
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1985

The Boyer-Moore-Galil String Searching Strategies
Revisited
Alberto Apostolicao

Raffaele Giancarlo

Report Number:
85-539

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Apostolicao, Alberto and Giancarlo, Raffaele, "The Boyer-Moore-Galil String Searching Strategies Revisited" (1985). Computer Science
Technical Reports. Paper 457.
http://docs.lib.purdue.edu/cstech/457

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

TIlE BOYER-MOORE-GALIL S1RING
SEARCHING STRATEGIES REVISITED

Alberto Apostolico

Raffaele Giancarlo
The UniversilY of Salerno

CSD·TR·539
October 1985

THE BOYER·MOORE·GALIL
STRING SEARCHING STRATEGIES

REVISITED·

ALBERTO APOSTOUCO
-- - - ----o---Dipartmerrrii! CiJiiiriutif Sdi-iiCes-

Purdue University
West Lafayettt:.IN 47907 . U.s A.

and

RAFFAELE GIANCARLO
DipartimenJo di Informatica ed App/icazioni

TIu! University of Salerno
184100 Salerno - ITALY

June 1984
ABSTRACT

Based on the Boyer-Moore-Galil approach. a new algorithm is
proposed which requires a number of character comparisons bounded
by 20, regardless of the Dumber of occurrences of the pattern in the
textstring. Preprocessing is only slightly more involved and still
requires a time linear in the pattern size.

K~ords and Phrases:
String Searching, Pattern Matching. Shift Functions, Text Editing. Analysis of Algo­
rithms.

1. Introduction

The string searching problem is to find all occurrences of a given pattern y in a

given teIt x. both y and x being strings over a finite alphabet.

Letting Ix I =n and I)' I =1'1, brute force procedures that involve O(rw) com-

parisons in the worst case can be quickly developed. However, as tbe copious litera­

ture [1-8] devoted to this subject over the past decade shows, the bound can be

lowered to O(n), provided some preprocessing of the pattern is allowed. As pointed

out by Boyer and Moore [2], the time spent in the preprocessing plays generally a

secondary role in the overall design perspective. However, it is fortunate that all

•This worlr. W9 supported ill put by tbc [taliao Ministry of EdUeWOll. Adc!itiOlllLl IIUpport w. prO\'idcd
by the ltaliao Nllliooal Couocil for RJ:scarcb. aod by N.A.T.O. uodcz- n:scuda p;rllOt DO. 039..82. Ao atcDd­
cd III,sullel rdllfed 10 this paper baa bcca. plCI<Cl:Ilcd 11 tbe 20th Aallual A1Icnoo Col1fcn:ncc 01:1 Colllltluoi­
alioll, COlltrol, and ComputillS- MoI:ll:icdlo,llliooiJ. Od:obcr 6-3.1982.

- :2 •

preprocessing strategies set up so far perform in time O{m).

As is well known. one of the first string searching algorithms wao:; proposed in

[2]. Unlike tbe Knuth-Morris--pratt algorithm [6], it compares y with:r starting from

tbe right end of y. The performance of tbis algorithm is quite good on the average

case. where it perfor.ns in O{n/m). __ On the.other band, it displays a worst C<::.3e run­

ning time n (n 2).

Improving over the Boyer~Moore algorithm (hereafter, 'BM' for shoz~) Knuth,

Morris and Pratt [6] also set up a modified version of it that performs c.:: ~ost 6n

character comparisons, if the pattern does not appear in tbe text. More r::c::ntly.

Guibas and Odlyzko [5] narrowed tbat bound to 4n and conjectured it is 2'1. Zvi

GallI [3] presented a new version of the modified 8M algorithm and, by using the

Guibas and Odlyzko result, showed a 14n character comparison worst case running­

time for his algorithm. This version is obtainable by the former one in a straightfor­

ward manner, even though it is not straightforward to prove its correctness.

As ;:lOinted out in [6], the analysis of the 8M procedure is not simple. This is

due to ~.!Je fact that, wben the BM algorithm shiits the pattern to the right, it does

not r.:t:::..:1 any information about c.!:J.aracters already matched. Based on this cbserva-

------~llri·'on__;__{'2:r:..""tb_;_Morris and Pl att (6]---suggestert--rhartn-e-.alg--o-nllrm-----oe-mad"e...le"s"s-,o"E"~""'"':o"u'"s,-------­

by arr<!..i:!.ging the various situations that could arise in the course of the pattern

matchic.3: process into a suitable table of "states". Problem is that the m.:=.b::r of

"states" in such a generalization of the BM strategy can be quite large (the obvious

upper bound is r. but it is not known how tight a bound this is). Thus the work

involved in preparing that table is prohibitive in practice. There is room to suspect

that a good portion of the table is unneeded in general. Galil's algoritl:m can be

regarded in fact as a nonoblivious version of the BM strategy which only exploits t';Vo

"states".

We present here still another upgrade of the BM that keeps ttad. of wh:::':' :J~~­

strings of the pattern matched which substrings of the text during prcvioc.s ;:.~::~­

ments, and exploits suc.!:J. recotdings later in the matching process. If we aHo'.·, :c:r at

-3-

most one recording per shift, then the number of such states is obviously bounced by

lI-m +1. The resulting algorithm works in linear time and displays three intere~!"mg

features:

(1) It.performs at most 2:J-m+l character comparisons.

(2) The proof of linearity is very simple.

(3) dd heuristics (in the sense of [6D can be used instead of dd', not affecdng

(1-2).

The first feature conve~ in our view the most interesting result of tbis paper:

indeed it is seen to follow from the even stronger finding that DO character of t~e

text needs to be accessed more than twice. The inspection of text characters is the

main (and obviously unavoidable) means by which information is acquired curing

any pa[tern matching process, so that the number of character comparisons per­

formed is customarily considered especially significant. We shall show. however. thaI

even taking into account the other comparisons (with the exception of those hidden

in tbe control suucture) yields the palatable bound of 11,..

This paper is organized as follows. In section 2 we review briefty the salient

features of the BM and some of its derivations. Section 3 is devoted to the exposi­

tion of our method., under the assumption that the informa!lon conveyed by prep!D­

cesslng is already available. This latter problem is addressed in section 4.

2. The Boyer-Moore Approach to PAttuD. Match1D.g

We will assume that the input z (y) is stored into the array te:;[1:nl

(patlern[l:m D.

The obvious way to locate all occurrences of y in z is by repeated aligning and

checxing from left to right. ODe innovative feature of the BM strategy is in that, for

eacb aHsnrncn! of the two strings, character comparisons are performed from right to

left, starti:lg at the right end of the pattern. As is well known, this contributes a

significant speed-up in cases of mism:ltch (efr. [6]), even though it leads to a qua­

dratic worst case behavior. A compact presentation of the eM aIgori!bm is given in

- 4-

(3]. We report it below for tbe convc:Jience of the reader.

Procedure BM

j:=m;
do while j :S II

b"2ID

.nd

• i U) poiots to the current character
• of the pattern (text); s [character.)] is the auxiliary
• 'shift' function.

do i := m to 0 by -1 dOW pattern(i] '* lUlU -m +i]
It;=o then begf.o output (match at j-m+l) end

dsej := j+.l'[tut[j-m+i],il

•
•
•

Tables such as .l' are usually referred to as shift functions. In [3,6].l' is formally

defined as follows:

s [character,i] = max {s .match[; J• .l' .ccc[cbaracter,i]}

where:

s.m.atch[i] = min {t I 12:1 and (12:; or pattt!'rn[i-r]* pattern[i]) and «l:!:k or

parlern[k-r] = pattern[k])for i<ksm }

(this is called dd' in [6D

and

------.hocc{char-act-e~.jf_=__m_in__{l~m-+;-I-l--=m--or___toS1-<---m--and__pal't!rnEm__tf_=__cha:racte"r-1)r---------

The J .match portion ensures that (1) when moved to the right the pattern will

match all previously matched characters, and (2) the character of the text that causes

the mismatch will be aligned with a different character of the pattern.

The .r .occ heuristics causes turfJ-m+i] (Le. the mismatching character) to be

aligned with the closest matching character of tbe pattern.

The shift function .r'. originally introduced in [2], neglects the (2) heuristics.

Instead of .r .match[i}. we have there (cfr. the dd function in [6J):

J".match[(i] = min {I 11;::1 and (t~k or pallern[k] = pattern[k-r]) for i<kSm}

and, correspondingly:

J '.[character,il = max {.r' .match[i], .r .occ[cbaracter,in

- 5-

Both s and ~. can be computed in O(m) steps. The re~der is referred ~!) [6,7J

for the details of such constructions.

It is convenient to extend S ($ ') to deal with the case i =0, as follows:

s [character,O] = s '[character.Ol o=-=-miD: -{t -1-~'-2:T'aiid--=Patj~rn[kl-= -Pat'-~r1i[k +1 l, for

;s.tSm-r

This helps resuming efficiently the pattern matching process following the detection

of lID nccurrc-Rl:c uf (he ItIlUcrn.

One more improvement is derived from the observation that if the p~!tern is

pt!riodic (i.e. y = .. .1: with 1'>1 2nd ,,' a prefix of u). consecutive ove::!apping

occurrences can be detected at once. Indeed. let " be the shortest string 'S"Jcl1 ~at

Y=/l.t ... and let .t> 1. Let also t denote the length of II and tate 10 =m -r +1. By cc.:n­

bining the above observations, Z. Galil set up the following modified prcc~~~!'e !!:.t'

[3]:

If j 1 thm
beglu

output (match at j -m +1); 1 := ' 0; 1 := 0
<lid
else I := 0

j :- j +, [tutU -m +i],1]
OlId

Procedure BM'
j:=m;/:=O;
dowhUejSn

beein
do i ;= m to / by ~1 nnW P'U't~rn[i] '* tutU -m +iJ

The BM' takes linear lime even in the worst case. For a periodic pattern in the

form 1/"'. the shift following a complete match must lead the prefix "(i-I),,' of the

pauern to be aligned with the position of the text previously matched against the

suffIX of the pattern of the same form. This corresponds to singling out and exploit­

ing: exactly one of the many possible 'states' described in [6] (all other coc..5:;'.!!i1tions

could be tbought of at this point as funneled into a single 'superstate'.

3. The Algorithm

It is convenient to give first an informal outlinc of our approach. To start with,

consider thc situation of Fig. 1 below which depicts one possible 'instantaneous

description' of thc pattern matching process: thc pattern has undergonc, say. t shifts,

and m-i successful character matches have been performed.

m

" "l~--~~

'-!--- ~~L _...1?
~

j--m+1

Fig. 1

~

)

According to BM (BM '), if tutU -m +iJ* ptUtern[i] the pattern will undergo one

mare shift as prescribed by the s function. Letting the value of s be s =1:. Fig. 2

displays the situation tbat would arise if I: more successful matches are performed.

i-k m-k m

" ·w·
__II·········le:Ej

! H··H .. /J?:XJ ?
~ ~ ~

j-m+i) j... k

Fig. 2

Plainly stated, BM (8M ') would keep trying to extend the matched region to the left. '

In view of the matches achieved during the stage of Fig. 1 (dotted region in tbe text),

howe·..er. it is immediately seen thz.t ['NO possibilities are ope!!. at this point:

A) The dotted portion of the pattern is also a suffIX of the pattern. In princi­

ple, this region could be skipped at once, resuming comparisons at the two

·7·

characters immediately precedinc the dotted areas.

B) The dotted portion of the pattern is not a suffix of the pattern, i!l wh::c~

case one more shift could b= imposed right away_

the pauero is a-priori known. then ::1-;~ charaeten falling within these segments c.::ed

not be reacccsscd at subsequent st3.~~. It should be pointed out tbat, unli~c case

(A) above, tbe segments of the te..'tt :':J be skipped at some stage may be more than

one, in general. However, we show :.n this paper that the simple observation above

does in faet contribute a substantial saving on the Dumber of character comparisons

needed in the process.

In order to proceed to a morc formal description of our algorithm we need

some means to keep track of which segments of the tcxt matched some suffIX cf the

pattern. In addition. we have to devise a tool· based on the structure of tbe ~:.<:terD.

• that shall enable us to exploit sucb recorded information in a fast way.

To simplify our description at this stage, we will solve the first problem ';-::1. ~c

auxiliary array stip[l:n] initialized to 0 and such that whenever in the course of ~e

matching it turns out that, lay. rur[l -I' +1:1] = pattern{m -1 +1::m1then stip[l] :'1 ~~t

to J:. We will show later that a much more space efficient implementation. cf thb

bookkeeping is possible, as the reader might already suspect.

The second problem calls for the introduction of the boolean fucctic.::!

Q :{l,.2,_. ,."11} x {1,2•....,m} - {troe. false] defined as follows:

true i.f f (k. s i. 3adpaltern{l-k +1:1'}* ptUtun [m -,t +1:mD
or (t > i a!ldpaltern [1:i J¢ pattern [m -i +1::m D

f aIsc otberwise

We defer to !:cction 4 the actual construction of Q.

The role of the above two implements is transparent. Indeed assu!::.~ e:.::

skip[l]> 0 and Q [i ,jiip [Ill is false. Then either tU1[I-siip(l)+1:l] =

paltern[i-siip[r]+1:i] and i>slip(I], or tat[l-i+l:l] = pattl!'rn[l:i] and isstip[l]. !~

- 3 •

the first case a text segment has been bumped into, which falls entirely within the

pauern and which is known to match tbe pattern in its current position. Otherwise

an occurrence of the entire pattern has been detected. We shall see that the

management of this latter case embodies the ideas in [3].

The listing of tbe.procedure BM", which is given below, features the function.f'

in place of s. This has to do with the computations of the shifts that have to follow

the detection of the condition Q[lp1kip(rTI = true. In this case it is known that an

already visited segment of the le:!:t does DOl match the substring w of the pattern

currently aliened with it, yet it is not known where exactly a character mismatch is

located. On the other hand. the function .f (.I') takes characters and Dot substrings

as onc of its arguments. We stipulate in this case to impose a shift based on the

value returned by s' iiJ. correspondence with the rightmost character of the string w.

Notice that this extension of the function s' cannot result in a longer shift. compared

to that based on the character that actually causes mismatch. We leave it as an exer­

cise for the reader to show that, in unorthodox circumstances such as above, 3 could

not consistently handle the shift. Altho!lgh one could envision to use both tables, we

elect here to give up the more informative shift function J (dd' in [6]). in favor of

the conceptually simpler version s' (dd in [6D. FortunateJ.)+jhis has DO influenc'" OD.

tbe upper bound on the number of character comparisons for our strategy. The con-

struct a!rdif in the listing of BM" is assumed not to check. the second conditio:l if :he

first is false.

Proccdoft 8M"

j :=171;

do while j S rI

begin
do i := m to 0 by-max(l,skip[j -171 +i])

ontU Q[i ,skipfj -171 +i JJ or «skipfj -171 +i] = 0) andU (pattun[i]
tutU -m +i]})

it j:s: 0 then begin output (match at J -171 +1); i := 0 end

skiPU] := 171 -j; j := j +.1 '[tutU -171 +i].i]
end

·9·

As mentioned. the 8M" tums out to embody tbe ideas in [3]. In f<:.ct :'t bc!:i<i.',ras;

like BM', soon after detecting an occurrence of a periodic: pattern of the Eorm. uiu'

(I: > 1). In the case d:ip[j 1is set to m. resulting in a shift of length I = 11.1 I. Since

Q {m ~t--.,m]-is_-false. 8M!' wilLdctect= a_ne!ll~_Q.Ccur~~f~ -,--oCth~_p_a~_l;:I11=_aft_er ~J:!.ly_! morc

successful matches.

TMDrem I: 8M" detects all occurrences of pattern[lm] in tat[l.o] by performing at

most 2n -m +1 character comparisons.

Proof: The preceding discussion and the listing of BM" establish that all the

occurrences of the panern in ~he text are ind~ed detected. The construct

andl1 does not check. the second condition if tbe first is false. Each com­

parison between a c~aracter of the text and a character of the pattern

may result in either a match or mismatch. If they match, then the text

character will be skipped later. whence each text character can be

involved in a matching comparison at most once. It is easily seen that the

overall number of mismatching compar~sons cannot exceed II-m +1.

Indeed. each time a mismatch is detected this causes a shift to be per-

formed, and there are at most II-m+l shifts. Thus tbe number of cbarac­

ter comparisons performed by BM" is at most 2II-m +1.

Q

Theorem 1 conveys the main result of this paper. Such gain in efficiency in terms of

character comparisons is largely traded in exchange for a somewhat more compli­

cated preprocessing. The reader might also suspect that the savings on character

comparisons boosts the number of the other comparisons. some of which coc!d be

taken as surrogates for the former ones. Thus. it is of interest to account for tho

comparisons needed to check ~kip and Q. The condition skipU -m +i} = 0 is obvi­

ously detected in one comparison. We will show later that it takes two comparisons

to chec!t that Q[i,skip[j-m+iD is true. Both conditions are tested exactly eac!l time

a character comparison is performed, plus each time skip{j -m +i]> o. Since this latter

- 10 -

circumstance can occur at most" -m +l times, we derive that the checks c: :2 .::.::.:3

skip cannot exceed a total of 3lI-2::1 +2. which yields 3(311: -2m +2) =9n-6m +6 cc=::~:~

ODS. Thus the Dumber of both character and ooacbaracter comparisons is hc:.!:'!,c!:d

by lIn -7m +7, which is still ~lightly better than the 1411: in [3]. Such figure c:m be

lowered further, at-the-expeose of-a-more-involvedcconstruction. This task, however.

goes beyond the scope of this paper.

The auxiliary array skip[l:n] couLd be substituted by a circular array of ~:.ze m 1.n

a straightforward way_ An even better approach is to make use of a doubly linked

list, as follows. Let tutU] be currently aligned with pattern[m]. Whenever a

mismatch occurs foUowing k:<!: 1 successful matches (possibly both of characters and

string segments) the right end of the lise is updated by appending a new record that

stores the values of j and k. Those records that account for the segme:l.ts falling

within the span (I:) of the newcomer record. are disposed of. Finally, tte leftmost

recotd is released whenever the total number of records exceeds m. The details of

this construction are quite standard and we leave them for the reader as 2..:l cxer:::'se.

Having stored the value of the ten index j each time a record is created mues it

also trivial to check later as to whether or not the infor!!lation stored b it is c::n-

--------ssistent-with-the-current-aiignment of paJJern and rUI. One aiccrlcmure-c1--r=s-!m;:e'"-~-------­

mentation is its payoff in terms of space occupancy. In absolute terms, t=:i5 !a!t~r is

obviously bounded by O(m). We notice, however. that a new entry is appe!lded to

the list only following at last one successful character match. The number cc of s~ch

matches can be very small, yielding aD. 0 (cc) bound that might, in some in:::tances. be

better than the former.

4. Preprocessing

The analysis following Theorem 1 relies on the assumption that the tn.:.:h value

of Q[i.k] can be retrieved in e;;:ac:ly two comparisons. We show now ::-::'.'1 t1:.::; is

made possible by a suitable preproc,::dng of the pattern.

Let y be a generic string of m c~:lI"acters. For simplicity, we will de::.ct:: v(i+l:j]

- 11-

shortly as [I Jl•. Recall that a strmg u is a period of \I if II is a prefix of ul, with l: > 1.

For each is". let [4]:

""",,-[n ~ """'U ",mt!O,II. is. period of [O,j],J ==, +maxU"'m-It!0JI. = [I J+j !.J

Letting v == ..". the reverse string of v. we associate with each position i in If the

position i = m-j +1 in w. We calli the conju8QJe of i. Let now rnpal ==palIIU'tI· •

Lem11JQ.!:Q[i..t]= truciffr~~ [i"-t] < onn(m,i'+k-l)

Proof: Assume that Q [i ok I = true. By definition. either (case 1) Os k.sf and

implies

paJteT1I[t-l +1:i} ':(:. pattnn[m -1 +1.."11

paueTn,[!,i] '* paltern[m -t +1"m].

or

Case

(case

1

2) 1<. and

that·

revpat fa 1:# revpat [m -I +1:m -I H: l, that is to say [0,1],.0"1* ""

[i'-I,,1l'1-;+k],....,..... Thu. lb. largest • such t.!:J.at

[O.q},ft'JI'C == [m -I,m -I +qL..,.. must be less than t. It follows that

reach,.fYJ* [I '-1) = ,'-1+q<,'-1+1 =".-1+1s".. Case 2 implies that

m<: I +.t -I, whence we again need to prove that I'eaclt,.",. [1'-11< 1\'1. This is

easily accomplished by an argument analogous to that of case 1. Con­

versely, assume that rf!«~nJ'of' [i·-l]<II1i.n(mJ·+t-l)=miD (m,m-i+.t).

Now rf!achrrl1W'[m-l]=m-i+q. where q is the largest integer such that

[0,q]'"JICW = [m -I ,1ft -I +q],.."..,. Considcr the case where .t > i . Thcn

m<m-i+t, whcnce reac~"JW[m-l]<m. Since m =m-iH. it follows from

thc definition of reach that [o.iL....,.., ¢ [1ft -i.,lrl],.10]0II' which implies that

Q [l ,.t]:= true. An analogous argument holds for the case whcre Os.t $ i .

a

The information needed for the table reach could be collected in liner ti.::ne 2Z a

byproduct of the Knuth-Morris-Pratt algorithm [6]. A more explicit construction !s

the following. Let d h d-z. . .. •d, be the sequence of aU differences between conse:::..:­

tive occurrences of w{1] in w{1:11'1]. We can put reach,,[i} =1 +pre!u",[i], where

prefu.(i) is the longest prefix of w tbat stans at position 1+1. This enables to reason

- 12 -

in terms of the more handy table pre/iI... To simplify I:C.::::-::--:':; even further, ~~'Z

extend w [I:m I by appending one 'sentinel' location to its rig!:.t e:J.d. In other wore:;,

we have now an array w [1:m +1] and we assume that w [m +11 cODtains a symbol not

appearing in w {1:m]. The array pr~fiz., [1:m I is DOW filled in care of the following pro­

cedure.

Procedul'C Pretu
1. for i := 1 to II do pTefirw[i):= 0 -initialize"
2. j := d 1-1;"1" := 0;
3. repeat k := k +1 until w [1-]:F w [I: +i] ·compute first nontrivial entry.
4.prefix... [i]:= i-I
5. for f := 2 to p do ·compute all other nontrivial entries-
6. begin
7. j:= j

8. j:= i-+dJ
9. ifpre!iI..,[d,-l]<.t-d/ thenpTt'fir... [i] :=prefu.[d/I
10. else begin k :- max(O,k -d1) ..
11. repeatk :=.t+tnnWw{tl:#w[i+1+.t]
12. pTe/aw[i] :=.t
13. end
14. end :,;, ,.. " '"

Theorem 2: The procedure Prefix correctly computes prefix., [t:m.].

Proof: pref u;.. [l:d 1-1] is filled. with zero's by initializatio!l. and it is easy to chec.!:: th::;t

lines 2 -4 comp·ute prefix,..[dl-IJ. Assume now that prefix" has b':c:l

-------~--'cortecl:tycomputed up to a certain position I such that w[i+l]-w[11 ~_d

let pre! i:c", [I] be equal to some integer p ~ 1. Let also d be the f:lD~~~:t

integer such tbat w [i +d +1] = w [II. Let j =i +d. The repeat loop of l~e :1

clearly computes prefLr..UJ in the case k-d, sO (recall that all cnt:ie:; of

prell%..., are non negative). It remains to show that also tbe case !:-d,>D

is dealt with consistently. This case splits in two subcases. both of wJ::::~

exploit the circumstance that position j [ails within a replica of a prefix of

w starting at i. The value of prefir.. [il bas simply to be recopied from

pre! ix... [d -II if tbis lauer is less tban k -d, (line 9). Otherwise, pre! U;. [i]

is at least .t -d, and we need only chec!l: the following characters in an

attempt to lengthen it.

o

• 13-

Theorem 3: The procedure Prefu takes O(m) time.

Proof: The total wort for accessing positions i such that ""[;I=w[11 is obvic:::!y

bounded by m. We can charge the wort involved in comparing w[kI ~d

w[i+1+1] to position i+1+1'. Each such vositioD canDot be charged C:~:e

than one matching comparison. Mismatching comparisons cannot ~-:~c:-:~:1

p Sm. which coocludes our proof.

The procedure Prefix, once applied to IV =revpcu. makes readily available the':

table reachrnr-.

5. Concludlnl Remarks

We have shown that the Boyer·Moore·Galil approach to pauern marchio.:: C:l!l

be upgraded by keeping track. of the segments of the pattern successfully matched,
with the text at eacb stage. Combining such recordings with a-priori kocwled,ee

about the structure of the pattern yields 3n 8..Igorithm which accesses each tert cb.ar·

aeter at most twice.

From the standpoint of algorithmic combinatorics, this result is of some cerit.

Moreover, the increase in terms both of control structure and preprocessing over-

head seems to be tolerable. Thus, the overall strategy compares rather faYorab~y

with other nontrivial ones, also in the practicaJ perspective.

Acknowled&emmt

We are indebted to Z. Galil for many helpful comments and suggestions. We

are also indebted to tbe referees for their excellent work in the revision of a prelil:::l­

inary version of this paper. In particular, we gratefully ac:nowledge the contribu­

tion conveyed by one of them, whose selftess profusion of punctual and tboroug!:lly

expert advice was of invaluable help in improving tbe presentation of our ideas.

- 14-

References

[1] A.V. Abo and MJ. Corasick., "Efficient String Matching: An Aid to Biblio­

graphic Search". Canlm. ACM 18 (1975), 333-340.

[2] R.5. Boyer and J.S. Moore, "A Fast String Searching Algorithm", Comm. ACM

20 (1977), 262·272.

[3] Z. GaIil, "00 Improving tbe Worst Case Running Time of the Boycr.Moorc

String Searching Algorithm", Comm. ACM 22 (1979), 5OS-508.

[4] Z. Galil and J. Seiferas, "Time Space Optimal String Matching". Journal of Com­

puter and System Sciences 26 (1983),280-294.

[5] LJ. Guibas and A.M. Odlyz.t.o, "A New Proof of the Linearity of the Boyer­

Moore String Searching Algorithm". Proc. 18th Annual IEEE Symposlum on

Foundations of Computer Science (1977), 189-195.

[6] DE. Knuth. I.H. Morris and V.B. Pratt, "Fast Pattern Matching in Strings",

SIAM J. on CompUJing 6 (1977), 189-195.

[7] W. Rytter, '~A Correct Preprocessing Algorithm for Boyer-Moore String Search.

ing"tSIAM J. orr Compu:ing 9 (1980), 509-512.

[8] A.C.C. Yao. "The Complexity of Pattern Matching for a Random String",

Technical Report, Computer Science Department, Stanford University. S~an~

ford, CA (1977)..

	Purdue University
	Purdue e-Pubs
	1985

	The Boyer-Moore-Galil String Searching Strategies Revisited
	Alberto Apostolicao
	Raffaele Giancarlo
	Report Number:

