
Visual Analytics for Profiling Land Use Changes
Claudio Santos∗, Maryam Hosseini†, João Rulff‡, Fabio Miranda§

Luc Wilson¶, Claudio Silva‡, Nivan Ferreira∥, Marcos Lage∗
∗Universidade Federal Fluminense, †Massachusetts Institute of Technology, ‡New York University

§University of Illinois Chicago, ¶Kohn Pedersen Fox Associates PC, ∥Universidade Federal de Pernambuco
claudioj@id.uff.br, maryamh@mit.edu, jlrulff@nyu.edu, fabiom@uic.edu

csilva@nyu.edu, nivan@cin.ufpe.br, mlage@ic.uff.br

Abstract—The growth of cities calls for regulations and
zoning rules on how each piece of urban space will be used.
Tracking land use can reveal a wealth of information about urban
development. For that matter, cities have been releasing data sets
describing the historical evolution of the shape and the attributes
of land units. The complex nature of land-use data, however,
makes the analysis of such data challenging and time-consuming.
To address these challenges, we propose URBAN CHRONICLES,
a visual analytics system that enables interactive exploration of
land-use changes. Using New York City’s Primary Land Use Tax
Lot Output (PLUTO), we show the system’s capabilities to explore
the data from several years at different scales. URBAN CHRON-
ICLES supports on-the-fly aggregation and filtering operations
that leverage the hierarchical nature of the data set to index the
shape and attributes of geographical regions that change over
time. Finally, we demonstrate the system’s utility through case
studies that analyze the impact of Hurricane Sandy on land use
attributes and the effects of rezoning plans in Brooklyn.

I. INTRODUCTION

Cities have long been the center of innovation and devel-
opment. As people concentrate on these hubs of culture and
services, hamlets give way to towns and towns to metropolises.
This growth calls for regulations and plans to best divide and
utilize a precious resource: land. Cities have been adopting and
modifying regulations that govern land use and development.
Zoning resolutions were defined to facilitate the management
of urban spaces, controlling the shape and size of the buildings
and public spaces, preserving urban fabrics, and determining
how each piece of land can be used [1]. The zoning rules
can change to comply with the new demands of urban life.
Tracking the zoning codes and land use changes can help draw
a precise picture of how urban economic, social, and public
policies have evolved and inform stakeholders of the delayed
impacts of policy changes and major events such as natural
disasters or economic crises.

The complex nature of zoning codes and land use reg-
ulations makes analyzing such data challenging and time-
consuming. For instance, since such extensive data spans
different city agencies, each having its data collection and
recording methods, the unified data set is highly prone to errors
and inconsistencies. On top of that, land use and zoning data
are often large and complex. In New York City (NYC), the data
set describing primary land use has over 83 attributes and more
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than 320,000 geographical units for the boroughs of Manhattan
and Brooklyn. This data can be considered a spatiotemporal
data set, but the spatial attribute is not merely composed of
points but complex geometric primitives. New geographical
units are created, destroyed, split, and merged over time,
resulting in attributes and geometry changes. Tracking these
changes is, therefore, essential. Most of the existing land use
and zoning visualization tools are either merely exploratory
tools offering very limited or no analysis capabilities [2] or
do not take the temporal aspect of the data into account [3].

To address the challenges involved in the analysis of land
use data, we introduce URBAN CHRONICLES, a visual analyt-
ics system for profiling city land use data. URBAN CHRONI-
CLES is developed through ongoing collaborations with urban
planners and architects working with land use and zoning
data as part of their projects. The system implements an in-
memory tree-based data structure designed to handle land
units’ geometries; and a visual interface that enables the
visualization of land use data at different scales giving the user
analytical capabilities that would not be possible in a single
scale. Our system uses the Primary Land Use Tax Lot Output
(PLUTO) data, a spatiotemporal data set that describes the land
use information in NYC since 2002. We use it as an example
to introduce URBAN CHRONICLES, although it could also be
used to explore other land use inventories. We demonstrate
the effectiveness of the system through case studies set in
NYC. They analyze the impact of the National Flood Insurance
Program of 2013, a year after Hurricane Sandy, on residential
development activities in lower-income neighborhoods and
evaluate the Downtown Brooklyn rezoning plan to absorb
the office space demand generated by Financial District. To
summarize, our contributions are:

• We introduce URBAN CHRONICLES, a web-based system
that enables urban planners and architects to visually explore
large data sets composed of geographical, political, and
administrative land unit information.

• We build a general-purpose tree-based data structure to
leverage the hierarchical nature of land use data. The data
structure enables interactive time when querying large spa-
tiotemporal land use data sets.

• We highlight the utility of URBAN CHRONICLES through
two case studies in NYC and performed by urban planners
and architects.
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Fig. 1. Lot changes in PLUTO: The geometry of the lot was updated to represent its real geometry (2014) better; In the following year, it was split, creating
a new lot (2015); In 2016, the larger lot became a mixed-use area; and in 2017 the two lots were merged.

II. RELATED WORK

Land use and zoning analysis. Scientists in different fields
have studied land use and land cover change. Environmental
scientists looked at how such modifications can impact climate
change [4], while urban planners showed that it could signal
gentrification [5], [6] and affect different urban indices [7]–
[9]. Recently, data sets, such as PLUTO [10] and Chicago’s
Land Use Inventory [11], were used in several studies. Still,
most consider just a few attributes, short periods, and coarse
spatial granularity [12]–[14].
Interactive visualization. To be effective, visual analytics
systems should strive for interactivity, with response times
below 500ms [15]. Thus, specialized data structures [16]–
[18] and parallelism techniques were explored over the past
years [19], [20]. These works do not consider data containing
geometric shapes that evolve. Therefore, they are not suitable
for data representing land use data.
Urban visual analytics. In the past decade, various tools and
systems have been proposed to analyze and explore urban data
[21]–[24], helping experts to gain a deeper understanding of
cities, evaluate policies, and plan developments [25]. Several
tools have also been proposed to handle complex urban
geometry, such as buildings [26], [27]. Although their goal
is to inform the decision-making process, these systems were
not developed as general-purpose tools to cover the whole
spectrum of geographical-based analysis. For more focused
tasks, such as land use analysis, these tools do not provide
the capability to interactively explore and track the temporal
variation of the data sets.

III. BACKGROUND

Lots & rezoning. There are multiple standards to locate and
identify each piece of land. The system used in the U.S. and
Canada is called Lot and Block Survey System, under which
blocks are defined as "A tract of land bounded on all sides
by streets, or a combination of streets, public parks, railroad
rights-of-way, pierhead lines or airport boundaries". Blocks
are then subdivided into lots, the smallest parcel of land that
can be owned, purchased, and sold. In NYC (the running
example used in this paper), lots are identified with a unique
code resulting from the concatenation of borough, block, and
lot numbers corresponding to their location, called the BBL
code. A lot (see Figure 1) can be divided to create new lots,
or multiple lots can merge to create a larger lot. The zoning

designation can change through a process called rezoning.
It often seeks to either increase the density and encourage
development by setting less restrictive rules on the height,
size, design, and use of the buildings; or to prevent density
increase, protect local businesses and the historic fabric of the
neighborhood by setting more restrictive rules.
The PLUTO data. PLUTO is an invaluable and extensive land
use and geographic data set, describing almost every piece
of land in NYC [10]. MapPLUTO is derived from merging
the PLUTO attributes with the Tax Lot Polygon features
from the Department of Finance. Among others thing, the
data set provides information regarding assessed land value
and primary building features. PLUTO and MapPLUTO are
updated twice a year. We collected PLUTO data from 2002 to
the first semester of 2017. During this period, 22 versions
(18GB) of the data set were released. Each PLUTO data
release is a collection of shapefiles, one for each of the five
boroughs in NYC, containing the geometries and attributes of
the lots. The raw historical data contains many redundancies
that can be explored for storage optimization. For example, the
geometry of most of the lots in NYC remains unchanged for
several years. Figure 1 illustrates all changes that the geometry
and attributes of a lot can undergo. We stress that tracking and
visualizing the changes of all lots of a city is a challenging task
that we aim to solve with URBAN CHRONICLES. Moreover,
the attributes of the lots have gone through several changes
over the years. Examples of issues one observes when trying
to consolidate the different PLUTO releases are changes in
attribute names, changes in attribute definition, and inaccurate
attribute information. PLUTO, NYC’s data set that is our
motivating example, is a spatiotemporal data whose spatial
component of the elements are geographical regions, where
each region is described by its polygonal boundary and a list
of attributes that change over time. Next, we describe the main
features of PLUTO.

IV. URBAN CHRONICLES SYSTEM

In our ongoing collaboration with domain experts, we iden-
tified a set of tasks that they are interested in performing and
defined the following requirements for URBAN CHRONICLES:
[R1] Enable data exploration at different city scales. Enable
the exploration of land use data at different geographical
levels. An urban planner might use the neighborhood level
to identify areas undergoing a process of gentrification and
then analyze the phenomena at the block or lot level.



[R2] Enable the exploration of attribute changes over time.
Allow users to explore the rate of change in the attributes over
time while enabling the identification of outliers and patterns.
[R3] Enable the exploration of lots of interest. Filtering lots
based on tax, land use, or zoning attributes allows experts to
identify areas that follow certain criteria.
[R4] Enable the exploration of temporal changes of lots.
Keeping track of changes in the number of lots in a neighbor-
hood is crucial. The increase in lot mergers can be a signal
of an incentive zoning program or transferable development
rights, which can have a large impact on the community.
[R5] Support interactive query times. All the previous tasks
should be executed interactively since a response time greater
than 500ms can significantly impact visual analysis [15].

To meet these requirements, URBAN CHRONICLES has three
modules: the Data Storage (Section IV-A), the Query Proces-
sor (Section IV-B) and the Visual Interface (Section IV-C).

A. Data Storage

Public administration uses several different geographical
subdivisions to define city policies, rezoning plans, etc. For
this reason, URBAN CHRONICLES provides users the ability
to explore PLUTO data based on the borough, neighborhood,
community district, block, and lot levels (requisite R1). This
requisite demands the construction of a spatial index that stores
the lots belonging to each level’s geographical regions. To do
so, we built a Data Storage module composed of in-memory
data containers and a spatiotemporal index. The storage works
together with the Query Processor module to handle requests
from the Visual Interface module (see Section IV-C)

The data containers use lists to store the lots’ and geo-
graphical regions’ geometries, as well as their attributes. The
Spatiotemporal Index is implemented using a tree containing
five levels: the city, boroughs, neighborhoods (or community
districts), blocks, and lots. We observe that either the neighbor-
hoods or the community district regions are considered during
the data structure construction. Since this option has no impact
on the structure’s design, we will assume the neighborhood
regions are chosen from now on. Also, note that a geographical
region in level l+ 1 is always contained in a single region of
level l. In this way, the tree’s root node represents the city level
and covers the entire NYC. Analogously, the borough level
contains nodes that represent each of the city’s five boroughs;
the neighborhood level includes nodes that represent the
neighborhoods of each borough; and so on. Each leaf node
stores one reference to its Geometries Container and Attributes
Container, storing the lot’s data of all PLUTO releases.

B. Query Processor

The query processor uses the Data Storage’s spatiotemporal
index and containers to process the queries the visual inter-
face produces. The queries supported by the system can be
classified into geometry retrieval, attribute aggregation, and
lot filtering operations. The geometry retrieval queries return
the shape of a set of geographic regions in a given year. For
example, it allows retrieving the geometry of the lots that

belong to the block with id 01036 in the Brooklyn neigh-
borhood called Park Slope in 2006. The attribute aggregation
queries return an attribute of interest aggregated over a set of
geographic regions. For example, it enables the computation of
the sum of the area of the lots in each block of the Manhattan
neighborhood called SoHo in 2009. The lot filtering operations
allow selecting lots based on their attributes. For example,
it enables identifying residential or commercial lots. Using a
notebook equipped with a Core i7@2.2 GHz, 16 GB of RAM,
SSD drive, and NVidia GeForce GTX 1060 GPU, the system
was able to compute aggregation and filter queries for the
entire Manhattan in 300ms on average (requisite R5).

C. Visual Interface

URBAN CHRONICLES’s visual interface allows users to
interactively explore the history of PLUTO data at different
spatial scales. Figure 2 shows its components, classified as
auxiliary and analytical based on their functionalities.
Auxiliary components. The Main Menu, the Configuration
Panel, and the Color Maps Legend are labeled as (a), (b), and
(c) in Figure 2. The Main Menu allows the user to show/hide
the other components. The Configuration Panel lets the user
adjust the system options, i.e., it is possible to define what
borough the user wants to explore; what set of geographical
regions (neighborhoods or community districts) should be
used; whether the block levels may be skipped; and the color
mapping used in the Map View (see details next).
Analytical components. The Data History View, the Map
View, and the Lot Filtering components are labeled as (d),
(e), and (f) in Figure 2. The Data History View contains two
linked visualizations, a line chart, and a heat matrix. They
enable the user to explore attributes of a lot of interest and their
change over the years (requirement R2). The user can select
the attribute visualized in both charts using the top toolbar.
Each line of the heat matrix represents a geographical region
of the selected level. For example, if the neighborhood level is
active, each line of the matrix represents one neighborhood of
NYC. Also, each matrix column is associated with the release
year of the PLUTO data. By default, the lines of the matrix
are sorted using the alphabetical order of the names of the
regions, but they can also be sorted based on the values of a
given year. In the example of Figure 2, the heat matrix is
sorted by the values of 2009.2. Using the top toolbar, the
color of each square can be set to encode the variation of
the selected attribute over a fixed year interval. Whenever the
value of a square is invalid, or the lot doesn’t exist in the
associated year, it is colored gray. The heat matrix allows
users to simultaneously analyze an attribute’s variation (or its
value) in all regions/years and facilitates the identification of
prominent values. In Figure 3, we observe a significant drop
in land values of several Brooklyn neighborhoods, blocks,
and lots in 2013, a year after Hurricane Sandy. Similarly,
each line in the line chart represents a region of the current
exploration level. In Figure 2, the line chart contains two
lines representing Lincoln Square (blue) and Hudson Yards
(orange) neighborhoods. The chart’s horizontal axis spans the
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Fig. 2. The components of the URBAN CHRONICLES’ Visual Interface.

release years of the PLUTO data. The vertical axis can be
configured to represent the attribute values or their yearly
variation. The line chart and the heat matrix always display
complementary information. If the heat matrix is configured
to show the attribute variation, the line chart is automatically
set to show the attribute values and vice versa. The line chart
allows users to compare values of regions of interest over the
years easily. The line charts in Figure 3 show the variation
in the land value for selected regions in the neighborhood,
block, and lot levels. The value drop can be seen on all scales.
The Map View shows the set of geographical regions of the
current exploration level in one of the years (requirements R3
and R4). In Figure 2, the Map View shows the Manhattan
neighborhoods colored using the 2009.2 data. Regions can be
colored based on attribute values or their variation. Figure 2
shows regions colored by the attribute variation. Visualizing
geographical regions using the map allows the user to identify
spatial patterns that cannot be observed using the heat matrix
or the line chart. For instance, in Figure 3, if we inspect the
Map View, we discover that the drop in the land values happens
in the shoreline neighborhoods. On the block and lot levels,
it becomes evident that the change happened to blocks and
lots located in the peripheral areas closer to the shoreline. The
last analytical component is the Lot Filtering panel. It allows
users to define filters based on attributes. The user can define
multiple filters and combine them using boolean operations.
As shown in Figure 2, a bar chart with the distribution of the
selected attribute values must be brushed to define a filter.

Geographical level navigation. By default, the Visual Inter-
face starts in the neighborhood (or community district level)
exploration level. However, the user can drill down to the
block and lot level to explore details in a specific geographical
region. To do so, the user must click on the label of one of
the geographical regions in the vertical axis of the heat matrix.
Once a label is selected, the Data History View and the Map
View are updated to display the data from the selected region.
In Figure 3, the user started the analysis by exploring Brooklyn
neighborhoods. After the land value drop was detected, the
user clicked on the label of the Canarsie neighborhood. During
the inspection of the block level, it became clearer that the drop

was concentrated in the shoreline blocks. By clicking on the
label of the blocks, the user could observe the most affected
lots. Whenever the user starts to navigate through the different
scales, the bottom toolbar of the Data History View displays
the analysis path that the user is following (Figure 2(d)). This
way, once the block or lot level is active, the navigation path
can roll up to coarser levels.

V. CASE STUDIES

A. Post Sandy Redevelopment and Affordability

Hurricane Sandy hit NYC in 2012, and the impact was
devastating. In 2013, the National Flood Insurance Program
(NFIP) required homeowners in high-risk zones to pay in-
surance premiums based on their flood risk. The program
extended the geographical location of high-risk areas. While
this can help mitigate the future adverse effects, such provi-
sions pressure lower-income communities and working-class
homeowners in high-risk flood areas.
Neighborhood level. We first found a noticeable change in
land value in Brooklyn through the Data History View. A
sharp decrease in the second half of 2013, one year after
Sandy, can be easily detected (Figure 3(a)). This decrease
happened in shoreline neighborhoods impacted the most by
the hurricane. Next, we use URBAN CHRONICLES to explore
two affected areas with significantly different normalized total
values rates while both were located in high-risk flood zones.
The normalized total value gives a more accurate measurement
of cross-comparison between regions of different sizes. We
chose North Side-South Side, a neighborhood with a total
value of 1.45 million dollars per sq. ft, and Canarsie, a lower-
income neighborhood with 148 thousand dollars in total value
per sq. ft. as of 2013. Figure 3(a) shows their location and
normalized total values.
Block level. We drilled down to the block level to explore
the pattern of value drop in residential areas within both
neighborhoods. As shown on the map (Figure 3(b,c)), while in
Canarsie, we see a significant decrease in the normalized total
value of the majority of the residential blocks (highlighted in
shades of red); in North Side-South Side, some blocks still had
their values appreciated (highlighted in shades of blue). One
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potential explanation can be the larger extent of Sandy damage
in Canarsie due to lower flood resiliency in residential building
construction and lack of coastal protection [28]. This indicates
how natural disasters can create more burdens for lower-
income neighborhoods. Reports show that only five percent
of the residential buildings in Canarsie had flood insurance at
the time of Sandy [28]. The new provision would require all
homeowners in the flood zone areas to have flood insurance,
and the premium would rise by 18% per year. It can be
challenging for many households with fixed incomes to afford
the increase, which can lead to their displacement. The change
in the number of new buildings within the residential areas
shows that in 2013, 327 new buildings were constructed in
Canarsie Figure 3(b-bottom left), while in North Side-South
Side, only 41 new buildings were constructed Figure 3(c-
bottom left). A large number of new constructions, specifically
the addition of 224 new homes in 2016, can signal a rise
in foreclosure and short sales in Canarsie, possibly due to
the inability of the majority of uninsured homeowners to
accommodate the rising mandatory flood insurance together
with the repair costs [29]. Further research can uncover the
reasons behind the heightened development to explain the
different rebuilding rates.

B. Downtown Brooklyn Rezoning

After 9/11, workers were thought to be unwilling to return
to the Financial District (FD) in NYC. So, the city needed to
create a new commercial district to keep jobs from moving to
other cities. In this scenario, Brooklyn’s plan to transform the
Special Downtown Brooklyn District (SDBD) (Figure 4(a))
into a vibrant Business District seemed very plausible [30].
The plan was approved in 2004, and it was predicted that
by 2013 Downtown Brooklyn would (1) construct 4.6 million
sq. ft. of office space, (2) create 0.9 million sq. ft. of residential
space, (3) increase tax revenue, and (4) increase the public
space and cultural amenities.

In a report published in 2016, the outcomes of the rezoning
plan were analyzed, and it was concluded that it largely had
diverged from its initial goals [31]. The anticipated addition
of residential space was met way before the planned time,
as the line chart shows (Figure 4(c)), and it grew beyond
predictions. As stated in the report, by 2016, only 1.3 million

sq. ft of commercial space (including office space) had been
developed in the SDBD [31]. Using URBAN CHRONICLES,
we could look closer at the office space development trend.
The line chart in Figure 4(b) shows that the total office area
in Downtown Brooklyn increased in the first four years of
the program, but after that, it declined to the point that in
2017, it was less than its initial value in 2004. By comparing
the characteristics of the office buildings in FD and Midtown
Business District (MBD), which absorbed a significant portion
of the demand from FD [32], we could better understand the
type of office space in demand. One of the defining character-
istics of the FD office space was its large floor plate [33]. As
Figure 4(e) shows, in FD, office buildings were constructed on
lots that are, on average, 25,000 sq. ft., whereas this number
was around 8,000 for SDBD (d-top), more than three times
lower. Although MBD also has offices built on smaller lots
of 12,500 sq. ft. on average (e-top), it is still significantly
higher than SDBD. Moreover, the average office area shows
that each lot in MBD has, on average, around 220,000 sq. ft.
of area spread across different floors (e-bottom). In SDBD,
however, the average office area per lot is around 73,000 sq. ft.
(d-bottom) which is significantly smaller in comparison with
MBD and FD. Hence, we can say that lot size can be one of
the main factors in explaining why SDBD did not successfully
absorb the office demand. To accommodate such demand,
there is a need for the merging of lots. Besides, the relatively
small lot size is a perfect choice for private developers to
place their next residential buildings, and the upward shown
in Figure 4(c-bottom) confirms this. By examining the map of
office and residential buildings in SDBD, Figure 4(b-bottom),
we can see that not only the lot sizes are limited, but they
also have irregular shapes, making merging possibilities more
difficult. The results signify the need for regular reevaluation
of the employed strategies, which can open the possibility of
making early adjustments to ensure that the initial goals are
realistic and attainable and the undertaken strategies lead to
the desired outcomes. As we showed, URBAN CHRONICLES
can provide a solid basis for such a study.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed URBAN CHRONICLES, designed
in close collaboration with experts, to enable the interactive vi-
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sual exploration of the versions of the PLUTO data set released
from 2002 to 2017. As we show through two case studies,
the system allows for advanced analysis of land use patterns
and rezoning policies. We intend to extend the system’s use to
other cities with similar data sets. Although the ideas presented
in this paper can be used with any spatiotemporal data set with
complex geometries, other challenges can emerge based on the
characteristics of the new data. Finally, building a visualization
system to simulate and explore rezoning plan scenarios can be
an interesting future research topic.

REFERENCES

[1] E. M. Bassett, Zoning: The laws, administration, and court decisions
during the first twenty years. Russell Sage Foundation, 1940.

[2] New York City Department of City Planning (NYC DCP), “ZoLa,”
Available: https://zola.planning.nyc.gov/, 2021.

[3] The Municipal Art Society of New York, “Accidental Sky-
line: Air Rights,” Available: https://www.mas.org/interactive_features/
accidental-skyline-air-rights/, 2021.

[4] E. Kalnay and M. Cai, “Impact of urbanization and land-use change on
climate,” Nature, vol. 423, no. 6939, pp. 528–531, 2003.

[5] H. Lim, J. Kim, C. Potter, and W. Bae, “Urban regeneration and
gentrification: Land use impacts of the cheonggye stream restoration
project on the seoul’s central business district,” Habitat International,
vol. 39, pp. 192–200, 2013.

[6] C. Hamnett and D. Whitelegg, “Loft conversion and gentrification in
london: from industrial to postindustrial land use,” Environment and
planning A, vol. 39, no. 1, pp. 106–124, 2007.

[7] L. L. M. Goldberg, “Game of zones: neighborhood rezonings and
uneven urban growth in bloomberg’s new york city,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2015.

[8] S. Getz, “Examining the extent to which affordable housing development
acts as a catalyst for neighborhood economic development,” Ph.D.
dissertation, Columbia University, 2017.

[9] J. Ma, J. C. Cheng, F. Jiang, W. Chen, and J. Zhang, “Analyzing driving
factors of land values in urban scale based on big data and non-linear
machine learning techniques,” Land Use Policy, vol. 94, 2020.

[10] New York City Department of City Planning, “PLUTO README
Document,” Available: https://on.nyc.gov/3DOLHYx, 2021.

[11] Chicago Metropolitan Agency for Planning (CMAP), “Land Use -
CMAP,” Available: https://www.cmap.illinois.gov/data/land-use, 2021.

[12] “UrbanReviewer,” Available: http://www.urbanreviewer.org/, 2021.
[13] “NYCommons,” Available: https://nycommons.org/, 2021.
[14] “Second city zoning,” Available: https://secondcityzoning.org/, 2021.
[15] Z. Liu and J. Heer, “The effects of interactive latency on exploratory

visual analysis,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 12, pp. 2122–2131, 2014.

[16] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in Proceedings of the 2018 International
Conference on Management of Data, ser. SIGMOD ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 489–504.

[17] L. Lins, J. T. Klosowski, and C. Scheidegger, “Nanocubes for real-
time exploration of spatiotemporal datasets,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2456–2465,
2013.

[18] F. Miranda, L. Lins, J. T. Klosowski, and C. T. Silva, “Topkube: A rank-
aware data cube for real-time exploration of spatiotemporal data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 3,
pp. 1394–1407, 2018.

[19] Z. Liu, B. Jiang, and J. Heer, “imMens: Real-time visual querying of
big data,” Computer Graphics Forum, vol. 32, no. 3, pp. 421–430, 2013.

[20] E. T. Zacharatou, H. Doraiswamy, A. Ailamaki, C. T. Silva, and
J. Freiref, “GPU rasterization for real-time spatial aggregation over
arbitrary polygons,” Proceedings of the VLDB Endowment, vol. 11,
no. 3, pp. 352–365, 2017.

[21] G. Andrienko, N. Andrienko, C. Hurter, S. Rinzivillo, and S. Wrobel,
“Scalable analysis of movement data for extracting and exploring
significant places,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 7, pp. 1078–1094, 2013.

[22] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva, “Visual
exploration of big spatio-temporal urban data: A study of New York City
taxi trips,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, no. 12, pp. 2149–2158, 2013.

[23] N. Andrienko, G. Andrienko, F. Patterson, and H. Stange, “Visual
analysis of place connectedness by public transport,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 8, pp. 3196–3208,
2020.

[24] F. Miranda, H. Doraiswamy, M. Lage, L. Wilson, M. Hsieh, and
C. T. Silva, “Shadow accrual maps: Efficient accumulation of city-scale
shadows over time,” IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 3, pp. 1559–1574, 2019.

[25] Y. Zheng, W. Wu, Y. Chen, H. Qu, and L. M. Ni, “Visual analytics in
urban computing: An overview,” IEEE Transactions on Big Data, vol. 2,
no. 3, pp. 276–296, 2016.

[26] N. Ferreira, M. Lage, H. Doraiswamy, H. Vo, L. Wilson, H. Werner,
M. Park, and C. Silva, “Urbane: A 3D framework to support data driven
decision making in urban development,” in 2015 IEEE conference on
visual analytics science and technology (VAST). IEEE, 2015, pp. 97–
104.

[27] H. Doraiswamy, E. Tzirita Zacharatou, F. Miranda, M. Lage, A. Aila-
maki, C. T. Silva, and J. Freire, “Interactive visual exploration of spatio-
temporal urban data sets using Urbane,” in Proceedings of the 2018
International Conference on Management of Data, ser. SIGMOD ’18.
New York, NY, USA: ACM, 2018, pp. 1693–1696.

[28] Department of City Planning, “Resilient neighborhoods canarsie,” Avail-
able: https://on.nyc.gov/3Oqopx5, 2017.

[29] “Rising tides, rising costs: Flood insurance and New York City’s
affordability crisis,” Available: https://bit.ly/44Pm4Tf, 2014.

[30] New York City Department of City Planning (NYC DCP), “Downtown
brooklyn,” Available: https://on.nyc.gov/3KttN0Y, 2004.

[31] E. L. Adams, “A decade later in downtown brooklyn: A review of the
2004 rezoning,” Available: https://brooklyn-usa.org/wp-content/uploads/
2016/02/Downtown-Brooklyn-2004-Rezoning_Final.pdf, 2016.

[32] A. F. Haughwout, B. Rabin et al., “Exogenous shocks and the dynamics
of city growth: Evidence from new york,” Federal Reserve Bank of New
York Economic Policy Review, vol. 11, no. 2, pp. 61–73, 2005.

[33] F. Fürst, “Empirical analysis of office markets: A spatio-temporal
approach,” 2006.


