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Abstract

The time complexity of suffix tree construction has been shown to be equivalent to that of s
O(n) for a constant-size alphabet or an integer alphabet and O(n logn) for a general alphabet. How
ever, previous algorithms for constructing suffix arrays have the time complexity of O(n logn) even
for a constant-size alphabet.

In this paper we present a linear-time algorithm to construct suffix arrays for integer alph
which do not use suffix trees as intermediate data structures during its construction. Since t
of a constant-size alphabet can be subsumed in that of an integer alphabet, our result implies
time complexity of directly constructing suffix arrays matches that of constructing suffix trees.
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1. Introduction

The suffix tree due to McCreight[20] is a compacted trie of all the suffixes of a stringT .
It was designed as a simplified version of Weiner’s position tree[26]. The suffix array due
to Manber and Myers[19] and independently due to Gonnet et al.[11] is basically a sorted
list of all the suffixes of a stringT . There are also some other index data structures su
suffix cactus[15] and suffix automata[3].

When we consider the complexity of index data structures, there are three ty
alphabets from which stringT of lengthn is drawn: (i) a constant-size alphabet, (ii) an in
ger alphabet where symbols are integers in the range[0, nc] for a constantc, and (iii) a gen-
eral alphabet in which the only operations on stringT are symbol comparisons.

The time complexity1 of suffix tree construction has been shown to be equivalent to
of sorting[7]. Suffix trees can be constructed in linear time for a constant-size alp
due to McCreight[20] and Ukkonen[25] or for an integer alphabet due to Farach-Colt
Ferragina, and Muthukrishnan[6,7]. For a general alphabet, suffix tree construction
time bound of�(n logn).

Despite simplicity of suffix arrays among index data structures, the construction
of suffix arrays has been larger than that of suffix trees. Two known algorithm
constructing suffix arrays by Manber and Myers[19] and Gusfield[12] have the time
complexity of O(n logn) even for a constant-size alphabet. Of course, suffix arrays
be constructed by way of suffix trees in linear time, but it has been an open
lem whether suffix arrays can be constructed in o(n logn) time without using suffix
trees.

In this paper we solve the open problem in the affirmative and present a linea
algorithm to construct suffix arrays for integer alphabets. Since the case of a consta
alphabet can be subsumed in that of an integer alphabet, we will consider only the c
an integer alphabet in describing our result.

We take the recent divide-and-conquer approach for our algorithm[6–8,14,24], i.e.,
(i) construct recursively a suffix arraySAo for the set of odd positions, (ii) construct
suffix arraySAe for the set of even positions fromSAo, and (iii) mergeSAo andSAe into
the final suffix arraySAT . The hardest part of this approach is the merging step and
main contribution is a new merging algorithm.

Our new merging algorithm is quite different from Farach-Colton et al.’s[6,7] that are
designed for suffix trees. Whereas[6,7] use a coupled depth-first search in the merg
ours uses equivalence relations defined on factors ofT [5,12] (and thus it is more like a
breadth-first search). Also, Farach-Colton et al.’s algorithm goes back and forth be
suffix trees and suffix arrays during its construction, while ours uses only suffix a
during its construction.

The rest of this paper is organized as follows. In Section2, we introduce some notation
and definitions. In Section3, we present the algorithm for constructing suffix arrays
linear time. We conclude with some remarks in Section4.

1 Throughout this paper, the model we consider is the RAM (random-access machine) where each w
�(logn) bits and every word operation is done in constant time.
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2. Preliminaries

2.1. Definitions and notations

We first give some definitions and notations that will be used in our algorithm. Con
a stringT of lengthn over an alphabetΣ . Let T [i] denote theith symbol of stringT and
T [i, j ] the substring starting at positioni and ending at positionj in T . We assume tha
T [n] is a special symbol # which is lexicographically smaller than any other symbol iΣ .
We denote bySi , 1 � i � n, the suffix ofT that starts at positioni. The prefix of length
k of a stringα is denoted byprefk(α). We denote bylcp(α,β) the longest common
prefix of two stringsα andβ and bylcpi (α,β) the longest common prefix ofprefi (α)

andprefi (β). When stringα is lexicographically smaller than stringβ, we denote it by
α ≺ β.

We define the suffix arraySAT = (AT ,LT ) of stringT as a pair of arraysAT andLT [7].

• The sort array AT is the lexicographically ordered list of all suffixes ofT . That is,
AT [i] storesj such thatSj is theith lexicographically smallest suffix among all su
fixesS1, S2, . . . , Sn of T . The numberi will be called theindexof suffix Sj , denoted
by index(j) = i.

• The lcp array LT stores the length of the longest common prefix of two adja
suffixes inAT , i.e., LT [i] = |lcp(SAT [i], SAT [i+1])| for 1 � i < n. We setLT [0] =
LT [n] = −1.

We define odd and even arrays of a stringT . Odd suffixesare suffixes beginning a
odd positions inT . For example,S1, S3, andS5 are odd suffixes. Theodd array SAo =
(Ao,Lo) is the suffix array of all odd suffixes. That is, the sort arrayAo of SAo is the
lexicographically ordered list of all odd suffixes, and the lcp arrayLo has the length of the
longest common prefix of adjacent odd suffixes inAo. Even suffixesare suffixes beginning
at even positions inT , e.g.,S2, S4, andS6. Theeven array SAe = (Ae,Le) is the suffix
array of all even suffixes.

For a subarrayA[x, y] of sort arrayA, we definePA(x, y) as the longest common prefi
of the suffixesSA[x], SA[x+1], . . . , SA[y]. If x = y, PA(x, x) is defined as the suffixSA[x]
itself. Lemma 1gives some properties ofPA in a subarray of sort arrayA.

Lemma 1 [16]. Given a suffix array(A,L) andx < y,

(a) PA(x, y) = lcp(SA[x], SA[y]).
(b) |PA(x, y)| is equal to the minimum value inL[x, y − 1].

In order to find|PA(x, y)| efficiently, we define the following problem.

Definition 1 [1,2,10]. Given an arrayA of sizen whose elements are integers in the ran
[0, n − 1] and two indicesa andb (1 � a < b � n) in arrayA, therange-minimum query
MIN(A,a, b) is to find the smallest indexa � j � b such thatA[j ] = mina�i�b A[i].
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This MIN query can be answered in constant time using a succinct data structu
to Sadakane[23]. This data structure requires O(n) bits space and requires O(n) time for
construction. By a MIN query, we get the following lemma.

Lemma 2. Given a suffix array(A,L) andx < y, MIN(L,x, y − 1) can be computed in
constant time.

An advantage of suffix trees is thatsuffix linksare defined on suffix trees. Whe
lcp(Si, Sj ) = aα for a ∈ Σ andα ∈ Σ∗, lcp(Si+1, Sj+1) = α. Suffix links enable us
to find α from Si andSj . In suffix arrays this can be done by findinglcp(Si+1, Sj+1)

using a MIN query. This method will be used in Section3.4with the following lemma.

Lemma 3. Let i and j (i < j) be two positions in stringT . If T [i] and T [j ] match,
|lcp(Si, Sj )| = |lcp(Si+1, Sj+1)| + 1; otherwise,|lcp(Si, Sj )| = 0.

2.2. Equivalence classes

In this section, we will define equivalence relationEl on sort arrays such asAT , Ao,
andAe, and explain the relationship between equivalence classes ofEl on a sort array and
subarrays of the sort array.

Let A be a sort array of sizem and L be the corresponding lcp array. Equivalen
relationEl (l � 0) onA is:

El = {
(i, j) | prefl (SA[i]) = prefl (SA[j ])

}
.

That is,i andj are in the same equivalence class ofEl on A if and only if two suffixes
SA[i] andSA[j ] have a common prefix of lengthl.

We describe the relationship between equivalence classes ofEl on A and subarrays
of A. Since the integers inA are sorted in the lexicographical order of the correspond
suffixes, we get the following fact from the definition ofEl .

Fact 1. SubarrayA[p,q], 1 � p � q � m, is an equivalence class ofEl , 0 � l � n, onA

if and only ifL[p − 1] < l, L[q] < l, andL[i] � l for all p � i < q.

Example 1. ConsiderA[2,7] in Fig. 1. A[2,7] is an equivalence class ofE2 since
L[1] = 0, L[7] = 1, andL[i] � 2 for all 2� i < 7.

We now describe how an equivalence class ofEl on A is partitioned into equivalenc
classes ofEl+1. Let A[p,q] be an equivalence class ofEl . By Fact 1, L[i] � l for all
p � i < q. Let p � i1 < i2 < · · · < ir < q denote all the indices such thatL[i1] = L[i2] =
· · · = L[ir ] = l. SinceL[i] � l + 1 for i /∈ {i1, i2, . . . , ir } andp � i < q, A[p, i1],A[i1 +
1, i2], . . . ,A[ir + 1, q] are equivalence classes ofEl+1. We can findi1, i2, . . . , ir in O(r)

time byLemma 2and we get the following lemma.

Lemma 4. An equivalence class ofEl can be partitioned into equivalence classes ofEl+1
in O(r) time, wherer is the number of the partitioned equivalence classes ofEl+1.
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Fig. 1. Equivalence classes and subarrays of a sort array.

Example 2. In Fig. 1, equivalence classA[2,7] of E2 is partitioned into two equivalenc
classes,A[2,4] andA[5,7], of E3.

An equivalence class ofEl can be an equivalence class ofEk for k �= l. For example,
A[5,7] is an equivalence class ofE3, E4, andE5. In general, we have the following fact

Fact 2. A subarrayA[p,q] is an equivalence class ofEi for a � i � b if and only if
max{L[p − 1],L[q]} = a − 1 andb = |PA(p,q)|(= minp�i<q L[i]).

The integersa and b are called thestart stageand end stageof equivalence clas
A[p,q], respectively.

3. Linear-time construction

We present a linear-time algorithm for constructing suffix arrays for integer alpha
Our construction algorithm follows the divide-and-conquer approach used in[6–8,14,24],
and it consists of the following three steps.

1. Construct the odd arraySAo recursively. PreprocessLo for range-minimum queries.
2. Construct the even treeSAe from SAo. PreprocessLe for range-minimum queries.
3. MergeSAo andSAe to get the final suffix arraySAT .

The first two steps are essentially the same as those in[6–8] and our main contribution is
new merging algorithm in step 3.
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3.1. Constructing odd array

Construction of the odd arraySAo is based on recursion and it consists of the follow
three steps. It takes linear time except for recursion.

1. Encode the given stringT into a half-sized stringT ′: We encodeT intoT ′ by replacing
each pair of adjacent symbols(T [2i − 1], T [2i]), 1 � i � n/2, with a new symbol
How to encodeT into T ′ is as follows.
• Sort the pairs of adjacent symbols(T [2i − 1], T [2i]) lexicographically and then

remove duplicates: We use radix-sort to sort the pairs and we perform a scan
sorted pairs to remove duplicates. Both the radix-sort and the scan take O(n) time.

• Map theith lexicographically smallest pair of adjacent symbols into integeri: The
integeri is in the range[1, n/2] because the number of pairs is at mostn/2.

• Replace(T [2i − 1], T [2i]) with the integer it is mapped into.
Fig. 2 shows how to encodeT = aaaabbbbaaabbbaabbb# of length 20. After we
sort the pairs(T [1], T [2]), (T [3], T [4]), . . . , (T [19], T [20]) and remove duplicates
we are left with 4 pairs which areaa, ab, b#, andbb. We mapaa, ab, b#, andbb into
integers of 1 to 4, respectively. Then, we getT ′ = 1144124143 of length 10.

2. Recursively construct the suffix arraySAT ′ of T ′.
3. ComputeSAo from SAT ′ :

• Sort arrayAo: Since theith suffix ofT ′ corresponds to the(2i −1)st suffix ofT , we
getAo[k] by computing 2AT ′ [k]−1 for all k. For example,Ao[2] = 2AT ′ [2]−1= 9
in Fig. 2.

Fig. 2. Examples for constructing the odd array and the even array.
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• Lcp arrayLo: Since two symbols inT are encoded into one symbol inT ′, Lo[i] is
either 2LT ′ [i] or 2LT ′ [i] + 1. In Fig. 2, Lo[2] = 2 whenLT ′ [2] = 1, andLo[1] = 3
whenLT ′ [1] = 1 because the first suffix and the fifth suffix ofT ′ are 1144124143
and 124143, respectively, and 1 and 2 inT ′ are encodings ofaa andab, respectively.

3.2. Constructing even array

The even arraySAe is constructed fromSAo in linear time as follows.

• Sort arrayAe: An even suffix is one symbol followed by an odd suffix. For exampleS8
of T is T [8] followed byS9 of T . We make tuples for even suffixes: the first elem
of a tuple isT [2i] and the second element is suffixS2i+1 of T . First, we sort the tuple
by the second elements (this result is given inAo). Then we stably sort the tuples b
the first elements and we getAe.

• Lcp arrayLe: Consider two even suffixesS2i and S2j . By Lemma 3, if T [2i] and
T [2j ] match,|lcp(S2i , S2j )| = |lcp(S2i+1, S2j+1)| + 1; otherwise,lcp(S2i , S2j ) =
0. We can get|lcp(S2i+1, S2j+1)| from the odd arraySAo in constant time as
follows. Let x = indexo(2i + 1) and y = indexo(2j + 1) in SAo. By Lemma 1,
|lcp(S2i+1, S2j+1)| = |PAo(x, y)|, which is computed by a MIN(Lo, x, y − 1) query.
For example, considerLe[7] in Fig. 2. Since T [14] = T [18], |lcp(S14, S18)| =
|lcp(S15, S19)| + 1. Since indexo(15) = 3 and indexo(19) = 6, |lcp(S15, S19)| =
MIN(Lo,3,5) = 0. Thus,Le[7] = 1.

3.3. Merging odd and even arrays

We will show how to obtain suffix arraySAT = (AT ,LT ) from SAo andSAe in O(n)

time. The basic idea of this algorithm is that we first merge the odd and even su
coarsely using their prefixes of length 1 and then merge them more finely using their
prefixes. This idea is illustrated inFig. 3 which shows an example of mergingAo andAe

for T = aaaabbbbaaabbbaabbb#. First, we merge the odd and even suffixes using t
prefixes of length 1, which are #,a, andb. Then, the merging is based on the prefixes
length 2, length 3, etc. However, a direct reflection of this idea leads to an algorithm
O(n2) time. Thus, we modify this idea so that we can mergeAo andAe in O(n) time.

We first introduce some abbreviations and notions related to equivalence class
will refer to equivalence classes ofEi as ‘i-equivalence classes’. We will refer to equ
alence classes onAT as ‘target equivalence classes’, equivalence classes onAo as ‘odd
equivalence classes’, and equivalence classes onAe as ‘even equivalence classes’. Th
an equivalence class ofEi onAo is referred to as an oddi-equivalence class.The prefix of
an i-equivalence classis defined as the common prefix of lengthi of the suffixes in thei-
equivalence class. Now, we introduce the notions ofi-coupledandi-uncoupleddefined on
odd and eveni-equivalence classes. For brevity, we define them only on oddi-equivalence
classes. (They are defined on eveni-equivalence classes similarly.) An oddi-equivalence
classX is i-coupled if there exists an eveni-equivalence classY such that the prefix o
Y is the same as the prefix ofX. We sayX is i-coupled withY . Otherwise (ifX is not
i-coupled with any eveni-equivalence classes),X is i-uncoupled. IfX is i-uncoupled, no
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Fig. 3. An example of mergingAo andAe for T = aaaabbbbaaabbbaabbb#. Integers in lightly shaded boxe
indicate odd suffixes and integers in darkly shaded boxes indicate even suffixes.

even suffixes have the same prefix as the prefix ofX and thus the suffixes inX form a
targeti-equivalence class. Otherwise (ifX is i-coupled withY ), the suffixes inX andY

form a targeti-equivalence class. This fact is elaborated by the following lemma.

Lemma 5. The suffixes ini-equivalence classesAo[w,x] andAe[y, z] that arei-coupled
with each other form a targeti-equivalence classAT [w + y − 1, x + z].

Proof. SinceAo[w,x] andAe[y, z] are i-coupled with each other,prefi (SAo[a]), w �
a � x, is lexicographically larger thanprefi (SAe[b]), 1 � b � y − 1, and smaller than
prefi (SAe[c]), z + 1� c � n/2. Similarly,prefi (SAe[a]), y � a � z, is lexicographically
larger thanprefi (SAo[b]), 1� b � w − 1, and smaller thanprefi (SAo[c]), x + 1 � c �
n/2. Hence, all the suffixes inAo[w,x] and Ae[y, z] form a targeti-equivalence clas
AT [w + y − 1, x + z]. �

We now explain the notion of acoupled pair, which is central in our merging algo
rithm. Consider an equivalence classAo[w,x] whose start stage islo and end stage i
ko and an equivalence classAe[y, z] whose start stage isle and end stage iske such
that l = max{lo, le} � k = min{ko, ke} andAo[w,x] andAe[y, z] arel-coupled with each
other. We callC = 〈Ao[w,x],Ae[y, z]〉 a coupled pair. SinceAo[w,x] andAe[y, z] is
l-coupled with each other, the suffixes inAo[w,x] and Ae[y, z] form a target equiva
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Fig. 4. An example of our merging algorithm.

lence classAT [w + y − 1, x + z] by Lemma 5. We define the start stage and the e
stage of coupled pairC as the start stage and the end stage of the target equivalence
AT [w + y − 1, x + z]. Sincel is the smallest integer such thatAo[w,x] is l-coupled with
Ae[y, z], l is the start stage ofAT [w + y − 1, x + z] and thusl is the start stage ofC.
Now we are interested in the end stage ofC. Since one ofAo[w,x] and Ae[y, z] will
be partitioned into several (k + 1)-equivalence classes,AT [w + y − 1, x + z] cannot be
a target (k + 1)-equivalence class. In the sense that the end stage ofC cannot be large
thank, the valuek is called thelimit stageof C. The actual end stage ofC is the value of
|lcp(PAo(w,x),PAe(y, z))|, and it is in the range of[l, k].

Example 3. Consider a coupled pair〈Ao[2,3], Ae[1,2]〉 in Fig. 4(b). Its start stage is
because the start stages ofAo[2,3] andAe[1,2] are all 1 andAo[2,3] andAe[1,2] are 1-
coupled with each other. Its limit stage is 3 because the end stages ofAo[2,3] andAe[1,2]
are 3 and 4, respectively. Its end stage is 1 because|lcp(PAo(2,3),PAe(1,2))| = 1.

In our algorithm, we maintain coupled pairs in multiple queuesQ[k] for 0 � k < n.
Each queueQ[k] contains coupled pairs whose limit stage isk.

Our merging algorithm consists of at mostn stages, and it maintains the followin
invariants.

Invariant. At the end of stages � 0, the odd arrayAo and the even arrayAe are partitioned
into i-equivalence classes, 0� i � s, such that eachi-equivalence class is eitheri-coupled
or i-uncoupled, wherei-coupled equivalence classes constitute coupled pairs whose
stages are at mosts and limit stages are at leasts and the suffixes ini-uncoupled equiva
lence classes are stored in correct places ofAT .

Since the limit stage of a coupled pair is at mostn − 1, this invariant guarantees th
all equivalence classes arei-uncoupled for some 0� i � n and the odd and even suffixe
are stored in correct places ofAT after stagen. We will call an equivalence class who
suffixes are stored in correct places ofAT aprocessedequivalence class.
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We describe the outline of stages. Initially, a coupled pair〈Ao[1, n/2],Ae[1, n/2]〉 is
stored inQ[0]. At stage 1� s � n, we do the following for each coupled pairC =
〈Ao[w,x],Ae[y, z]〉 stored inQ[s − 1]. We first compute the end stage ofC by solv-
ing the following coupled pair lcp problem. In the next section we will show how to s
the coupled pair lcp problem in O(1) time.

Definition 2 (The coupled pair lcp problem). Given a coupled pairC = 〈Ao[w,x],Ae[y, z]〉
whose limit stage iss − 1, compute the end stage ofC. Furthermore, if the end stage ofC

is less thans − 1, determine whetherPAo(w,x) ≺ PAe(y, z) or PAo(w,x) � PAe(y, z).

After solving the coupled pair lcp problem forC, we have two cases depending
whether the end stage ofC is s − 1 or not.

• Case1. If the end stage ofC is s − 1, Ao[w,x] is (s − 1)-coupled withAe[y, z].
We first partitionAo[w,x] andAe[y, z] into s-equivalence classes. Every partition
s-equivalence class will be eithers-coupled ors-uncoupled. Thes-coupled equiva-
lence classes constitute coupled pairs whose limit stages are at leasts, and thus we
store each coupled pair inQ[k] for s � k � n − 1, wherek is the limit stage of the
coupled pair. For thes-uncoupled equivalence classes, we store the suffixes in
into AT .

• Case2. If the end stage ofC is smaller thans − 1, Ao[w,x] andAe[y, z] are(s − 1)-
uncoupled. We store the suffixes in them intoAT .

From the fact that every coupled pair generated in stages has the limit stage at leasts and
everys-uncoupled equivalence class becomes a processed equivalence class in sts, it
is not difficult to see that the invariant is satisfied after stages.

Example 4. Fig. 4 shows an example of merging the odd and the even array
T = aabbaabb#. The odd and the even arrays are shown inFig 4(a). Initially a coupled
pair 〈Ao[1,5],Ae[1,4]〉 is stored inQ[0]. In stage 1, we perform operations on coup
pair 〈Ao[1,5],Ae[1,4]〉 stored inQ[0]. Since the limit stage of the coupled pair is
we partitionAo[1,5] andAe[1,4] into 1-equivalence classes,Ao[1], Ao[2,3], Ao[4,5],
Ae[1,2], andAe[3,4]. Among them,Ao[1] is 1-uncoupled andAo[2,3] andAe[1,2] are
1-coupled with each other andAo[4,5] andAe[3,4] are 1-coupled with each other. L
C = 〈Ao[2,3],Ae[1,2]〉 andD = 〈Ao[4,5],Ae[3,4]〉. We store the suffix inAo[1] into
AT [1], C in Q[3], andD in Q[1] because the limit stages ofC andD are 3 and 1, re
spectively. In stage 2, we perform operations on coupled pairD stored inQ[1]. Since the
end stage ofD is 1, we partitionAo[4,5] andAe[3,4] into 2-equivalence classesAo[4,5],
Ae[3], Ae[4]. They are all 2-uncoupled and thus we store the suffixes in them intoAT . In
stage 4, we perform operations on coupled pairC stored inQ[3]. Since the end stage ofC

is 1 andAo[2,3] andAe[1,2] are 2-uncoupled, we store the suffixes in them intoAT .

Before describing stages in detail, we give an outline of computingLT and introduce
functionsfino andfine and arraysptro andptre. The invariant for computingLT is
as follows.
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Invariant for LT . At the end of stages, LT [i] for 1� i � n−1 is computed if and only i
AT [i] is either a suffix of the target equivalence class corresponding to a processed
alence class, or the last suffix of the target equivalence class corresponding to a c
pair stored inQ[k] for somes � k � n − 1.

Since all partitioned equivalence classes are processed after stagen, all LT [i]’s for
1 � i � n − 1 are computed at the end of stagen. To satisfy this invariant, we do th
following in stages. Let A be a target equivalence class corresponding to an uncou
equivalence class generated in stages andB be a target equivalence class correspond
to a coupled pair generated in stages. We computeLT [i] for i ’s such thatAT [i] is either
a suffix ofA or the last suffix ofB.

We introduce functionsfino andfine and arraysptro andptre, that are required
to solve the couple-pair lcp problem in O(1) time. Sinceptre andfine are similar to
ptro andfino, we explainptro andfino only. At the end of stages, the values store
in ptro andfino are as follows.

1. fino[i] for 1� i � n/2 is defined ifAo[i] is an entry of a processed equivalence cl
and it is the index ofAT where the suffix inAo[i] is stored.

2. ptro[i] for 1 � i � n/2 is defined ifAo[i] is either the last entry of a coupled equiv
lence class or an entry of a processed equivalence class.
– If Ao[i] is the last entry of an equivalence classAo[a, b] (i.e., i = b) coupled

with Ae[c, d] (i.e., 〈Ao[a, b],Ae[c, d]〉 is stored inQ[k] for somes � k � n − 1),
ptro[b] storesd .

– If Ao[i] is an entry of a processed equivalence classAo[a, b]:
• If Ao[i] is not the last entry ofAo[a, b] (i.e.,a � i < b), ptro[i] storesb.
• Otherwise,ptro[b] stores β such thatAe[β] is the last entry of a par

titioned equivalence classAe[α,β] and β satisfies |lcp(SAo[b], SAe[β])| �
|lcp(SAo[b], SAe[δ])| for any other 1� δ � n/2. In addition,|lcp(SAo[b], SAe[β])|
is stored inLT [fino[b]] if fino[b] < fine[β], and inLT [fine[β]] otherwise.

We describe stages in detail. Initially, we store a coupled pair〈Ao[1, n/2],Ae[1, n/2]〉 in
Q[0] and initializeptro[n/2] = n/2, ptre[n/2] = n/2, LT [0] = LT [n] = −1. In stage
s, 1� s � n, we do nothing ifQ[s − 1] is empty. Otherwise, for every coupled pairC =
〈Ao[w,x],Ae[y, z]〉 stored inQ[s − 1], we compute the end stage ofC by solving the
coupled pair lcp problem. We have two cases depending on whether the end stageC is
s − 1 or not.

Case 1. If the end stage ofC is s − 1, Ao[w,x] is (s − 1)-coupled withAe[y, z].
We first partitionAo[w,x] and Ae[y, z] into s-equivalence classes. LetCo and Ce de-
note the set of equivalence classes into whichAo[w,x] and Ae[y, z] are partitioned
respectively. We denote odds-equivalence classes inCo by Ao[wi, xi], 1 � i � r1, such
that PAo(wi, xi) ≺ PAo(wi+1, xi+1) and evens-equivalence classes inCe by Ae[yi, zi],
1 � i � r2, such thatPAe(yi, zi) ≺ PAe(yi+1, zi+1). PartitioningAo[w,x] and Ae[y, z]
into s-equivalence classes takes O(r1 + r2) time byLemma 4.
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Procedure MERGE(Co,Ce)

1: i ← 1 andj ← 1
2: while i � r1 or j � r2 do
3: ai ← thesth symbol ofPAo (wi , xi )

4: bj ← thesth symbol ofPAe (yj , zj )

5: if ai = bj then // Ao[wi, xi ] andAe[yj , zj ] ares-coupled.
6: k ← min{|PAo(wi , xi )|, |PAe (yj , zj )|}
7: store〈Ao[wi, xi ],Ae[yj , zj ]〉 into Q[k]
8: if i + j < r1 + r2 then LT [xi + zj ] ← s − 1 fi
9: if i < r1 then ptro[xi ] ← zj fi

10: if j < r2 then ptre[zj ] ← xi fi
11: i ← i + 1 andj ← j + 1
12: else if ai ≺ bj then // Ao[wi, xi ] is s-uncoupled.
13: fino[k] ← k + yj − 1 for wi � k � xi

14: StoreAo[k] into AT [fino[k]] for wi � k � xi

15: StoreLo[k] into LT [fino[k]] for wi � k < xi

16: if i + j < r1 + r2 then LT [xi + yj − 1] ← s − 1 fi
17: ptro[k] ← xj for wi � k < xi

18: if i < r1 then ptro[xi ] ← zj

19: i ← i + 1
20: else // Ae[yj , zj ] is s-uncoupled.
21: fine[k] ← k + wi − 1 for yj � k � zj

22: StoreAe[k] into AT [fine[k]] for yi � k � zi

23: StoreLe[k] into LT [fine[k]] for yi � k < zi

24: if i + j < r1 + r2 then LT [wi + zj − 1] ← s − 1 fi
25: ptre[k] ← zj for yj � k < zj

26: if j < r2 then ptre[zj ] ← xi fi
27: j ← j + 1
28: fi
29: od
end

Fig. 5. Procedure MERGE. We assumear1+1 = br2+1 = $ where $� a for any a ∈ Σ , wr1+1 = xr1 + 1,
xr1+1 = xr1, yr2+1 = zr2 + 1, andzr2+1 = zr2.

We merge the partitioneds-equivalence classes inCe andCo according to the lexico
graphical order of their prefixes of lengths. Since all the partitioneds-equivalence classe
in Ce and Co have the same prefix of lengths − 1, we merge the equivalence class
using only thesth symbols of their prefixes. Thus, merging the equivalence classes is
cally the same as merging two sorted lists of integers. Procedure MERGE inFig. 5shows
the details of merging the equivalence classes inCo and Ce. If an s-equivalence clas
Ao[wi, xi] in Co is coupled with ans-equivalence classAe[yj , zj ] in Ce, we store the cou
pled pair〈Ao[wi, xi],Ae[yj , zj ]〉 into Q (lines 5–11 of MERGE). Otherwise (ifAo[wi, xi]
or Ae[yj , zj ] is s-uncoupled), we store the suffixes in it into the appropriate places inAT

(lines 12–27 of MERGE).
For each equivalence classAo[wi, xi], we show thatfino[α] andptro[α] for wi �

α � xi are computed correctly. (Similarly forAe[yj , zj ].) We only show thatptro[xi]
stores a correct value whenAo[wi, xi] is s-uncoupled (so processed) because setting o
values is trivial. From the description of procedure MERGE(Co,Ce), ptro[xi] is zj for
some 1� j � r2.
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Claim. zj satisfies |lcp(SAo[xi ], SAe[zj ])| � |lcp(SAo[xi ], SAe[α])| for 1 � α � n/2
and |lcp(SAo[xi ], SAe[zj ])| is stored inLT [fino[xi]] if fino[xi] < fine[zj ] and in
LT [fine[zj ]] otherwise.

Proof of Claim. Let lcp = |lcp(SAo[xi ], SAe[zj ])|. Since Ao[w,x] and Ao[y, z] is
(s − 1)-coupled andAo[wi, xi] is s-uncoupled,lcp = s − 1. SinceAo[wi, xi] is s-
uncoupled,|lcp(SAo[xi ], SAe[α])| � s − 1 for 1 � α � n/2. Hence,zj satisfieslcp �
|lcp(SAo[xi ], SAe[α])| for 1 � α � n/2. If fino[xi] < fine[zj ], fino[xi] < x + z and
thusLT [fino[xi]] is set tos − 1, which is lcp. Otherwise,fine[zj ] < x + z and thus
LT [fine[zj ]] is set tos − 1. �
Case 2. If the end stage ofC is smaller thans − 1, Ao[w,x] andAe[y, z] are (s − 1)-
uncoupled. Assume without loss of generality thatPAo(w,x) ≺ PAe(y, z). We first store
the suffixes inAo[w,x] and Ae[y, z] into AT [w + y − 1, x + z]. SincePAo(w,x) ≺
PAe(y, z), fino[i] = i + y − 1 for w � i � x andfine[i] = i + x for y � i � z. Thus,
we store the suffixesAo[w,x] into AT [w + y − 1, x + y − 1] and those inAe[y, z] into
AT [x + y, x + z], and we store the integers inLo[w,x − 1] into LT [w + y − 1, x + y − 2]
and those inLe[y, z−1] into LT [x +y, x +z−1]. We also setptro[i] = x for w � i < x,
ptre[i] = z for y � i < z, andLT [x + y − 1] = |lcp(PAo(w,x),PAe(y, z))|. We already
setptro[x] asz andptre[z] asx and setLT [x + z] appropriately when we were sto
ing C into Q[s − 1] and the values stored inptro[x], ptro[z], andLT [x + z] are still
effective.

Consider the time complexity of the merging algorithm. Procedure MERGE (ex
fin andptr) takes time proportional to the total number of odd and even partitio
equivalence classes. Since there are at mostn/2 odd partitioned equivalence classes an
mostn/2 even partitioned equivalence classes, MERGE takes O(n) time. Since each entr
of fin andptr is set only once throughout stages, it takes O(n) time overall. The rest o
the merging algorithm takes time proportional to the total number of coupled pairs ins
into Q[k]. Since a coupled pair corresponds to a target equivalence class, the total n
of coupled pairs is at mostn − 1. Therefore, the time complexity of merging is O(n).

3.4. The coupled pair lcp problem

Recall the coupled pair lcp problem: Given a coupled pairC = 〈Ao[w,x],Ae[y, z]〉
whose limit stage iss − 1, compute the end stage ofC. And if the end stage ofC is
less thans − 1, determine whetherPAo(w,x) ≺ PAe(y, z) or PAo(w,x) � PAe(y, z). The
problem is easy to solve whens is 1 or 2. Whens = 1, |PAo(w,x)| and|PAe(y, z)| are 0
and thus the end stage ofC is 0. Whens = 2, the end stage ofC is 1. From now on, we
describe how to compute the end stage ofC whens � 3. Assume without loss of generali
that the end stage ofAo[w,x] is s − 1.

We first show that whens � 3, the problem of computing the end stage ofC (i.e.,
|lcp(PAo(w,x),PAe(y, z))|) is reduced to the problem of computing the longest comm
prefix of two other suffixes.

∣∣lcp
(
PAo(w,x),PAe(y, z)

)∣∣ = ∣∣lcps−1
(
PAo(w,x),PAe(y, z)

)∣∣



D.K. Kim et al. / Journal of Discrete Algorithms 3 (2005) 126–142 139

l-

r is at
w

d

of

r,

t
rt
= ∣∣lcps−1(SAo[w], SAe[z])
∣∣

= ∣∣lcps−2(SAo[w]+1, SAe[z]+1)
∣∣ + 1.

The first equality holds because the end stage ofAo[w,x] is s − 1. The second equa
ity holds becauseprefs−1(PAo(w,x)) = prefs−1(SAo[w]) andprefs−1(PAe(y, z)) =
prefs−1(SAe[z]). The third equality holds because the start stage of the coupled pai
least 1, which means that the first symbols ofSAo[w] andSAe[z] are the same. From no
on, letw′ = indexe(Ao[w] + 1), x′ = indexe(Ao[x] + 1), andz′ = indexo(Ae[z] + 1) for
brevity.

We show how to computet = |lcps−2(SAe[w′], SAo[z′])| in O(1) time. We first define
an indexγ of Ao as follows.

Definition 3. Let γ be an index of arrayAo such that|lcps−2(SAe[w′], SAo[γ ])| �
|lcps−2(SAe[w′], SAo[δ])| for any other indexδ of Ao.

By definition of γ , t is the minimum of t1 = |lcps−2(SAe[w′], SAo[γ ])| and t2 =
|lcps−2(SAo[γ ], SAo[z′])|. To computet , we first find γ and computet1. Let Ae[a, b]
be the partitioned equivalence class includingAe[w′] after stages − 1. We will show
γ = ptre[b]. There are two cases whether or notAe[a, b] constitutes a coupled pair store
in Q[k] just after stages − 1.

If Ae[a, b] constitutes a coupled pair stored inQ[k] for s − 1 � k < n, let 〈Ao[c, d],
Ae[a, b]〉 denote the coupled pair. SeeFig. 6(a).

Lemma 6. The start stages ofAe[a, b] and〈Ao[c, d],Ae[a, b]〉 are boths − 1.

Proof. The start stage of the coupled pairC′ = 〈Ao[c, d],Ae[a, b]〉 is at mosts − 1
by the invariant. Since the start stage ofC′ is the maximum of the start stages
Ao[c, d] and Ae[a, b], the start stage ofAe[a, b] is at mosts − 1. We show that the
start stage ofAe[a, b] is s − 1 by showing thatAe[a, b] is not an (s − 2)-equivalence
class. Since the end stage ofAo[w,x] is s − 1, it is easy to seeprefs−2(Ae[w′]) =
prefs−2(Ae[x′]) andprefs−1(Ae[w′]) �= prefs−1(Ae[x′]). Sinceprefs−2(Ae[w′]) =
prefs−2(Ae[x′]), Ae[w′] andAe[x′] are in the same (s − 2)-equivalence class. Howeve
Ae[x′] is not inAe[a, b] becauseprefs−1(Ae[w′]) �= prefs−1(Ae[x′]). Hence,Ae[a, b]
is not an (s − 2)-equivalence class and the start stage ofAe[a, b] is s − 1. Since the star
stage ofAe[a, b] is s − 1 and the start stage ofC′ is at mosts − 1 by the invariant, the sta
stage ofC′ is s − 1. �

We show thatγ is ptre[b] = d and t1 is s − 2. Since the start stage ofC′ is s −
1 anda � w′ � b, |lcp(SAe[w′], SAo[d])| � s − 1 and thus|lcps−2(SAe[w′], SAo[d])| =
s − 2. Since|lcps−2(SAe[w′], SAo[d])| is at mosts − 2, γ in Definition 3 is d and t1 =
|lcps−2(SAe[w′], SAo[γ ])| = s − 2. We have only to show how to findγ (= d) in O(1)

time. SinceAe[w′] andAe[x′] are in the same (s − 2)-equivalence class andAe[x′] is not
in Ae[a, b] whose start stage iss − 1, we can computeb from w′ andx′ in O(1) time by a
MIN(Le,w

′, x′) query. Onceb is computed, we getd from ptre[b].
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Fig. 6. Findingγ at stages. (a) If Ae[a, b] constitutes a coupled pair. (b) IfAe[a, b] is processed.

If Ae[a, b] is processed after stages − 1 (Fig. 6(b)), Ae[a, b] is ani-uncoupled equiv-
alence class for some 0� i � s − 1 by the invariant. SinceAe[a, b] is i-uncoupled,
prefi (SAe[b]) = prefi (SAe[j ]) andprefi (SAe[j ]) �= prefi (SAo[k]) for a � j � b and
1 � k � n/2 and thus|lcp(SAe[w′], SAo[k])| = |lcp(SAe[b], SAo[k])| for all 1 � k � n/2.
Hence,γ in Definition 3 is ptre[b] by definition ofptre. We can computeγ in O(1)

time becauseγ = ptre[b] andb = ptre[w′] if w′ �= b by definition ofptre. We can also
compute|lcps−2(SAe[b], SAo[γ ])| in O(1) time by definition ofptre.

Finally, t2 = |lcps−2(SAo[γ ], SAo[z′])| is the minimum ofs − 2 and |lcp(SAo[γ ],
SAo[z′])|, where |lcp(SAo[γ ], SAo[z′])| can be obtained in O(1) time by the query
MIN(Lo, γ, z′ − 1) or MIN(Lo, z

′, γ − 1).
Therefore, we get the following lemma and theorem.

Lemma 7. The coupled pair lcp problem can be solved inO(1) time.
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Theorem 1. The odd and even arrays can be merged inO(n) time and thus the suffix arra
can be constructed inO(n) time.

4. Concluding remarks

We have presented a linear-time algorithm to construct suffix arrays for integer a
bets, which do not use suffix trees as intermediate data structures during its constr
Since the case of a constant-size alphabet can be subsumed in that of an integer a
our result implies that the time complexity of directly constructing suffix arrays mat
that of constructing suffix trees. Recently, Kärkkäinen and Sanders[17] and Ko and Aluru
[18] also proposed simple linear-time construction algorithms for suffix arrays. Burk
and Kärkkäinen[4] gave another construction algorithm that takes O(n logn) time using
only O(n/

√
logn ) extra space.

Space reduction of a suffix array is an important issue[9,13,21,22]because the amoun
of text data is continually increasing. Grossi and Vitter[13] proposed thecompressedsuffix
array of O(n log|Σ |)-bits size and Sadakane[22] improved it by adding thelcp informa-
tion. Since their compressions also exploit the odd-even divide-and-conquer approac
in this paper, our technique can be applied to building the compressed suffix array
given string.
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