efficient data structure for the representation of
trees must be used. Since the arcs of a tree T represent substrings of S (by constraint
T1), we can represent the character string associated with an arc of T by a pair of in-
tegers denoting its starting and ending positions in S. Thus the actual internal form of
the tree in Figure 1 might be as shown in Figure 3.

Given this representation, it should be clear from the example that at each step i,
after the algorithm has somehow found the extended locus in T,_~ of h e a & , the in-
troduction of a new nonterminal and a new arc corresponding to tail , takes at most
constant time. If the algorithm could find the extended locus of head , in at most con-
stant time (averaged over all steps), then it would run in time linear in n, the length of S.

The algorithm does this by exploiting the following relationship between the strings
h e a d , - 1 and h e a d , .

LEMMA 1. I f h e a d , _ 1 can be wmtten as x~ for some character x and some (possibly
empty) string ~, then ~ is a prefix of h e a d , .

PRooF. By induction on i. Suppose head,_1 = x~. This means that there is a j,
j < i, such that x~ is a prefix both of suf,_l and of suf~_l. Thus ~ is a prefix both of
sufj and of s u L . Therefore by the definition ot head, ~ is a prefix of h e a d , . []

To exploit this relationship, auxiliary links are added to our tree structure. From
each nonterminal node which is the locus of x~, where x is a character and ~ is a string,
a suffix link is introduced pointing to the locus of ~. (Note that the locus of ~ is never
within the subtree rooted at the locus of x~.) Depicting suffix links by dashed lines, the
new representation of the tree in Figure 1 is that shown in Figure 4. These links enable

1 2 3 4 5

[a [b[a I b l c] son pointer

brother pomter

Fio. 3

T.

1 2 3 4 5
S I lblalblcl

l - r [-b~ (2
i [_ _ ,2)
L.

son pointer
brother pomter

] a b c

Fio. 4

266 EDWARD M. MCCREIGHT

the algorithm in step i to do a short-cut search for the locus of head, beginning at the
locus of head,-1, which it has visited in the previous step.

The following semiformal presentation of the algorithm will prove by induction on i
that

P1: in tree T, only the locus of head, could fail to have a valid suffix link, and that
P2: in step i the algorithm visits the contracted locus of headl in Ti-1.

Properties P1 and P2 clearly obtain if i = 1. Now suppose i) 1. In step i the algorithm
does the following:

Substep A. First the algorithm identifies three strings ~, ~, and ~, with the following
properties:

(1) head,-1 can be represented as ~a~.
(2) If the contracted locus of head,-1 in T,_~ isnot theroot, it is the locus of ~a. Other-

wise a is empty.
(3) ~ is a string of at most one character which is empty only if head,+~ is empty.

Lemma 1 guarantees that head. may be represented as ~ 7 for some (possibly empty)
string 7. The algorithm now chooses the appropriate case of the following two:

empty: The algorithm calls the root node c and goes to substep B. Note that c is
defined as the locus of ~.

nonempty: By definition, the locus of ~a must have existed in the tree T,-2. By
P1 the suffix link of that (nonterminal) locus node must be defined in tree T,-~, since
the node itself must have been constructed before step i - 1. By P2 the algorithm
visited that node in step i - 1. The algorithm follows its suffix link to a nonterminal
node called e and goes to substep B. Note that c is defined as the locus of a.

Substep B. This is called '"rescanning," and is the key idea of Algorithm M. Since
a~7 is defined as head., by the definition of head we know that the extended locus of
~ exists in the tree T,_~. This means that there is a sequence of arcs downward from
node e (the locus of a) which spells out some extension of ~. To rescan ~ the algorithm
finds the child arc ~ of e which begins with the first character of ~ and leads to a node
which we shall call f. I t compares the lengths of ~ and 0. If ~ is longer, then a recursive
rescan of ~ - 0 is begun from node f. If ~ is the same length or shorter, then ~ is a prefix
of 0, the algorithm has found the extended locus of ~ , and the rescan is complete. I t
has been accomplished in time linear in the number of nodes encountered. A new non-
terminal node is constructed to be the locus of a~ if one does not already exist. The
algorithm calls d the locus of a~ and goes to substep C. (Note that substep B constructs
a new node to be the locus of a~ only if 7 is empty.)

Substep C. This is called "scanning." If the suffix link of the locus of ~ is currently
undefined, the algorithm first defines that link to point to node d. This and inductive
hypothesis establish the truth of P1 in T,. Then the algorithm begins searching from
node d deeper into the tree to find the extended locus of a~7. The major difference be-
tween scanning and rescanning is that in rescanning the length of ~ is known beforehand
(because it has already been scanned), while in scanning the length of 7 is not known
beforehand. Thus the algorithm must travel downward into the tree in response to the
characters of tail,_~ (of which 7 is a prefix) one by one from left to right. When the
algorithm "falls out of the tree" (as constraint S1 guarantees that it must), it has found
the extended locus of a~7. The last node of T,_i encountered in this downward trek of
rescanning and scanning is the contracted locus of head, in T,_~ ; this establishes the
truth of P2. A new nonterminal node is constructed to be the locus of ~ 7 if one does
not already exist. Finally a new arc labeled tail, is constructed from the locus of ~ 7
to a new terminal node. Step i is now finished.

A Space-Economical Su~ix Tree Construction Algorithm 267

~ ' ~ root

b a

b a.

b~ L new suffix ~lnk- /

FIo. 5

We now introduce a more involuted example string S which is capable of illustrating
the full complexity of the algorithm. Let S be b~abab3a~bSc, and consider step 14.
Figure 5 depicts Ti~ with some detail missing and with node labels which will be applied
in step 14. In step 14 the algorithm must insert suf14 (bSe) into T13. First it equates
~a to ab, so ~ is a and a is b. Thus since ~a~ is a b b b (beadle), ~ must be bb. In
substep A the algorithm observes ~ to be nonempty and therefore follows the suffix
link from the locus of ab (labeled as node x in Figure 5) to the locus of b, calling that
node c. In substep B the algorithm rescans ~ from node c. This rescanning encounters
one intermediate node f and stops at the locus of bbb, calling that node d. Substep C
then begins at node d and scans downward in the tree to discover Y. In this example,
it will discover that -f is bb, and will construct a new nonterminal node as the locus of
head14, which is a~,, or b 5.

The time spent in scanning and rescanning must now be analyzed. At each step,
rescanning and scanning is done on a suffix of S. Let res, be defined as the shortest suffix
of S to which the rescan and scan operations are confined during step i (~y followed
by tail,). Observe that for every intermediate node f encountered during the rescan of
~, there will be a nonempty string (O) which is contained in res, but not in res,+l • There-
fore length(res,+l) is at most length(res,) - in t , , where int, is the number of intermedi-
ate no4es encountered while rescanning during step i. By repeated substitution we see
that ~ _ t int, is at most n, since length(res,,) = 0 and length(reso) = n. Thus the total
number of intermediate nodes encountered while rescanning during the operation of the
algorithm is at most n.

In step i the number of characters which must be scanned to locate head, (the length
of V) is length(head,) -- length(head,_1) + 1. Thus the total number of characters
scanned during the operation of the algorithm is ~ - 1 (length(head,) -- length(head,_1)

+ 1), which collapses to n 4- length(head,) -- leength(heado), or n.
Algorithm M executes in n distinct steps, each of which takes constant time except for

rescanning and scanning. We have just seen that rescanning and scanning each add
time at most linear in n to the total running time. Therefore, Algorithm M operates
within a time bound linear in the length of its input string S.

268 EDWARD M. MCCREIGHT

Hash Coded Implementation

Given the tree representation in Figure 4, the running time of Algorithm M is potentially
linearly dependent on the size of the alphabet of the input string. For example, consider
the tree resulting from the string

abedefghijldmnopqrstuvwxyz.
The root node of this tree has 26 offspring arcs, and to establish each new offspring it is

necessary to verify that the root does not already have an offspring beginning with the
same character. In general, if the input string consisted of n different characters, at
east (n ~ - n)/2 atomic search steps would be required. The length of the string explains
one factor of n, but the other factor of n is attributable only to the size of the alphabet.
Perhaps we can find a different tree representation for which running time degrades
more gracefully with alphabet size.

The tree representation in Figure 4 is fairly efficient in space but slow to search. A
different representation might associate with each nonterminal node a table of pointers,
with one pointer for each character of the input alphabet. This would be fast to search,
but slow to initialize and prohibitive in size for a large alphabet. Alternatively one might
use ordered lists or balanced trees [3].

Encoding the arcs of T as entries in a hash table appears to be the best representation
of all. I t is very compact and (in the average case) reasonably speedy. Although it is
unknown ahead of time how many son arcs a given nonterminal node will have, the
total number of arcs in T has an upper bound of 2n (at most two arcs are added per
step of Algorithm M). We now consider the data structure design in some detail in order
to obtain precise storage bounds.

At each step of Algorithm M at most one nonterminal node and exactly one terminal
node are created. We name those nodes by the number of the step in which they were
created. A nonterminal node created during step k is named node k. A terminal node
created during step k is named node n + k. In this way we can determine from the num-
ber assigned to a node whether it is a terminal or nonterminal node.

The hash table implements a function f from the set of ordered pairs of the form (non-
terminal node, character) to the set of nodes, with the property that f (v , , x) = v~ if
there is an are in T from the nonterminal node v, to the node v~ which begins with the
character x, and f (v , , x) = 0 otherwise. Using a hashing algorithm of the family pro-
posed by Lampson [3, Exercise 6.4.13], this table can be represented in 2n(log~n +
logs I Z I + 2) bits, where ~ is the size of the input alphabet.

We must, of course, represent the input string S. This can be done with a vector of
n log2 I ~ I bits. In addition, when traversing an are in T the algorithm must be able
to deduce its starting and ending position in S. For this we introduce a table L which
maps each nonterminal nodeinto the length of the tree arc leading into that nonterminal
node. Suppose we are about to traverse the arc e from node v, to v~. Assume we have been
keeping track of d , , the number of characters in the partial path to v, . The are a be-
gins at position v. -t- d, in S and ends at position v, + d, + L(vd). We compute dd as
d, -b L(vd). The table L can be represented in n log2n bits.

Finally we introduce a table representing the suffix links of T. I t maps each non-
terminal node into the number of the node to which its suffix link points. I t can be re-
presented in n logan bits.

In summary, using this design we can represent T in 4n logan --[- 3n log21 Z I -'[- 4n
bits.

Incremental Editing

After the string S has been transformed into the tree T, it may become necessary to
change S. This circumstance would be quite common, for example, if Algorithm M were

A Space-Economical Suffix Tree Construction Algorithm 269

underlying a text editor. Any string S may be mapped into any other string S' by a
sequence of incremental changes (replacement of substrings). Algorithms which mini-
mize the length of such changes have been recently studied [7]. We shall now see that
it is possible to make an incremental change to T in response to an incremental change
in S.

Suppose Chat S is the string a~y, for some (possibly empty) strings ~, ~, and T, and
that S is to be changed into the string a~y, where ~ is some (possibly empty) string
which is different from ~.

In order to make it possible to update T incrementally we adopt a string element
position numbering scheme, like the Dewey-Decimal library access code, in which a
position number need never change after it has been assigned, andsuch that the sequence
of position numbers assigned to the characters of S is strictly monotonic. In particular,
this means that the position numbers assigned to the characters of y (and, of course,
those of u) will not change during the replacement of ~ by ~. I t also means that each
position number assigned to a character of -f is greater than any position number as-
signed to a character of a. Of course, all this implies the availability of a large pool of
position numbers, few of which are simultaneously in use. (This is in contrast to the
small pool of position numbers in the last section; the goals of minimum-space repre-
sentation and updatability seem mutually incompatible.)

We begin by considering what paths of the tree T corresponding to the string ~ y
are particularly affected by the replacement of ~ by ~. We define as O-splitters (with re-
spect to the change a~'r ~ a~'r) those strings (or their paths) of the form ~'r, where t is
a nonempty suffix of a*~, and where a* is defined as the longest suffix of a which occurs
in at least two different places in a~y. Equivalently, p-splitters are paths in T which
properly contain the suffix 'r, but whose terminal arcs do not properly contain ~'r.

Informally, O-splitters are the only paths whose structure might be directly affected
by the change from ~ to ~. By virtue of our "Dewey-DecimM" positional notation and
our way of representing substrings of S in T, all paths in T except g-splitters reflect the
change in S by default, either because they are too short to contain any character of ~,
or because they are so long that ~ is buried in a terminal arc and the change from ~ to

cannot affect the structure of the path. The structure of these paths will change only
as required by interaction with p-splitters and their replacements (which we might call
S-splitters). The updating algorithm will remove all ~-sphtters from the tree and then
insert all ~-sphtters, preserving tree properties T1-T3 and the validity of suffix links.

In the remainder of this section we shall show how the updating algorithm can carry
out this process in three discrete stages:

1. Discovery of a*~y, the longest p-splitter.
2. Deletion of all paths t'r, where e is a suffix of a*~, from the tree.
3. Insertion of all paths o'r, where ~ is a suffix of ,~*~, into the tree.

We shall also analyze the time required by these stages.
The updating algorithm must first find the longest O-splitter, a*~y. Here the space

efficiency of Algorithm M works against us. The trees constructed by Algorithm M do
not permit the efficient leftward extension of the O-splitter ~y one character at a time
until it is no longer a p-splitter. To overcome this difficulty the algorithm carries out
this search in two phases. In the first phase it examines the paths ~(~)~y, a(~)~y, ~(~)~y,
a(s)~y, . . . , where ace) is the suffix of u which has length rain(3, length(R)). These paths
are examined in sequence to see whether they are g-splitters. This first phase of the
search terminates when a non-Q-splitter is discovered or a itself is discovered to be a
p-splitter. The reader is invited to convince himself that deciding whether the path
~o)~,~ is a p-splitter can be done in time at most linear in j.

Suppose a(~)~y was the path under consideration by the first phase of the search when
it decided to terminate. The second phase of the search now examines the paths ~(~)~-f,

270 EDWARD M. MCCREIGHT

X ~'r ~ r i ° t

FIO 6

a(k-1)B~ ' . . . , in sequence until a B-splitter is discovered. This is ~*B'l', the longest B-splitter.
This phase of the search, since it encounters suffixes of S in precisely the same sequence
as Algorithm M, can take full advantage of the suffix links and can be done in time
linear in k. We know that length(a*) > k/2 (otherwise the first phase would have stopped
earlier), and we have just seen that the time to find a*BT is linear in 1 + 2 + 4 + • • •
+ k (for the first phase) + k (for the second). Thus a*B'f can be found in time linear
in the length of a*.

The next order of business is to delete all paths of the form vf, where ~ is a suffix of
a* B. These deletions are done in sequence, from the longest string to the shortest. Sup-
pose that for all suffixes 6 of a*~ longer than , the deletion of 6~ has been done. We
now consider how to delete the path ~ . The general case for deletion is shown in Figure 6.

[n Figure 6, ~ is shown broken up into substrings ~, ~, and ~. If the node t has more
than two offspring arcs, then the arc 9 (along with attached terminal node) is simply
excised. However if node t has exactly two offspring arcs, then special action must be
taken to avoid violating constraint T2 that every nonterminal node must have at least
two. Node t and its offspring arc 0 (and attached terminal node) are deleted, and arc
from node p and arc ~ from node t are joined together into a new arc , u from nonter-
minai node p to node k.

The only potential flaw is tha t some nonterminal node s might be suffix linked to node
t when t is deleted. We now argue that this is impossible except for the last nonterminai
node in the path xa*~-f, where x~* is the shortest suffix of a which properly contains
a*. (If a* is a, then the path xa*5~, does not exist.) The node having this property may
change during the course of the deletions, but at any given time there will be at most
one node with this property. Call it s*.

LEMMA 2. Whenever a node t is deleted, no su~ix links except perhaps that of node s*
point to it. Furthermore every path in T has a su~x path except perhaps for the path xa*ST.

P~OOF. The lemma is clearly true before any deletions have been done. Suppose we
are deleting the path ~.f, shown in Figure 6 as ~0- Further suppose tha t node t will be
deleted.

First we prove by contradiction that there is no nonterminal node s suffix linked to
node t, except perhaps s*. Suppose there were such a node. In Figure 6 we denote the
partial pa th to s by x ~ . Because deletions have been done in order of decreasing string
length, =~¢~ is assumed to be the longest B-splitter in T. If there were a path x~¢0 in T,
a contradiction would arise because that path would be a O-splitter and longer than

By inductive hypothesis the only path in T whose suffix path might not be contained
in T is xa*5-f. By constraint T2, node s must have at least two son arcs. Thus, since

A Space-Economical Su~x Tree Construction Algorithm 271

node t has only one son arc which can have a prefix in T, node s must have exactly two son
arcs, and the only path (~a*SV) for which no suffix exists in T must pass through node
s. Further, the offspring arc carrying that path must lead directly to a terminal node
(since otherwise by constraint T2 there would be at least two paths passing through that
arc, one of which would have a suffix path in T). Therefore node s is in fact node s*, the
exceptional node.

Now we must show that whether or not node t is deleted, after the path ~V is deleted,
the only path in T which might not have a suffix path is xa*~V. At the end of the previous
step, the only path which might not have had a suffix path was xa*v. The only action in
this step was the removal of the path tV. If tV is a*~V, then its prefix path (xa*~V) has
already been deleted from T (and replaced by xa*~V). If tV is a proper suffix of a*~V,
then by inductive hypothesis its prefix path has already been deleted from T. In either
case the deletion of the path ~V does not deprive any path in T of a suffix. []

The final order of business is to insert into T all paths of the form ~V, where o is a
nonempty suffix of a*~. Inserting these paths is the same as executing a subsequence of
steps of Algorithm M on a preinitialized tree. Suppose Algorithm M is invoked with
S = a~v on an initial tree To which is not empty, but instead contains paths (and suffix
links) for all suffixes of $. We will call this modification Algorithm M(V). Clearly Al-
gorithm M(y) will get into trouble as it tries to insert a path for V into the tree, but
we won't let things go that far. Let3 = length(a) - length(a*) + 1 and let k = length(aS).
Algorithm M(V)'s steps 3 through k are exactly what the updating algorithm must do
to insert the paths a * ~ V , " " , dv (where d is the last character of aS). We de-
fine h e a d (v) , , t a i l (v) , , r e s (v) , , and T(y) , in the obvious way. The path deleting
phase of the updating algorithm arranges things so that the path inserting phase initially
has pointers to node s* and its father. Observe that node s* is head(v) , -1 , that either
it or its father is the contracted locus in T(V)j-1 of head(v)~- i , and that node s* is
the only nonterminal node in T(V)~-1 which might fail to have a valid suffix link. These
assumptions are precisely the ones necessary to get Algorithm M(V) started at step 3-
We let it run through the rescanning substep of step k -t- 1, and then stop it. The reader
should convince himself that this will result in a tree which satisfies T1-T3 and all of
whose suffix links are correct.

Now that the updating algorithm has been informally presented, we can analyze its
running time. We have already remarked that finding a* requires time linear in the
length of a*.

Deleting all paths of the form tV, where • is a nonempty suffix of ~*~, requires finding
the terminal arc of each such path, deleting it and its terminal node, and perhaps de-
leting the nonterminal node from which it emanated. Each of these operations except
finding the terminal arc can obviously be done in constant time. Finding the terminal
arcs can be done in the manner of.Algorithm M, except that preexisting suffix links elimi-
nate the need for rescanning. Each character of a*~ is scanned exactly once in the course
of finding all the terminal arcs. Therefore deleting all paths of the form ~V, where ~ is a
nonempty suffix of a*~, can be done in time linear in the length of a*~.

How long does it take to run Algorithm M(V) from step .7 through the rescanning
substep of step k --k 1 ? Everything but scanning and rescanning may be done in constant
time per inserted path. Let d be defined as the last character of a~, and y* as the longest
prefix of dv which appears in at least two places in a~V. (Note the near-symmetry
between V* and a*.) Generalizing the analysis of Algorithm M we see that the number of
intermediate nodes encountered during rescanning is Z..,,-J ~ ~V), which is at most
length(res(v)~) - length(res(v)k+l) + int(v)k+l. Clearly length(res(v)j) is at most
/eng~h(suf,), which is length(cL*~V). In general int(v) , is at most the length of ~ in step
i, which in turn is contained in head(v) , -~ . In particular int(v)k+l is at most
length(head(v)k). Also, in general, length(res(v),+l) is at least length(suf(v),) --
length(head(v),), so in particular length(res(v)k+l) is at least length(suf(v)k) --

272 EDWARV M. MCCREIGHT

length(head(of)z). Hence ~;-,,+1 int(.f)~ is at most length(¢*~.f) - length(&f) + 2
length(.f*), so rescanning time is linear in length(a*$) + length(y*).

The same collapsing series used in the analysis of Algorithm M shows that the number
of characters scanned during steps j through k is exactly (/~ - j + 1) + length (head (-f)k)

- lenoth(head(y)~_~). The time spent in scanning is at most linear in length(a*$) +
length(y*).

We have thus shown that changing T to reflect a change in S from ~ to ~.~ can be
performed in time at most linear in the sum of the lengths of ~*, ~, ~, and ~*.

Conclusion

The first algorithm to generate suffix trees in linear time was discovered by Weiner [8].
A. lucid description of Weiner's algorithm, with additional insights, appears in unpub-
lished lecture notes by Knuth [4]. The state of the art of pattern matching, including
Weiner's algorithm, is well presented in a book by Aho, Hopcroft, and Ullman [1]. Pratt,
following Weiner's work, has devised an unpublished algorithm to solve this problem in
a slightly different way [6]. All of these algorithms solve the problem in time (and of
course space) linear in the length of the input string.

The difference between _Algorithm M and the other algorithms above is that Algorithm
M can use less data space. The number of nodes generated by each algorithm is approxi-
mately the same, although Weiner's original algorithm generates slightly more than the
others. Further, the information content per node is approximately the same among the
algorithms, with one significant exception. The exception is that by processing left4o-
right and never extending any substring to the left, Algorithm M avoids the leftward
pointer per node per alphabet symbol which is required by the other algorithms. This
represents a savings of about 25 percent in data space between the hash coded version
of Algorithm M and similarly coded versions of the other algorithms. One would expect
roughly similar savings for other tree representations.

ACKNOWLEDGMENTS.] am indebted to Peter Weiner and Vaughan Pratt for early dis-
cussions of these ideas and to Ben Wegbreit, Ralph Kimball, Michael Rodeh, and Jim
Morris for constructive criticism of the paper itself.

REFERENCES

1. AHO, A V., HOPCROFT, J.E., AND ULLMAN, J.D.

2

3.

4.

5

6.

7.
8.

The Des~gu and Analysis of Computer Aqorithms.
Addison-Wesley, Reading, Mass., 1974, Ch 9, pp. 317-361.
KIMBALL, R B. A rapid substring searching algorithm m speech recognition Abstracted in
Conf Record, IEEE Syrup on Speech Recognition, Pittsburgh, Pa., April 1974.
KNUTH, D.E. The Art of Computer Programming, Vol. 3: Sorting and ~earching. Addison-Wesley,
Reading, Mass, 1973, Ch. 6.3, pp. 490--493.
KNUTH, D.E Pattern matching in strings. Unpub. lecture notes, Trondheim, Norway, May
1973.
KNUTH, D.E., MORRIS, J.H. JR., AND PRATT, V.R. Fast pattern matching in strings. Comput.
Sei. Rep. STAN-CS-74440, Stanford U., Stanford, Calif., Aug. 1974.
PRATT, V R. Applications of the Weiner repetition finder. Unpub. paper, Cambridge, Mass.,
May 1973; rev Oct. 1973
WAGNER, R.A. Order-n correction for regular languages. Comm ACM 17, 5 (May 1974), 265-268.
WEINER, P. Linear pattern matching algomthms. Conf. Record, IEEE 14th Annual Symposium
on Switching and Automata Theory, pp. 1-11.

RECIEVI~D MARCH 1975; REVISED AUGUST 1975

Journal of the A~ociation for Computing Machinery, Vol 23, No. 2, April 1976

