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Abstract

The time complexity of suffix tree construction has been shown to be equivalent to that of sorting:
O(n) for a constant-size alphabet or an integer alphabet ando@n) for a general alphabet. How-
ever, previous algorithms for constructing suffix arrays have the time complexityndd@n) even
for a constant-size alphabet.

In this paper we present a linear-time algorithm to construct suffix arrays for integer alphabets,
which do not use suffix trees as intermediate data structures during its construction. Since the case
of a constant-size alphabet can be subsumed in that of an integer alphabet, our result implies that the
time complexity of directly constructing suffix arrays matches that of constructing suffix trees.
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1. Introduction

The suffix tree due to McCreigf20] is a compacted trie of all the suffixes of a strifig
It was designed as a simplified version of Weiner’s position f2é¢ The suffix array due
to Manber and Myerfl9] and independently due to Gonnet etfall] is basically a sorted
list of all the suffixes of a strin@’. There are also some other index data structures such as
suffix cactugd15] and suffix automatgg].

When we consider the complexity of index data structures, there are three types of
alphabets from which string§j of lengthn is drawn: (i) a constant-size alphabet, (ii) an inte-
ger alphabet where symbols are integers in the r@fige] for a constant, and (iii) a gen-
eral alphabet in which the only operations on stringre symbol comparisons.

The time complexity of suffix tree construction has been shown to be equivalent to that
of sorting[7]. Suffix trees can be constructed in linear time for a constant-size alphabet
due to McCreighf20] and Ukkoneri25] or for an integer alphabet due to Farach-Colton,
Ferragina, and Muthukrishngdf,7]. For a general alphabet, suffix tree construction has
time bound of® (nlogn).

Despite simplicity of suffix arrays among index data structures, the construction time
of suffix arrays has been larger than that of suffix trees. Two known algorithms for
constructing suffix arrays by Manber and Myé¢t®] and Gusfield[12] have the time
complexity of Qnlogn) even for a constant-size alphabet. Of course, suffix arrays can
be constructed by way of suffix trees in linear time, but it has been an open prob-
lem whether suffix arrays can be constructed {logn) time without using suffix
trees.

In this paper we solve the open problem in the affirmative and present a linear-time
algorithm to construct suffix arrays for integer alphabets. Since the case of a constant-size
alphabet can be subsumed in that of an integer alphabet, we will consider only the case of
an integer alphabet in describing our result.

We take the recent divide-and-conquer approach for our algofié+8,14,24] i.e.,

(i) construct recursively a suffix arragA, for the set of odd positions, (ii) construct a
suffix arraySA for the set of even positions fro®A,, and (iii) mergeSA, andSA into

the final suffix arraySAr. The hardest part of this approach is the merging step and our
main contribution is a new merging algorithm.

Our new merging algorithm is quite different from Farach-Colton et fd,%] that are
designed for suffix trees. Wheref7] use a coupled depth-first search in the merging,
ours uses equivalence relations defined on factorg [,12] (and thus it is more like a
breadth-first search). Also, Farach-Colton et al.’s algorithm goes back and forth between
suffix trees and suffix arrays during its construction, while ours uses only suffix arrays
during its construction.

The rest of this paper is organized as follows. In SecZiome introduce some notations
and definitions. In SectioB8, we present the algorithm for constructing suffix arrays in
linear time. We conclude with some remarks in Section

1 Throughout this paper, the model we consider is the RAM (random-access machine) where each word has
O (logn) bits and every word operation is done in constant time.
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2. Preliminaries
2.1. Definitions and notations

We first give some definitions and notations that will be used in our algorithm. Consider
a stringT of lengthn over an alphabek'. Let T'[i] denote theéth symbol of stringl" and
T[i, j] the substring starting at positiarand ending at positiori in 7. We assume that
T [n] is a special symbol # which is lexicographically smaller than any other symtol in
We denote bys;, 1 <i < n, the suffix of T that starts at position The prefix of length
k of a stringe is denoted bypr ef (o). We denote by cp(a, 8) the longest common
prefix of two stringsx andg and byl cp;(«, 8) the longest common prefix @fr ef ; («)
andpr ef ;(8). When stringx is lexicographically smaller than stringy we denote it by
o< p.

We define the suffix arra$Ar = (A7, L) of stringT as a pair of arraydr andL 7 [7].

e Thesort array A7 is the lexicographically ordered list of all suffixes Bf That is,
Arli] storesj such thatS; is theith lexicographically smallest suffix among all suf-
fixes 81, S2, ..., S, of T. The numbei will be called theindexof suffix S;, denoted
by indexj) =i.

e Thelcp array L7 stores the length of the longest common prefix of two adjacent
suffixes inAr, i.e., Lr[i]1 = |l cp(Sas(i], Sarli+1)| for L <i <n. We setL7[0] =
Lr[n]=-1.

We define odd and even arrays of a striigOdd suffixesare suffixes beginning at
odd positions in7. For exampleS1, S3, and S5 are odd suffixes. Thedd array SA =
(Ao, L,) is the suffix array of all odd suffixes. That is, the sort aregy of SA, is the
lexicographically ordered list of all odd suffixes, and the Icp aitgyhas the length of the
longest common prefix of adjacent odd suffixesiin Even suffixeare suffixes beginning
at even positions ifT’, e.g.,S2, S4, and Se. Theeven array SA= (A., L.) is the suffix
array of all even suffixes.

For a subarray[x, y] of sort arrayA, we defineP4 (x, y) as the longest common prefix
of the suffixesSafxy, Sapx+11s - - -» Sa[y]- If x =y, Pa(x, x) is defined as the suffif4p,
itself. Lemma 1gives some properties &4 in a subarray of sort arrax.

Lemma 1[16]. Given a suffix arrayA, L) andx < y,

(@) Pa(x,y) =1 cp(Sap. Sapy)-
(b) |P4(x, y)|is equal to the minimum value b[x, y — 1].

In order to find|P4 (x, y)| efficiently, we define the following problem.

Definition 1 [1,2,10] Given an arrayA of sizen whose elements are integers in the range
[0,n — 1] and two indices: andb (1< a < b < n) in array A, therange-minimum query
MIN (A, a, b) is to find the smallest index < j < b such thatA[ j] = min,<; < Ali].
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This MIN query can be answered in constant time using a succinct data structure due
to Sadakan§23]. This data structure requireS&) bits space and requires(@) time for
construction. By a MIN query, we get the following lemma.

Lemma 2. Given a suffix arrayA, L) andx < y, MIN(L, x, y — 1) can be computed in
constant time.

An advantage of suffix trees is thauffix linksare defined on suffix trees. When
lcp(S;, S;) =aa fora e ¥ anda € X*, | cp(Si11, Sj+1) = a. Suffix links enable us
to find o from S; and S;. In suffix arrays this can be done by findih@p(S;+1, Sj+1)
using a MIN query. This method will be used in Secti&nd with the following lemma.

Lemma 3. Leti and j (i < j) be two positions in string". If T[i] and T[] match,
I cp(Si, SpHl =1l cp(Sit1, Sj+1)| + 1; otherwise|l cp(S;, S;)| =0.

2.2. Equivalence classes

In this section, we will define equivalence relatié on sort arrays such asr, A,,
andA,, and explain the relationship between equivalence classEsaf a sort array and
subarrays of the sort array.

Let A be a sort array of size: and L be the corresponding Icp array. Equivalence
relationE; (I > 0) onA is:

E;={G, j) | pref(Sau) =pref (Sap}-

That is,i and j are in the same equivalence classHfon A if and only if two suffixes
Sapi1 andS,p ;1 have a common prefix of length

We describe the relationship between equivalence class&s of A and subarrays
of A. Since the integers id are sorted in the lexicographical order of the corresponding
suffixes, we get the following fact from the definition Bf.

Fact 1. SubarrayA[p, ¢q], 1 < p < g < m, is an equivalence class @&f;, 0 <! <n, onA
ifandonly if L[p — 1] <, L[g] <[, andL[i] > forall p <i <gq.

Example 1. ConsiderA[2,7] in Fig. 1L A[2,7] is an equivalence class df, since
L[1]1=0,L[7]=1,andL[i]>2forall2<i < 7.

We now describe how an equivalence clasEpbn A is partitioned into equivalence
classes ofE; 1. Let A[p, q] be an equivalence class &f. By Fact 1, L[i] > [ for all
p<i<gq.letp<iy<iz<---<i <q denote all the indices such thali ] = L[iz] =
---=L[i;]=1.SinceL[i] >1+ 1fori ¢ {i1,i2,...,i,} andp <i <gq, A[p,i1], Ali1 +
1,i2],..., Alir + 1, q] are equivalence classes Bf;1. We can findiy, ip, ..., i, in O(r)
time byLemma 2and we get the following lemma.

Lemma 4. An equivalence class @; can be partitioned into equivalence classespf
in O(r) time, where is the number of the partitioned equivalence classes; of.



130 D.K. Kim et al. / Journal of Discrete Algorithms 3 (2005) 126-142

Thestring | :2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:
|afafa aib'bb b a aaib bb aab b b #

The suffix array

index (1 2:3:4.5 6789 1011:1213:14:1516:17.18:19:20.
sortarray(2001:9 21510 3 16 114 19 814118 7 13117 6 12 5
leparray([0 3.6 2 5.5 1 4.4 0 1.3 1:2:42:3 530

Equivalence Classes

E:

Fig. 1. Equivalence classes and subarrays of a sort array.

Example 2. In Fig. 1, equivalence clasa[2, 7] of E> is partitioned into two equivalence
classesA[2, 4] andA[5, 7], of E3.

An equivalence class df; can be an equivalence class Bf for k £ [. For example,
A[5, 7] is an equivalence class @k, E4, andEs. In general, we have the following fact.

Fact 2. A subarrayA[p, ¢] is an equivalence class df; for a <i < b if and only if
maX{L[p —1], Llgl} =a —1andb = |P4(p, q)|(= min,<; <4 L[i]).

The integersa and b are called thestart stageand end stageof equivalence class
Alp, q], respectively.

3. Linear-time construction

We present a linear-time algorithm for constructing suffix arrays for integer alphabets.
Our construction algorithm follows the divide-and-conquer approach ugéd-&14,24]
and it consists of the following three steps.

1. Construct the odd arre§A, recursively. Preproceds, for range-minimum queries.
2. Construct the even tré@A from SA,. Preprocesg., for range-minimum queries.
3. MergeSA, andSA to get the final suffix arragAy.

The first two steps are essentially the same as thd$e-8] and our main contribution is a
new merging algorithm in step 3.
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3.1. Constructing odd array

Construction of the odd arreyA, is based on recursion and it consists of the following
three steps. It takes linear time except for recursion.

1. Encode the given string into a half-sized strin@”’: We encodd’ into T’ by replacing
each pair of adjacent symbol&[2i — 1], T[2i]), 1 <i < n/2, with a new symbol.
How to encodel" into 7’ is as follows.

e Sort the pairs of adjacent symbalg[2i — 1], T[2i]) lexicographically and then
remove duplicates: We use radix-sort to sort the pairs and we perform a scan on the
sorted pairs to remove duplicates. Both the radix-sort and the scan takeide.

e Map theith lexicographically smallest pair of adjacent symbols into intég&he
integeri is in the rangdl, n/2] because the number of pairs is at moA2.

e Replaceg(T[2i — 1], T[2i]) with the integer it is mapped into.

Fig. 2 shows how to encod€® = aaaabbbbaaabbbaabbb# of length 20. After we

sort the pairg(T[1], T[2)), (T3], T[4)), ..., (T[19], T[20]) and remove duplicates,

we are left with 4 pairs which area, ab, b#, andbb. We mapaa, ab, b#, andbb into

integers of 1 to 4, respectively. Then, we @ét= 1144124143 of length 10.

2. Recursively construct the suffix arr&#y of 7.

3. ComputeSA, from SAy:

e SortarrayA,: Since theth suffix of T’ corresponds to th€: — 1)st suffix of T', we
getA,[k] by computing 2 7/[k]— 1 for allk. For exampleA,[2] =2A7/[2]-1=9

in Fig. 2
T[14] T[18]
; v aa— 1
T=aa aa bb bb aa ab bb aa bb b# ab— 2
"= 1 1 4 4 1 2 4 1 4 3 b#— 3
bb— 4
SA ;. SA,
1 @3 45678910 - 1 Q0B 4 5® 78 910
ATYI;5§826§10;479;3 A” 191531119713175
Lrf1717270i0i02 1 10 L,[3 251014230

SA,

2345 6@8 910
A20210164814]8612
L 0:2: 4 0:3: [ 5:0

Fig. 2. Examples for constructing the odd array and the even array.
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e Lcp arrayL,: Since two symbols ifT" are encoded into one symbol 1, L,[i] is
either 2L7/[i] or 2L [i]+ 1. InFig. 2, L,[2] =2 whenL/[2] =1, andL,[1] =3
when L7/[1] = 1 because the first suffix and the fifth suffix bf are 1144124143
and 124143, respectively, and 1 and ZTrare encodings afa andab, respectively.

3.2. Constructing even array
The even arragA is constructed fronsA, in linear time as follows.

e SortarrayA.: An even suffix is one symbol followed by an odd suffix. For exam§ie,
of T is T'[8] followed by Sg of T. We make tuples for even suffixes: the first element
of atuple isT[2i] and the second element is suffix ., of T'. First, we sort the tuples
by the second elements (this result is givemy). Then we stably sort the tuples by
the first elements and we gét.

e Lcp arrayL,.: Consider two even suffixeSy; and Sp;. By Lemma 3 if T[2i] and
T[2j] match,|l cp(Sz, S2))| = Il CP(Sai+1, S2j+1)| + 1; otherwise| cp(Sz, S2)) =
0. We can get]l cp(S2i+1, S2j+1)| from the odd arraySA, in constant time as
follows. Let x = index,(2i + 1) and y = index,(2j + 1) in SA. By Lemma 1
Il cp(S2i+1, S2j+1)| = IPa, (x, ¥)|, which is computed by a MINL,, x, y — 1) query.
For example, consideL.[7] in Fig. 2 Since T[14] = T[18], || cp(S14, S18)| =
[l cp(S1s, S19)| + 1. Since index(15) = 3 and inde¥(19) = 6, || cp(S1s, S19)| =
MIN(L,, 3,5) =0. Thus,L.[7] = 1.

3.3. Merging odd and even arrays

We will show how to obtain suffix arra$$Ar = (A7, Lt) from SA, andSA in O(n)
time. The basic idea of this algorithm is that we first merge the odd and even suffixes
coarsely using their prefixes of length 1 and then merge them more finely using their longer
prefixes. This idea is illustrated Fig. 3which shows an example of merging, and A,
for T = aaaabbbbaaabbbaabbb#. First, we merge the odd and even suffixes using their
prefixes of length 1, which are #, andb. Then, the merging is based on the prefixes of
length 2, length 3, etc. However, a direct reflection of this idea leads to an algorithm taking
O(n?) time. Thus, we modify this idea so that we can mefgeand A, in O(n) time.

We first introduce some abbreviations and notions related to equivalence classes. We
will refer to equivalence classes &f as i-equivalence classes’. We will refer to equiv-
alence classes oA as ‘target equivalence classes’, equivalence classes,as ‘odd
equivalence classes’, and equivalence classes.oms ‘even equivalence classes’. Thus,
an equivalence class @; on A, is referred to as an oddequivalence clas3.he prefix of
ani-equivalence clasts defined as the common prefix of lengtbf the suffixes in the-
equivalence class. Now, we introduce the notionsocdupledandi-uncoupleddefined on
odd and evem-equivalence classes. For brevity, we define them only on extfiivalence
classes. (They are defined on evesquivalence classes similarly.) An ode@quivalence
classX is i-coupled if there exists an evérequivalence clasg such that the prefix of
Y is the same as the prefix &f. We sayX is i-coupled withY. Otherwise (ifX is not
i-coupled with any even-equivalence classesy, is i-uncoupled. IfX is i-uncoupled, no
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f1 112345 6:7:8 9:10
A, |1 A, 20210164814186;12
L,|3: L,|0:2:1:4.0:3:1:2:5:0

‘a #1la a a allb b b b b}

\a A \a_ayb bira apnb b b

\a__aj abbb{a ay # \b b

a a a

a a
a

Merged by prefixes

# a
of length 1 |20i1 9 15 3 11[2 10 16 4i19 7 1317 5[8 1418 6 12|

aa ab  |b#, ba bb
9 15 3\2 10|11|16 4|19|8 14|7 13 17 5|18 6 12\

aaa aab abb  |b#, baa | # , bba | bbb
9|2|15 3|10|11|16 4|19|8 14|18|7 13|17 5|6 12\

#
Merged by prefixes
of length 2 |20| 1

#
Merged by prefixes| 20i
of length 3

Ar [20] 19 [2]15[10] 3 [16]11][4 [19] 8 [14]18] 7 [13]17] 6 [12] 5 |

Fig. 3. An example of merging, and A, for T = aaaabbbbaaabbbaabbb#. Integers in lightly shaded boxes
indicate odd suffixes and integers in darkly shaded boxes indicate even suffixes.

even suffixes have the same prefix as the prefiX and thus the suffixes iX form a
targeti-equivalence class. Otherwise {f is i-coupled withY), the suffixes inX andY
form a target -equivalence class. This fact is elaborated by the following lemma.

Lemma 5. The suffixes in-equivalence classe$,[w, x] and A.[y, z] that arei-coupled
with each other form a targetequivalence clasdy[w +y — 1, x + z].

Proof. SinceA,[w,x] and A.[y, z] arei-coupled with each othepr ef ;(Sa,[q7), w <

a < x, is lexicographically larger thapr ef ;(S4,31), 1< b <y — 1, and smaller than
pref; (Sa, ). z+1<c<n/2. Similarly,pr ef ;(Sa, 1), ¥y < a < z, is lexicographically
larger thampr ef ; (Sa,p)), 1< b < w — 1, and smaller thapr ef ;(Sa, ), x +1< ¢ <
n/2. Hence, all the suffixes id,[w, x] and A.[y, z] form a targeti-equivalence class
Arlw+y—1,x4+z]. O

We now explain the notion of aoupled pair which is central in our merging algo-
rithm. Consider an equivalence clags[w, x] whose start stage i and end stage is
k, and an equivalence clask.[y, z] whose start stage i& and end stage i, such
that! = max{l,, l.} < k = min{k,, k.} andA,[w, x] and A.[y, z] arel-coupled with each
other. We callC = (A,[w, x], A.[y, z]) a coupled pair SinceA,[w, x] and A.[y, z] is
[-coupled with each other, the suffixes m,[w, x] and A.[y, z] form a target equiva-
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# —> AJll]l # # #
“aabb# e aabb#
—> AJ23] aabbl# AJ23] aabb# —_—

A, ~aabbaabb# aabblaabb# aabblaabb# aabbaabb#
bb# ab b|# ab bl# abb#
bbaabb# >< 413 aabh# AdL.2] aubb# abcabcabc#

- 200
abb# Apas ([P0 Al3] b# b#

A abbaabb# 43 bblaabb# Al4l baabb# baabb#

g 2088007
b# s AR AfasP0* ber
baabb# baabb# bbaabb# bbaabb#

~ @
(a) A,andA, (b) After stage 1 (c) After stage 2 (d) After stage 4

Fig. 4. An example of our merging algorithm.

lence classAr[w + y — 1, x + z] by Lemma 5 We define the start stage and the end
stage of coupled paif as the start stage and the end stage of the target equivalence class
Ar[w+y — 1, x + z]. Sincel is the smallest integer such thaf[w, x] is /-coupled with

A.ly, z], [ is the start stage ofl7[w + y — 1, x + z] and thudl is the start stage aof'.

Now we are interested in the end stagefSince one ofd,[w, x] and A, [y, z] will

be partitioned into severak ¢ 1)-equivalence classed, [w + y — 1, x + z] cannot be

a target k + 1)-equivalence class. In the sense that the end stageaainnot be larger
thank, the valuek is called thdimit stageof C. The actual end stage ¢f is the value of

[l cp(Pa,(w, x), P4, (y,2)], and itis in the range di, k].

Example 3. Consider a coupled paitA,[2, 3], A.[1,2]) in Fig. 4(b). Its start stage is 1
because the start stagesAf{2, 3] and A.[1, 2] are all 1 and4,[2, 3] and A.[1, 2] are 1-
coupled with each other. Its limit stage is 3 because the end stagg$f3] andA.[1, 2]
are 3 and 4, respectively. Its end stage is 1 becuge(P,4, (2, 3), P4, (1, 2))| = 1.

In our algorithm, we maintain coupled pairs in multiple quegs#] for 0 < k < n.
Each queu&)[k] contains coupled pairs whose limit stagé is

Our merging algorithm consists of at moststages, and it maintains the following
invariants.

Invariant. At the end of stage > 0, the odd array, and the even array, are partitioned

into i-equivalence classes0i < s, such that each-equivalence class is eithecoupled

or i-uncoupled, whereé-coupled equivalence classes constitute coupled pairs whose start
stages are at mostand limit stages are at leastind the suffixes ii-uncoupled equiva-
lence classes are stored in correct placesof

Since the limit stage of a coupled pair is at mast 1, this invariant guarantees that
all equivalence classes areincoupled for some & i < n and the odd and even suffixes
are stored in correct places afy after stage:. We will call an equivalence class whose
suffixes are stored in correct placesAf aprocesseequivalence class.
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We describe the outline of stages. Initially, a coupled pai[1, n/2], Ac[1,n/2]) is
stored inQ[0]. At stage 1< s < n, we do the following for each coupled paif =
(Ao[w, x], Acly, z]) stored inQ[s — 1]. We first compute the end stage 6fby solv-
ing the following coupled pair Icp problem. In the next section we will show how to solve
the coupled pair Icp problem in@) time.

Definition 2 (The coupled pair Icp proble)nGiven a coupled paif = (A, [w, x], A.[y, z])
whose limit stage is — 1, compute the end stage 6f Furthermore, if the end stage 6f
is less than — 1, determine whethd?,, (w, x) < Pa,(y,2) Or P4, (w, x) > P4, (y, 2).

After solving the coupled pair Icp problem f@r, we have two cases depending on
whether the end stage 6fiss — 1 or not.

e Casel. If the end stage of iss — 1, Ay[w, x] is (s — 1)-coupled withA,.[y, z].
We first partitionA,[w, x] and A, [y, z] into s-equivalence classes. Every partitioned
s-equivalence class will be eithercoupled ors-uncoupled. The-coupled equiva-
lence classes constitute coupled pairs whose limit stages are at,least thus we
store each coupled pair i@[k] for s < k < n — 1, wherek is the limit stage of the
coupled pair. For the-uncoupled equivalence classes, we store the suffixes in them
into Ar.

e Case?. If the end stage of is smaller thary — 1, A,[w, x] andA,[y, z] are(s — 1)-
uncoupled. We store the suffixes in them ivtg.

From the fact that every coupled pair generated in staggs the limit stage at leastand
everys-uncoupled equivalence class becomes a processed equivalence class snistage
is not difficult to see that the invariant is satisfied after stage

Example 4. Fig. 4 shows an example of merging the odd and the even arrays for
T = aabbaabb#. The odd and the even arrays are showfim4(a). Initially a coupled
pair (A,[1, 5], A.[1, 4]) is stored inQ[0]. In stage 1, we perform operations on coupled
pair (A,[1, 5], A.[1, 4]) stored inQ[0]. Since the limit stage of the coupled pair is 0,
we partition A,[1, 5] and A.[1, 4] into 1-equivalence classed,[1], A,[2, 3], A,[4, 5],
A.[1, 2], andA,.[3, 4]. Among them,A,[1] is 1-uncoupled and,[2, 3] and A.[1, 2] are
1-coupled with each other andl,[4, 5] and A.[3, 4] are 1-coupled with each other. Let
C =(A,[2,3],A.[1,2]) and D = (A,[4,5], A.[3, 4]). We store the suffix im,[1] into
Ar[1], C in Q[3], and D in Q[1] because the limit stages 6fand D are 3 and 1, re-
spectively. In stage 2, we perform operations on coupled Pastored inQ[1]. Since the
end stage oD is 1, we partitiond,[4, 5] andA.[3, 4] into 2-equivalence classess, [4, 5],
A.[3], A.[4]. They are all 2-uncoupled and thus we store the suffixes in themiiptdn
stage 4, we perform operations on coupled gastored inQ[3]. Since the end stage 6f

is 1 andA,[2, 3] andA.[1, 2] are 2-uncoupled, we store the suffixes in them ija

Before describing stages in detail, we give an outline of computingand introduce
functionsf i n, andf i n, and arraygt r , andpt r .. The invariant for computind. is
as follows.
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Invariant for Ly.Atthe end of stage, L [i] for 1 <i < n—1is computed if and only if
Arli]is either a suffix of the target equivalence class corresponding to a processed equiv-
alence class, or the last suffix of the target equivalence class corresponding to a coupled
pair stored inQ[k] for somes <k <n—1.

Since all partitioned equivalence classes are processed afterrstafjeLr[i]'s for
1<i <n-—1are computed at the end of stageTo satisfy this invariant, we do the
following in stages. Let A be a target equivalence class corresponding to an uncoupled
equivalence class generated in stagend B be a target equivalence class corresponding
to a coupled pair generated in stagéVe computelr[i] for i's such thatA7[i] is either
a suffix of A or the last suffix ofB.

We introduce function$i n, andfi n, and arraypt r , andpt r ., that are required
to solve the couple-pair Icp problem in(D time. Sincept r ., andfi n, are similar to
ptr, andfi n,, we explainpt r , andf i n, only. At the end of stage, the values stored
in ptr, andf i n, are as follows.

1. fin,[i]for1<i <n/2isdefinedifA,[i] is an entry of a processed equivalence class
and it is the index oA where the suffix iMd,[i] is stored.
2. ptr,li]lfor 1<i <n/2is defined ifA,[i] is either the last entry of a coupled equiva-
lence class or an entry of a processed equivalence class.
— If A,li] is the last entry of an equivalence clads|a, b] (i.e., i = b) coupled
with A.[c, d] (i.e., (Aola, b], A.[c,d]) is stored inQ[k] for somes < k <n — 1),
ptr ,[b] storesd.
— If A,[i]is an entry of a processed equivalence clagis:, b]:
e If A,[i]is notthe last entry ofi,[a, b] (i.e.,a <i < b), pt r ,[i] storesb.
e Otherwise, ptr ,[b] stores 8 such thatA.[8] is the last entry of a par-
titioned equivalence classl.[«, 81 and g satisfies |l cp(Sa, ], Sa.18)| =
[ cp(Sa,p), Sa,rs1)| forany other 1< 8 < n/2. Inaddition|l cp(Sa, b, Sa.187)|
is stored inLy[fi n,[b]]if fin,[b] <fin.B],andinLy[fi n.[B]] otherwise.

We describe stages in detail. Initially, we store a coupled @8itl, n/2], A.[1,n/2]) in
QI[0] and initializept r ,[n/2] =n/2,pt r [n/2] =n/2, L7[0] = L7[n] = —1. In stage

s, 1 <s < n, we do nothing ifQ[s — 1] is empty. Otherwise, for every coupled péir=
(Aolw, x], Acly, z]) stored inQ[s — 1], we compute the end stage 6fby solving the
coupled pair lcp problem. We have two cases depending on whether the end stage of
s — 1 or not.

Case 1. If the end stage ofC is s — 1, A,[w, x] is (s — 1)-coupled withA,[y, z].

We first partitionA,[w, x] and A.[y, 7] into s-equivalence classes. L€, and C, de-
note the set of equivalence classes into whicfjw, x] and A.[y, z] are partitioned,
respectively. We denote oddequivalence classes @@, by A,[w;, x;], 1 <i < r1, such
that P4, (w;, x;) < P4, (wi+1, x;+1) and evens-equivalence classes i@, by A.[yi, zi],

1< i < rp, such thatPy, (yi, zi) < Pa, (yi+1, zi+1). Partitioning A,[w, x] and A,[y, z]

into s-equivalence classes takesro+ r2) time byLemma 4
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Procedure MERGE(C,, C,)
l: i« landj <1
2: whilei <rjorj<rpdo

3. a; < thesth symbol ofP,  (w;, x;)
4. bj < thesth symbol ofP4, (v, z;)
5. ifag =b; then Il Aplw;, x;] andAe[yj, zj] ares-coupled.
6: k < min{|P4, (w;, x;)l, [Pa, (v, 21}
7 store{Aolw;, x;1, Aely;, z;1) into Q[k]
8: ifi+j<ry+rathen Ly[x; +z;] < s — 1fi
9: ifi <rpthenptr,lx;] < z;fi
10: if j <rpthenptr,[z;] < x; fi
11: i<i+landj <« j+1
12:  eseifa; <bj then Il Ap[w;, x;] is s-uncoupled.
13: fin,,[k]<—k+yj—1forwi<k<xi
14: StoreA, [k] into A7 [fi ny[k]] for w; <k <x;
15: StoreL,[k] into Ly [fi ny[k]] for w; <k <x;
16: ifi+j<ri+rathen Lylx; +y; —1] <5 —1fi
17: ptr o[kl < x; forw; <k <x;
18: ifi <rpthenptr,lx;] < z;
19: i<—i+1
20: €dse II' Aclyj, zj]1is s-uncoupled.
21: finelk] «k+w; —1fory; <k<z;
22: StoreAc[k] into A7[fi ne[k]] for y; <k <z
23: StoreL.[k] into L [f i ne[k]] fory; <k <z;
24: ifi+j<ri+rathen Ly[w; +z; —1] <—s — 1fi
25: ptre[k]<—zjforyj<k<zj
26: if j <rpthenptr,z;] < x;fi
27: j—j+1
28:  fi
29: od
end

Fig. 5. Procedure MERGE. We assumig 1 = by, 1 = $ where $~ a for anya € ¥, w11 = xy + 1,
Xpy+1=Xrys Yrp+l = Zrp + 1, @N0z15 11 = 21y.

We merge the partitioneg-equivalence classes i, andC, according to the lexico-
graphical order of their prefixes of lengthSince all the partitioneg-equivalence classes
in C. and C, have the same prefix of length— 1, we merge the equivalence classes
using only thesth symbols of their prefixes. Thus, merging the equivalence classes is basi-
cally the same as merging two sorted lists of integers. Procedure MEREH. B shows
the details of merging the equivalence classeg'jnand C,. If an s-equivalence class
Ao[w;, x;1in C, is coupled with arz-equivalence clasa.[y;, z;1in C., we store the cou-
pled pair(A,[w;, x;1, Ac[y}, z;1) into Q (lines 5-11 of MERGE). Otherwise (#,[w;, x;]
or A.[y;,z;] is s-uncoupled), we store the suffixes in it into the appropriate placés-in
(lines 12-27 of MERGE).

For each equivalence clags[w;, x;], we show thaf i n,[«] andpt r ,[«] for w; <
a < x; are computed correctly. (Similarly fof.[y;, z;1.) We only show thapt r ,[x;]
stores a correct value when [w;, x;] is s-uncoupled (so processed) because setting other
values is trivial. From the description of procedure MERGE C.), ptr ,[x;] is z; for
some 1< j < ra.
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Claim. zj satisfies || Cp(SAo[xl.],SAe[ij > | Cp(SAU[xi],SA?[a]M for 1 <o < n/2
and [l cp(Sa,[x1, Sa.lz;1)] is stored inLz[finy[x;]] if finylx;] <fin[z;] and in
Lr[fin.[z;]] otherwise.

Proof of Claim. Let lcp = |l CP(SA,[xi1s SALz;DI- Since A,[w,x] and A,ly,z] is

(s — 1)-coupled andA,[w;, x;] is s-uncoupled,lcp = s — 1. Since A,[w;, x;] IS s-

uncoupled,|l cp(Sa, 1, Sa o) <s —1 for 1 <o < n/2. Hence,z; satisfieslcp >

1 ep(Sa, x> Sage)! for 1 <o <n/2. If fingx] <fingz;], fingx]<x+zand
thus L7[f i n,[x;]] is set tos — 1, which islcp. Otherwisef i n.[z;] < x 4+ z and thus
Lr[fin.z;llissettos —1. O

Case 2. If the end stage of® is smaller thars — 1, A,[w, x] and A.[y, z] are  — 1)-
uncoupled. Assume without loss of generality tRat (w, x) < P4, (y, z). We first store
the suffixes inA,[w,x] and A.[y,z] into Ar[w + y — 1, x + z]. SincePy, (w,x) <
Pa,(v,2), finylil=i+y—1forw<i<xandfini]=i+xfory<i<z Thus,
we store the suffixed,[w, x] into Ar[w + y — 1, x + y — 1] and those iMA.[y, z] into
A7[x +y,x +z], and we store the integersin[w, x —1]into Ly[w+y—1,x +y —2]
andthoseirL,[y,z—1]intoLy[x+y,x+z—1]. We also sept r ,[i]=x for w <i < x,
ptr.lil=zfory<i<gz,andLr[x+y—1]=|l cp(Pa,(w, x),Pa,(y, 2))|. We already
setptr,[x] asz andpt r .[z] asx and setLr[x + z] appropriately when we were stor-
ing C into Q[s — 1] and the values stored ot r ,[x], pt r ,[z], andLy[x + z] are still
effective.

Consider the time complexity of the merging algorithm. Procedure MERGE (except
fin andpt r) takes time proportional to the total number of odd and even partitioned
equivalence classes. Since there are at m@&bdd partitioned equivalence classes and at
mostn /2 even partitioned equivalence classes, MERGE take$ tine. Since each entry
of fi n andpt r is set only once throughout stages, it takés)Qime overall. The rest of
the merging algorithm takes time proportional to the total number of coupled pairs inserted
into Q[k]. Since a coupled pair corresponds to a target equivalence class, the total number
of coupled pairs is at most— 1. Therefore, the time complexity of merging igi).

3.4. The coupled pair Icp problem

Recall the coupled pair Icp problem: Given a coupled gai= (A,[w, x], Ay, z])
whose limit stage is — 1, compute the end stage 6f. And if the end stage of is
less thars — 1, determine whethd?4, (w, x) < P4, (y,z) Or P4, (w,x) > Pa,(y,z). The
problem is easy to solve whernis 1 or 2. Wherns = 1, [P4, (w, x)| and|P4,(y,z)| are O
and thus the end stage 6fis 0. Whens = 2, the end stage af is 1. From now on, we
describe how to compute the end stag€ afhens > 3. Assume without loss of generality
that the end stage of,[w, x] iss — 1.

We first show that when > 3, the problem of computing the end stagefi.e.,

[l cp(Pa,(w, x),Pa,(y,z))l)is reduced to the problem of computing the longest common
prefix of two other suffixes.

[l cp(Pa, (w,x),Pa, (v, 2))| =l cps—_1(Pa, (w, x), Pa,(y.2))]|
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= |l cpy—1(Sa,[w)s Sa.i2)|
= |l cpy—2(Sa,(w]+1. SAe[zHl)‘ +1

The first equality holds because the end staga jiv, x] is s — 1. The second equal-
ity holds becauser ef ;_1(Pa, (w,x)) = pref _1(Sa, ) andpref ;_1(P4,(y,2)) =
pref ;_1(Sa,z)- The third equality holds because the start stage of the coupled pair is at
least 1, which means that the first symbolsSaf,,; andS4,(;) are the same. From now
on, letw’ = index. (A,[w] + 1), x’ = index.(4,[x] + 1), andz’ = index,(A.[z] + 1) for
brevity.

We show how to compute= |l cp;_2(Sa,[w], Sa,1zD| IN O(L) time. We first define
an indexy of A, as follows.

Definition 3. Let y be an index of arrayA, such that|l cps_2(Sa, w1, Sa,)] =
[l cPs—2(Sa,[w1, Sa,87)| for any other index of A,.

By definition of y, ¢ is the minimum ofty = |l cps_2(Sa, (w1, Sa,ry))| and 12 =
[l cps—2(Sa,iy1> Sa,rz71)|- To computer, we first find y and computer;. Let A.[a, b]
be the partitioned equivalence class includingw’] after stages — 1. We will show
y =pt r .[b]. There are two cases whether or AQfa, b] constitutes a coupled pair stored
in Q[k] just after stage — 1.

If A.[a,b] constitutes a coupled pair stored @{k] for s — 1 < k < n, let (A,[c, d],
A.[a, b]) denote the coupled pair. SE@. 6a).

Lemma 6. The start stages of.[a, b] and (A,[c, d], A.[a, b]) are boths — 1.

Proof. The start stage of the coupled pdf = (A,[c, d], Ac[a, b]) is at mosts — 1
by the invariant. Since the start stage 6f is the maximum of the start stages of
A,lc,d] and A.[a, b], the start stage ofi.[a, b] iS at mosts — 1. We show that the
start stage ofA.[a, b] is s — 1 by showing thatA.[a, b] is not an § — 2)-equivalence
class. Since the end stage &f[w, x] is s — 1, it is easy to se@r ef ;_,(A.[w']) =
pref_2(A.[x']) andpr ef ;_1(A.[w']) # pref ;_1(A.[x']). Sincepr ef ;_>(A.[w']) =
pref_»(A.[x']), A.[w'] andA,.[x'] are in the sames(— 2)-equivalence class. However,
A [x'Tis notinA,[a, b] becauser ef ;_1(A.[w']) # pr ef ;_1(A.[x']). Hence,A,[a, b]

is not an § — 2)-equivalence class and the start stagd gz, b] is s — 1. Since the start
stage ofA.[a, b] is s — 1 and the start stage 6f is at mosts — 1 by the invariant, the start
stage ofC’iss —1. O

We show thaty is ptr . [b] =d andr is s — 2. Since the start stage @f is s —
1anda < w' < b, |l cp(Sa,ws Saa)) = s — 1 and thus|l cps_2(Sa,[w], Sa,a)| =
s — 2. Since|l cps_2(Sa, (w1, Sa,1)| is at mosts — 2, y in Definition 3is d and# =
Il cps—2(Sa, w7 Sa,iy))| =s — 2. We have only to show how to fingl (= d) in O(1)
time. SinceA,.[w'] andA.[x'] are in the sames(— 2)-equivalence class antl.[x'] is not
in A.[a, b] whose start stage is— 1, we can computé from w’ andx’ in O(1) time by a
MIN (L., w’, x") query. Once is computed, we get from pt r .[b].



140 D.K. Kim et al. / Journal of Discrete Algorithms 3 (2005) 126-142

ptre(b) b = MiN(L,, w) x°)
y z a w b x’
ala a b bbb b|bibibbib
b bib

start

end

start

end

(b)

Fig. 6. Findingy at stage. (a) If A¢[a, b] constitutes a coupled pair. (b) 4. [a, b] is processed.

If A.[a,b] is processed after stage- 1 (Fig. §b)), Ac[a, b] is ani-uncoupled equiv-
alence class for some Qi < s — 1 by the invariant. Sinced.[a, b] is i-uncoupled,
pref ;(Sa,m) = pref;(Sa,) andpref ;(Sa,rj) # pref;(Sa,p) fora < j<band
1<k <n/2and thugl CP(Sa, w1 Sa k)| = [ cp(Sa,my, Sa,mp| forall 1 < k < n/2.
Hence,y in Definition 3is pt r .[b] by definition ofpt r .. We can computer in O(1)
time because = pt r ,[b] andb = pt r [w'] if w’ # b by definition ofpt r .. We can also
compute|l cp;_2(Sa, b1, Sa,ly1)| in O(1) time by definition ofpt r .

Finally, ©2 = |l cps_2(Sa,iy1> Sa,[zp| 1S the minimum ofs — 2 and || cp(Sa, [,

Sa, izl where [l cp(Sa,iy1, Sa,iz1)| can be obtained in @) time by the query
MIN(L,, ¥,z —1) or MIN(L,, 7',y — 1).

Therefore, we get the following lemma and theorem.

Lemma 7. The coupled pair Icp problem can be solvedd(i) time.
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Theorem 1. The odd and even arrays can be merge®in) time and thus the suffix array
can be constructed i®(n) time.

4. Concluding remarks

We have presented a linear-time algorithm to construct suffix arrays for integer alpha-
bets, which do not use suffix trees as intermediate data structures during its construction.
Since the case of a constant-size alphabet can be subsumed in that of an integer alphabet,
our result implies that the time complexity of directly constructing suffix arrays matches
that of constructing suffix trees. Recently, Kérkkdinen and Sarjfléfsind Ko and Aluru
[18] also proposed simple linear-time construction algorithms for suffix arrays. Burkhardt
and Karkkainerj4] gave another construction algorithm that takea @g#) time using

only O(n//logn) extra space.

Space reduction of a suffix array is an important ig@&3,21,22]because the amount
of text data is continually increasing. Grossi and Vifie3] proposed theompresseduffix
array of Qnlog|X|)-bits size and Sadakafi22] improved it by adding thép informa-
tion. Since their compressions also exploit the odd-even divide-and-conquer approach used
in this paper, our technique can be applied to building the compressed suffix array from a
given string.
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