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A N e w  
A p p r o a c h  t o  

 earc lin  
S t r i n g  s e a r c h i n g  is a v e r y  i m p o r t a n t  c o m p o n e n t  o f  

m a n y  p r o b l e m s ,  i n c l u d i n g  t ex t  e d i t i n g ,  b i b l i o g r a p h i c  

r e t r i eva l ,  a n d  s y m b o l  m a n i p u l a t i o n .  R e c e n t  s u r v e y s  o f  s t r i n g  
s e a r c h i n g  c a n  be  f o u n d  in  [4, 18]. 

T h e  s t r i n g - m a t c h i n g  p r o b l e m  cons i s t s  o f  f i n d i n g  all o c c u r -  
r ences  o f  a p a t t e r n  o f  l e n g t h  m in  a t ex t  o f  l e n g t h  n. We 

generalize the p r o b l e m  a l l o w i n g  d o n ' t  care s y m b o l s ,  t he  c o m -  
p l e m e n t  o f  a s y m b o l ,  and any f in i t e  class o f  s y m b o l s .  We solve  
th i s  p r o b l e m  fo r  o n e  o r  m o r e  p a t t e r n s ,  w i t h  o r  w i t h o u t  

m i s m a t c h e s .  F o r  sma l l  patterns the w o r s t - c a s e  t i m e  is linear 
i n  t he  size o f  the  t ex t  (we say  t h a t  a p a t t e r n  is sma l l  i f  m 
is b o u n d e d  b y  a c o n s t a n t ) .  

The main idea is to represent the 
state of  the search as a number,  and 
each search step does a small num- 
ber of  arithmetic and logical opera- 
tions, provided that the numbers 
are large enough to represent all 
possible states of  the search. Hence, 
for m ~ w, being w the word size in 
bits of  the computer  used, we have 
an O(n) time algorithm using O(IZI) 
extra space and O(m + lY~I) preproc- 
essing time, where Z denotes the 
alphabet. 

For string matching, empirical 
results show that the new algorithm 
compares favorably with the 
Knuth-Morris-Pratt (KMP) algo- 
rithm [24] for any pattern length 
and the Boyer-Moore (BM) algo- 

rithm [12] for short patterns (up to 
length 6). For patterns with don't 
care symbols and complement  sym- 
bols, this is the first practical and 
efficient algorithm in the literature, 
and it can be generalized to any fi- 
nite class of  symbols or  their com- 
plements. For searches with at most 
k mismatches, this algorithm is 
three times faster than any known 
algorithm for m < 9. 

The main properties of  this class 
o f  algorithms are: 
• Simplicity: The  preprocessing 
and the search are very simple, and 
only bitwise logical operations, 
shifts and additions are used. 
• No buffering: The  text does not 
need to be stored. 

• Real time: The  time delay to pro- 
cess one text character is bounded 
by a constant depending only on 
the pattern length. 

It is worth noting that the BM algo- 
rithm needs to buffer the text. 

All these properties indicate that 
this class o f  algorithm is suitable for 
hardware implementation. For 
these reasons, we believe this new 
approach is a valuable contribution 
to all applications dealing with text 
searching. A preliminary version of  
this article was presented in [9]. 

The Shift-Add Approach to 
String Matching 
Our  algorithm is based on finite 
automata theory, as in the Knuth- 
Morris-Pratt algorithm [24], and 
also exploits the finiteness of  the 
alphabet, as in the Boyer-Moore 
algorithm [12]. 

Let pat be a pattern of  length m, 
and text a text o f  length n. Instead 
of  trying to represent the global 
state o f  the search as previous algo- 
rithms do, we use a vector of  m dif- 
ferent states, where state i tells us 
the state of  the search between the 
positions 1 . . . . .  i of  the pattern 
and positions ( j  - i + 1) . . . . .  j of  
the text, where j  is the current  posi- 
tion in the text. Intuitively, we can 
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think we have m string comparators  
running  in parallel  and reading 
concurrently the same text position. 
This analogy, called bit-parallelism, 
is used to introduce our  approach  
in a recent survey [5]. 

Let sJ be the set of  states (for 1 -< 
i -< m) after reading  the j - th  charac- 
ter of  the text. Namely, sJ is the 
number  of  mismatches between 
paq . . . . .  pati and textj-i+ 1 . . . . .  textj 
(characters that are different  in the 
corresponding positions). Then,  if 
SJm = 0 we have found a match end- 
ing at the current  position in  the 
text. 

Let ababc be the pat tern  (m = 5). 
Suppose we are in position j - 1 in 
the text given in Figure l(a) search- 
ing this pattern.  Figure l(a) gives 
the value o f s U  i. I f  we advance one 
position in the text, we have a new 
value for s J/ (Figure l(b)). Let T[x] 
be a table such that 

Ti[x] = f ~ x = P ati 
otherwise 

The  value for T[a] is given in Fig- 
ure  I. It  is not  difficult to see that 

s~, = sU]  + Ti[textj], 

defining s~ = 0 for all j .  For this 
reason, we call this algori thm the 
shift-add algorithm. 

Assume we have arbi t rary preci- 
sion ari thmetic using a word of  size 
w, and the dependency  of  the cur- 
rent  position j is implicit. Suppose 
we need b bits to represent  each 
individual state si, where as we shall 
see later, b depends  on the search- 
ing problem. Then,  we can repre-  
sent the vector state efficiently as a 
number  in base 2 b by: 

m - I  

statej = ~ s~+l 2b''. 
i=O 

For string matching we need 
only 1 bit (that is b = 1), where si is 0 
if the last i characters have matched,  
or  1 if they have not. Tha t  is, 

sJ = {pa4 . . . . .  pati y~ ? textj-i+ l . . . . .  
text j} 

We have to repor t  a match ifs~, is 0, 
or  equivalently if statej < 2 m-1. 

To update  the state after  reading  

a new character  on the text, we 
must: 

• shift the vector state b bits to the 
left to reflect that we have advanced 
one position in the text. In  practice, 
this sets s)0 to be 0 by default .  
• upda te  the individual  states ac- 
cording to the new character.  For  
this, we use the table T that is de- 
f ined by preprocessing the pat tern  
with one entry per  a lphabet  symbol, 
and an opera to r  op that, given the 
old vector state and the table value, 
gives the new state. Note that  this 
works only if the opera tor  in the 
individual state sJ does not  produce  
a carry that affects state s J+l. 

Then,  each search step changes the 
state using the assignment: 

statej = (statej_] < <b) op T[textj], 

where < <deno tes  the bitwise shift- 
left operat ion.  

The  definit ion of  the table T is 
basically the same for all cases. We 
define 

m--1 

T[x] = ~ 6(x ~ pati+l)26"I, 
i = 0  

for every symbol x of  the alphabet  
~, where 6(C) is 1 if the condit ion C 
is true, and 0 otherwise. An imple- 
mentat ion is presented in a subse- 
quent  section of  this article. 

We need b . m .  iZ] bits of  extra 
memory,  and if the word size w is at 
least b ' m ,  only ]E I words are 
needed.  We set up  the table T by 
preprocessing the pat tern  before  
the search. This can be done in 

o(r-~--b- 1 (m+ IZI))time. 
Example  1: Let {a, b, c, d} be the 

alphabet,  and ababc the pattern.  
Then,  the entries for the table T are 
(one digit  per  position in the pat- 
tern): 

T[a] = 11010 
T[b] = 10101 
T[c] = O l l l l  
T [ d ] =  11111 

A choice for op for the case of  
exact string matching is a bitwise 
logical or. We finish the example  by 

searching for the first occurrence 
of  ababc in the text abdabababc. The  
initial state is 11111. Table 1 pro-  
vides an example  of  this searching 
phase. For  example,  the state 10101 
means that in the current  position 
we have two partial  matches to the 
left, o f  lengths two and four  respec- 
tively. The  match at the end of  the 
text is indicated by the value 0 in 
the leftmost bit of  the state of  the 
search. 

The  complexity of  the search 
time in the worst and average case 

is O ( [ - - ~ l n ) ,  where I - ~ - ]  is the 

time to compute  a constant number  
of  operat ions on integers o f  mb bits 
using a word size of  w bits. In  prac- 
tice (patterns of  length up to the 
word size: 32 or  64 bits) we have 
O(n) worst- and average-case time. 
In the uni form cost RAM model, w 
is O(log2n) where n is the size of  our  
problem (in this case, the size of  the 
text*). The  same applies to the size 
of  the alphabet.  So, we can say that 
our  str ing-searching algori thm has 
O(mn/log n) time and O(m) space 
complexity. 

For  each kind of  pat tern or  
searching problem , we can choose b 
and op appropr ia te ly  (as in next sec- 
tions). A similar idea was presented 
by Gonnet  [ 17] appl ied  to searching 
text using signatures. 

String Matching with Classes 
Now we extend our  pat tern  lan- 
guage to allow don't care symbols, 
complement  symbols and any finite 
class of  symbols. Formally, every 
position in the pat tern  can be: 

• x: A character  from the alphabet  

• *: A don't care symbol which 
matches any symbol. 
• [characters]: A class of  characters, 
for which we allow ranges (for ex- 
ample  a..z). 
• ~:  The  complement  of  a charac- 
ter or  class o f  characters C. Tha t  is, 
this matches any character  that 
does not  belong to C. 

* I n  pract ice ,  wi th  two 32-bit  words  we can 
a dd r e s s  any  conceivable  text.  
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(a) 

(b) 

pattern: a 
pattern: a b 
pattern: a b a 
pattern: a b a b 
pattern: a b a b c 

text :c  b b a b a b a 
J 

pattern: a 
pattern: a b 
pattern: a b a 
pattern: a b a b 
pattern: a b a b c 

text :c  b b a b a b a 
) 

i 
b a b c  1 
a b e  2 
b c  3 
c 4 

5 

b c a b a . .  

i 
0 

b a b c  1 
a b c  2 
b c  3 
c 4 

5 

b c a b a . .  

s/-1 
1 
o 
3 
o 
5 

s/-' T,.ia] s/ 
0.'- M 
1 ~ 0  ~ 0 
0 ~ 1  - - " ~  2 
3 -.~,+~ 0 .~ 0 
0 - , . ~  1 .= 4 
5 " = ' 1  = 1 

F i g u r e  1. E x a m p l e  f o r  t h e  s h i f t - a d d  

For example, the pattern 
[Pp]a~*-d[p . . t v . . z ]  matches the 
word Patter, but not python or Pat- 
ton. Let m' be the size of  the de- 
scription of  the pattern (that is, the 
number  o f  elements in each class, 
with the size o f  * considered 1 and 
with complements not taken in ac- 
count), and m the size of  the pat- 
tern. For the previous example, 
m' = 2 0 a n d m = 6 .  

String matching with don't care 
symbols was addressed before by 
Fischer and Paterson [ 15] achieving 

O(n log 2 m log log m log IX[) 

asymptotic search time, and also by 
Pinter [26] including complement 
symbols (same complexity). How- 
ever, these are theoretical results, 
and their algorithms are not practi- 
cal. Pinter also gives a O(mn) algo- 
rithm that is faster than a naive al- 
gorithm. For small patterns, the 
complexity of  our  algorithm is 
much better, and is much easier to 
implement. A similar class o f  pat- 
terns is considered by Abrahamson 
[1], where a theoretical algorithm 
that runs in 

O(n + mV'-nn log n 1V~g log n) 

T o b l e  1. S t r i n g  s e a r c h i n g  e x a m p l e  

a l g o r i t h m  

time is presented (in this article the 
problem is called "generalized 
string matching"). 

Attempts to adapt the KMP algo- 
rithm to this case have failed [15, 
26], and for the same reason the 
BM algorithm as presented in 
Knuth et al. [24] cannot solve this 
problem. It is possible to use the 
Horspool version of  the BM algo- 
rithm [19], but the worst case is 
O(mn); and on average, if we have a 
don't care character near the end of  
the pattern, the whole idea of  the 
shift table is worthless. By mapping 
a class of  characters to a unique 
character, the Karp and Rabin al- 
gorithm [21] solves this problem 
too. However, this is a probabilistic 
algorithm, and if we check each 
reported match, the search time is 
O ( n + m + m M ) ,  where M is the 
number  o f  matches. Potentially, 
M = O(n), and their algorithm is 
slow in practice, because of  the use 
of  multiplications and modulus 
operations. 

To search for these extended 
patterns, we need only to modify 
the table T, such that, for each posi- 
tion, we process every character in 
the class. That  is, 

text : a b d a b a b a b c 
T[x]: 11010 10101 11111 11010 10101 11010 10101 11010 10101 01111 
state: 11110 11101 11111 11110 11101 11010 10101 11010 10101 01111 

m - I  

T[x] = ~ 6(x q~ Classi+ 1)2 vi, 
i = 0  

where Classi is the class of  charac- 
ters for the ith position of  the pat- 
tern. 

Example 2: Let {a, b, c, d} be the 
alphabet, and a~[ab]b'~-..~ the pat- 
tern. We have m - - 5  and m ' =  8. 
Then,  if b = 1 (as for string match- 
ing), the entries for the table T are: 

T[a] = 11000 
T[b] = 10011 
T i c ] =  11101 
T[d] = 01101 

To maintain O( I -~- ] (m '  + I~;I) ) 

preprocessing time (instead o f  
/ r " l ~  X 

OIl-~-Im' lE 0 time), where m' is 

the size o f  the description o f  the 
pattern, we initially represent T[x] 
in the alphabet as 0 for bit positions 
corresponding to don't care symbols 
and complements. In  the worst case 
m'--O(mlXl); however in practical 
queries m' is similar to m. Figure 2 
shows the preprocessing phase in 
pseudocode for this class of  pat- 
terns, where the notation 
111..0i..111 means a sequence of  ls 
with a 0 in the ith position. The  
search time remains the same. 

We can extend the algorithm to 
Soundex-like classes [23], or to spe- 
cial symbols in the text. For exam- 
ple, if we have don't care symbols in 
the text, we define T[*] = 0. 

S t r i n g  M a t c h i n g  w i t h  
M i s m a t c h e s  
In this section, we allow up to k 
characters of  the pattern to mis- 
match with the corresponding text. 
For example, if k --- 2, the pattern 
mismatch matches miscatch and d/s- 
patch, but not respatch. 

Landau and Vishkin [25] give the 
first efficient algorithm to solve this 
particular problem. Their  algo- 
rithm uses O(k(n + m log m)) time 
and O(k(n + m)) space. While it is 
fast, the space required is unaccept- 
able for practical purposes. Galil 
and Giancarlo [16] improve this 
algorithm to O(kn + m log m) time 
and O(m) space. However, this algo- 
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ri thm uses a static lowest common 
ancestor algorithm over a suffix 
tree. Thus,  the constant involved in 
the linear term is large, being 
slower than the Landau and Vish- 
kin algorithm on practice. Other 
approaches to this problem are pre- 
sented in [6, 8]. 

We solve this problem explicitly 
only for one pattern, but  the solu- 
tion can be easily extended for mul- 
tiple patterns (see the next section). 
In this case one bit is not enough to 
represent each individual state. 
Now we have to count matches or 
mismatches. In  both cases, at most 
O(log m) bits per individual state 
are necessary because m is a bound 
for both, matches and mismatches. 
Note, too, that if we count matches, 
we must complement the meaning 
of ~ in the definition of T. Then,  we 
have a simple algorithm using 

b = rlog2(m + 1)] 

and op being addition. If  sm -< k we 
report a match. Note that this is 
independent  of the value of k. 

Therefore,  since b = O(logm), 
we need O(]Z]m log m) bits of extra 
space. If  we assume we can always 
represent the value of m in a ma- 
chine word, we need O([Y.lm ) words 
and preprocessing time. However 
for small m, we need only O(lE]) 
extra space and O(]E] + m) preproc- 
essing time. For a word size of 32 
bits, we can fix b = 4 and we can 
solve this problem up to m = 8. 

Clearly only O(log k) bits are nec- 
essary to count if we allow at most k 
mismatches. The  problem is that 
when adding we have a potential 
carry into the next state (group of 
bits). Since we can get a round this 
problem by having an overflow bit, 
we remember  if there was overflow, 
but that bit is set to zero at each step 
of the search. In  this case we need 

b = Flog2(k + 1)] + 1 

bits. At each step we record the 
overflow bits in an overflow state, 
and we reset the overflow bits of  all 
individual states (in fact, we only 
have to do this each k steps, but 
such improvement  is not practical). 
The new search algorithm is shown 

in Figure 3. 
Note that if k > m/2, we should 

count matches instead of mis- 
matches (that is, b = O( log(m-  k)) 
if k > m/2). The only problem for 
this case is that it is not possible to 
tell how many errors there are in a 
match. Table 2 shows maximal val- 
ues for m when constrained to using 
a 32-bit word. 

Therefore,  with a slightly more 
complex algorithm, using only 
o(lYlm log k) extra bits, we can solve 
more cases. 

Example 3" Let {a, b, c, d} be the 
alphabet, and ababc the pattern (see 
Example 1 for the values of the 
table T). We want to search for all 
occurrences of ababc with at most 
2 mismatches in the text abdabababc. 
Because the value of b is 3 for 2 mis- 
matches, every position in the state 
is represented by a number  in the 
range 0-4 .  The  initial state is 00000 
and the initial overflow is 44444. 
(See Table 3.) We report  a match 
when the sum of the leftmost digits 
of the state and the overflow is less 
than 3. In  this case, there is a match 
at position 4 with one mismatch 
(detected at position 8), and an- 
other match at position 6 with no 
mismatches (detected at position 
10). 

It is possible to use only b = 
Flog2(k + 1)] bits by performing 
O(log log k) operations in the loop. 
The idea is to add 1 except if each 
b-bit slice has only ones. To detect 
this we use shifts and bitwise-ands. 
For example, if b = 5, we perform 
the operations shown in Table 4, 
where x will have a 0 in the least sig- 
nificant bit of every 5-bit individual 
state if all bits in each 5-bit slice are 
ls, or 1 otherwise. It is not difficult 
to show we need O(log log k) opera- 
tions. For example, if b is 8, we shift 
by 4, 2 and 1 bits. Table 1 also 
shows the maximum value of m for 
this case (w = 32). 

I f  we have mismatches with dif- 
ferent cost, we change the defini- 
tion of T to reflect this. In  this case, 
instead of a number  of mismatches 
k, we have a maximum allowed cost. 
For example, we can define that a 
mismatch between vowels costs 1, 

and that other mismatches cost 2 
(see also [8]). 

Multiple Patterns 
In  this section, we consider briefly 
the problem of string matching 
with classes for more than one pat- 
tern at a time. To denote the union 
symbol we use "+", for example 
pl + P~ matches the pattern p] or 
the pattern P2. 

The  KMP algorithm and the BM 
algorithm have already been ex- 
tended to this case (see [2] and [13] 
respectively), achieving a worst-case 
time of O(n + m), where m is the 
total length of the set of patterns. 

I f  we have to search for pl + 
"'" + Pe, and we keep one vector 
state per pattern, we have an imme- 

l ~  '-I \ 

diate O(]-~-~-]~n) time algorithm 

for a set of ~ patterns, where m ~  = 
maxi(~il). However, we can coalesce 
all the vectors, keeping all the in- 
formation in only one vector state 

Figure 2. Pseudocode for  pre- 
processing of pattern with 
classes 

Figure S. Improved Search algo- 
r i thm for string matching with 
at most g mismatches 
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/r~n_._'] \ 
achieving o / l.)search time, 

with ms,,m = ~'~i[pi]. The disadvan- 
tage is that now we need numbers 
o f  size m,u,, bits, and O(]Y~lmsum) 
extra space. 

In  a similar way, we can extend 
this representation to handle mis- 
matches. 

I m p l e m e n t a t i o n  
In this section we present efficient 
implementation of  the various algo- 
rithms that count the number  o f  
matches o f  patterns in a text using 
single-word integers. Algorithms 
with different actions in case of  a 
match are easily derived from 
them. We also include some experi- 

mental results. 
The  programming is indepen- 

dent of  the word size as much as 
possible. We use the following sym- 
bolic constants and/or variables: 

* MAXSYM: Size of  the alphabet. 
For example, 128 for ASCII code. 
• WORD: Word size in bits (32 in 
our case). 
• B: Number  of  bits per individual 
state (1 for string matching, vari- 
able for string matching with mis- 
matches). 
• EOS: End of  string (0 in C). 

Figure 4 shows an efficient im- 
plementation of  the string-match- 
ing algorithm. Note that the w - m 
leftmost bits o f  the unsigned vari- 

F i g u r e  4.  S h i f t - O r  a l g o r i t h m  f o r  s t r i n g  m a t c h i n g  

#define WORD 32 /* Word size in bits *1 
#define EOS 0 /* End of string */ 
#define B 1 /* Number of bits per state *1 
#define MAXSYM t28 /* Size of the alphabet (ASCII) */ 

Search( text, pattern ) l *  Shift-Or Algorithm for String Searching */ 
register char *text; 
char *pattern; 
{ 

register unsigned int state, lim, first, initial; 
unsigned int T[MAXSYM]; 
int i, j, matches; 

if(strlen(pattern) > WORD ) 
Error( "Use pattern size <= word size" ); 

I *  Preprocessing *1 
for( i=O; i<MAXSYM; i++ ) T[ i ]  = -0; 
lim = O; 
for( j= l  ; *pattern t= EOS; j <<= B ) 
{ 

T[*pattern] &= "j; 
lira I= j; 
pattern++; 

} 
lira = ~(lim >> B); 
/* Search */  
matches = O; 
initial = -0; first = *pattern; 
do { 

while( *text l= EOS && *text l= first ) text++; I *  Scan */ 
state = initial; I*  Initial state */  
do { 

state = (state << B) t T [ * tex t ] ; / *  Next state */  
if( state < lira ) matches++; 

I *  Match at current posit ion-len(pattern)+l */  
text++; 

} while( state I= initial ); 
} whi le(* ( text- f )  ~= EOS ); 
return( matches ); 

ables are always 1. This is to avoid 
one more operation to set them to 0 
in the main loop. Another  imple- 
mentation is possible using op as a 
bitwise logical and operation, and 
complementing the value of  T[x] 
for all x E X. 

Experimental results for search- 
ing 100 times for all possible 
matches o f  a pattern in a 50,000- 
character English text (a legal docu- 
ment) are presented in Table 2. For 
each pattern, a prefix f rom length 2 
to 10 was used (for example, for 
"representative" the queries were 
{"re", "rep", . . . .  "representa"}. 
The  patterns were chosen so that 
each first letter had a different fre- 
quency in English text (from most 
to least frequent). The  timings are 
in seconds and they have an abso- 
lute error  bounded by 0.5 seconds. 
They  include the preprocessing 
time in all cases. 

The  algorithms implemented are 
Boyer-Moore, as suggested by 
Horspool [19] (BMH), which ac- 
cording to Baeza-Yates [3], is the 
fastest practical version of  this algo- 
rithm; Knuth-Morris-Pratt, as sug- 
gested by their authors [24], and 
our  new algorithm (SO) using the 
KMP idea (first scan for the first 
character o f  the pattern.) This ver- 
sion is shown in Figure 4. Note that 
SO and KMP are dependent  on the 
frequency of  the first letter o f  the 
pattern in the text, and that BMH 
depends on the pattern length. 
Another  possible implementation is 
to combine the SO algorithm with 
the BMH algorithm, searching 
from left to right, but jumping  as in 
the BMH algorithm. This idea is 
used in a KMP-BMH hybrid algo- 
rithm [71. 

From Table 5 we can see that SO 
outperforms KMP, being between 
40% and 50% faster. This is true 
only for m -< w. Also it is faster than 
BMH for patterns o f  length smaller 
than 4 to 9, depending on the pat- 
tern (Horspool [19] mentions that 
BMH should be used for m > 5). 
Compared with the grep program 
(Berkeley Unix operating system) 
our  algorithm is between 45% and 
30% faster (see Table 2), in spite o f  

78 October 1992/VoL35, No.10/COMMUNICATIONS OF THE A(~M 



grep using faster input  routines (low 
level). 

Figure 5 shows the execution 
time while searching 1,000 words 
chosen at r andom from the same 
English text. In  this figure, data for 
the brute-force algori thm (try every 
possible position) is also included. 
The  SO algori thm is faster than the 
Knuth-Morris-Prat t  algori thm for 
m < w, and is faster than the Boyer- 
Moore algori thm for small m. Note 
that the SO algori thm requires the 
s a m e  time for pat terns with classes. 

Figures 6 to 8 show the imple- 
mentat ion for pat tern matching 
with at most k mismatches and word 
size 32 bits, using O(log k) bits per  
state. Since the code is similar to the 
exact s tr ing-matching case, this al- 
gor i thm is slightly slower and is 
independen t  of  k for m = 
O(w/log k). Table 6 shows the simu- 
lation results for searching 1,000 
strings o f  the same English text as 
before  for  two values o f  k and small 
values o f  m. We include data for 
three algorithms: a naive algori thm 
that tries every possible position; 
the Landau-Vishkin algori thm 
(using a window of  size O(m ~) to 
process the text, instead of  the 
O(mn) table suggested in the origi- 
nal paper  [25]) and the shift-add 
algori thm for a word size of  32 bits 
(using 4 bits if m < 9, or  O(log k) 
bits otherwise). Data for Galil and 
Giancarlo's a lgori thm are not in- 
cluded because it was even slower 
than the Landau-Vishkin algo- 
ri thm. According to these results, 
the shift-add algori thm is clearly 
faster, even if mult iple word arith- 
metic is necessary for larger  values 
of  m. 

For  mult iple patterns,  the pre- 
processing is very similar to the one 
for classes. The  only change in the 
search phase is the match-testing 
condition: 

if( (state & mask) != mask ) 
/* Match? */ 

where mask has a bit with value 1 in 
the position corresponding to the 
last-state bit of  each pattern.  Note 
that this indicates that a pat tern  
e n d s  at the current  position, and it 

11~blo 2.  M a x i m u m  p a t t e r n  l e n g t h  ( m )  f o r  a 32-bit  w o r d  depending  
o n R  

Bits per 
state 

1 
2 
3 
4 

b = F/og, k 1 + 1  b = r/ogl(k + 1)] 

0 
1 

2-3 
4 

m 

0 32 
1-2 16 
3-5 10 

8 

Table | .  Example for  string searching wi th  mtsmatches 

~ ~ ~ i  ~?~i i~ ~i ~ i ~  ~ , ¸ ~ ~ i ~  ~ ~̧  ̧~i ~ % ~  ~ ̧̧  vi ~ i~w~ ~ . . . . . . . . . . . . . . . . . . . . .  

T [ x ] : l l 0 1 0  10101 1 ! ! ! !  !!019!0!Q1 11010 10101 1:10!010101 01111 

overf: 44440 44400 44000 40000 00000 04000 40000 04000 40000 04000 

Table 4. Improved string searching wi th  mismatches 

x *-((state & 11110(,_])s+,...10611t10) > > 1) & state 
x * - x & ( x > >  2) 
x * - x &  ( x > >  1) 
state *- state + (T[char] & x) 

T~ble S. E x p e r i m e n t a l  r e s u l t s  f o r  prefixes of  4 d i f fe rent  patterns 
( t ime in seconds) 

Pattern: epresentative Pattern: representative 

m BMH KMP SO grep BMH KMP SO grep 

3 25.2 24.3 15.7 21.1 16:2 15.0 13.0 t9;8 

5 17.3 24,3 15.8 21.5 H.0 15~2 13.1 19.6 

7 13.2 24:3 15.7 21.5 9.0 15,3 13.1 19.6 

9 11,6 24.4 15.8 22.0 7~5 15.3 13.3 19.4 

Pattern: legislative Pattern: kinematics 

m BMH KMP SO grep BMH KMP SO grep 
i i i , 

. . . .  ~ ~ ~ ! ~ ; ~  
3 25,6 21.0 12.3 19.3 24.9 19.0 10.5 18.1 

5 16.5 20.6 11.7 19.6 16:7 19.0 10.4 18.5 

7 I2.9 20.5 11.8 19.8 13.0 19:0 10A 18.7 

.... ~ 11.2 20.7 12.1 19.7 10.8 19.0 10.6 18.2 
. . . . . . . . . . .  ~ : ~  ~ . . . . . . . . . .  : ~ j ~  . , ~ , . , ,  , .  ~ 
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is not possible to say where the pat- 
tern starts without wasting 

/ r - 1 . . ~  \ 

O(]~I¢M ) time, where M is the 

number  of  matches and/? the num- 
ber  of  patterns.  

Final  Remarks 
We have presented  a simple class of  
algori thms that can be used for 
string matching and some other  
kinds o f  patterns,  with or  without 
mismatches. These  are the first 
practical algori thms for string 
matching with classes and/or  mis- 
matches. 

The  time complexity achieved is 
l inear for pat tern  lengths smaller 
than the word size in bits, and this is 
the case in most applications. For  
longer  patterns,  we need to imple- 
ment  integer  ar i thmetic of  the pre- 
cision needed  using more  than a 
word per  number .  Still, if the num- 
ber of  words pe r  number  is small, 
our  a lgori thm is a good practical 
choice for string matching with 
classes and/or  mismatches. I f  we 
have large m, we could also use this 
a lgori thm to find a part ial  match, 
and then verify that it is a true 
match with a s impler  algorithm. 
The  runn ing  time will be l inear if  
we have at most O(n/m) matches. 

Using VLSI technology to have a 
chip that uses a register  of  64 or  
128 bits that implements  this algo- 
r i thm for a stream of  text, faster 

Figure S. Exper imen ta l  resu l ts  
for  searching 1,000 s t r ings  in 
Engl ish t e x t  

00 i ' ~ - -  - -  Na-/ve 

8Of ~Boyer -Moore  

60 ~Boyer-Moore-Horspool  

_ . .  

2O 

I I I I I I I ! I I I I I I I I I ~ 1  

2 4 6 8 10 12 14 16 18 20 
Length of the Pattern (m) 

searching times can be achieved. 
The  applications of  these algo- 

r i thms are restricted to main mem- 
ory (text edit ing for example),  or  to 
text databases where a very coarse 
granulari ty index is provided and 
pat tern  matching is done with the 
granules or  within partial  answers. 

This type o (  algori thm can also 
be used for o ther  matching prob-  
lems, for  example  for pat terns  of  
the form (set of patterns)Z*(set of pat- 
terns) (see [26]) where each set is 

one or  more  strings with or  without 
classes, and ~* represents  0 or  
more  arbi t rary  characters. 

Future  research is to extend this 
to o ther  kinds of  errors,  for exam- 
ple the transposit ion of  two charac- 
ters (this opera t ion  also maintains 
the length o f  the string); and  the 
design o f  a hardware  implementa-  
tion. 

Historical Note added in Proof 
This work was done  while both au- 

Table 6. Exper imen ta l  resu l ts  (in seconds) f o r  searching 1,000 
pa t te rns  w i t h  a t  m o s t / ( m i s m a t c h e s  f o r  some p a t t e r n  l eng ths  (m) 

k = l  k = 2  k = 3  

m Naive LV SA Naive LV SA Naive LV SA 

i!ili~i i i i ~ i i i i ! i ~ i i ! @ ~ i l i  ii!i~iiiiiiiiii~iii!~ii~ii~iiiii~i~iiiiiiiii~iiiiiiii!iiiii!iiiil iiiiiiiii~ili~iiii!iiiiiiiiiiiii!iiiiiiilMii!iii~ii~ ~ 
3 630.1 5660.4 207.5 774.6 6989.9 207.1 

, J  

7 628.1 5669.0 205.9 i059:1 8691.9 205~ 
~il !! 

Figure 6. Str ing m a t c h i n g  wi th  
at  m o s t  kmismatches  

unsigned int mask, lira, ovmask; /* Preprocessing variables */ 
unsigned int T[MAXSYM]; 
int B; /* number of bits per state */ 
int type; /* kind of search (MATCH or MISMATCH) */ 

Patmat( k, pattern, text ) I *  Pattern matching with k mismatches *1 
int k; I *  (WORD=32, MAXSYM=128, EOS=O) */ 
char *pattern, *text; 
{ 

int m; 

m = strlen(pattern); type = MISMATCH; I *  count mismatches */ 
if( 2*k > m ) I* Pattern matching with at least m-k matches *1 
{ 

type = MATCH; k = m-k; /*count matches *1 
} 
B = clog2(k+l) + 1; I *  ceiling of log base 2 of k+l *1 
if( m > WORD/B ) Error( "Search does not work for this case" ); 
/* Preprocessing *1 
Preprocessing( pattern, m, k ); 
I*  Search *1 
return( Search( text )); 

. }  

int clog2( x ) int x; { / *  Ceiling of Iog2(x) 
int i = O; /* Iog2(x) for x<=O returns 0 */ 

while( x > (1 << i)) i++; 
return(i); 
} 

*/ 
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thors were at the University of  Wa- 
terloo, and it is part of  the Ph.D. 
dissertation of  the first author [6, 
10]. This article was first submitted 
in 1989, and revised in early 1990. 
Because of  the publication delay 
several new references are missing, 
and the experimental results are 
partially outdated. In particular, 
several practical improvements to 
Boyer-Moore type algorithms have 
been published [14, 20, 27, 28]. 
During this time, Wu and Manber 
extended very nicely the basic algo- 
rithm presented in this article to 
include approximate string search- 
ing [29, 30]. Their  article appears 
in this issue of  Communications of the 
ACM. Recently, another technique 
for string searching which is not 
based on comparisons has been 
presented [11]. These results show 
that the full potential of  practical 
noncomparison-based text-search- 
ing algorithms is yet to be explored. 

[]  
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