A very fast string matching algorithm for small
alphabets and long patterns
(Extended abstract)

Christian Charras®, Thierry Lecroq!, and Joseph Daniel Pehoushek?

! LIR (Laboratoire d’Informatique de Rouen) and ABISS (Atelier Biologie
Informatique Statistique et Socio-Linguistique), Faculté des Sciences et des
Techniques, Université de Rouen, 76128 Mont Saint-Aignan Cedex, France.
{Christian.Charras,Thierry.Lecroq}@dir.univ-rouen.fr ***
2 JDPeh@aol.com

Abstract. We are interested in the exact string matching problem which
consists of searching for all the occurrences of a pattern of length m in
a text of length n. Both the pattern and the text are built over an al-
phabet X' of size 0. We present three versions of an exact string match-
ing algorithm. They use a new shifting technique. The first version is
straightforward and easy to implement. The second version is linear in
the worst case, an improvement over the first. The main result is the
third algorithm. It is very fast in practice for small alphabet and long
patterns. Asymptotically, it performs O(log, m(m + n/(m — log, m)))
inspections of text symbols in the average case. This compares favorably
with many other string searching algorithms.

1 Introduction

Pattern matching is a basic problem in computer science. The performance of
many programs is determined by the work required to match patterns, most
notably in the areas of text processing, speech recognition, information retrieval,
and computational biology. The kind of pattern matching discussed in this paper
is exact string matching.

String matching is a special case of pattern matching where the pattern is
described by a finite sequence of symbols. It consists of finding one or more
generally all the occurrences of a pattern z = zgz1 - 2,1 of length m in a
text y = yoy1 - - - Yn—1 of length n. Both z and y are built over the same alphabet
X,

String matching algorithms use a “window” that shifts through the text,
comparing the contents of the window with the pattern; after each comparison,
the window is shifted some distance over the text. Specifically, the window has
the same length as the pattern z. It is first aligned with the left end of the text
y, then the string matching algorithm tries to match the symbols of the pattern

*** The work of these authors was partially supported by the project “Informatique et
Génomes” of the french CNRS.



with the symbols in the window (this specific work is called an attempt). After
each attempt, the window shifts to the right over the text, until passing the end
of the text. A string matching algorithm is then a succession of attempts and
shifts.

The aim of a good algorithm is to minimize the work done during each
attempt and to maximize the length of the shifts. After positioning the window,
the algorithm tries to quickly determine if the pattern occurs in the window. To
decide this, most string matching algorithms have a preprocessing phase, during
which a data structure, z, is constructed. z is usually proportional to the length
of the pattern, and its details vary in different algorithms. The structure of z
defines many characteristics of the search phase.

Numerous solutions to string matching problem have been designed (see [3]
and [10]). The two most famous are the Knuth-Morris-Pratt algorithm [5] and
the Boyer-Moore algorithm [1].

We use a new shifting technique to construct a basic and straightforward
algorithm. This algorithm has a quadratic worst case time complexity though
it performs well in practice. Using the shift tables of Knuth-Morris-Pratt algo-
rithm [5] and Morris-Pratt algorithm [8], we make this first algorithm linear in
the worst case. Then using a trie, we present a simple and very fast algorithm
for small alphabets and long patterns.

We present the basic algorithm in Sect. 1. Section 2 is devoted to the linear
variation of the basic algorithm. In the Sect. 3 we introduce the third algorithm
which is very fast in practice. Results of experiments are given in Sect. 4.

2 The basic algorithm

2.1 Description

We want to solve the string matching problem which consists in finding all the
occurrences of a pattern z of length m in a text y of length n. Both z and y
are build over the same finite alphabet X of size . We are interested in the
problem where the pattern z is given before the text y. In this case,  can be
preprocessed to construct the data structure z.

The idea of our first algorithm is straightforward. For each symbol of the
alphabet, a bucket collects all of that symbol’s positions in . When a symbol
occurs k times in the pattern, there are k corresponding positions in the symbol’s
bucket. When the pattern is much shorter than the alphabet, many buckets are
empty.

The main loop of the search phase consists of examining every mth text
symbol, y; (so there will be n/m main iterations). For y;, use each position
in the bucket z[y;] to obtain a possible starting point p of z in y. Perform a
comparison of z to y beginning at position p, symbol by symbol, until there is a
mismatch, or until all match.

The entire algorithm is given Fig. 1.



SKIPSEARCH(z,m, y,n)

1 o Initialization

2 for all symbols s in X

3 do z[s] « 0

4 b Preprocessing phase

5 fori1+<0tom—1

6 do z[z;] + z[z;] U {i}

7 > Searching phase

8 73¢m-—1

9 whilej<n
10 do for all ¢ in z[y;]
11 doif yj—i - yj—itm—1 ==
12 then REPORT(j — i)
13 JJ3+m

Fig. 1. The basic algorithm.

2.2 Complexity

The space and time complexity of this preprocessing phase is in O(m + o). The
worst case time complexity of this algorithm is O(mn). This bound is tight and
is reached when searching for a™~'b in a”.

The expected time complexity when the pattern is small, m < o, is O(n/m).
As m increases with respect to o, the expected time rises to O(n).

3 A linear algorithm

3.1 Description

It is possible to make the basic algorithm linear using the two shift tables of
Morris-Pratt [8] and Knuth-Morris-Pratt [5].

For 1 < i < m, mpNexzt[i] = length of the longest border of zgz; - - -2;_1 and
mpNezt[0] = —1.

For 1 < i < m, kmpNezt[i] = length of the longest border of zgzy - z;_1
followed by a character different from z;, kmpNext[0] = —1 and kmpNext[m] =
m — period(z).

The lists in the buckets are explicitly stored in a table (see algorithm PRE-
KMPSKIPSEARCH in Fig. 3).

A general situation for an attempt during the searching phase is the following
(see Fig. 2):

— j is the current text position;

— i = 2[y;] thus &; = yj;

— start = j — 1 is the possible starting position of an occurrence of z in y;
— wall is the rightmost scanned text position;

~ YstartYstart+1 " Ywall-1 = ToX1 " Tyyqgll_start—1
~ Ywall # Lowall-start-



start wall J

Fig. 2. General situation during the searching phase of the linear algorithm.

The comparisons will be performed from left to right between

YwallYwall+1 " Ystart +m—1

and
Twall-startTwall-start+1 " Tm-1

Let k > wall — start be the smallest integer such that zx # ygqptyr or k =m
if an occurrence of z starts at position start in y.

Then wall takes the value of start + k.

Then compute two shifts (two new starting positions): the first one according
to the skip algorithm (see algorithm ADVANCESKIP in Fig. 5 for details), this
gives us a starting position skipStart, the second one according to the shift table
of Knuth-Morris-Pratt, which gives us another starting position kmpStart.

Several cases can arise:

case 1 skipStart < kmpStart then a shift according to the skip algorithm is
applied which gives a new value for skipStart, and we have to again compare
skipStart and kmpStart;

case 2 kmpStart < skipStart < wall then a shift according to the shift table of
Morris-Pratt is applied which gives a new value for kmpStart, and we have
to again compare skipStart and kmpStart;

case 3 skipStart = kmpStart then another attempt can be performed with
start = skipStart;

case 4 kmpStart < wall < skipStart then another attempt can be performed
with start = skipStart.

The complete algorithm is given in Fig. 6. When an occurrence of z is found
in y, it is, of course, possible to shift by the length of the period of z.
3.2 Complexity

The time complexity of the second algorithm can be easily computed with the
following arguments:



PRE-KMPSKIPSEARCH(z, m)

fori+—1tom—1
do list[i] « z[x[i]]
z[=[1]] « 1

1 o Initialization

2 for all symbols s in X
3 do z[s] « —1

4 list[0] « —1

5 z[z[0]] « O

6

7

8

Fig. 3. Preprocessing of KMPSKIPSEARCH algorithm.

ATTEMPT(start, wall)

1 k « wall — start

2 while k < m and zy = Ywallyx
3 dok«+—k+1

4 return k

Fig.4. Return k > wall — start the smallest integer such that zx # Ygrarigs
or k = m if an occurrence of x starts at position start in y when comparing

YwallYwalls1  Ystartym—1 304 Tyall_ start® wall—startyr =~ Tm-1-

ADVANCESKIP()

1 repeat j« 34+ m

2 until j > n or z[y;] >0
3 ifj<n

4 then i «+ z[y;]

Fig. 5. Compute the shift using the buckets.



KMPSKIPSEARCH(z, m, y, n)

1

© 00~ O Ot i W KN

BOOR R R RN N K M e e e e e e e
SO UL W O O~ U WD~ O

wall + 0
1 —1
7« -1
ADVANCESKIP()
start + 3 —1
while start <n —m
do wall « max(wall, start)
k < ATTEMPT(start, wall)
wall < start + k
itk=m
then REPORT(start)
i « i — period(z)
else i« list[]
if 1 <0
then ADVANCESKIP()
skipStart + 5 —1
kmpStart <+ start + k — kmpNext[k]
k + kmpNest[k]
while not (case 3 or case 4)
> case 1 do if skipStart < kmpStart
then ¢ « list[1]
if 1 <0
then ADVANCESKIP()
skipStart « 5 —1
> case 2 else kmpStart « kmpStart + k — mpNext[k]
k < mpNezt[k]
start « skipStart

Fig. 6. Searching phase of the KMPSKIPSEARCH algorithm.



— during each attempt no comparison can be done to the left of the position
wall, this implies that a text symbol can be compared positively only once.
This gives n positive symbol comparisons;

— each negative symbol comparison implies a shift of length at least one, there
can be at most n — m + 1 shifts;

— the total number of text symbols accessed to look into their bucket is |[n/m].

This gives us a total of 2n + |n/m] — m 4+ 1 symbol comparisons.
The expected time of the search phase of this algorithm is similar to the first
algorithm.

4 A very fast practical algorithm

4.1 Description

Instead of having a bucket for each symbol of the alphabet. We can build a trie
T(z) of all the factors of the length £ = log, m occurring in the pattern z. The
leaves of T'(x) represent all the factors of length £ of 2. There is then one bucket
for each leaf of T'(z) in which is stored the list of positions where the factor,
associated to the leaf, appears in z.

The searching phase consists in looking into the buckets of the text factors
YiYi+1 - - Yj4e—1 for all j = k(m — £+ 1) — 1 with the integer & in the interval
[, (n—¢)/m]].

The complete algorithm is shown in Fig. 7, it uses a function ADD-NODE
given in Fig. 8.

4.2 Complexity

The construction of the trie T'(x) is linear in time and space in m providing that
the alphabet size is constant, which is a reasonable assumption (see [7]). It is
done using suffix links.

The time complexity of the searching phase of this algorithm is O(mn). The
expected search phase time is O(¢(n/(m — £))).

5 Experiments

We tested our three algorithms against three other, namely: the Boyer-Moore
algorithm (BM) [1], the Tuned Boyer-Moore algorithm (TBM) [4] and the Re-
verse Factor algorithm (RF) [6] and [2]. We add to these algorithms a fast skip
loop (ufast in the terminology of [4]) which consists in checking only if there
is a match between the rightmost symbol of the pattern and its corresponding
aligned symbol in the text before checking for a full match with all the other
symbols. For the BM and TBM algorithms we also use Raita’s trick [9] (already
introduced in [5]) which consists in storing the first symbol of the pattern in a
variable and checking if the leftmost symbol of the window match this variable
before checking for a full match with all the other symbols.



ALPHASKIPSEARCH(z, m, y, n)

1 o Initialization

2 root < CREATE-NODE()
3 suffiz[root] + 0
4 height[root] «+ 0
5 b Preprocessing phase
6 node < root
7 fori+Otom—1
8 do if height[node] = £
9 then node + suffiz[node]
10 childNode < child[node, z;]
11 if childNode = ()
12 then childNode + ADD-NODE(node, z;)
13 if height[childNode] = ¢
14 then z[node] + z[node]U {i — £ — 1}
15 node « childNode
16 > Searching phase

17 3 m—{¢
18 whilej<n—/¢

19 do node < root

20 for k< 0Otol—-1

21 do node « child[node, y; 1)

22 if node # 0

23 then for all 7 in z[rode]

24 doif yj—i - yj—itm—1 =7x
25 then REPORT(j — i)
26 jeg+m—£+1

Fig.7. ALPHASKIPSEARCH algorithm.

ADD-NODE(node, s)

1 childNode + CREATE-NODE()
child[node, s] < childNode
height[childNode] « height[node] + 1
suffizNode « suffiz[node]
if suffizNode =0
then suffiz[childNode] < node
else suffizChildNode < child[suffizNode, s]
if suffizrChildNode =
then suffizChildNode < ADD-NODE(suffizNode, s)
suffiz[childNode] « suffizChildNode
11 return childNode

© 0~ O Ot i W N

—_
o

Fig. 8. Add a new node labelled by s along the suffix path.



All these algorithms have been implemented in C in a homogeneous way such
as to keep their comparison significant. The texts used are composed of 500000
symbols and were randomly built. The target machine is a Hyunday SPARC
HWS-5310 running SunOS 4.1.3. The compiler is gcc.

For each pattern length, we searched for hundred patterns randomly chosen
in the texts. The time given in the Table 1 are the times in seconds for searching
hundred patterns.

Running times give a good idea of the efficiency of an algorithm but are very
dependent of the target machine. We also present the number of inspections per
text symbols (Table 2) which is a more theoretical measure.

Table 1. Running times for an alphabet of size 2.

lalgo.\m | 10 [ 20 [ 40 [ 80 [ 160 ][ 320 [ 640 ]
BM 38.05[16.03[11.81]9.46 | 7.47 [ 6.65 | 6.13
TBM 50.61 | 32.16 [30.76|31.11]30.62[31.31[32.77
RF 42.55(14.47]9.82(6.55 [5.77 6.91 [10.77
SKIP 65.27 | 37.27 [35.59]34.98|34.26(33.87(34.66
KMPSKIP |[82.61|61.87 [61.10[60.91]60.70(60.45|61.25
ALPHASKIP|[54.63|19.01 [11.69] 8.07 | 5.87 |4.83 [4.47

Table 2. Number of inspections per symbol for an alphabet of size 2.

lalgo.\m | 10 ] 20 [ 40 | 80 [ 160 | 320 | 640 ]
BM 0.6121 | 0.4505 ] 0.3291 [ 0.2700 [ 0.2104 [ 0.1815 [ 0.1598
TBM 1.2369 | 1.2954 [ 1.2536 | 1.2793 | 1.2499 | 1.2708 | 1.3114
RF 0.5127(0.2942(0.1696/0.0970[0.0560[0.0338] 0.0238
SKIP 1.1980 | 1.0999 [ 1.0502 | 1.0255 [ 1.0138 | 1.0083 | 1.0087
KMPSKIP [ 0.9230{0.8604 | 0.8199 | 0.8028 | 0.7890 [ 0.7931 | 0.7929
ALPHASKIP|[0.7165 | 0.3897 | 0.2103 [ 0.1141 | 0.0630 | 0.0361 [0.0211

The tests show that the algorithm ALPHASKIP is the most efficient for
searching long patterns, both practically and theoretically, when dealing with
small alphabets (it is also the case for an alphabet of size 4).

6 Concluding Remarks

We presented a new string matching algorithm with an expected number of
inspections of text symbols in O(log, m(n/(m —log, m))) where m is the length
of the pattern, n is the length of the text and o is the size of the alphabet. The



algorithm uses a new shifting technique, based on collecting positions of short
substrings of the pattern. The goal is to quickly discover whether and where the
pattern z can occur in a window onto y. This algorithm performs well in both
theory and practice.

This shifting technique can be extended for searching patterns with classes

of symbols or for searching a finite set of patterns.

References

(1]

[10]

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm.
ACM, 20(10):762-772, 1977.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string matching algo-
rithms. Algorithmica, 12(4/5):247-267, 1994.

M. Crochemore and W. Rytter. Text algorithms. Oxford University Press,
1994.

A. Hume and D. M. Sunday. Fast string searching. Software—Practice &
Ezperience, 21(11):1221-1248, 1991.

D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in
strings. STAM J. Comput., 6(1):323-350, 1977.

T. Lecroq. A variation on the Boyer-Moore algorithm. Theoret. Comput.
Sci., 92(1):119-144, 1992.

T. Lecroq. Experiments on string matching in memory structures. Software-
Practice & FEzperience, 28(5):562-568, 1998.

J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm.
Report 40, University of California, Berkeley, 1970.

T. Raita. Tuning the Boyer-Moore-Horspool string searching algorithm.
Software—Practice & Fxperience, 22(10):879-884, 1992.

G. A. Stephen. String searching algorithms. World Scientific Press, 1994.



