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Speeding Up Two String-Matching Algorithms 1 

M. Crochemore, 2 A. Czumaj, 3 L. Gasieniec, s S. Jarominek, 3 T. Lecroq, 2 
W. Plandowski, 3 and W. Rytter 3 

Abstract. We show how to speed up two string-matching algorithms: the Boyer-Moore algorithm 
(BM algorithm), and its version called here the reverse factor algorithm (RF algorithm). The RF 
algorithm is based on factor graphs for the reverse of the pattern.The main feature of both algorithms 
is that they scan the text right-to-left from the supposed right position of the pattern. The BM algorithm 
goes as far as the scanned segment (factor) is a suffix of the pattern. The RF algorithm scans while 
the segment is a factor of the pattern. Both algorithms make a shift of the pattern, forget the history, 
and start again. The RF algorithm usually makes bigger shifts than BM, but is quadratic in the worst 
case. We show that it is enough to remember the last matched segment (represented by two pointers 
to the text) to speed up the RF algorithm considerably (to make a linear number of inspections of 
text symbols, with small coefficient), and to speed up the BM algorithm (to make at most 2 .n  
comparisons). Only a constant additional memory is needed for the search phase. We give alternative 
versions of an accelerated RF algorithm: the first one is based on combinatorial properties of primitive 
words, and the other two use the power of suffix trees extensively. The paper demonstrates the 
techniques to transform algorithms, and also shows interesting new applications of data structures 
representing all subwords of the pattern in compact form. 

Key Words. Analysis of algorithms, Pattern matching, String matching, Suffix tree, Suffix automaton, 
Combinatorial problems, Periods, Text processing, Data retrieval. 

1. Introduction. The Boyer-Moore algorithm IBM] is one of the string-matching 
algorithms which is very fast on the average. However, it is successful mainly in 
the case of large alphabets. For small alphabets, its average complexity is f~(n) (see 
[BR]) for the Boyer-Moore-Horspool version [HI. The reader can refer to [HS] 
for a discussion on practical fast string-searching algorithms. We discuss here a 
version of this algorithm, called the RF algorithm, which is much faster on the 
average, not only on large alphabets but also for small alphabets. If the alphabet 
is of size at least 2, then the average complexity o f  the new algorithm is 
O(n log(m)/m), and reaches the lower bound given in [Y]. The main feature of both 
algorithms is that they scan the text right-to-left from a supposed right position 
of the pattern. The BM algorithm goes as far as the scanned segment (also called 
the factor) is a suffix of the pattern, while the RF algorithm matches the text 
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against any factor of the pattern, traversing the factor graph or the suffix tree 
of the reverse pattern. Afterward, both algorithms make a shift of the pattern 
to the right, forget the history, and start again. We show that it is enough to re-~ 
member the last matched segment to speed up the algorithms: an additional 
constant memory is sufficient. We derive a version of the BM algorithm, called the 
Turbo_BM algorithm. One of the advantages of this algorithm with respect to the 
original BM algorithm is the simplicity of its analysis of complexity. At the same 
time, the Turbo_BM algorithm looks like a superficial modification of the BM 
algorithm. Only a few additional lines are inserted inside the search phase of the 
original algorithm, and two registers (constant memory to keep information about 
the last match) are added. The preprocessing phase is left unchanged. Recall that 
an algorithm remembering a linear number of previous matches has been given 
before by Apostolico and Giancarlo [AG] as a version of the BM algorithm. The 
Turbo_BM algorithm given here seems to be an efficient compromise between 
recording a linear-size history, as in the Apostolico-Giancarlo algorithm, and not 
recording the history of previous matches, as in the original BM algorithm. 

Our method to speed up the BM and RF algorithms is an example of a general 
technique called the dynamic simulation in [BKR]--for a given algorithm A 
construct an algorithm A' which works in the same way as A, but remembering 
part of the information that A is wasting; during the process this information is 
used to save part of the computation carried out by the original algorithm A. In 
our case, the additional information is the constant-size information about the 
last match. The transformation of the Boyer-Moore algorithm gives an algorithm 
of the same simplicity as the original Boyer-Moore algorithm, but with the upper 
bound of 2 .n  on the number of comparisons, which improves slightly on the 
bound 3" n of the original algorithm. The derivation of this bound is also much 
simpler than the 3" n bound in [Co]. The previous bounds, established when the 
pattern does not occur in the text, are 7" n in [KMP] and 4" n in [GO]. It should 
be noted that a simple transformation of the BM algorithm to search for all 
occurrences of the pattern has quadratic-time complexity. Galil [G] has shown 
how to make it linear in this case. 

Several transformations of the RF algorithm show the applicability of data 
structures representing succinctly the set of all subwords of a pattern p of length 
m. We denote this set by FACT(p). The set of all suffices ofp is denoted by SUF(p). 
For simplicity of presentation, we assume that the size of the alphabet is constant. 

The general structure of the BM and RF algorithms is shown in Figure 1. 

text 
scanned part x of the text 

I 
i i+j i+m 

! I 

window on the text 
shift of the window 

m - -  

m - -  

Fig. 1. One iteration of Algorithm 1. The algorithm scans right-to-left a segment (factor) x of the text. 
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A l g o r i t h m  1 /* common scheme for the BM and RF algorithms */ 
i := O; 
whi le  i < n - m do 

{ align pattern with positions t[i + 1 . . i  + m] of the text; 
scan the text right-to-left from position i + m; 
let x be the scanned part of the text; 
i f  x = p then report a match at position i; 
compute the shift; 
i := i + shift; } 

end. 

In algorithms BM and RF we use the synonym x for the last-scanned segment 
t[i + j . . i +  m] of the text t. This shortens the presentation. In one algorithm 
it is checked whether x is a suffix of p and, in the second algorithm, whether 
it is a factor of p. Shifts use a precomputed function on x. In fact, in the 
BM algorithm x is identified with a position j on the pattern, while in the 
RF algorithm x is identified with a node corresponding to x R in a data 
structure representing FACT(pR).  We use the reverse pattern because we 
scan right-to-left, while most data structures for the set of factors are 
oriented to left-to-right scanning of the pattern. These orders are equivalent after 
reversing the pattern. In both cases a constant size memory is sufficient to 
identify x. 

Both the BM and RF algorithms can be viewed as instances of Algorithm 1. 
For  a suffix x at position k, denote here by BM_shif t[x]  the match-shift d2[k] 
defined in [ K M P ]  for the BM algorithm (see also [Ah] or [R]). The value of 
d2[k] is, roughly speaking, the minimal (nontrivial) shift of the pattern over itself 
such that the symbols aligned with the suffix x, except the first letter of x, agree. 
The symbol at the position, denoted by *, aligned with the first letter of x in Figure 
2, is distinct if, in fact, any symbol aligns. The BM algorithm also uses heuristics 
on the alphabet. A second shift function serves to align the mismatch symbol in 
the text with an occurrence of it in the pattern. We mainly consider the BM 
algorithm without the heuristics. However, this feature is integrated in the final 
version of the Turbo_BM algorithm. 

A l g o r i t h m  BM /* reversed-suffix string matching */ 
i := O; /* denote t[i + j . .  i + m] by x, it is the last-scanned part of the text */ 
whi le  i _< n - m do 
{ j := m; whi le  j > 1 and x ~ SUF(p)  do j := j - 1; 

if x = p then report a match at position i; 
shift := B M_shift[  x ] ; 
i:-= i + shift; } 

end. 
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Fig. 2. One iteration in the BM algorithm. 

m . 

Algorithm RF /* reverse factor string matching */ 
i := 0; /* denote t[i + j . .  i + m] by x, it is the last-scanned part of the text */ 
w h i l e  i _< n - m do  

{ j : =  m; whilej > 1 and x E F A C T ( p )  d o j : = j -  1; 
/* in fact, we check the equivalent condition x R ~ FACT(p  R) */ 

if x = p t h e n  report a match at position i; 
shift := RF shift[x]; 
i := i + shift; } 

end. 

The work which Algorithm 1 spends at one iteration is denoted here by cost, 
and the length of the shift is denoted by shift. In the BM algorithm cost is usually 
small but it gives a small shift. The strategy of the RF algorithm is more "optimal": 
the smaller the cost, the bigger the shift. In practice on the average, the match 
(and cost) at a given iteration is usually small; hence, the algorithm, whose shifts 
are inversely proportional to local matches, is close to optimal. The straight- 
forward application of this strategy gives an RF algorithm that is very successful 
on the average. It is, however, quadratic in the worst case. 

Algorithm RF makes essential use of a data structure representing the set 
FACT(p). See [BBE +] for the definition of directed acyclic word graphs (dawg's), 
see [-Cr] for the definition of suffix automata, and see [Ap] for details on suffix 
trees�9 The graph G = dawg(p R) represents all subwords of p~ as labeled paths 
starting from the root of G. The factor z corresponds in a many-to-one fashion 
to a node vert(z), such that the path from the root to that node "spells" z. 
Additionally, we add information to each node indicating whether all nodes 
corresponding to that node are suffixes of the reversed pattern pR (prefixes of p). 
We traverse this graph when scanning the text right-to-left in the RF algorithm. 
Let x' be the longest word, which is a factor of p, found in a given iteration. When 
x = p, then x' = x; otherwise x' is obtained by cutting off the first letter of x (the 
mismatch symbol). The time spent scanning x is proportional to [xl. The multi- 
plicative factor is constant if a matrix representation is used for transitions in the 
data structure. Otherwise, it is O(log ]Af) (where A can be restricted to the pattern 
alphabet), which applies for arbitrary alphabets. 

We now define the shift RF_shift, and describe how to compute it easily. Let u 
be the longest suffix of x' which is a proper prefix of the pattern p. We can assume 
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Fig. 3. One iteration of algorithm RF. Word u is the longest prefix of the pattern that is a suffix of x'. 

that we always know the actual value of u, associated with the last node on the 
scanned path in G corresponding to a suffix ofp R. Then shift RF_shif t[x] = m - l ul 
(see Figure 3). 

The use of information about the previous match at a given iteration is the key 
to improvement. However, this application can be realized in many ways: we 
discuss three alternative transformations for RF. They lead to three versions of 
the RF algorithm, Turbo_RF, Turbo_RF',  and Turbo_RF", that are presented in 
Sections 2 and 3. Algorithms Turbo_BM, Turbo_RF, Turbo_RF',  and Turbo_RF" 
can be viewed as instances of Algorithm 2 presented below. 

Algorithm 2 /* general scheme for algorithms Turbo_RF, Turbo_RF',  
Turbo_RF", and Turbo_BM: a version of Algorithm 1 
with an additional memory */ 

i := 0; memory := nil; 
whi le  i < n - -  m do 

{ align pattern with positions t[i + 1 . . i  + m] of the text; 
scan the text right-to-left from the position i + m, using memory to 
reduce number of inspections; 
let x' be the part of the text scanned; 
i f  x = p then report a match at position i; 
compute the shift shiftl according to x and memory; 
i := i + shifti; update memory using x; } 

end. 

2. Speeding up the  R e v e r s e  F a c t o r  Algorithm. To speed up the RF algorithm we 
memorize the prefix u of size m-shift of the pattern (see Figure 6). The scan, between 
the part of the text to align with part v of the pattern, is done from right to left. 
When we arrive at the boundary between u and v in a successful scan (all 
comparisons positive), then we are at a decision point. Now, instead of scanning 
u until a mismatch is found, we can just scan (again) a part of u, due to the 
combinatorial properties of primitive words. A word is primitive iffit is not a proper 
power of a smaller word. We denote by per(u) the length of the smallest period 
of u. Primitive words have the following useful properties: 

(a) The prefix of u of size per(u) is primitive. 
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Fig. 4. If z is primitive, then such an overlap is impossible. 

(b) A cyclic shift of a primitive word is also primitive, hence the suffix z of u of 
size per(u) is primitive. 

(c) If z is primitive, then the situation presented in the Figure 4 is impossible. 

If y ~ F A C T ( p )  we denote by displ(y) the least integer d such that y = 
p[m - d - [y[ + 1.. m - d] (see Figure 5). 

The crucial point is that if we successfully scan v and the suffix of u of size per(u), 
then we know the shift without further calculations: many comparisons are saved 
and the RF algorithm increases speed in this moment. In terms of the next lemma, 
we save I xl - I zvl comparisons when I xl >-- I zvl.  

Algorithm Turbo_RF 
/* denote t[i + j . . i  + m] by x; it is the last-scanned part of the text; we 

memorize the last prefix u of the pattern; initially u is the empty 
word; */ 

i := 0; u.'= empty; 
whi le  i <_ n - m do 

{ j. '= m; w h i l e j  > [u[ and x ~ F A C T ( p )  d o j : = j -  1; 
i f j  = lul then 

/* we are at the decision point between u and v, after v has been 
successfully scanned */ 

i f  v ~ SUF(p)  then report a match at position i; 
e l se  { scan right-to-left up at most per(u) symbols stopping at a 

mismatch; 
let x be the successfully scanned text; 
i f  Ix] = m - l ul + per(u) then shift := displ(x) 
e lse  shift := RF_shift(x); }; 

e l se  shift:= RF_shift(x); 
i:= i + shift; u := prefix of pattern of length m - shift; } 

end. 

LEMMA 1 (Key Lemma). Let  u, v be as in Figure 3. Assume that u is periodic 
(per(u) <_ [u[/2.). Let z be the suffix of  u of  length per(u) and let x be the longest 

factor y 

displ(y) 

Fig. S. Displacement of factor y in the pattern. 
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suffix of uv that belongs to FACT(p).  Then 

zv ~ FACT(p)  implies RF_shift(x) = displ(zv). 

PROOF. It follows from the definition of per(u), as the smallest period of u, and 
the periodicity of u that z is a primitive word. The primitivity of z implies that 
occurrences of z can appear from the end of u only at distances which are multiples 
of per(u). Hence, displ(zv) should be a multiple of per(u), and this easily implies 
that the smallest proper suffix of uv which is a prefix of p has size l uv[ - displ(zv). 
Hence, the next shift in the original RF algorithm is shift = displ(zv). [] 

We need to explain how we add only a constant memory to the RF algorithm. 
The variables u and x need only pointers to the text. The values of displacements 
are in the data structure which represents FACT(p); similarly, the values of periods 
per(u) for all prefixes of the pattern are precomputed with the representation of 
FACT(p)  and read-only in the algorithm. In fact, the table of periods can be 
removed and values of per(u) can be computed dynamically inside the Turbo_RF 
algorithm using constant additional memory. This is quite technical and is 
explained in the Appendix. 

THEOREM 2. On a text of length n, the Turbo RF algorithm runs in time 
O(n.log [A[) for arbitrary alphabets. It makes at most 2 .n  inspections of text 
symbols. 

PROOF. In the Turbo_BM algorithm at most per(u) symbols of u are scanned. 
Let extra_cost be the number of symbols of u scanned at the actual stage. Since 
the next shift has length at least per(u), extra_cost <_ next_shift. Hence, all extra 
inspections of symbols are amortized by th toal sum of shifts, which gives at most 
n inspections. The symbols in parts v are scanned for the first time in a given stage. 
They are disjoint in distinct phases. Hence, they also give at most n inspections. 
The work spent inside segments u, and inside segments v, is thus bounded by 2" n. 
This completes the proof. [] 

3. Two Other Variations of Algorithm Turbo_RF Assume that we are at a 
decision point when we have just finished scanning v (see Figure 6). At this moment, 
we know that the part of the text immediately to the left is a prefix u of p of size 
m - [vl. Denote by nextpref(v) the longest suffix of uv that is a proper prefix of p, 
and that is longer than v. If there is no such suffix, then denote the corresponding 
value by nil. The next RF_shifi will be equal to m - Inextpref(v) l. The next value 
of u will be nextpref(v). All these elements are uniquely determined by v. Hence, 
after suitable preprocessing of the pattern no symbols of u need to be read. The 
algorithm will make at most n inspections of text symbols against the pattern. 
However, the complexity is affected by the computation of nextpref(v). 

There are at least two possible approaches. One is to precompute a data 
structure which allows the computation at the kth iteration of the value of 
nextpref(v) in a time cost'k such that the sum of all cost'k'S is linear. The second 
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Fig. 6. We keep the prefix u of the pattern in memory. If u is periodic, then at most per(u) 
symbols of u are scanned again, however, this extra work is amortized by the next shift. The symbols 
of v are scanned for the first time. 

possible solution is to preprocess the pattern in such a way that the value of 
nextpref(v) can be computed in constant time. 

Technically, it is convenient to deal with suffixes. Denote p ' =  pR. We look 
at the computation of nextpref from a "reverse" perspective. Let nextsuf(v) = 
(nextpref(v)) R. In other words, nextsuf(v) is the longest prefix of vRu R, which is a 
suffix of p', where u is the suffix of p' of length m - I v l .  

In both approaches we present the set FACT(p') by the suffix tree T. The edges 
of this tree are labeled by factors of the text represented by pairs (start-position, 
end-position). We take the compacted suffix tree for p'$, in the sense of [Ap], then 
we cut off all edges labeled by $. Afterward, each suffix of p' is represented by a 
node of T. Figure 7 shows an uncompacted suffix tree and a (compacted) suffix 
tree. The term "compacted" is omitted later. Call the factors of p', which 
correspond to nodes of T, the main factors. The tree T has only a linear number 
of nodes, hence, not all factors of p' are main. Nonmain factors correspond to a 
point on an edge of T. For a word v denote by repr(v) the node of T corresponding 
to the shortest word v' which is an extension of v (possibly v = v'). For example, 
the whole string p' is a main factor, and for p' = aabbabd we have repr(aa) = p'. 

[ 2 , 7 ~  

@| |174 

starting position of a suffix 

Uncompacted suffix tree Tl(p) Suffix tree/'(p) 
Compact version of Tl(p) 

Fig. 7. The uncompacted tree and the suffix tree T for p' = aabbabd. Each factor corresponds to a 
node in the first tree. Call the factors corresponding to the nodes in the suffix tree main nodes. The 
representative repr(v) of the word v is the first descendant of v in the first uneompacted tree which is 
a node in the suffix tree. 
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The First Approach. Let P be the failure function of p, see [KMP] .  The value 
P(j) is the length of the longest proper suffix of p [1 . . j ]  which is also a prefix of 
it (it is called a border). Assume that P is precomputed. Let j = m - J v[. Let suf(k) 
denote the node corresponding to the suffix of size k. Then it is easy to prove the 
following fact: 

I nextsuf(v)[ 
= MAX{k /k  = [v] + ph(j) and suf(k) is a descendant of repr(vR), for h >_ 0}. 

If the set on the right side is empty, then nextsuf(v) = nil. 
We can check whether suf(k) is a descendant of repr(v R) in a constant time, after 

preprocessing the suffix tree T. We can number the nodes of the tree in a depth 
first search order. Then the nodes which are descendants of a given node form an 
interval of consecutively numbered nodes. Associate such an interval with each 
node. The question about descendants is then reduced to the inclusion of an integer 
in a known interval. This can be answered in a constant time. This gives the 
Turbo_RF'  algorithm presented above. 

Algorithm Turbo_RF'  
/* denote t[i + j . .  i + m] by x, it is the last-scanned part of the text, we 

remember the last prefix u of the pattern; initially u is the empty 
word; */ 

i := 0; u := empty; 
w h i l e  i < n - m do  

{ j : =  m; whilej > lul and x E F A C T ( p )  d o j : = j  - 1; 
i f j  = l ul t h e n  

/* we are at the decision point between u and v, after v has been 
successfully scanned */ 

if v ~ SUF(p) then report a match at position i; 
else { compute MIN{k /k  = Ivl + ph(j) and suf(k) is a descendant 

of repr(vR), h >_ O}; 
if k ~ nil t h e n  shift:= m - k; else shift:= RF_shift(v); } 

else shift := RF_shift(x); 
i := i + shift; u := prefix of pattern of length m - shift; } 

end.  

THEOREM 3. The Turbo_RF' algorithm finds all occurrences of a pattern of length 
m in a text of length n in O(n) time. It makes at most n inspections of text symbols 
against the pattern. The total number of iterations ph(j) done by the algorithm does 
not exceed n. The preprocessing time is also linear. 

PROOF. We have already discussed the preprocessing phase. Each time we make 
an iteration of type ph(j) the pattern is shifted to the right of the text by at least 
one position, hence there are at most n such iterations. This completes the 
proof. []  
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The Second Approach. Here we considerably improve the complexity of the 
search phase of the algorithm. This increases the cost of the preprocessing phase 
which, however, remains linear. In the Turbo_RF'  algorithm, at a decision point, 
we sometimes have to spend linear time to make many iterations of type ph(j). 
In this new version we compute the shift in constant time. It is enough to show 
how to preprocess the suffix tree T for p' to compute nextsuf(v) for any factor v 
of p' in constant time whenever it is needed. 

First we show how to compute nextsuf(v) for main factors, i.e., factors corre- 
sponding to nodes of T. Let us identify the main factors with their corresponding 
nodes. The computation is in a bottom-up manner on the tree T. 

Case of  a bottom node: v is a leaf. 
nextsuf (v) = nil; 

Case of  an internal node: 
assume v has sons vt, v2,. . . ,vq, then a son vj exists such that 
nextsuf(v) = nextsuf(v~) or, if vj is a leaf, then nextsuf(v) = vj. 

We scan the sons vi of v and, for each of them, we check if nextsuf(vj) or vj is 
a 9ood candidate for nextsuf(v). We choose the longest good candidate, if there is 
one. Otherwise the result is nil. 

The word v is a prefix of each of the candidates. What exactly does it mean for 
a word y, that has v as a prefix, to be a good candidate? Let u be the prefix of 
the pattern p of length m - I v l. The candidate y is good iff the prefix of y of length 
[Y[ - F vl is a suffix of u (see Figure 8). This means that the prefix of the pattern 
which starts at position [u] - ([y] - Iv[) continues to the end of [u[. We have to 
be able to check this situation in constant time. 

It is enough to have a table PREF such that, for each position k in the pattern, 
the value PREF[k] is the length of the longest prefix of p which starts at position 
k in p. This table can be easily computed in linear time as a side effect of the 
Knuth-Morr i s -Pra t t  string-matching algorithm. After the table is computed, we 
can check for each candidate in 0(1) time if it is good or not. For  nodes which 
are not main, we set nextpref(v) = y, where y = nextpref(repr(vR)), if y is a good 
candidate for v, i.e., PREF[k] >_ lu[ - k, where k = [u[ - ([y[ - Iv[). 

Hence, after preprocessing we keep a certain amount  of additional data: the 
suffix tree, the table of nextpref(v) for all main nodes of this tree, and the table 
PREF. Anyway, altogether this needs only linear-size memory, and is later 
accessed in a read-only way. 

prefix of pattern factor of pattern 

I u I v I 
I I I 

candidate y 
prefix of pattern 

Fig. 8. The candidate y is good iff PREF[k] > lu l  - k,  where k = lu l  - ([y[ - [v[). 
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THEOREM 4. The pattern can be preprocessed in linear time in such a way that the 
computation of the RF_shift in the Turbo_RF algorithm can be accomplished in 
constant time whenever it is needed. The data strucure used in the preprocessing 
phase is read-only at the search phase. Only a constant read-write memory is used 
at search phase. 

Denote by Turbo_RF" the version of the Turbo_RF algorithm in which the 
computation of  the RF_shift is computed at decision points according to Theorem 
4. The resulting Turbo_RF'  algorithm can be viewed as an automata-oriented 
string matching. We scan the text backward and change the state of the automaton. 
The shift is then specified by the state of the automaton where the scanning stops. 
Applying this idea directly gives a kind of Boyer-Moore  automaton of polynomial 
(but not linear) size [L]. However, it is enough to keep in memory only a linear 
part of such an automaton (implied by the preprocessing referred in the theorem). 

4. The Analysis of the Average-Case Complexity of the Algorithm RF and Its 
Versions. Denote by r the size of the alphabet. Assume r > 1, and log m < 3" m/8 
(all logarithms are to base r). We consider the situation when the text is random. 
The probability of the occurrence of a specified letter on the ith position is 1/r 
and does not depend on letters on other positions. 

THEOREM 5. The expected time of the RF algorithm is O(n.log(m)/m). 

PROOF. Let Li be the length of shift in the ith iteration of the algorithm and let 
S~ be the length of substring of the pattern that is found in this iteration. Examine 
the first iteration of the algorithm. There are no more than m subwords of the 
pattern of length 2. log m and there a r e  r 2 ' l ~  = m 2 possibilities of words that we 
read from the text which are all equally probable. Thus, with probability greater 
than (or equal to) 1 - 1/m, $1 < 2" log m, so L 1 > m - 2. log m > m/4. Let us call 
the ith shift long iff L i >_ m/4 and short otherwise. 

Divide computations into phases. Each phase ends on the first long shift. This 
means that there is exactly one long shift in each phase. It is obvious (by the 
definition of the long shift) that there are O(n/m) phases in the algorithm. We now 
prove that an expected cost of each phase is O(log m). 

CLAIM 1. Assume that shifts i and i + 1 are both short. Then with probability more 
than 1/2, the (i + 2)th shift is long. 

PROOF. If the ith and (i + 1)th shifts are both short, then the pattern is of the 
form V(wv)ksz where k > 3, w, z r e, [wv[ = Li+ 1, and [szl = Li (s may be equal to 

when L i < L i + 1). Without loss of generality we can assume that wv is the minimal 
period of v(wv) k in such a sense that if there exists a word w'v' such that 
v(wv) k = v'(w' v') k' and I w'v'l <_ I wvl, then w' v' = wv. We can also assume (eventually 
changing wv and k) that (wv) k and sz do not have a common prefix. Now we have 
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[ wv[ < L i + 1 and I sz [ < L i. A suffix of the read part of the text is of the form (wv)ks, 
and we have A = min(L i + 1, Li) new symbols to read in the (i + 2)th iteration. Let 
y be a random word of length A to be read. Note that I zl _< [yl. The question is 
what is the probability that wvsy is a substring of the pattern. It is easy to see 
that if wvsy is a substring of V(wv)ksz, then y must be either equal to pref(z) if s ~ e, 
or pref((wv)lsz) otherwise, so there is at most A possibilities of such a y because 
the length of y is fixed. Thus the probability that reading A new symbols leads to 
a long (longer than Li + Li+ 1 which is less than 2" m/4) substring of the pattern 
is not greater than A/r  a < 1/2. So, with probability _> 1/2, Li+ 2 = m - Pi+2 > 
m - S i + 2 >- m/2 > m/4. This completes the proof of the Claim 1. []  

CLAIM 2. The probability that the kth shift o f  the phase is short is ~ 1/2 for  k >_ 3. 

PROOF. The assumptions say that the (k - 1)th and (k - 2)th shifts are also short, 
so by Claim 1 the kth shift is long with probability > 1/2. This completes the proof 
of Claim 2. []  

We now end the proof of Theorem 5. Let X be the random variable which is 
the number of short shifts in the phase. What can we say about the distribution 
of X? 

Pr(X : 0) >__ 1 - 1/m, 

Pr(X = 1) < 1/m, 

Pr(X = 2) < 1/m, 

Pr(X = 3) < 1/2 .m,  

Pr(X = k) < 1/2 k-  2rn for k > 2 .  

Let Y be the random variable which is a cost of the phase. Y is a function of the 
random variable X and Y < 2. log m + X" m. 

E(Y)  < 2 . log  m Pr(X = 0) + (2. log m + m) Pr(X = 1) 

+ ~ Pr(X = k)(2.1og m + k . m )  
k = 2  

< O(log m) + 2"log m/m y'  1/2 k - z  + ~ k/2 k - z  = O(log m). 
k = 2  k = 2  

This completes the proof of Theorem 5. [] 

5. Speeding up the Boyer-Moore Algorithm. The linear-time complexity of the 
Boyer-Moore  algorithm [BM] is quite nontrivial. The first proof of the linearity 
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of the algorithm appeared in [KMP].  However, it needed more than a decade for 
full analysis. Cole has proved that the algorithm makes at most 3" n comparisons, 
see [Co], and that this bound is tight. The "mysterious" behavior of the algorithm 
is due to the fact that it forgets the history and the same part of the text can be 
scanned an unbounded number of times. The whole "mystery" disappears when 
the whole history is memorized and additional O(m)-size memory is used. Then 
in successful comparisons each position of the text is inspected at most once. The 
resulting algorithm is an elegant string-matching algorithm (see [AG]) with a 
straightforward analysis of the text-searching phase. However, it requires more 
preprocessing and more tables than the original BM algorithm. In our approach 
no extra preprocessing is needed and the only table we keep is the original table 
of shifts used in the BM algorithm. Hence, all extra memory is of a constant size 
(two integers). The resulting Turbo_BM algorithm forgets all its history except 
the most recent one and its behavior again has a "mysterious" character. Despite 
that, the complexity is improved and the analysis is simple. 

The main feature of the Turbo_BM algorithm is that during the search of the 
pattern, one factor of the pattern that matches the text at the current position is 
memorized (this factor can be empty). This has two advantages: 

- - I t  can lead to a jump over the memorized factor during the scanning 
phase. 

- - I t  allows the execution of what we call a Turbo_shift. 

We now explain what a Turbo_shift is. Let x (match) be the longest suffix of p 
that matches the text at a given position. Also, let y (memory) be the memorized 
factor that matches the text at the same position. We assume that x and y do not 
overlap (for some nonempty word z, yzx is a suffix of p). For different letters a 
and b, ax is a suffix of p aligned with bx in the text (see Figure 9). The only 
interesting situation is when y is nonempty, which occurs only immediately after 
a BM_shift (a shift determined by the BM_shift function). Let shift be its length. 
A Turbo_shift can occur when x is shorter than y. In this situation ax is a suffix 
of y. Thus a and b occur at distance shift in the text. However, suffix yzx of p has 
period shift (by definition of the BM_shift), and thus it cannot overlap both 
occurrences of letters a and b in the text. As a consequence, the smallest valid shift 
of the pattern is [Yl - Ix I, which we call a Turbo_shift. 

memory match 

text , L ~  ~ ~ ~ ~,~t a L~::~  ~:~ ~i! I b [~,~ .................... i] 
i[ ', z+J , 

pattern I ~iliiii!iii~!ii~!~l~i~iii~i~] a [i!ii~iiiiii~iiii] ] [~:.'~...~ii~ 

turbo_shift ', 
| 

::'::::'::":::'::'::::::::'::::::::::::: a '==:========='=::==::=====:'=:= a ~'~"~'~:~ 

Fig. 9. Turbo_shift is memory-match. Distinct letters a and b in text are at distance h, and h is a period 
of the fight part  of pattern. 
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memory match 
_ _ _  , I}++++++ ++++m p++++++~++, .lb.[++++++++.++ 

i i , l + J  , 

patter. I ' ~+++~M+~+IM++++++++ a+++?+M++++++++| l,a [+++++.++++d +++~++++++++++ 
j 

turbo_shift t 
i ~+m:::::++:m+mm:+++:++" a +m:+:+++:~::::~:m++ 

Fig. 10. Turbo_shift is memory-match. Distinct letters a and b in text are at distance h, and h is a period 
of the right part of pattern. 

In the Turbo_BM algorithm the length of the shift is 

shift = max(BM_shif t(x) ,  Turbo_shift). 

From the analysis of the BM algorithm itself, and the above computation 
of shifts, it is straightforward to derive a correctness proof  of the Turbo_BM 
algorithm. 

In the Turbo_BM algorithm below, the reader can note that, in case a BM_shift 
does not apply, the length of the actual shift is made greater than the length of 
the matched suffix x. The proof  of correctness of this fact is similar to the above 
argument and is explained in Figure 10. 

A l g o r i t h m  Turbo_BM 
i .'= 0; memory :-- 0; 
w h i l e  i _< n - m do  

{ j : = m ;  
while j > 0 a n d  x in SUF(p)  do  

if memory # 0 a n d  j = m - shift then  j . .= j - memory 
else j : =  j -  1; 

if x = p t h e n  report match at position i; 
Turbo_shift:= memory - match; /* match = Jxf - 1 */ 
if T u r b o s h i f t  > BM_shi f t [ j ]  t h e n  

{ i := i + max(Turbo_shift ,  match + 1); memory := O; } 
else 

} 
end.  

/* reversed-suffix string matching */ 

/* jump */ 

{ i.'= i + BM_shi f t [ j ] ;  memory := min(m - shift, match); } 

THEOREM 6. The search phase o f  the Turbo_BM algorithm is linear. I t  makes at 
most 2" n comparisons. 

PROOF. We decompose the search into stages. Each stage is itself divided into 
the two operations: scan and shift. At stage k we call SUfk the suffix of the pattern 
that matches the text and SUfk its length. It is preceded by a letter that does not 



Speeding Up Two String-Matching Algorithms 261 

match the aligned letter in the text (in the case SUfk is not the p itself). We also 
call shiftk the length of the shift done at stage k. 

Consider three types of stages according to the nature of the scan and of the 
shift. We say that the shift at stage k is short if 2" shiftk < SUfk + 1. The three types 
are: 

(i) A stage followed by a stage with jump. 
(ii) A stage with long shift, not followed by a stage with jump. 

(iii) A stage with short shift, not followed by a stage with jump. 

The idea of the proof is to amortize comparisons with shifts. We define cost  k as 
follows: 

- - I f  stage k is of type (i), cost  k = 1. 

- - I f  stage k is of type (ii) or (iii), cost  k = SUfk + 1. 

In the case of a type (i) stage, the cost corresponds to the only mismatch 
comparison. Other comparisons done during the same stage are reported to the 
cost of next stages. The total number of comparisons executed by the algorithm 
is the sum of the costs. We want to prove Ecos ts  < 2" Xshif ts .  In the second E the 
length of the last shift is replaced by m. Even with this assumption, we have 
Eshi f ts  _< I t l, and, if the above inequality holds, so is the result, Ecos t s  < 2" I t l. 

For stage k of type (i), cost  k ( = 1) is trivially less than 2- shiftk, because shift  k > O. 
For stage k of type (ii), costk = SUfk + 1 <_ 2" shift  k, by definition of long shifts. 

It remains to consider stages of type (iii). Since in this situation we have 
shif t  k < SUfk, the only possibility is that a BM_shift is applied at stage k. Memory 
is then set up. At the next sgage, k + 1, the memory is not empty, which leads to 
a potential turbo-shift. The situation at stage k + 1 is the general situation when 
a turbo-shift is possible (see Figure 11). Before continuing the proof, we first 
consider two cases and establish inequalities (on the cost of stage k) that are used 
later. 

Case  (a): SUfk+Shiftk<__lp[.  By definition of the turbo-shift, we have 
SUfk --  SUfk+ l < shiftk+ 1. Thus, 

COStk = SUfk + 1 <_ sufk + l + shiftk + l + 1 <_ shiftk + shiftk + l. 

Case  (b): SUfk + s h i f t  k > [p]. By definition of the turbo-shift, we have SUfk+a + 

shiftk + shiftk + 1 > m. Then 

cost  k ~ m <_ 2 " s h i f t  k - 1 + s h i f t k  + 1. 

We can consider that at stage k + 1 Case (b) occurs, because this gives 
the higher bound on cost  k (this is true if shiftk > 2; the case shiftk = 1 can be 
treated directly). If stage k + 1 is of type (i), then eostk+ 1 = 1, and then 
costk + e o s t k + l  < 2 " s h i f t k  + s h i f t k + l ,  an even better bound than expected. If 
at stage k +  1 we have SUfk+l < s h i f t k + l ,  then we get what was expected: 
eostk + COStk + 1 <-- 2" shift  k + 2" shif t  k + 1. 
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SUfk SUlk+ 1 

~x7 - [ii~NiiNi~i!iiiiiii~!iNiiiNiNiii!Niiiiiii!~i~ii~!!ii~NI I blNiNi~i~i~?iN 
, 

pattern [!iiiii!ii~iiii~#iiiiii!~ii~!ii~i~i~i~ii~iii~!i~i~:~iii~iii!iiiiiiiiii~iii~iiiiiiii!!i!~!iii!~ '-'~- shiflk ~ 
i | 

I ' [ii,,ii,~,~:>~i!i~i!!ii!i~{iiii~!~!iiii~iiii!i{iiiii:iiii,,i!~ a ................ 

I ! 
shift k+ 1 

CASE (A) 

p,~tt~r,, [Ni~i!iiiiiiiiii~!iiiii~ti~iN~iiiiiiii:~i~iiNNiiiiiNii!iiii!~!i~Niiiiii ~ ~h/~, 
$ / 

[i!ili~iiii~NiiiNN~!iiii!iiiiil a [!iiiii~i~!~i Niii I a [~:.~iii~iiii~ii~:i}~] ~'~ shiftk+ ~ 

I I 
CASE (n) 

Fig. 11. Costs of stages k and k + 1 correspond to the shadowed areas plus mismatches. If shift k is 
small, then shiftk + shift,+~ is big enough to amortize the costs partially. 

The last situation to consider is when, at stage k + 1, we have SUfk + 1 > sh i f t k  + ~. 

This means, as previously mentioned, that a BM-shift is applied at stage k + 1. 
Thus, the above analysis also applies at stage k + 1, and, since only Case (a) 
can occur then, we get costk  + 1 ~ sh i f tk  + 1 + shif tk + 2 . We finally get c o s t  k + 

cos tk  + 1 <_ 2 " s h i f t  k + 2 " sh i f t k  + l + sh i f t k  + 2. 

The last argument proves the first step of an induction: if all stages k to k + j 
are such that SUfk > sh i f t k ,  . . . , SUfk + j > sh i f t k  + j ,  then 

cos t  k + . . .  + COStk+j <_ 2 " s h i f t  k + . . .  + 2 " s h i f t k +  j -]- sh i f tk+j+ i. 

Let k' be the first stage after stage k such that SUfk, < sh i f t k , .  Integer k' exists because 
the contrary would produce an infinte sequence of shifts with decreasing lengths. 
We then get 

COSt k + "'" + COSt k, <_ 2 " s h i f t  k + "'" -]- 2" shif tk, .  

Which shows that Z c o s t  k ~ 2"  ]~shiftk, as expected. [ ]  

REMARK (On the Additional Application of Occurrence Shifts in the Turbo_BM 
Algorithm). In the Turbo_BM algorithm we deal only with match shifts of the 
BM algorithm. If the alphabet is binary, then occurrence shifts in the BM algorithm 
are useless. Generally, for small alphabets the occurrence heuristics have little 
effect. For  bigger alphabets, we can include the occurrence shifts in the algorithm. 
The version of Turbo_BM including occurrence shifts is given below. In case an 
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memory 

match_shift 

match_shift 
! 

b ~ a ~ match 
I 

I I match_shift is a period of this 
segment 

I 

c a  m a t c h  i 

these two segments cannot overlap 

Fig. 12. Ifoccshift > match_shiftor if Turbo_shift > matchshift, then there is a symbol b in the pattern 
such that a # b. We then have an additional Turbo_shift of size add-shift = Imatchl = Ixl - 1. 

occurrence shift is possible, the length of  the shift is made greater than match. This 
is similar to the case where a turbo-shift  applies. The p roof  of  correctness is also 
similar, and is explained in Figure 12. 

The match  shift of  B o y e r - M o o r e  is a period of  the segment match of the text 
(Figure 12). At the same time we have two distinct symbols a, b whose distance 
is the period of  the segment. Hence we know that  the shift is at least match + 1. 
This shows that  Theorem 6 is still valid for the T u r b o _ B M  algori thm with 
occurrence shifts. 

Algori th  T u r b o _ B M  with occurrence shifts /* reversed-suffix string matching */ 
i :=  0; memory :=  0; 
while i < n - m do 
{ j : = m ;  

while j > 0 and x in SUF(p)  do 
i f  memory ~ 0 and j = m - shift then j :=  j - memory /* j u m p  */ 
e l s e j : = j -  1; 

i f  x = p then report  match  at posit ion i; 
Turbo_shift :=  memory-match; /* match = I xl - 1 */ 
shift :=  max(BM shift[j], BM-occ-shift[j],  Turbo_shift); 
i f  shift > BM_shif t  then 

{ i : =  i + max(shift, match + 1); memory :=  0; } 
else 

{ i : =  shift; memory :=  min(m - shift, match); ) 
) 
end. 

THEOREM 7. The Turbo_BM algorithm with occurrence shifts makes at most 2.  n 
comparisons. 
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Table 1. Experiments on a binary alphabet. 

m BM TRF 

2 1.0014 0.9178 
3 0.9728 0.8528 
4 0.9236 0.8055 
5 0.8589 0.7491 
6 0.8002 0.6936 
7 0.745 0.6397 
8 0.6989 0.5901 
9 0.6594 0.5446 

10 0.6261 0.5049 
20 0.4446 0.2932 
30 0.3867 0.2142 
40 0.35 0.168 
50 0.3228 0.1403 
60 0.2977 0.121 
70 0.2781 0.1074 
80 0.2652 0.0969 
90 0.2587 0.0871 

100 0.2481 0.0801 

6, Experimental Results. In this section we present experiments done on 
the Turbo_RF algorithm versus the BM algorithm. This shows the good 
behavior of the Turbo RF algorithm, that seems faster than the fastest practical 
algorithm. 

Experiments to count the number of inspections are done on characters of the 
text. We have implemented both algorithms in C language. We use the binary 
alphabet {0, 1}. The text, randomly built on this alphabet, has length 15,000 
(49.59% of 0 and 50.41% of 1). We search for all the patterns of length from 2 to 
7. For longer patterns we search for 100 different patterns randomly chosen. The 
values given in Table 1 are the average numbers of inspections, c, for all symbols 
of the text, and all considered patterns. Table 1 is translated into Figures 13 and 14. 

1,2 

I 

0,8 

c 0,6 

0,4 

0,2 

0 

Binary alphabet 

n ~  m 

I I I I ' I I I I 

2 3 4 5 6 7 8 9 10 

m 

Fig. 13. Experiments for short patterns (11, the BM algorithm; D, the Turbo_RF algorithm). 
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0,7 T Binary alphabet 

0,6 ~ N ~  
0,5 

c 0,4 
0,3 

0,2 

0,1 

0 I I I I I ' I I I I 

10 20 30 40 50 60 70 80 90 100 
m 

Fig. 14. Experiments for long patterns. (U, the BM algorithm; [7, the Turbo_RF algorithm). 

These results show that, for a binary alphabet, the Turbo_RF algorithm is 
always better than the BM algorithm. It even achieves a score less than ~o for 
patterns longer than 80 characters. These experimental results confirm the theoreti- 
cal properties of the Turbo_RF algorithm. 

The Remark in Section 5 and the Appendix both show flexibility of the RF and 
Turbo_BM algorithms. Many changes and improvements are possible, probably 
the most interesting is the possibility of the extension for multipattern matching. 
We believe that the RF algorithm is a practical algorithm. It is usually extremely 
fast. The constant coefficient is small. A reasonable number of computer experi- 
ments performed so far support the claim. 

Appendix. Computation of Periods in the Turbo_RF Algorithm. We show how 
the period of the prefix u of the pattern can be computed dynamically in the 
Turbo_RF algorithm. This means that the table of periods for all prefixes of the 
pattern need not be precomputed nor stored through the algorithm. 

The general situation is as follows: We have to recognize a prefix u of the text 
and we are scanning the portion v of the text which consists of m - l ul characters 
at the right of u. Let u = (ul%)rul with luw21 = per(u). 

Case 1: A mismatch appears when scanning for u2ulv. In this situation the period 
of the new prefix can be computed with the difference of the two last positions 
where the pattern can start (see Figure 15). 

Case 2: No mismatch appears when scanning for uzulv. 

Case 2.1: I vl s per(u). In this situation the period of the new prefix is equal to 
per(u) because this new prefix is also a prefix of u greater than per(u) (see Figure 16). 

Case 2.2: [vl > per(u). Let L be the length of the path between the start state 
and the last final state encountered when scanning for u2ulv in the automaton. 

Case 2.2.1: L > Iv[. In this case L must be equal to Ivl + lull because L > Iv[ 
means that the beginning of the pattern is in u2ul and by the minimality of 
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pattern 

text 

Fig. 15. A mismatch occurs while scanning u2u~v. 

i 
i 

i 

J :::::: 

l u~ lu:l u, lu~ l u~ l u~ l u~ I 
pattern ' i 

text ' , 

: : :  ] U 1 [U2 j U 1 lu2 [  U 1 [U2 [ U 1 [ v [ 

Fig. 16. Iv[ < per(u). 

l ui l u21 u, l u2 l ul l u~ l ul I 
pattern , 

text 

- - ' 1  "1 lull  ut I~1 .~, lu2J u~ I 'v I . . . . . .  

L 

Fig. 17. L > Iv[. 

text 

l~w prefix - - - 

pattern i i 
i i 

shift ', period ~'~'-J I - - -  

i . . . . . .  ] u l  [U2[ Ul lU2I u* lU=l u* I V i . . . . . .  

L 

Fig. 18. L < Jvl. 
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per(u) = lu2ull the beginning of' the pattern must match exactly ulv. Hence the 
period of the new prefix must be equal to per(u) (see Figure 17). 

Case 2.2.2." L < Ivl. In this situation the period of the new prefix is equal to 
m-shift-L (see Figure 18). 

[Ah] 

[Ap] 

[AG] 

[BR] 

[BKR] 

[BBE + ] 

[BM] 

EGo] 

[Cr] 
[G] 

[GO] 

[H3 

[HS] 

[KMP] 

ILl 

[R] 

[Y] 
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