Purdue University

Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1985

The Boyer-Moore-Galil String Searching Strategies
Revisited

Alberto Apostolicao

Raffaele Giancarlo

Report Number:
85-539

Apostolicao, Alberto and Giancarlo, Raffaele, "The Boyer-Moore-Galil String Searching Strategies Revisited" (1985). Computer Science
Technical Reports. Paper 457.
http://docs.lib.purdue.edu/cstech/457

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

THE BOYER-MOORE-GALIL STRING
SEARCHING STRATEGIES REVISITED

Albeno Apostolico

Raffaele Giancarlo
The University of Salerno

CSD-TR-539
October 1985

THE BOYER-MOORE-GALIL
STRING SEARCHING STRATEGIES
REVISITED*

ALBERTO APOSTOLICO
T T Départment of Computer Sciences
Purdue University
West Lafayette, IN 47907 - US A.

and

RAFFAELE GIANCARLO
Dipartimento di Informatica ed Applicazioni
The University of Salerno
184100 Salerno - ITALY

June 1984
ABSTRACT

Based on the Boyer-Moore-Galil approach, a new algorithm is
proposed which requires a number of character comparisons bounded
by 2n, regardless of the number of occurrences of the pattern in the
textstring. Preprocessing is only slightly more involved and still
requires a time linear in the pattern size.

Keywords and Phrases:
String Searching, Pattern Matching, Shift Functions, Text Editing, Analysis of Alzo-
rithms.

1. Introduoction

The string searching problem is to find all occurrences of a given pattern y in a

given text x, both y and x being strings over a finite aiphabet.

Letting I1x1=n and Iyl =m, brute force procedures that involve 1 (nm) com-
parisons in the worst case can be quickly developed. However, as the copious litera-
ture [1-8] devoted to this subject over the past decade shows, the bound can be
lowered to O(n), provided some preprocessing of the pattern is allowed. As pointed
out by Boyer and Moore {2], the time spent in the preprocessing plays generally a

secondary role in the overall design perspective. However, it is fortunate that all

This work was mzpported in part by the [talian Minietry of Education. Additional support was provided
by the Italian National Council for Rescarch and by N.A.T.O. under rescarch grant no. (3982, An extend-
cd abstract related to this paper has boen presented af the 20th Agnual Allerton Conlercnce on Communi-
cation, Control, and Computing - Monticdlo, [tlinois, Cctober 63, 1982.

preprocessing strategies set up so far perform in time 0{(m).

As is well known, one of the Brst string searching algorithms was proposed in
[2). Unlike the Knuth-Morris-Pratt algorithm [6], it compares y with x starting from
the right end of y. The performance of this algorithm is quite good on the average
case, where it performs in ©(n/m). _On the other hand, it displays a worst czse run-
ning time N (n?).

Improving over the Boyer-Moore algorithm (hereafter, *BM* for shor:) XKnuth,
Morris and Pratt [6] also set up a modified version of it that performs c* most 6
character comparisons, if the pattern does not appear in the text. More recently,
Guibas and Odlyzko [5] narrowed that bound to 4n and conjectured it is 2:. Zvi
Galil [3] presented a new version of the modified BM algorithm and, by using the
Guibas and Odlyzko resuit, showed a 14n character comparison worst case running
time for his algorithm. This version is obtainable by the former one in a straightfor-

ward manuoer, even though it is not straightforward to prove its correctness.

As pointed out in [6], the analysis of the M procedure is not simple. This is
due to the fact that, when the BM algorithm shifts the pattern to the right, it does

pot rz¢z'a any information about characters already matched. Based on this chserva-

—tiom;-&authy Morris and Pratt {6] suggested thar the algorithm be made Iess otlivious
by arranging the various situations that could arise in the course of the pattern
matchinz process into a suitable table of “states”. Problem is that the nembsar of
“states” in such a generalization of the BM strategy can be quite large (the cbvious
upper bouad is 2%, but it is not krown how tight a bound this is). Thus the work
involved in preparing that table is prohibitive in practics. There is room to suspast
that a good portion of the table is uoneeded in general. Galil's algoritkm can be
regarded in fact as a nonoblivious version of the BM strategy which only exploits tvo

“states™.

We present here still another upgrade of the BM that keeps track of whick sub-

strings of the pattern matched which substrings of the text during previovs atisn.

ments, and exploits such recordings later in the matching process. If we allow for at

-3

most one recording per shift, thea the number of such states is obviously bounded by
n—m+l. The resuiting algorithm works in linear time and displays three interesting

features:
(1) It performs at most 2s —m +1 character comparisons.
(2) The proof of linearity is very simple.

(3) dd heuristics (in the sense of [6]) can be used instead of dd’, not affecting

(1-2).

The first feature conveys in our view the most interesting result of this pages:
indeed it is seen to follow from the even stronger finding that no character of the
text needs to be accessed more than twice. The inspe;c;ion of text characters is the
main (and obviously unavoidable} means by which information is acquired during
any pattern matching process, so that the number of character comparisons per-
formed is customarily considered especially significant. We shall show, however, that
evea taking into account the other comparisons (with the exception of those hidden

in the control structure) yields the palatable bound of 11a.

This paper is organized as follows. In section 2 we review briefly the salient

featnres of the BM and some of its derivations. Section 3 is devoted to the exposi-
tion of our method, under the assumption that the information conveyed by DIeyro-

cessing is already available. This latter problem is addressed in section 4.

2. The Boyer-Moore Approach to Pattern Matching

We will assume that the input x (y) is stored into the array rexz[im]
(pattern[lm}).

The obvious way to locate all occurrences of y in z is by repeated aligning and
checking from left to right. One innovative feature of the BM strategy is in that, for
each alignment of the two strings, character comparisons are performed from right to
left, starting at the right end of the pattern. As is well known, this contributes a
significant speed-up in cases of mismatch (cfr. [6]), even though it leads to a qua-

dratic worst case behavior. A compact presentation of the BM algorithm is given in

-4 .

{3]. We report it below for the convenience of the reader.

Procedure B " i (j) points to the current character *
® of the pattern (text); s[character,i] is the auxiljary *
* ’shift’ function. *
do while j=<n
begin

do i :=m to 0 by -1 ontl partern(i] #+ text[j ~m +i)
If i=0 then begin output (match at j—m +1) end
else j = jte[text[j—m+i],i]
end

Tables such as ¢ are usually referred to as shifr functions. In [3,6] s is formally

defined as follows:

s{character,] = max {s matchl[i], s.ccc[character,i]}

where:

smatchi] = min {r / r=1 and (t1=i or pattern[i—t]# pattern[i] } and ((r=k& or
pattern(k —t) = patternfk]) for i<k=m}

(this is called dd’ in [6])

and

s-occfcharacteri] = min {r~m+i/-1-=m-or-(0=+<m-and-patternfm—+} =character)

The s .match portion ensures that (1) when moved to the right the pattern will
match all previously matched characters, and (2) the character of the text that causes

the mismatch will be aligned with a different character of the pattern.

The s5.0cc heuristics causes rexr[f—m+i] {i.e. the mismatching character) to be

aligned with the closest matching character of the pattern.

The shift function s’, originaily introduced in [2], ueglects the (2) heuristics.
Instead of s.match{i], we have there (cfr. the dd function in [6]):
«’match{(i] = min {¢ / r=1 and (¢=k or parrernt] = pattern(k —]) for i<t=m}
and, correspondingly:

s'[character,i] = max {s’.match[i], r.occ[character i]}

-5-

Both r and s’ can be computed in O(m) steps. The reader is referres 7o [6,7]

for the details of such constructions.

It is convenient to extend s (s°) to deal with the case i =0, as follows:

i=k=m—t
This helps resuming efficiently the pattern matching process following the detection
of an occurrence of the patiern.

One more improvemeat is derived from the observation that if the pattern is
periodic (ie. y=u's’, with k>1 and u’ a prefix of), consecutive overlapping
occurrences can be detected at once. Indeed, let u be the shortest string such that
y =u*u’and let £>1. Let also s denote the length of u and take lo=m-r+1. Byccm.
bining the above observations, Z. Galil set up the following modified precedzre 2if°
[3]:

Procedore 5M '’
j=m;l =10
do while j=n

begin
do i ;= m to /by -1 ontll pasrerni] # text[j —m+i]

it =1 then
begin
output (match at j—m+1);1 :={g;{ =0
else! =0
J = j+atext[j -m +i),i]
end

The BM* takes linear time even in the worst case. For a periodic pattern in the
form 4*u’, the shift following a complete match must lead the prefix «® P4’ of the
pattern to be aligned with the position of the text previously matched against the
suffix of the pattern of the same form. This corresponds to singling out and exploit-
ing exactly one of the many possible 'states’ described in [6] (all other conf~urations

couid te thought of at this point as funneled into a single superstate’,

3. The Algorithm

It is convenient to give first an informal outline of our approach. To start with,
consider the situation of Fig. 1 below which depicts one possible ’instantaneous
description’ of the pattern matching process: the pattern has undergone, say, ¢ shifts,
and m ~i successful character matches have been performed. - -

i m
v ¥

oo

%2 % ’

A r_
j-m+i i

Fig. 1

According to BM (BM’), if text[j -m +il# pastern[i] the pattern will undergo one
more shift as prescribed by the s function. Letting the value of s be s=k, Fig. 2
displays the situation that would arise if ¥ more successful matches are performed.

i-k m-K m

Fig. 2

Plainly stated, BM (BM ') would keep trying to extend the matched region to the left. -
In view of the matches achieved during the stage of Fig. 1 (dotted region in the text),

however, it is immediately seen that two possibilities are open at this point:

A) The dotted portion of the pattern is also a suffix of the pattern. In princi-

ple, this region could be skipped at once, resuming comparisons at the two

-7-

characters immediately preceding the dotted areas.

B) The dotted portion of the pattern is not a suffix of the pattern, in which
case one more shift could bz imposed right away.

Thus, if track is kept of past maichc. segments of the text, and if the structure of
the pattern is a-priori known, thep t:2 characters falling within these segments nzed
not be reaccessed at subsequent stag=s. It should be pointed out that, unlike cass
(A) above, the segments of the text to be skipped at some stage may be more than
one, in general. However, we show in this paper that the simple observation above
does in fact contribute a substantial saving on the number of character comparisons

needed in the process. -

In order to proceed to a more formal description of our algorithm we need
some means to keep track of which segments of the text matched some suifix cf the
pattern. In addition, we have to devise a tool - based on the structure of the pottern

- that shall enable us to exploit such recorded information in a fast way.

To simplify our description at this stage, we will solve the first problem via the

auxiliary array skip[1:] initialized to 0 and such that wheaever in the course of t=e

matching it turns out that, say, rext[! —k +1:/] = pattern{m —k +1m] then skip[1] is c2t
to k. We will show later that a much more space efficient implementation cf this

bookkeeping is possible, as the reader might already suspect.
The second problem calls for the introduction of the boolean functicn
Q:{12,..m) x{1.2,...,m} = {true,falsc} defined as follows:

true if f (k=i and partern[i —k +13]# partern[m—~k +1m])

or (k> i and pastern[1i |# pattern[m —i +1m])
Qi k]=

f alse otherwise

We defer to section 4 the actual construction of 9.
The role of the above two implements is transparent. Indeed assumz tio?
skipi1>0 and Qfiskip[{]] is false. Then ecither rex[l-skip()+1d] =

partern (i —skip [1]+13] and i>skip{J], or teu ([l i +14] = partern({:] and i=skip{f]. Ia

-3.

the first case a text segment has been bumped inte, which falls entirely withiz tke
pattern and which is known to match the pattern in its current position. Otherwise
an occurrence of the entire paitern has been detected. We shall see that the

management of this latter case embodies the ideas in [3].

The listing of the procedure BM ”, which is given below, features the function 5°
in place of s. This has to do with the computations of the shifts that have to follow
the detection of the condition Q[i skip[f]] = true. In this case it is known that ap
already visited segment of the text does not match the substring w of the pattern
currently aligned with it, yet it is not known where exactly a character mismatch is
located. On the other hand, the function s (s*) takes characters and not substrings
as one of its arguments. We stipulate in this case to impose a shift based on the
value returned by +* in correspendence with the rightmost character of the strmg w.
Notice that this extension of the funcnon s’ cannot result in a longer shift, compared
to that based on the character that actually causes mismatch. We leave it as an exer-
cise for the reader to show that, in unorthodox circumstances such as above, « could
not consistently handle the shift. Although one could envision to use both tables, we
elect here to give up the more informative shift function ¢ (dd” in [6]), in favor of

. the conceptually simpler version s’ {dd in [6]). Fortunately, this has no influcacs on

the upper bound on the number of character comparisons for our strategy. The con-
struct andif in the iisting of BM” is assumed not to check the second condition if the

first is false.

Procedore M ™
j = m;

do while j=n
begin
do i :=m to 0 by-max(1 skip[j —m +i])
ontll Qi skip[j-m+i]} or ((skip[ij-m+i] = 0) andlt (pestern(i] =
rext[j —m +i]})
if i=0 then begin output (match at j—m+1); i := 0 end

skipl(j] 1= m~i3 j i= j+o'[text[j —m +i],i]
end

-9.

As mentioned, the BM " turns out to embody the ideas in [3]. In fzct It behaves
like BM’, soon after detecting an occurrence of a periodic pattern of the form utu’

(x>1). In the case skip[j] is set to m, resulting in a shift of length ¢ = lul. Since

0 [m~—r,m)-is false, BM " will detect.a new. occurrence of the pattern after only «+ more

successful matches.

Theorem [: BM"™ detects all occurrences of pattern[1m] in text[1,n] by performing at

most 2n —m +1 character comparisons.

Proof: The preceding discussion and the listing of BM™ establish that all the
occurrences of the pattern in the text are indeed detected. The construct
andif does not check the second condition if the first is false. Each com-
parison between a character of the text and a character of the pattern
may resuit in either a match or mismatch. If they match, then the text
character will be skipped later, whence each text character can be
involved in a p:atching comparison at most once. It is easily seen that the
overall number of mismatching comparisons cannot exceed n-m+1.

Indeed, each time a mismatch is detected this causes a shift to be per-

formed, and there are at most » —m+1 shifts. Thus the number of charac-

ter comparisons performed by BM " is at most 2n—m +1.

Theorem 1 conveys the main result of this paper. Such gain in efficiency in terms of
character comparisons is largely traded in exchange for a somewhat more compli-
cated preprocessing. The reader might also suspect that the savings on character
comparisons boosts the number of the other comparisons, some of which corld be
taken as surrogates for the former ones. Thus, it is of interest to account for the
comparisons necded to check skip and Q. The condition skip(j-m+i] = 0 is obvi-
ously detected in one comparison. We will show later that it takes two compazisons
to check that Q[i,skip[j —m +i]] is true. Both conditions are tested exactly each time

a character comparison is performed, plus each time skip{j —m +i]>0. Since this latter

-10 -

circumstance can occur at most n—m+1 times, we derive that the checks ¢f 7 -3
skip cannot exceed a total of 3z -2 +2, which yields 3(31 —2m 4+2) =91 —6m +6 comporis-
ons. Thus the number of both character and noncharacter comparisons is boundsd
by 1in—7m+7, which is still slightly better than the 14 in [3]. Such figure can be
lowered further, at-the-expense of-a-more-involved-construction. This task, however,
goes beyond the scope of this paper.

The auxiliary array skip[1:n] could be substituted by a circular array of cize m in
a straightforward way. An even better approach is to make use of a doubly linked
list, as follows. Let text[f] be currently aligned with pattern[m]. Whenever a
mismatch occurs foﬂowing k=1 successful matches- {possibly both of characters and
string segments) the right end of the list is updated by appending a new record that
stores the values of j and k. Those records that account for the segmenats falling
within the span (k) of Ithe newcomer record. are disposed of. Finally, the leftmost
record is refeased whenever the total number of records exceeds m. The details of
this construlction are quite standard and we leave them for the reader as 2 cxerziss.
Having stored thé vﬂue of the text index j each time a record is created makes it

also trivial to check later as to whether or not the information stored is it i5 con-

sist-cnt—with—thc—currcnt—aiignmcnfofpm—amﬁnewicﬁemm“tﬁffﬂpk-
mentation is its payoff in terms of space occupancy. In absolute terms, this latter is
obviously bounded by 0(m). We notice, howevér, that a new entry is apperded to
the list only following at last one successful character match. The number ez of szch
matches can be very small, yielding 2a O (cc) bound that might, in some inctances, be

better than the former.

4. Preprocessing

The analysis foillowing Theorem 1 relies on the assumption that the truth value
of Qfik] can be retrieved in exactly two comparisons. We show now Lcw this is

made possible by a suitable preprocessing of the pattern.

Let v be a generic string of m characters. For simplicity, we will denciz vii+13]

- 11

shortly as {{ j],. Recall that a string « is a period of v if v is a prefix of u*, with £>1.

For each i=m let {4]:

reach, [i]=max{j = m /[0,1], is a period of [0,j],} =
=i +max{jsm—-i/I0J], =t F+i}}
Letting v =v®, the reverse string of v, we associate with each position i in v the

position i =m—i+1in w. We call i the conjugate of i. Let now revpar =pattera®™.
Lemma I: Qi k)= true iff reach,, o [i"-1] < min (mi'+k-1)

Progf: Assume that Q[ik]=true. By definition, either (case 1) 0=k=<i/ and
pastera[i—k +1:] # pastern{m —% +1,m} or ~_(ca\sc 2) i<k and
partern[1,i]+# pattern[m—i +1,m]. Case 1 implies that
revpast {1k | # revpat im—i+1m—i+k), that is to say [Dhlopa #
(=1 =i +k L evpar - Thus the largest q such that
[0.2)erpm =[m—i m—i+ql,,, must be less than k. It follows that
reach, g{1'-1 = 1'-1+g<i’-l1+k =m—i+ksm. Case 2 implies that

m<! +k -1, whence we again need to prove that reack,,, o [I'-1]1<m. Thisis

easily accomplished by an argument analogous to that of case 1. Con-
versely, assume that reach.,,, [i’-1]<mic(mi’+k-1)=min (mm—i+k).
Now reach,, o [m—1]=m—i+q, where ¢ is the largest integer such that
0.2 vpr =M —i,m—{+qlypar. Consider the case where k>i. Then
m<m—i+k, whence reach, pq[m—i]<m. Since m =m—i+i, it follows from
the definition of reach that [0,i]am # [m—im) ppa, Which implies that
Qi k]= true. An analogous argument holds for the casec where 0=k =1.

a

The information needed for the table reach could be collected in liner time as a
byproduct of the Knuth-Morris-Pratt algorithm {6]. A more explicit constructicn is
the following. Let d,, d,,....d, be the sequence of all differences between conszc-
tive occurrences of w{l] i w{lon]. We can put reach,[i]=i+prefix[i], where

prefix (i) is the longest prefix of w that starts at position i +1. This enables to reason

-12-

in terms of the more handy table prefix,. To simplify m-~="-75 even further, w2

extend w(lm] by appending one ’sentinel’ locatioa to its rigkt ead. In other worcs,

we have now an array w(lm+1] and we assume that w[m+1] contains a symbol not

appearing in w{lun]. The array pref i, [1on] is now filled in care of the following pro-

cedure.

Procedore Prefix '

l.fori ;= 1ton do prefix, i} := 0 *initialize*

2.i =d=15k :=0;

3. repeat k = & +1 ontll w(k]# w[k +i] *compute first nontrivial entry®
4. prefix,[i] = k-1

S5.for f :=2to p do “compute all other nontrivial entries®
6. Dbegin

7. j=i

8 i:m=i+dy

9. if prefix,[d; —1]<k -d, thenm prefix [i] == prefix,[d]
10. clse begin & := max(0x —d) |
i1, repeat & =k +1 unl.l{ wik]# wli+1+k]

12. prefix,fi] ==&

13, end

14. ead Ha '

Theorem 2: The procedure Prefix correctly computes pref ix, [1mm].

Proof : pref ix,[1:4,~1] is filled with zero’s by initialization, and it is easy to check that

lines 2 <4 compute prefir, [d;—1]. Assume now that prefir, has baen

correctly computed up to a certain position { such that w(i +1]=w(1] and
fet prefix, [i] be equal to some integer p=1. Let also 4 be the smala-t
integer such that w[i+d +1]=w(1]. Let j =i+d. The repeat loop of liae 23
clearly computes prefix,[j] in the case k—d,; =0 (recall that all entriez of
prefix, are non negative). It remains to show that also the case * -4, >0
is dealt with consistently. This case splits in two subcases, both of wkiz

exploit the circumstance that position j falls within a replica of a prefix of
w starting at i. The value of prefir,[i] has simply to be recopied from
prefix,[d —1] if this latter is less than k-d, (line 9). Otherwise, pref ix, {i]
is at least k—d, and we need only check the following characters in an

attempt to lengthen it.

-13-

Theorem 3: The procedure Prefix takes O(m) time.

Proof: The total work for accessing positions i such that w[i]=w[1] is obvicz:ly
bounded by m. We can charge the work involved in comparing w{ a~

w[i +1+k] to position i+1+k. Each such position cannot be charged mars

p=m, which concludes our proof.

The procedure Prefix, once applied to w =revpat, makes readily available the & 3224

table reach, o - —

5. Concluding Remarks

We have shown that the Boyer-Moore-Galil approach to pattern matcking con
be upgraded by keeping track of the segments of the pattern successfully matched
with the text at each stage. Combiring such recordings:with a-pri'c;ri kncwledpe
about the structure of the pattern yields an algorithm which accesses each text char-

acter at most twice.

From the standpoint of algorithmic combinatorics, this result is of some merit.
Moreover, the increase in terms both oi control structure and preprocessing over-
head scems to be tolerable. Thus, the overall strategy compares rather favorably

with other nontrivial ones, also in the practical perspective.

Acknowledgement

We are indebted to Z. Galil for many helpful comments and suggestions. We
are also indebted to the referees for their excellent work in the revision of a prelim-
inary version of this paper. In particular, we gratefully acknowledge the contribu-
tion conveyed by one of them, whose selfless profusion of punctual and thoroughly

expert advice was of invaluable help in improving the presentation of our ideas.

- 14 -

References

[i] A.V. Ako and MJ. Corasick, “Efficient String Matching: An Aid to Biblio-
graphic Search”, Comm. ACM 18 (1975), 333-340.

[2]° R.S. Boyer and J.S. Moore, “A Fast String Searching Algorithm™, Comm. ACM
20 (1977), 262-272. - o '

[3] Z. Galil, “On Improving the Worst Case Running Time of the Boyer-Moore
String Searching Algorithm™, Comm. ACM 22 (1979), 505-508.

{4] Z. Galil and J. Seiferas, “Time Space Optimal String Matching”, Journal of Com-
puter and System Sciences 26 (1983), 280-294,

[5] LJ. Guibas and AM. QOdlyzko, “A New Proof of the Linearity of the Boyer-
Moore String Searching Algorithm™, Proc. 18th Annuwal IEEE Symposi_um on

_ Foundations of Computer Science (1977), 189-195.

[6] D.E. Knuth, I.H. Morris and V.B. Pratt, “Fast Pattern Matching in Strings”,
SIAM J. on Compuwsing 6 (1977), 189-195.

[71 W. Rytter, “A Correct Preprocessing Algorsithm for Boyer-Moore String Search-
ing” SIAM J. on Compuring 9 (1980), 509-512.

[8] AC.C. Yao, “The Complexity of Pattern Matching for a Random String”,

Technical Report, Computer Science Department, Stanford University, Stan-

ford, CA (1977)..

	Purdue University
	Purdue e-Pubs
	1985

	The Boyer-Moore-Galil String Searching Strategies Revisited
	Alberto Apostolicao
	Raffaele Giancarlo
	Report Number:

