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Any string-matching algorithm requires at least linear time and a constant number of local 
storage locations. We design and analyze an algorithm which realizes both asymptotic bounds 
simultaneously. This can be viewed as completely eliminating the need for the tabulated 
“failure function” in the linear-time algorithm of Knutb, Morris, and Pratt. It makes possible 
a completely general implementation as a Fortran subroutine or even as a six-head finite 
automaton. 

The string-matching problem is to find all full instances of a “pattern” character 
string x as a subword (contiguous substring) in a “text” string y. While the naive 
algorithm (trying the pattern from scratch starting at each successive text position) 
requires time proportional to the product 1x1 - 1 y 1 of the string lengths in the worst 
case, Knuth et al. [ 111 and Boyer and Moore [2, 6, 111 designed algorithms which 
require only linear time (proportional to 1x1 + 1~1). Their algorithms, however, 
require numbers of local storage locations proportional to the length 1x1 of the pattern 
(in every case), making a general implementation impossible without considerable 
dynamic storage allocation. (Of course one large enough local storage location 
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always suffices. None of the algorithms considered here, however, use local storage 
locations of unreasonable size. The number of bits per location in each algorithm is 
bounded by some constant times the logarithm of Ix] + ] yl; i.e., the locations are just 
large enough to accommodate pointers into the input string.) 

In [8] we designed linear-time algorithms requiring only O(log 1x1) (at most some 
constant times log Ix]) local storage locations in the very worst case, and we designed 
almost linear-time algorithms requiring no dynamic storage allocation at all (0( 1) 
local storage locations). Both we [9] and Karp and Rabin [lo] have subsequently 
developed linear-time algorithms requiring no dynamic storage allocation, but these 
algorithms require other special capabilities. The algorithms in [9] are just our earlier 
linear-time algorithms, modified to fill their relatively small (and very rare) dynamic 
storage needs by temporarily borrowing some of the space occupied by the input 
pattern. The Karp-Rabin algorithm, while extremely simple conceptually, requires 
operations such as multiplication (by the alphabet size) and a source of random 
numbers. (The algorithm can err, but rendomization keeps the probability of error 
small and independent of the input pattern and text.) 

In this paper we describe a new linear-time string-matching algorithm requiring 
neither dynamic storage allocation nor other high-level capabilities. The algorithm 
can be implemented to run in linear time even on a six-head two-way finite 
automaton. Moreover, the automaton requires only “{ =, #}-branching” [ 11. 
(Decisions depend on which of the six scanned pattern or text symbols and positions 
are the same, but not on the particular symbols or how many symbols there are. 
Hence the same algorithm works even for an infinite alphabet.) A “real-time” 
implementation is possible on such a multihead finite automaton with a few more 
heads. 

PRELIMINARIES 

Throughout this paper, let k be some fixed, comfortably large integer. As in [Xl, 
the constant of proportionality in our algorithms’ worst-case running times will be 
proportional to k, so there is practical reason to keep k small. In retrospect, k = 4 
will have been large enough, but we leave k unspecified throughout to make clear its 
precise role in our algorithms and analyses. 

For 1 < i < 1 WI, let w(i) denote the ith character of the character string W. For 
0 < i <j < I WI, let [i, j], = w(i t 1) .s. w(j). 

Consider any nonnull string z. String z is a period of the character string w if w is 
a prefix of the infinite string zm = zzz se . . Equivalently, z is a period of w if and only 
if w is a prefix of zw [ 1 I]. (Note that ] w ( need not be precisely divisible by )z I.) For 
each p < I w 1, let 

reach,(p)=max(q<]w] ][O,p],isaperiodof [O,qlw} 

=p + max{q’ < lwl -P I [O, 4’lw = [P,P + 4’lwb 
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String z is basic if it is not of the form z’~ for any integer i > 1. String z is a prefix 
period of w if it is basic and zk is a prefut of W. (Note that a prefix period z of w need 
not be a period of the entire string w.) Equivalently, [O,p], is a prefix period of w if 
it is basic and reach,,,(p) 2 kp. (Since k is fixed, we do not bother to include it in the 
terminology.) 

EXAMPLES. The string ababab = (~b)~ is not basic, but the string abababu is. 
Both strings have periods ub, ubab, abubab, and even ubabuba. (Every extension of a 
string w is a (relatively uninteresting) period of w.) The string w = (ubububu)k abub 
has reach,(l) = 1, reach,(2) = 7, and reachJ7) = 1 W( = 7k + 4. If k > 4, then w has 
only the one prefix period [0,7],. = ubububu; if k = 3, then ab is also a prefix period. 

PERIODICITY LEMMA [ 11, 12 ]. If a string of length p, +p2 has periods of lengths 
p, and p,, then it has a period of length gcd(p,,p,) (the greatest common divisor of 
pI and PJ. 

Proof: Note that it has a period of length ] p, -pz 1, and cite Euclid’s 
algorithm. I 

Remark. The conclusion holds even if the string’s length is only 
p, +pz - gcd(p, ,p2) [4, 111, but the version above suffices for our purposes. 

COROLLARY. Distinct prefix periods of the same string differ in length by at least 
a factor of k - 1. In fact, if w has a prefw period of length p1 and a basic prefix of 
length p2 > p, with reach,(p,) = k’p2 for any k’ > 2, then pz > (k - l)p,. 

Proof: Suppose, to the contrary, that p, <p2 < (k - l)p,. Then pz +p, < 
kp, < reach,(p,) and pz +pl < 2p, < reach,(p,); so [O,p, +p,IH, has periods of both 
lengths, hence also one of length gcd(p, ,pz). Therefore the prefix [O,pz],,, has a 
period of length gcd(p, ,pJ <pl <pz and is not basic, a contradiction. I 

SEARCHING FOR A FIXED PATTERN 

Several earlier string-matching algorithms follow a single general scheme. That 
scheme considers prospective positions p for the pattern in the text in increasing 
order, and it maintains the length q > 0 of a pattern prefix known to match the text 
starting following position p ([0, q], = [ p,p + q],). For appropriately calculated 
p’ >p and q’, then, the algorithms search as follows: 

(PV 4) + (030) 
ploop: 

whiley(p+q+ l)=x(q+ l)doqtq+ 1 
(PT q) + (P’Y 4’) 
got0 ploop 
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Each time q reaches the pattern length 1x1, a full instance of the pattern has been 
found following position p in the text (x = [ p,p + Ix]],); the search can be continued 
by dropping out of the while-loop. (We consider y(p + q + 1) = x(q + 1) to be false 
whenever p + q + 1 > ( y ] or q + 1 > 1x1, so this will be automatic.) Of course the 
algorithms should halt when the end of the text is reached (p = I ~1). 

The earlier algorithms differ only in how they calculate p’ and q’. The naive 
algorithm conservatively calculates p’ =p + 1 and q’ = 0. Since [0, qlX = [ p,p + q],, 
however, consideration of p’ =p + shift is futile unless [0, q - shift], = [shift, q],; so 
the Knuth-Morris-Pratt algorithm calculates p’ =p + shift,(q), where 

shift,(q) = min{sh@ > 0 I [shift, qlX = (0, q -shift],}, 

and then can even salvage q’ = q - shift,(q) if q > 0. (Note, for later, that this 
definition makes [0, shift,(q)] the shortest period of [0, q],.) To get by with a 
skimpier tabulation of the shift function, algorithms from [8] calculate 

(P’, 4’) = (P + shift,(q), 4 - shift,(q)), if shift,(q) < q/k, 

= (P + max(l, Iqlkl), 01, otherwise. 

If k is large, the first case above (shift,(q) ,< q/k) should be relatively rare. Our 
new algorithm below is inspired by the vain wish that the case would never occur and 
could be omitted from the algorithm. Lemmas 1 and 2 characterize occurrence of the 
case shift,(q) < q/k in terms of prefix periods of the pattern. 

LEMMA 1. Zf shift,(q) < q/k, then [0, shift,(q)], is a prefix period of x. 

Proof: We observed above that [0, shift,(q)], is a (shortest) period of [0, qlX. It 
appears k times because q > k . shift,(q). If it were the form zi for some integer i > 1 
(i.e., not basic), then z would be a shorter period of [0, q],. m 

LEMMA 2. Zf [0, shift], is a prefu: period of x, then 

shift = shift,(q) < q/k o k . shift < q < reach,(shift). 

Proof: Only the proof of the backward implication (e) requires a nontrivial 
observation. By the periodicity lemma, shift,(q) < shift would contradict the 
assumption that [0, shift], is basic. (Assuming k > 2, so that q > 2 . shift > 
shift + shift,(q), the extension [0, q], of 10, shift + shift,(q)], would have periods of 
both lengths.) I 

The following decomposition theorem, proved in the next section, now leads to an 
efficient algorithm to search for any fixed pattern x: 

DECOMPOSITION THEOREM. Each pattern x has a parse x = uv such that v has at 
most one prefix period and (U I = O(shift,(] v I)). 
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(We cannot insist that v have no prefix period. For x = un, we would have to have 
]u] > n - k and shift,(]v ]) = 1.) The efficient algorithm uses the scheme from [8] 
discussed above to search for full instances of the pattern suffix v. If v has 120 prefix 
period, then Lemma 1 guarantees that the first case (shift,.(q) < q/k) never occurs, 
and hence that the crucial values are always (p’, q’) = (p + max(1, [q/k]), 0). If v 
has one prefix period, and its length is pl, then Lemmas 1 and 2 guarantee that the 
first case occurs only for kp, < q < reach,(p,), and that the crucial values are 

(P’T 4’) = (P +PI, 4 -PJ if kp, <q < reach,(p,), 

= (P + max(L Is/kl>, 01, otherwise. 

On a text y the time to find all instances of v will be O(] v 1 + / y ]), because the 
nonnegative nondecreasing integer quantity (k + 1)p + q = O(]v / + I JJ]) is bound to 
increase every O(1) steps. The algorithm checks naively (in time O(]U])) whether the 
pattern prefix u occurs to the immediate left of each discovered instance of v. Since v 
can occur at most I y]/shift,(] v ]) t imes in a text y, the total time for the naive checks 
will be O(]u])j~~]/shift,(]v])=O(]y]). So the total timeis O(]v] +]y])=O(]xj +]u]), 
and the number of local storage locations is some small constant. 

PROOF OF DECOMPOSITION THEOREM 

To prove the decomposition theorem, we need one more lemma. 

LEMMA 3. For each basic string w, there is a parse w = w, w2 such that, no 
matter what w’ is, w2 w k-‘~’ has no prefix period shorter than I w /. 

Proof. First, let us show that w’ does not affect whether wzwk-‘w’ has a prefix 
period shorter than / w], hence that we can safely restrict attention to any particular 
suffix w’. For any choice of w’ and any parse w = wr w2, a prefix period shorter than 
/ w ] would have to be shorter than ] wl/(k - l), by the corollary to the periodicity 
lemma. Since ] wI/(k - 1) < (k - 1) I wI/k < ] wz wk-’ l/k, the same prefix would be a 
prefix period with any other choice of w’. It follows that w’ is irrelevant. Our proof 
will be simplest if we restrict attention to the infinite suffix w’ = woo. 

The obvious way to seek the parse is to start with wm and repeatedly delete 
offending prefixes: 

While the remainder has a prefix zk with ]z I < ] w], delete a shortest such z. 

If this terminates, then a satisfactory parse of (the last entered copy of) w has been 
found. Here is a termination argument: When z is deleted, zk-’ remains a prefix of 
the remainder. Therefore, the next deletion z’ cannot be shorter. (Otherwise, by the 
periodicity lemma and the fact that z is basic, z’~ would have to be a (proper) prefix 
of zz’, and hence of zk, contradicting the previous choice of z as shortest.) Therefore, 
either z’=z, or ]z’] > ]z]. (In fact, ]z’] > ]z] implies ]z’z] > ]zk-‘1, and hence that 
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Iz’I > (k - 2) ]z], by the periodicity lemma and the fact that z’ is basic; hence, zkm2 
will be a prefix of every subsequent remainder. We shall use this observation in the 
proof of the remark below.) But, since w is basic, the periodicity lemma implies that 
no same z continues to work forever. Therefore, the length eventually reaches 1 WI. 1 

Remark. A stronger claim can be made for the algorithm in the proof of 
Lemma 3 above: Not even one full w gets deleted. 

Proof of remark. Suppose some deletion z ends at position p > I w I in woo. (Our 
convention is that position p separates characters number p and p + 1.) If some 
deletion had started one period back (at position p - I w]), then the algorithm would 
now loop, contradicting our termination argument. Therefore, position p - ] w / must 
have been within some deletion z0 starting at some position pO(p - I w I -p,, < IzO I). 
By our observation in the proof above, zi-’ occurs starting at position p. Therefore, 
it occurs at both positions pO and p - ] w j. From this, it follows that zt-’ (and hence 
z$) has a period of length p - I w I -p,, < IzOI, contradicting the choice of z0 as a 
shortest prefix period starting at position pO. I 

Proof of decomposition theorem. We obtain v = [s, lxllx by deleting appropriate 
prefixes from the pattern until the remainder has at most one prefix period: 

SC0 
while [s, lxllX has more than one prefix period do 

begin 
Letp, be the length of the second shortest prefix period. 
By appeal to Lemma 3, 

find s’ ( s +p2 such that [s’, ]xljX has no prefix period shorter thanp,. 
Setsts’. 

end 

It remains only to prove that I u I = O(shift,(] v 1)) finally holds. For each s, let 

Z(s) = length of the shortest period of [s, Ix I],, 

pi(s) = length of the shortest prefix period of [s, Ix 11, (if there is one). 

(If p,(s) exists, then [s, s +p,(s)], is the shortest period of some prefix of [s, Ix]]~, 
guaranteeing that p,(s) & f(s).) By induction, we prove the loop invariant 
s < c min(p,(s), Z(s)), where c = (k - l)/(k - 2): 

s’ -c s +p2 < c’min(p,(s), l(s)) +p2 = cpl(s) +p2 

< cp,/(k - 1) +p2 = CP, < c min(pl(s’>, l(d)). 

(In the case that [s’, ]xllX has no prefix period, the fact that its prefix [s’, s’ +p2]:-’ 
already has shortest period of length pz ensures that p2 < l(s’).) Finally, therefore, 
/U I = s < cl(s) = c shift,(l v I). I 
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PREPROCESSING A PATTERN 

Even the algorithm for finding the decomposition x = uu = [0, s],[s, lx]], above 
can be implemented efficiently. First note that, by Lemma 3 and the subsequent 
remark, there is a very simple algorithm for finding s’: 

s’+s 
while [s’, 1 xljX has a prefix period shorter than p2 do Delete a shortest one. 

Now an efficient implementation is natural in terms of efficient subroutines to find 
the one or two shortest prefix periods of a string. 

The general scheme discussed above, and interpreted as in [8], provides an efficient 
algorithm to determine whether a string w has a prefix period and to find the shortest 
one if it does. The algorithm matches w against itself, starting with (p, q) = (1,O). Of 
course no full instance of the pattern will be found, but for each i we will have 
shift,,,(i) =p the first time p + q = i holds. To see this, consider any i (1 < i < / WI). 
The first time p + q = i holds, no symbol beyond w(i) has been examined, so the 
algorithm cannot yet rule out occurrence of the pattern at position shift,.(i); i.e., it 
must still have p < shift,,,(i). Since the algorithm guarantees that [ p, i],,. is a prefix of 
[0, i], at this point, we cannot have p < shift,(i); so p = shift,,,(i), as claimed. The 
algorithm we want simply watches for the first i with shift,,,(i) < i/k (p < (p + q)/k). 
(By Lemma 2, these inequalities will be equalities.) Until such an i is found, the 
calculation (p’, q’) = (p + max(1, [q/k]), 0) will always be appropriate, since 
shift,,,(q) > q/k for all q < i. If the shortest prefix period exists and has length p, , then 
the final values of p and q will be p1 and (k - l)p,, respectively. Therefore, the total 
time will be 

O((k+l)p+q)=O(p,), if p, exists, 

= O(l WI>1 in any case. 
To determine whether w has a prefix period shorter than some given pz, we can use 
the same algorithm until p reaches p *; the running time for this variant will be 

O(P,) if p, <pz exists: 

O(P*) in any case. 
Similarly, there is an efficient algorithm to determine whether a string w has two 

prefix periods and to find the second shortest one if it does. First, the algorithm seeks 
the shortest prefix period as above. If the shortest prefix period exists and has length 
Ply then the algorithm straightforwardly determines reach,(p,) in time 
O(reach,(p,)). Finally, the algorithm matches w against itself, starting with 
(p, q) = (1,0) as above, now watching for the first i > reach,(p,) with shift,,,(i) = i/k. 
Until such an i is found, the calculation 

(P’Y 4’) = (P +p, 7 q -PA if kp, 4 q < reach,&), 

= (P + max(L [dkl), O), otherwise 
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will always be appropriate, since every q < i will have either shift,,,(q) > q/k or 
shift,,,(q) =p,. If the second shortest prefix period exists, then its length pz will have 
to be at least reach,(p,) -p,, by the periodicity lemma. By looking at the quantity 
(k + 1)p + q again, therefore, we see that the total time will now be 

O(P,) + O(reach,ipJ) + O(P,), if p2 exists, 

O(P,) + O(reacMp,)) + O(lw/), if onlyp, exists, 

O(lWl>~ in any case, 

= O(P*), if pz exists, 

= O(l WI>, in any case. 

Now consider using these efficient subroutines to implement the outlined decom- 
position algorithm. The time for the one failed entry test for the outer loop will be 
O(lv(). In terms of the current value of pz, the time for finding s’ by deleting shortest 
prefix periods will accumulate to O(s’ -s) + O(p,) = O(p,). Therefore, the time for 
the entire loop body, including the passed entry test, will be O(p,). By the periodicity 
lemma, using the fact that s’ < s +pz, each successive p2 will be at least k - 2 > 2 
times the preceding one. So the total decomposition time will be 

O(lu I) + O(l u I( 1 + l/2 + l/4 + ... )) = O(l u I) = O((xl). 

Combining this preprocessing algorithm with the searching algorithm described 
earlier, we finally get an algorithm which can find all full instances of an arbitrary 
pattern x in an arbitrary’ text y in time proportional to 1x1 + ) y 1, without dynamic 
storage allocation. 

AN INTEGRATED IMPLEMENTATION 

Having established the existence of our algorithm, we turn now to integrated and 
improved implementation. The following implementation of the entire algorithm will 
lead to a multihead finite automaton implementation in the next section: 

(PY q) + (03 0) 
(&P* 9 4,) + (03 LO) 
(Pz 3 42) + (09 0) 
newpl : 

whilex(s+p,+q,+l)=x(s+q,+l)doqI+q,+l 
ifp, + q1 2 kp, then [(P*, q2) + (4,) 0); goto newp21 
ifs+p,+q,=Ixlthengotoseud 
(pl, q&- (pl + max(L MWy 0) 
got0 newp 1 
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newp2: 
whilex(stp,tq2t1)=x(stq2+l)a~~p~tq~~~p~d~q~+-q~tl 
ifp, + q2 = kp, then gotoparse 
ifs + p2 t q2 = 1 x 1 then goto search 
ifq, =PI + q1 

then(p2,q2)c(p2+p,,q2-p,) 
else (p2, q2) + (P* + max(L Iqdkl), 0) 

got0 newp2 
parse: 

whilex(stp,tq,tl)=x(s+q,tl)doq,+-q,+l 
whilep,tq,~kp,do(s,q,)c(s+p,,q,-P,) 
(P,, s,> + (P, + max(L k/WY 0) 
ifp, <P2 

then goto parse 
else got0 newp 1 

search 
whiley(p+s+qt l)=x(s+qt l)doq+qt 1 
ifq=Ix/-sthenif[p,pts],= [O,s], 

then announce an instance of x at text position p 
ifq =pl + q1 

then (P, s> + (P +pl y q -PJ 
else (P, q) + (P t max(L Is/klh 0) 

ifp + s < 1 y 1 then goto search 

(Note that the variables p and q are introduced only for clarity. By the time they are 
used (in the segment following search), pz and q2 are free and could be reused 
instead.) 

The main purposes of the program segments above are: 

(1) Segment newpl: Find the shortest prefix period of [s, Ix]]~. 
(2) Segment newp2: Find the second shortest prefix period of [s, IxljX. 
(3) Segment parse: Increment s. 
(4) Segment search: Search the text for x = [0, s],[s, ]xllX. 

A more detailed direct analysis relies on the validity of the following assertions at the 
labeled checkpoints: 

At newpl: 

(i) [s, lx\lX has no prefix period shorter than pi. 

(ii) [stp,,~+P,+~,l,=~~~~t~~l,~ 
(iii) p2 Gp,. 

(4 p2 t q2 = kp2- 
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At newp2: 

(i) [s, ]x]lX has shortest prefix period of length p,. 

(ii) [s, s +pl + qllx has period of length p,. 

(iii) [s,s +pl + q1 + 11, does not. 

04 p2 > ql. 
(v) [s, ]x]]~ has only one prefix period shorter than pz. 

(4 Is +pzv s +P2 + 42L = b,s + q21x- 
(vii> p2 + q2 < kp,. 

At parse : 

(i) [s, ]x]lX has no prefix period shorter than p,. 

(ii) b +p,, s +A +4,1x = [s,s + qllxa 
(iii) p, <p2. 

(iv) pz + q2 = kp,. 

At search: 

(i) [s, ]x]lX has at most one prefix period. 
(ii) If [s, ]x]lX d oes h ave a prefix period, then its length is p, . 

(iii) [s, s +pl + q,lx has shortest period of length p,. 

(iv) [s, s +pl + q, + 11, does not have period of length p,. 

(v) All instances of x starting at text positions beforep have been announced. 

(vi) [p + s,p + s + 41, = [s, s + sl,. 
(vii) s < (k - l)p,/(k - 2). 

First consider the very last assertion, which is crucial for the time analysis. 
Assuming all the other assertions hold, the integrated implementation increments s in 
the same way as the original algorithm. So the validity of the asertion follows from 
our proof of the decomposition theorem. 

Verification of all the other assertions is routine, frequently by appeal to the 
periodicity lemma. Note that we have replaced the test kp, ( q2 <pl + q1 with the 
simplified test q2 =p, + q1 in the segment following newp2. This is justified by the 
mismatch x(s +p2 + q2 + 1) # x(s + q2 + 1) (and the periodicity lemma). Similarly, 
we have replaced the test kp, <q <p, + q1 with just q =p, + q, in the segment 
following search. The last two assertions for newpl are included for their aid in the 
time analysis below. 

For a direct time analysis, consider the expression 

2s + ((k+ l)~, +qA+ ((k + 11~2 +q2)+ (@+ 1)~ +q). 

The value of this expression is always an integer 0(1x] + I y 1). Its initial value is 
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positive, and every assignment increases its value. (This is immediately clear for 
every assignment except (p2, q2) t (ql, 0). Since that assignment occurs only when 
p1 + q, > kp, (by the test) and p2 <p, and pz + q2 = kp, (by assertions at newpl), 
however, 

(k + l)p,tq,=kp, + (~2+42)=2kp2<2kp1 

<2kq,/(k-l)<(ktl)q,; 

hence, the contribution by p2 and q2 is greater after the assignment than before.) 
Some such assignment is executed every 0( 1) steps, except for tests 
[p,p+sl,= [Rsl,. B u we have seen already that the total time for these tests is t 
O(l yl), because s = O(p,) holds at search. Therefore, the total running time of the 
algorithm must be 0(1x1 t 1~1). 

MULTIHEAD FINITE AUTOMATON / 

For an eleven-head finite automaton implementation, maintain text heads at 
positions p f s + q and p + s, and pattern heads at positions S t p, t q, , s t kp, , 
s tp2 + q2, s + q2, s + kp2, s -1; q, s, and s again. (The values s t .kp, and, s t kp, 
might exceed 1x1, but they will certainly be bounded by (k t 1) 1x1. The pattern head 
maintaining such a value can reverse direction whenever it reaches an endmarker, and 
the finite control can keep track of the net number of reversals for the’ current value.) 
With heads at these positions, each test [p;p + slu = [0, slX requires only O(s) steps, 
as before; every other test requires only O(1) steps, provided the finite control keeps 
track of the order of the head positions; and each assignment requires at most a 
number of steps proportional to the resulting increase in the expression used in the 
time analysis above. Therefore, the ,total time remains 0(1x/ t 1 y I). 

We‘ can save two pattern heads above by- letting positions s + kp,, s + kp,, and 
s t q share a single head. We let that head maintain position s + kp, in the segments 
following newpl and parse, s + kp, in the segment following riewp2, and s t q in the 
segment following sea&. The time to relocate the head to position s t q = s the one 
time control enters $he’ segment following search is certainly 0(1x/). The ,time to 
relocate the head from position s + kp, (via position s) to position s + kp, = s t kq, 
when control enters the segment following newp2 is O(p, + q,) = O(q,), but we were 
already allowing that long for the immediately preceding assignment 
(p2, q2) t (q, , 0). The time to relocate the head from position s + kp, (via position s) 
to position s t kp, when control enters the segment following parse is 
O(p, + pI) = O(p,), but p2 will be at least k - 2 > 2 times as large the next time this 
is necessary. Therefore, the total time still remains 0(/x1 + 1~1). 

To save one more pattern head, note that the head at position s +p2 + q2 is needed 
only in the segment following newp2, and that the second head at position s is needed 
only outside that segment (in fact, only for the assignment (s, q,) t (s t p, , q, -p,)). 
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As above, there is time for one shared head to shift roles on entering and leaving the 
segment. 

If both the pattern and the text are provided on the same input tape, then we can 
save two more heads. The two text heads are needed only after search is reached. At 
that point, however, it becomes unnecesary ever again to maintain pattern positions 
s +p2 + q2 and s + q2 ; so the corresponding pattern heads can relocate to text 
position s and begin to serve as the text heads. The final result is the promised six- 
head finite automaton requiring only ( = , #}-branching. 

REAL-TIME ALGORITHMS 

In [ 131 we reported real-time Turing machine algorithms for string matching, for 
recognition of squares (strings of the form WV) and palindromes (strings which are 
their own reverses), and for a number of generalizations of these problems. Using our 
new algorithm as a building block, we can adapt all of these algorithms to run in real 
time even on a multihead finite automaton. In this context, “real time” means that, 
for some constant c, the input tape is extended by one symbol every c steps, and that 
the automaton must rule immediately on the acceptability of the extended input 
string. For the string-matching problem, the pattern (while it lasts) and the text are 
extended simultaneously, and each verdict must indicate whether an instance of the 
pattern-so-far ends at the current end of the text. (The problem would. be much easier 
if the entire pattern preceded the entire text.) 

Adaptation of the real-time algorithms from [ 131 is beyond,the scope of this paper, 
but the key is to use a variant of our new string matcher wherever in [ 131 we used 
the Fischer-Paterson string matcher [S]. The latter linear-time algorithm already 
required linear space on an off-line Turing machine; so for convenience in ] 13 1, we 
freely allowed ourselves the luxury of marking all the instances of x on a copy of y 
for examination in later passes. In addition, we made use of the Fischer-Paterson 
algorithm to find not only fuZ1 insances of x, but also “overhang” instances. An 
overhang instance of x occurs following position p in y(I y I> 1x1) if either 

-IxI<P<O and IO,p.+ I4 = ~-P~,I41, 

IYI-l4<P<lYl and IP, I Ylly= 103 I Yl -PI,. 

In the first case, we call it a left overhang instance, and in the second, we call it a 
right overhang instance. 

Careful examination of the algorithms in [ 131 and those in the preliminary report 
included in [7] reveals that, with one possible exception, it is never really necessary 
to record the instances of a pattern in a text for later examination. Instead, it suffices 
to be able to detect the instances one at a time, in order. The one possible exception 
is in the algorithm for Lemma 1.2 in 1131, but an alternative algorithm is available 
from 171. 
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As described above, our multihead finite automaton algorithm already detects the 
full instances of x in y in order of their appearance. It remains only to modify the 
algorithm to detect all instances (both full and overhang) in order. 

As a first step, we describe how the algorithm can detect all (left) overhang 
instances following positions p in range - lx]/2 <p < 0, in time O(]x]). Let x = uv, 
where (u ] = ]]x]/2]. First the algorithm should find the length p. of the shortest 
period of u. (To do this in time O(] v I), it should search as above for the second full 
instance of the pattern v in the text w.) In the case that p. > ] u ]/2, the algorithm 
should search as above for full instances of u in [0, Ix]],,, and check naively (in time 
O(]u I) = O(]x()) whether each discovered full instance of v extends to a left overhang 
instance of the entire pattern x. Since x can occur at most ]x I/p,, = O(lxl/l ZI I) = 
O(]x]/]x]) = O(1) full times in y, the toal time for the naive checks will be 0(1x]). 

In the remaining case that p,, < ]v]/2, the algorithm should reparse x, in time 
0(1x]), into [0, i],[i, ]x]lX such that 

[i, Ix I], has (shortest) period of length p,, , 

[i-l,]x]lx(ifi>O)doesnot. 

Using the fact that [i, ]x]lX has a period of length p. < Iv], the algorithm should 
search first for the left overhang instances which are left overhang instances of 
[i, ] x]lX. To do this, it should first determine q,, = min(reach,(p,), Ix] - i) in time 
WI - i) = 0(1x1), and then search for full instances of v in [0, ]x ] - i],. A 
discovered instance of u extends to a left overhang instance of [i, ]x]]~ if and only if it 
ends at a position p < qo. To find the left overhang instances of x which are not left 
overhang instances of [i, Ix I], ( assuming i > 0, so that there might be some), the 
algorithm should search for full instances of [i - 1, ]x]]~, and check naively whether 
each discovered full instance extends to a left overhang instance of the entire pattern. 
By the periodicity lemma, the length of the shortest period of [i - 1, I x]lx must 
exceed IV] -p. > lzll- Iv//2 = Ivl/2; so the total time for the naive checks will again 
be O(lxl)* 

An algorithm to find all the nontrivial left overhang instances of x in order can 
simply apply the algorithm just described to the sequence of patterns [Ix I - 2, I x]lX, 
[I4 - 4, Ix/l,, [Ix1 - 8, Ixllx,..., [O, l-41x =x. (If I x is not a power of 2, then x can I 
be padded on the left out to the next such length, and the last few left overhang 
instances can be ignored.) The total time will be 0(2 + 4 + 8 + ..a + /x I) = O(] x I). A 
;~,$;4;lgorithm, applied to the sequence of patterns x = [0, ]x]]~, [0, ]x l/2],, 

,X X,..., [0, 2],, can detect all right overhang instances of x in time 0(1x]). 
Combining results, then, we conclude that a multihead finite automaton, with only 
{=, #}-branching, can detect, in order, all instances (left overhang, full, and right 
overhang) of an arbitrary pattern x in an arbitrary text y in time 0(1x] + I y I). 



TIME-SPACE-OPTIMAL STRING MATCHING 293 

REMAINING ISSUES 

We have refuted previously formulated versions of the conjecture that a two-way 
multihead finite automaton could not perform string matching efficiently [ 1, 81, but a 
number of questions remain, especially in retrospect. Some of these are: 

(1) How much time and local storage are needed for a string matcher which 
cannot back up or reread the text? Our earlier algorithms [8,9] had this property, 
but our new one sometimes has to reread some of the last 1x1 many text characters. In 
terms of storage buffers for the input strings, in other words, the new algorithm uses 
nearly twice as much space as the earlier ones. 

(2) Can any one-way multihead finite automaton perform string matching at 
all? (Any such string matcher could not help running in linear time.) 

(3) How few heads suffice for a linear-time string matcher? For a real-time 
string matcher? For a real-time palindrome recognizer? Note that two heads suffice 
for the naive, quadratic-time string matcher. DuriS and Galil [3] have shown that a 
two-head finite automaton cannot perform string matching at all if one of the heads is 
“blind” (can distinguish only endmarkers). 

(4) The instances of pattern x in text y can be characterized by a binary string 
of length (xl + 1 y /, the ith bit indicating wheter the pattern occurs following text 
position i - Ix I. (This includes both left and right overhang instances.) By the real- 
time result, a multihead finite automaton can simulate one-way access to this charac- 
terization in real time. How fast can a multihead finite automaton simulate two-way 
access to the characterization? 
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