
Ricardo Baeza-Yates and Gaston H. Gonnet

A N e w
A p p r o a c h t o

 earc lin
S t r i n g s e a r c h i n g is a v e r y i m p o r t a n t c o m p o n e n t o f

m a n y p r o b l e m s , i n c l u d i n g t ex t e d i t i n g , b i b l i o g r a p h i c

r e t r i eva l , a n d s y m b o l m a n i p u l a t i o n . R e c e n t s u r v e y s o f s t r i n g
s e a r c h i n g c a n be f o u n d in [4, 18].

T h e s t r i n g - m a t c h i n g p r o b l e m cons i s t s o f f i n d i n g all o c c u r -
r ences o f a p a t t e r n o f l e n g t h m in a t ex t o f l e n g t h n. We

generalize the p r o b l e m a l l o w i n g d o n ' t care s y m b o l s , t he c o m -
p l e m e n t o f a s y m b o l , and any f in i t e class o f s y m b o l s . We solve
th i s p r o b l e m fo r o n e o r m o r e p a t t e r n s , w i t h o r w i t h o u t

m i s m a t c h e s . F o r sma l l patterns the w o r s t - c a s e t i m e is linear
i n t he size o f the t ex t (we say t h a t a p a t t e r n is sma l l i f m
is b o u n d e d b y a c o n s t a n t) .

The main idea is to represent the
state of the search as a number, and
each search step does a small num-
ber of arithmetic and logical opera-
tions, provided that the numbers
are large enough to represent all
possible states of the search. Hence,
for m ~ w, being w the word size in
bits of the computer used, we have
an O(n) time algorithm using O(IZI)
extra space and O(m + lY~I) preproc-
essing time, where Z denotes the
alphabet.

For string matching, empirical
results show that the new algorithm
compares favorably with the
Knuth-Morris-Pratt (KMP) algo-
rithm [24] for any pattern length
and the Boyer-Moore (BM) algo-

rithm [12] for short patterns (up to
length 6). For patterns with don't
care symbols and complement sym-
bols, this is the first practical and
efficient algorithm in the literature,
and it can be generalized to any fi-
nite class of symbols or their com-
plements. For searches with at most
k mismatches, this algorithm is
three times faster than any known
algorithm for m < 9.

The main properties of this class
o f algorithms are:
• Simplicity: The preprocessing
and the search are very simple, and
only bitwise logical operations,
shifts and additions are used.
• No buffering: The text does not
need to be stored.

• Real time: The time delay to pro-
cess one text character is bounded
by a constant depending only on
the pattern length.

It is worth noting that the BM algo-
rithm needs to buffer the text.

All these properties indicate that
this class o f algorithm is suitable for
hardware implementation. For
these reasons, we believe this new
approach is a valuable contribution
to all applications dealing with text
searching. A preliminary version of
this article was presented in [9].

The Shift-Add Approach to
String Matching
Our algorithm is based on finite
automata theory, as in the Knuth-
Morris-Pratt algorithm [24], and
also exploits the finiteness of the
alphabet, as in the Boyer-Moore
algorithm [12].

Let pat be a pattern of length m,
and text a text o f length n. Instead
of trying to represent the global
state o f the search as previous algo-
rithms do, we use a vector of m dif-
ferent states, where state i tells us
the state of the search between the
positions 1 i of the pattern
and positions (j - i + 1) j of
the text, where j is the current posi-
tion in the text. Intuitively, we can

~ 4 October 1992/%1.35, No.10/COMMUNICATION$ OF THE ACM

think we have m string comparators
running in parallel and reading
concurrently the same text position.
This analogy, called bit-parallelism,
is used to introduce our approach
in a recent survey [5].

Let sJ be the set of states (for 1 -<
i -< m) after reading the j - th charac-
ter of the text. Namely, sJ is the
number of mismatches between
paq pati and textj-i+ 1 textj
(characters that are different in the
corresponding positions). Then, if
SJm = 0 we have found a match end-
ing at the current position in the
text.

Let ababc be the pat tern (m = 5).
Suppose we are in position j - 1 in
the text given in Figure l(a) search-
ing this pattern. Figure l(a) gives
the value o f s U i. I f we advance one
position in the text, we have a new
value for s J/ (Figure l(b)). Let T[x]
be a table such that

Ti[x] = f ~ x = P ati
otherwise

The value for T[a] is given in Fig-
ure I. It is not difficult to see that

s~, = sU] + Ti[textj],

defining s~ = 0 for all j . For this
reason, we call this algori thm the
shift-add algorithm.

Assume we have arbi t rary preci-
sion ari thmetic using a word of size
w, and the dependency of the cur-
rent position j is implicit. Suppose
we need b bits to represent each
individual state si, where as we shall
see later, b depends on the search-
ing problem. Then, we can repre-
sent the vector state efficiently as a
number in base 2 b by:

m - I

statej = ~ s~+l 2b''.
i=O

For string matching we need
only 1 bit (that is b = 1), where si is 0
if the last i characters have matched,
or 1 if they have not. Tha t is,

sJ = {pa4 pati y~ ? textj-i+ l
text j}

We have to repor t a match ifs~, is 0,
or equivalently if statej < 2 m-1.

To update the state after reading

a new character on the text, we
must:

• shift the vector state b bits to the
left to reflect that we have advanced
one position in the text. In practice,
this sets s)0 to be 0 by default .
• upda te the individual states ac-
cording to the new character. For
this, we use the table T that is de-
f ined by preprocessing the pat tern
with one entry per a lphabet symbol,
and an opera to r op that, given the
old vector state and the table value,
gives the new state. Note that this
works only if the opera tor in the
individual state sJ does not produce
a carry that affects state s J+l.

Then, each search step changes the
state using the assignment:

statej = (statej_] < <b) op T[textj],

where < <deno tes the bitwise shift-
left operat ion.

The definit ion of the table T is
basically the same for all cases. We
define

m--1

T[x] = ~ 6(x ~ pati+l)26"I,
i = 0

for every symbol x of the alphabet
~, where 6(C) is 1 if the condit ion C
is true, and 0 otherwise. An imple-
mentat ion is presented in a subse-
quent section of this article.

We need b . m . iZ] bits of extra
memory, and if the word size w is at
least b ' m , only]E I words are
needed. We set up the table T by
preprocessing the pat tern before
the search. This can be done in

o(r-~--b- 1 (m+ IZI))time.
Example 1: Let {a, b, c, d} be the

alphabet, and ababc the pattern.
Then, the entries for the table T are
(one digit per position in the pat-
tern):

T[a] = 11010
T[b] = 10101
T[c] = O l l l l
T [d] = 11111

A choice for op for the case of
exact string matching is a bitwise
logical or. We finish the example by

searching for the first occurrence
of ababc in the text abdabababc. The
initial state is 11111. Table 1 pro-
vides an example of this searching
phase. For example, the state 10101
means that in the current position
we have two partial matches to the
left, o f lengths two and four respec-
tively. The match at the end of the
text is indicated by the value 0 in
the leftmost bit of the state of the
search.

The complexity of the search
time in the worst and average case

is O ([- - ~ l n) , where I - ~ -] is the

time to compute a constant number
of operat ions on integers o f mb bits
using a word size of w bits. In prac-
tice (patterns of length up to the
word size: 32 or 64 bits) we have
O(n) worst- and average-case time.
In the uni form cost RAM model, w
is O(log2n) where n is the size of our
problem (in this case, the size of the
text*). The same applies to the size
of the alphabet. So, we can say that
our str ing-searching algori thm has
O(mn/log n) time and O(m) space
complexity.

For each kind of pat tern or
searching problem , we can choose b
and op appropr ia te ly (as in next sec-
tions). A similar idea was presented
by Gonnet [17] appl ied to searching
text using signatures.

String Matching with Classes
Now we extend our pat tern lan-
guage to allow don't care symbols,
complement symbols and any finite
class of symbols. Formally, every
position in the pat tern can be:

• x: A character from the alphabet

• *: A don't care symbol which
matches any symbol.
• [characters]: A class of characters,
for which we allow ranges (for ex-
ample a..z).
• ~: The complement of a charac-
ter or class o f characters C. Tha t is,
this matches any character that
does not belong to C.

* I n pract ice , wi th two 32-bit words we can
a dd r e s s any conceivable text.

COMMUNICATIONS OF THE ACM/October 1992/Vo1.35, No.10 1 5

(a)

(b)

pattern: a
pattern: a b
pattern: a b a
pattern: a b a b
pattern: a b a b c

text :c b b a b a b a
J

pattern: a
pattern: a b
pattern: a b a
pattern: a b a b
pattern: a b a b c

text :c b b a b a b a
)

i
b a b c 1
a b e 2
b c 3
c 4

5

b c a b a . .

i
0

b a b c 1
a b c 2
b c 3
c 4

5

b c a b a . .

s/-1
1
o
3
o
5

s/-' T,.ia] s/
0.'- M
1 ~ 0 ~ 0
0 ~ 1 - - " ~ 2
3 -.~,+~ 0 .~ 0
0 - , . ~ 1 .= 4
5 " = ' 1 = 1

F i g u r e 1. E x a m p l e f o r t h e s h i f t - a d d

For example, the pattern
[Pp]a~*-d[p . . t v . . z] matches the
word Patter, but not python or Pat-
ton. Let m' be the size of the de-
scription of the pattern (that is, the
number o f elements in each class,
with the size o f * considered 1 and
with complements not taken in ac-
count), and m the size of the pat-
tern. For the previous example,
m' = 2 0 a n d m = 6 .

String matching with don't care
symbols was addressed before by
Fischer and Paterson [15] achieving

O(n log 2 m log log m log IX[)

asymptotic search time, and also by
Pinter [26] including complement
symbols (same complexity). How-
ever, these are theoretical results,
and their algorithms are not practi-
cal. Pinter also gives a O(mn) algo-
rithm that is faster than a naive al-
gorithm. For small patterns, the
complexity of our algorithm is
much better, and is much easier to
implement. A similar class o f pat-
terns is considered by Abrahamson
[1], where a theoretical algorithm
that runs in

O(n + mV'-nn log n 1V~g log n)

T o b l e 1. S t r i n g s e a r c h i n g e x a m p l e

a l g o r i t h m

time is presented (in this article the
problem is called "generalized
string matching").

Attempts to adapt the KMP algo-
rithm to this case have failed [15,
26], and for the same reason the
BM algorithm as presented in
Knuth et al. [24] cannot solve this
problem. It is possible to use the
Horspool version of the BM algo-
rithm [19], but the worst case is
O(mn); and on average, if we have a
don't care character near the end of
the pattern, the whole idea of the
shift table is worthless. By mapping
a class of characters to a unique
character, the Karp and Rabin al-
gorithm [21] solves this problem
too. However, this is a probabilistic
algorithm, and if we check each
reported match, the search time is
O (n + m + m M) , where M is the
number o f matches. Potentially,
M = O(n), and their algorithm is
slow in practice, because of the use
of multiplications and modulus
operations.

To search for these extended
patterns, we need only to modify
the table T, such that, for each posi-
tion, we process every character in
the class. That is,

text : a b d a b a b a b c
T[x]: 11010 10101 11111 11010 10101 11010 10101 11010 10101 01111
state: 11110 11101 11111 11110 11101 11010 10101 11010 10101 01111

m - I

T[x] = ~ 6(x q~ Classi+ 1)2 vi,
i = 0

where Classi is the class of charac-
ters for the ith position of the pat-
tern.

Example 2: Let {a, b, c, d} be the
alphabet, and a~[ab]b'~-..~ the pat-
tern. We have m - - 5 and m ' = 8.
Then, if b = 1 (as for string match-
ing), the entries for the table T are:

T[a] = 11000
T[b] = 10011
T i c] = 11101
T[d] = 01101

To maintain O(I -~-] (m ' + I~;I))

preprocessing time (instead o f
/ r " l ~ X

OIl-~-Im' lE 0 time), where m' is

the size o f the description o f the
pattern, we initially represent T[x]
in the alphabet as 0 for bit positions
corresponding to don't care symbols
and complements. In the worst case
m'--O(mlXl); however in practical
queries m' is similar to m. Figure 2
shows the preprocessing phase in
pseudocode for this class of pat-
terns, where the notation
111..0i..111 means a sequence of ls
with a 0 in the ith position. The
search time remains the same.

We can extend the algorithm to
Soundex-like classes [23], or to spe-
cial symbols in the text. For exam-
ple, if we have don't care symbols in
the text, we define T[*] = 0.

S t r i n g M a t c h i n g w i t h
M i s m a t c h e s
In this section, we allow up to k
characters of the pattern to mis-
match with the corresponding text.
For example, if k --- 2, the pattern
mismatch matches miscatch and d/s-
patch, but not respatch.

Landau and Vishkin [25] give the
first efficient algorithm to solve this
particular problem. Their algo-
rithm uses O(k(n + m log m)) time
and O(k(n + m)) space. While it is
fast, the space required is unaccept-
able for practical purposes. Galil
and Giancarlo [16] improve this
algorithm to O(kn + m log m) time
and O(m) space. However, this algo-

76 O c t o b e r 1992/Vol .35, No.10/COMMUNICAT|ON$ OF THE ACM

ri thm uses a static lowest common
ancestor algorithm over a suffix
tree. Thus, the constant involved in
the linear term is large, being
slower than the Landau and Vish-
kin algorithm on practice. Other
approaches to this problem are pre-
sented in [6, 8].

We solve this problem explicitly
only for one pattern, but the solu-
tion can be easily extended for mul-
tiple patterns (see the next section).
In this case one bit is not enough to
represent each individual state.
Now we have to count matches or
mismatches. In both cases, at most
O(log m) bits per individual state
are necessary because m is a bound
for both, matches and mismatches.
Note, too, that if we count matches,
we must complement the meaning
of ~ in the definition of T. Then, we
have a simple algorithm using

b = rlog2(m + 1)]

and op being addition. If sm -< k we
report a match. Note that this is
independent of the value of k.

Therefore, since b = O(logm),
we need O(]Z]m log m) bits of extra
space. If we assume we can always
represent the value of m in a ma-
chine word, we need O([Y.lm) words
and preprocessing time. However
for small m, we need only O(lE])
extra space and O(]E] + m) preproc-
essing time. For a word size of 32
bits, we can fix b = 4 and we can
solve this problem up to m = 8.

Clearly only O(log k) bits are nec-
essary to count if we allow at most k
mismatches. The problem is that
when adding we have a potential
carry into the next state (group of
bits). Since we can get a round this
problem by having an overflow bit,
we remember if there was overflow,
but that bit is set to zero at each step
of the search. In this case we need

b = Flog2(k + 1)] + 1

bits. At each step we record the
overflow bits in an overflow state,
and we reset the overflow bits of all
individual states (in fact, we only
have to do this each k steps, but
such improvement is not practical).
The new search algorithm is shown

in Figure 3.
Note that if k > m/2, we should

count matches instead of mis-
matches (that is, b = O(log(m- k))
if k > m/2). The only problem for
this case is that it is not possible to
tell how many errors there are in a
match. Table 2 shows maximal val-
ues for m when constrained to using
a 32-bit word.

Therefore, with a slightly more
complex algorithm, using only
o(lYlm log k) extra bits, we can solve
more cases.

Example 3" Let {a, b, c, d} be the
alphabet, and ababc the pattern (see
Example 1 for the values of the
table T). We want to search for all
occurrences of ababc with at most
2 mismatches in the text abdabababc.
Because the value of b is 3 for 2 mis-
matches, every position in the state
is represented by a number in the
range 0-4 . The initial state is 00000
and the initial overflow is 44444.
(See Table 3.) We report a match
when the sum of the leftmost digits
of the state and the overflow is less
than 3. In this case, there is a match
at position 4 with one mismatch
(detected at position 8), and an-
other match at position 6 with no
mismatches (detected at position
10).

It is possible to use only b =
Flog2(k + 1)] bits by performing
O(log log k) operations in the loop.
The idea is to add 1 except if each
b-bit slice has only ones. To detect
this we use shifts and bitwise-ands.
For example, if b = 5, we perform
the operations shown in Table 4,
where x will have a 0 in the least sig-
nificant bit of every 5-bit individual
state if all bits in each 5-bit slice are
ls, or 1 otherwise. It is not difficult
to show we need O(log log k) opera-
tions. For example, if b is 8, we shift
by 4, 2 and 1 bits. Table 1 also
shows the maximum value of m for
this case (w = 32).

I f we have mismatches with dif-
ferent cost, we change the defini-
tion of T to reflect this. In this case,
instead of a number of mismatches
k, we have a maximum allowed cost.
For example, we can define that a
mismatch between vowels costs 1,

and that other mismatches cost 2
(see also [8]).

Multiple Patterns
In this section, we consider briefly
the problem of string matching
with classes for more than one pat-
tern at a time. To denote the union
symbol we use "+", for example
pl + P~ matches the pattern p] or
the pattern P2.

The KMP algorithm and the BM
algorithm have already been ex-
tended to this case (see [2] and [13]
respectively), achieving a worst-case
time of O(n + m), where m is the
total length of the set of patterns.

I f we have to search for pl +
"'" + Pe, and we keep one vector
state per pattern, we have an imme-

l ~ '-I \

diate O(]-~-~-]~n) time algorithm

for a set of ~ patterns, where m ~ =
maxi(~il). However, we can coalesce
all the vectors, keeping all the in-
formation in only one vector state

Figure 2. Pseudocode for pre-
processing of pattern with
classes

Figure S. Improved Search algo-
r i thm for string matching with
at most g mismatches

COMMUNICATIONSOFTHE ACM/October 1 9 9 2 / V o l . 3 5 , N o . 1 0 7 7

/r~n_._'] \
achieving o / l.)search time,

with ms,,m = ~'~i[pi]. The disadvan-
tage is that now we need numbers
o f size m,u,, bits, and O(]Y~lmsum)
extra space.

In a similar way, we can extend
this representation to handle mis-
matches.

I m p l e m e n t a t i o n
In this section we present efficient
implementation of the various algo-
rithms that count the number o f
matches o f patterns in a text using
single-word integers. Algorithms
with different actions in case of a
match are easily derived from
them. We also include some experi-

mental results.
The programming is indepen-

dent of the word size as much as
possible. We use the following sym-
bolic constants and/or variables:

* MAXSYM: Size of the alphabet.
For example, 128 for ASCII code.
• WORD: Word size in bits (32 in
our case).
• B: Number of bits per individual
state (1 for string matching, vari-
able for string matching with mis-
matches).
• EOS: End of string (0 in C).

Figure 4 shows an efficient im-
plementation of the string-match-
ing algorithm. Note that the w - m
leftmost bits o f the unsigned vari-

F i g u r e 4. S h i f t - O r a l g o r i t h m f o r s t r i n g m a t c h i n g

#define WORD 32 /* Word size in bits *1
#define EOS 0 /* End of string */
#define B 1 /* Number of bits per state *1
#define MAXSYM t28 /* Size of the alphabet (ASCII) */

Search(text, pattern) l * Shift-Or Algorithm for String Searching */
register char *text;
char *pattern;
{

register unsigned int state, lim, first, initial;
unsigned int T[MAXSYM];
int i, j, matches;

if(strlen(pattern) > WORD)
Error("Use pattern size <= word size");

I * Preprocessing *1
for(i=O; i<MAXSYM; i++) T[i] = -0;
lim = O;
for(j= l ; *pattern t= EOS; j <<= B)
{

T[*pattern] &= "j;
lira I= j;
pattern++;

}
lira = ~(lim >> B);
/* Search */
matches = O;
initial = -0; first = *pattern;
do {

while(*text l= EOS && *text l= first) text++; I * Scan */
state = initial; I* Initial state */
do {

state = (state << B) t T [* tex t] ; / * Next state */
if(state < lira) matches++;

I * Match at current posit ion-len(pattern)+l */
text++;

} while(state I= initial);
} whi le(* (text- f) ~= EOS);
return(matches);

ables are always 1. This is to avoid
one more operation to set them to 0
in the main loop. Another imple-
mentation is possible using op as a
bitwise logical and operation, and
complementing the value of T[x]
for all x E X.

Experimental results for search-
ing 100 times for all possible
matches o f a pattern in a 50,000-
character English text (a legal docu-
ment) are presented in Table 2. For
each pattern, a prefix f rom length 2
to 10 was used (for example, for
"representative" the queries were
{"re", "rep", "representa"}.
The patterns were chosen so that
each first letter had a different fre-
quency in English text (from most
to least frequent). The timings are
in seconds and they have an abso-
lute error bounded by 0.5 seconds.
They include the preprocessing
time in all cases.

The algorithms implemented are
Boyer-Moore, as suggested by
Horspool [19] (BMH), which ac-
cording to Baeza-Yates [3], is the
fastest practical version of this algo-
rithm; Knuth-Morris-Pratt, as sug-
gested by their authors [24], and
our new algorithm (SO) using the
KMP idea (first scan for the first
character o f the pattern.) This ver-
sion is shown in Figure 4. Note that
SO and KMP are dependent on the
frequency of the first letter o f the
pattern in the text, and that BMH
depends on the pattern length.
Another possible implementation is
to combine the SO algorithm with
the BMH algorithm, searching
from left to right, but jumping as in
the BMH algorithm. This idea is
used in a KMP-BMH hybrid algo-
rithm [71.

From Table 5 we can see that SO
outperforms KMP, being between
40% and 50% faster. This is true
only for m -< w. Also it is faster than
BMH for patterns o f length smaller
than 4 to 9, depending on the pat-
tern (Horspool [19] mentions that
BMH should be used for m > 5).
Compared with the grep program
(Berkeley Unix operating system)
our algorithm is between 45% and
30% faster (see Table 2), in spite o f

78 October 1992/VoL35, No.10/COMMUNICATIONS OF THE A(~M

grep using faster input routines (low
level).

Figure 5 shows the execution
time while searching 1,000 words
chosen at r andom from the same
English text. In this figure, data for
the brute-force algori thm (try every
possible position) is also included.
The SO algori thm is faster than the
Knuth-Morris-Prat t algori thm for
m < w, and is faster than the Boyer-
Moore algori thm for small m. Note
that the SO algori thm requires the
s a m e time for pat terns with classes.

Figures 6 to 8 show the imple-
mentat ion for pat tern matching
with at most k mismatches and word
size 32 bits, using O(log k) bits per
state. Since the code is similar to the
exact s tr ing-matching case, this al-
gor i thm is slightly slower and is
independen t of k for m =
O(w/log k). Table 6 shows the simu-
lation results for searching 1,000
strings o f the same English text as
before for two values o f k and small
values o f m. We include data for
three algorithms: a naive algori thm
that tries every possible position;
the Landau-Vishkin algori thm
(using a window of size O(m ~) to
process the text, instead of the
O(mn) table suggested in the origi-
nal paper [25]) and the shift-add
algori thm for a word size of 32 bits
(using 4 bits if m < 9, or O(log k)
bits otherwise). Data for Galil and
Giancarlo's a lgori thm are not in-
cluded because it was even slower
than the Landau-Vishkin algo-
ri thm. According to these results,
the shift-add algori thm is clearly
faster, even if mult iple word arith-
metic is necessary for larger values
of m.

For mult iple patterns, the pre-
processing is very similar to the one
for classes. The only change in the
search phase is the match-testing
condition:

if((state & mask) != mask)
/* Match? */

where mask has a bit with value 1 in
the position corresponding to the
last-state bit of each pattern. Note
that this indicates that a pat tern
e n d s at the current position, and it

11~blo 2. M a x i m u m p a t t e r n l e n g t h (m) f o r a 32-bit w o r d depending
o n R

Bits per
state

1
2
3
4

b = F/og, k 1 + 1 b = r/ogl(k + 1)]

0
1

2-3
4

m

0 32
1-2 16
3-5 10

8

Table | . Example for string searching wi th mtsmatches

~ ~ ~ i ~?~i i~ ~i ~ i ~ ~ , ¸ ~ ~ i ~ ~ ~̧ ̧~i ~ % ~ ~ ̧̧ vi ~ i~w~ ~ .

T [x] : l l 0 1 0 10101 1 ! ! ! ! !!019!0!Q1 11010 10101 1:10!010101 01111

overf: 44440 44400 44000 40000 00000 04000 40000 04000 40000 04000

Table 4. Improved string searching wi th mismatches

x *-((state & 11110(,_])s+,...10611t10) > > 1) & state
x * - x & (x > > 2)
x * - x & (x > > 1)
state *- state + (T[char] & x)

T~ble S. E x p e r i m e n t a l r e s u l t s f o r prefixes of 4 d i f fe rent patterns
(t ime in seconds)

Pattern: epresentative Pattern: representative

m BMH KMP SO grep BMH KMP SO grep

3 25.2 24.3 15.7 21.1 16:2 15.0 13.0 t9;8

5 17.3 24,3 15.8 21.5 H.0 15~2 13.1 19.6

7 13.2 24:3 15.7 21.5 9.0 15,3 13.1 19.6

9 11,6 24.4 15.8 22.0 7~5 15.3 13.3 19.4

Pattern: legislative Pattern: kinematics

m BMH KMP SO grep BMH KMP SO grep
i i i ,

. . . . ~ ~ ~ ! ~ ; ~
3 25,6 21.0 12.3 19.3 24.9 19.0 10.5 18.1

5 16.5 20.6 11.7 19.6 16:7 19.0 10.4 18.5

7 I2.9 20.5 11.8 19.8 13.0 19:0 10A 18.7

.... ~ 11.2 20.7 12.1 19.7 10.8 19.0 10.6 18.2
. ~ : ~ ~ : ~ j ~ . , ~ , . , , , . ~

COMMUNICATIONS OF THE A G M / O c t o b c r 1 9 9 2 / V o 1 . 3 5 , N o . 1 0 7 ~

is not possible to say where the pat-
tern starts without wasting

/ r - 1 . . ~ \

O(]~I¢M) time, where M is the

number of matches and/? the num-
ber of patterns.

Final Remarks
We have presented a simple class of
algori thms that can be used for
string matching and some other
kinds o f patterns, with or without
mismatches. These are the first
practical algori thms for string
matching with classes and/or mis-
matches.

The time complexity achieved is
l inear for pat tern lengths smaller
than the word size in bits, and this is
the case in most applications. For
longer patterns, we need to imple-
ment integer ar i thmetic of the pre-
cision needed using more than a
word per number . Still, if the num-
ber of words pe r number is small,
our a lgori thm is a good practical
choice for string matching with
classes and/or mismatches. I f we
have large m, we could also use this
a lgori thm to find a part ial match,
and then verify that it is a true
match with a s impler algorithm.
The runn ing time will be l inear if
we have at most O(n/m) matches.

Using VLSI technology to have a
chip that uses a register of 64 or
128 bits that implements this algo-
r i thm for a stream of text, faster

Figure S. Exper imen ta l resu l ts
for searching 1,000 s t r ings in
Engl ish t e x t

00 i ' ~ - - - - Na-/ve

8Of ~Boyer -Moore

60 ~Boyer-Moore-Horspool

_ . .

2O

I I I I I I I ! I I I I I I I I I ~ 1

2 4 6 8 10 12 14 16 18 20
Length of the Pattern (m)

searching times can be achieved.
The applications of these algo-

r i thms are restricted to main mem-
ory (text edit ing for example), or to
text databases where a very coarse
granulari ty index is provided and
pat tern matching is done with the
granules or within partial answers.

This type o (algori thm can also
be used for o ther matching prob-
lems, for example for pat terns of
the form (set of patterns)Z*(set of pat-
terns) (see [26]) where each set is

one or more strings with or without
classes, and ~* represents 0 or
more arbi t rary characters.

Future research is to extend this
to o ther kinds of errors, for exam-
ple the transposit ion of two charac-
ters (this opera t ion also maintains
the length o f the string); and the
design o f a hardware implementa-
tion.

Historical Note added in Proof
This work was done while both au-

Table 6. Exper imen ta l resu l ts (in seconds) f o r searching 1,000
pa t te rns w i t h a t m o s t / (m i s m a t c h e s f o r some p a t t e r n l eng ths (m)

k = l k = 2 k = 3

m Naive LV SA Naive LV SA Naive LV SA

i!ili~i i i i ~ i i i i ! i ~ i i ! @ ~ i l i ii!i~iiiiiiiiii~iii!~ii~ii~iiiii~i~iiiiiiiii~iiiiiiii!iiiii!iiiil iiiiiiiii~ili~iiii!iiiiiiiiiiiii!iiiiiiilMii!iii~ii~ ~
3 630.1 5660.4 207.5 774.6 6989.9 207.1

, J

7 628.1 5669.0 205.9 i059:1 8691.9 205~
~il !!

Figure 6. Str ing m a t c h i n g wi th
at m o s t kmismatches

unsigned int mask, lira, ovmask; /* Preprocessing variables */
unsigned int T[MAXSYM];
int B; /* number of bits per state */
int type; /* kind of search (MATCH or MISMATCH) */

Patmat(k, pattern, text) I * Pattern matching with k mismatches *1
int k; I * (WORD=32, MAXSYM=128, EOS=O) */
char *pattern, *text;
{

int m;

m = strlen(pattern); type = MISMATCH; I * count mismatches */
if(2*k > m) I* Pattern matching with at least m-k matches *1
{

type = MATCH; k = m-k; /*count matches *1
}
B = clog2(k+l) + 1; I * ceiling of log base 2 of k+l *1
if(m > WORD/B) Error("Search does not work for this case");
/* Preprocessing *1
Preprocessing(pattern, m, k);
I* Search *1
return(Search(text));

. }

int clog2(x) int x; { / * Ceiling of Iog2(x)
int i = O; /* Iog2(x) for x<=O returns 0 */

while(x > (1 << i)) i++;
return(i);
}

*/

8 0 October 1992/Vol.35, N o . 1 0 / C O M M U N I C A T I O N $ O F T H E ACM

thors were at the University of Wa-
terloo, and it is part of the Ph.D.
dissertation of the first author [6,
10]. This article was first submitted
in 1989, and revised in early 1990.
Because of the publication delay
several new references are missing,
and the experimental results are
partially outdated. In particular,
several practical improvements to
Boyer-Moore type algorithms have
been published [14, 20, 27, 28].
During this time, Wu and Manber
extended very nicely the basic algo-
rithm presented in this article to
include approximate string search-
ing [29, 30]. Their article appears
in this issue of Communications of the
ACM. Recently, another technique
for string searching which is not
based on comparisons has been
presented [11]. These results show
that the full potential of practical
noncomparison-based text-search-
ing algorithms is yet to be explored.

[]

References
1. Abrahamson, K. Generalized string

matching. SIAM J Comput. 16
(1987), 1039-1051.

2. Aho, A.V. and Corasick, M. Effi-
cient string matching: An aid to bib-
liographic search. Commun. ACM
18, 6 (June 1975), 333-340.

3. Baeza-Yates, R. Improved string
searching. Software-Pract. and Exper.
19, 3 (1989), 257-271.

4. Baeza-Yates, R. String searching
algorithms. In Information Retrieval:
Algorithms and Data Structures,
Chapt. 10, W. Frakes and R. Baeza-
Yates, Eds., pp. 219-240. Prentice
Hall, Englewood Cliffs, N.J., 1992.

5. Baeza-Yates, R. Text retrieval: The-
ory and practice. In Twelfth IFIP
World Computer Congress (Madrid,
Spain, Sept. 1992).

6. Baeza-Yates, R.A. Efficient text
searching. Ph.D. thesis, Dept. of
Computer Science, University of
Waterloo, May 1989. Also as Res.
Rep. CS-89-17.

7. Baeza-Yates, R.A. String searching
algorithms revisted. In Workshop in
Algorithms and Data Structures, F.
Dehne, J.-R. Sack, and N. Santoro,
Eds., pp. 75-96 (Ottawa, Canada,
Aug. 1989). Springer Verlag Lec-
ture Notes on Computer Science
382.

Figure 7. PreDrocessing for str ing matching wi th mismatches

Preprocess ing(pat, m, k)
char *pat ;
int m, k;
{

int i ;

)

l im = k << ((m-1) *B) ;
ovmask = O;
for(i= ! ; i<=m; i ++) ovmask = (ovmask << B) I (1 << (B-- l)) ;
if(type == MATCH)

for(i=O; i<MAXSYM; i++) T [i] = O;
else
{

l im += 1 << ((m - l) * B) ;
for(i=0; i<MAXSYM; i++) T [i] = ovmask >> (B ,1) i

}
for(i=1; *pat I= EOS; i <<= B)
{

if(type == MATCH)
T [,pa t] += i;

else
T[*pat] &= ~i;

pat++;
}
if(m*B == WORD) mask = ~0;
else mask = i - 1;

Figure 8. Search phase of str ing matching wi th /<mismatches

int Search(text) / * Search phase */
char *text;
{

unsigned int state, overf low;
int matches;
matches = O;
I* Initial state */
if(type == MATCH) { state = O; overf low = O; }
else { state = mask & -ovmask; overf low = ovmask; }
for(; * text != EOS; text++)
{

state = ((state << B) + T[* text]) & mask;
overf low = ((overf low << B) I (state & ovmask)) & mask;
state &= -ovmask;
if(type == MATCH)
{

if((state I overf low) >= lim)
matches++; I* Match with more than m - k errors */

}
else if((state I overf low) < lim)

matches++; /* Match with (s ta te>>(m-1)*B) errors */
}
return(matches);

}

COMMUNICATIONS OF T H E ACM/October 1992/Vol.35, No.10 8~

8. Baeza-Yates, R. and Gonnet, G.H.
Fast string matching with mis-
matches. Inf. Comput. (1992). To be
published. Also as Tech. Rep. CS-
88-36, Dept. of Computer Science,
University of Waterloo, 1988.

9. Baeza-Yates, R. and Gonnet, G.H.
A new approach to text searching.
In Proceedings of Twelfth ACM
SIGIR (Cambridge, Mass., June
1989) pp. 168-175. (Addendum in
ACM SIGIR Forum, W. 23, Num-
bers 3, 4, 1989, p. 7.).

10. Baeza-Yates, R. and Gonnet, G.H.
New algorithm for pattern match-
ing with and without mismatches.
Tech. Rep. CS-88-37, Department
of Computer Science, University of
Waterloo, Ontario, Canada, 1988.

11. Baeza-Yates, R.A. and Perleberg,
C.H. Fast and practical approxi-
mate pattern matching. In Proceed-
ings of Third Conference on C ombinato-
rial Pattern Matching (Tucson, Ariz.,
Apr. 1992) pp. 182-189.

T h e
T i m e
H a s
Come,
. . . to s e n d fo r t h e i
c o p y of t h e f ree C
I n f o r m a t i o n Cata~vo.

I t l i s ts m o r e t h a n 2 0 0
f ree o r l ow-cos t g o v e r n m e n t
p u b l i c a t i o n s o n top ic s l ike
m o n e y , food, j obs , c h i l d r e n ,
ca r s , h e a l t h , a n d f ede ra l
benef i t s .

Send y o u r n a m e a n d
a d d r e s s to:
G o n s u m e r T ~ ¢ o r m a t i o n C e n t e r
D e p a r t m e n t T H
P u e b l o , C o l o r a d o 8 1 0 0 9

A public service of this publication and
the Consumer Information Center of the
U.S. General Services Administration

12. Boyer, R. and Moore, S. A fast
string searching algorithm. Com-
mun. ACM 20 (1977), 762-772.

13. Commentz-Walter, B. A string
matching algorithm fast on the av-
erage. In ICALP, Lecture Notes in
Computer Science, vol. 6. Springer-
Verlag, 1979, pp. 118-132.

14. Commun. ACM 35, 4 (Apr. 1992).
Technical correspondence. Notes
on a very fast substring search algo-
rithm. 132-137.

15. Fischer, M. and Paterson, M. String
matching and other products. In
Complexity of Computation, R. Karp,
Ed., (SIAM-AMS Proceedings 7), pp.
113-125. American Mathematical
Society, Providence, R.I., 1974.

16. Galil, Z. and Giancarlo, R. Im-
proved string matching with k mis-
matches. SIGACT News 17 (1986),
52-54.

17. Gonnet, G.H. Unstructured data
bases or very efficient text search-
ing. In ACM PODS 2, Atlanta, Ga.,
Mar. 1983, pp. 117-124.

18. Gonnet, G.H. and Baeza-Yates, R.
Handbook of Algorithms and Data
Structures--In Pascal and C. Second
ed. Addison-Wesley, Wokingham,
UK, 1991.

19. Horspool, R.N. Practical fast
searching in strings. Sofiw.--Pract.
Exper. 10 (1980), 501-506.

20. Hume, A. and Sunday, D.M. Fast
string searching. Softw.---Pract.
Exper. 21, 11 (Nov. 1991), 1221-
1248.

21. Karp, R. and Rabin, M. Efficient
randomized pattern-matching algo-
rithms. IBM J. Res. Develop. 31
(1987), 249-260.

22. Kernighan, B. and Ritchie, D. The C
Programming Language. Prentice
Hall, Englewood Cliffs, N.J., i978.

23. Knuth, D.E. The Art of Computer Pro-
gramming: Sorting and Searching, vol.
3. Addison-Wesley, Reading, Mass.,
1973.

24. Knuth, D.E., Morris, J. and Pratt, V.
Fast pattern matching in strings.
S1AM J Comput. 6 (1977), 323-350.

25. Landau, G. and Vishkin, U. Effi-
cient string matching with k mis-
matches. Theoretical Comput. Sci. 43
(1986), 239-249.

26. Pinter, R. Efficient string matching
with don't-care patterns. In Combi-
natorial Algorithms on Words, A.
Apostolico and Z. Galii, Eds., vol.
FI2 of NATO AM Series, Springer-
Verlag, 1985, pp. 11-29.

27. Smith, P.D. Experiments with a very
fast substring search algorithm.
Softw.--Pract. Exper. 21, I0 (Oct.
1991), 1065-1074.

28. Sunday, D.M. A very fast substring
search algorithm. Commun. ACM 33,
8 (Aug. 1990), 132-142.

29. Wu, S. and Manber, U. Fast text
searching with errors. Tech. Rep.
TR-91-11, Department of Com-
puter Science, University of Ari-
zona, Tucson, Ariz., June 1991.

30. Wu, S. and Manber, U. Agrep- -a
fast approximate pattern-matching
tool. In Proceedings of USENIX Tech-
nical Conference (Jan. 1992, San
Francisco, Calif.), pp. 153-162.

CR Categories and Subject Descrip-
tors: H.3.3 [Information Storage and
Retrieval]: Information Search and
Retrieval--retrieval models, search process,
selection process

General Terms: Algorithms
Additional Key Words and Phrases:

String matching, text searching

About the Authors:
RICARDO BAEZA-YATES is an associ-
ate professor at the Universidad de
Chile in Santiago, Chile. Current re-
search interests include algorithms and
data structures, text retrieval, graphical
user interfaces, and object-oriented
programming. Author's Present Ad-
dress: Universidad de Chile, Blanco
Encalada 2120, Depto. de Ciencias de la
Computacion, Santiago, Chile; email:
rbaeza@dcc.uchile.cl

GASTON D. GONNET is a professor at
the Swiss Technological Institute in Zu-
rich, Switzerland. Current research in-
terests include algorithms and data
structures, algebraic manipulation, text
retrieval, computational biology, and
programming languages design. Au-
thor's Present Address: Informatik,
Swiss Technological Institute in Zurich,
Switzerland; emaih gonnet@inf.ethz.ch

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

©ACM0002-0782/92/1000-074 $1.50

8 2 October 1992/Vol.35, No.10/C:OMMUNICATION$ OF THE AC;M

