
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Real-Time Exploration of Large Spatiotemporal
Datasets based on Order Statistics

Cícero L. Pahins, Nivan Ferreira, and João L. Comba, Member, IEEE

Abstract—In recent years sophisticated data structures based on datacubes have been proposed to perform interactive visual
exploration of large datasets. While powerful, these approaches overlook the important fact that aggregations used to produce
datacubes do not represent the actual distribution of the data being analyzed. As a result, these methods might produce biased results
as well as hide important features in the data. In this paper, we introduce the Quantile Datacube Structure (QDS) that bridges this gap
by supporting interactive visual exploration based on order statistics. To achieve this, QDS makes use of an efficient non-parametric
distribution approximation scheme called p-digest and employs a novel datacube indexing scheme that reduces the memory usage of
previous datacube methods. This enables interactive slicing and dicing while accurately approximating the distribution of quantitative
variables of interest. We present two case studies that illustrate the ability of QDS to not only build order statistics based visualizations
interactively but also to perform event detection on very large datasets. Finally, we present extensive experimental results that validate
the effectiveness of QDS regarding memory usage and accuracy in the approximation of order statistics for real-world datasets.

Index Terms—Data structures for visualization, order statistics, quantile sketch, visual analytics, event detection.

F

1 INTRODUCTION

A fundamental problem in modern visual data analysis
is how to build data exploration environments that support
interactive exploration of large datasets.

This problem has two opposing facets. From one side,
the ever-growing complexity and size of datasets bring the
need to provide complex navigation and visual summariza-
tion capabilities. On the other hand, human perception and
cognition pose a challenge on how long the data handling
and rendering loop can take. Even small delays on the scale
of half a second can have a significant negative impact on
the visual data exploration process [1]. Unfortunately, the
ability to produce compelling visual summaries, interaction
mechanisms, and interfaces has surpassed our capabilities
to create techniques that support real-time data processing
for visualization [2]. As a result, there are limitations on the
analysis that one can hope to perform interactively. In this
paper, we are concerned with the scenario of performing
real-time analysis (i.e., virtually immediate results) of large
static datasets.

Recent efforts propose sophisticated implementations of
precomputed indices [3], [4], [5] that store aggregations
of a given dataset as solutions to this problem. One lim-
itation of these approaches is the fact that they do not
take into account the inherent distribution uncertainty due to
aggregation: datasets with equal mean and covariance, but
with entirely different underlying distributions. Examples
of this issue can be seen in the classical Anscombe’s Quartet
datasets and the work of Matejka et al. [6]. The state-of-the-
art method Gaussian Cubes (GC) [7] supports interactive
data modeling by describing the data distribution using
parametric Gaussian distributions. Unfortunately, this ap-

• C. Pahins and J. Comba are with Instituto de Informática, Universidade
Federal do Rio Grande do Sul (UFRGS), Brazil. N. Ferreira is with Centro
de Informática (CIn), Universidade Federal de Pernambuco (UFPE),
Brazil. E-mail: {capahins,comba}@inf.ufrgs.br, nivan@cin.ufpe.br

proach has two drawbacks. First, it relies on non-robust
statistics (mean and covariances), i.e., they can be easily
affected by outliers. Second, and most importantly, one can
not assume real-world data to be normal, and assuming
normality can hide essential features of the data.
Contribuitions. To overcome these drawbacks we propose
Quantile Datacube Structure (QDS): a novel data structure
that encodes data distributions based on robust statistics
while providing support for interactive visual exploration of
large spatiotemporal datasets. To achieve this, QDS couples
a non-parametric distribution modeling technique called
p-digest, based on the t-digest quantile sketch [8] (Sec. 4), with
a novel indexing structure that reduces the large memory
footprint common to datacube structures and enables real-
time slicing and dicing. QDS (described in Sec. 5) extends
the querying abilities of previous approaches by supporting
queries with order statistics related aggregations such as
quantiles and cumulative distribution. We used QDS in
a prototype visual analytics system to demonstrate that
these queries provide a powerful tool to interactively build
widely used visualizations (such as box plots, equi-depth
histograms, and band plots), create new ones (such as the
heatmaps based on quantiles and cumulative distribution)
(Sec. 6) and to perform interactive event detection (Sec. 7).
Fig. 1 illustrates interesting spatiotemporal patterns in the
distribution of flight arrival delays for U.S. airports found
using QDS. Finally, we provide extensive experimental re-
sults (Sec. 8) that show the effectiveness of our method for
the analysis of real-world datasets scenarios.

2 RELATED WORK

In this section, we review related research on different
aspects that play an essential part in this work.
Visualization of Data Distributions. The visualization of
statistical summaries is at the core of visual data analysis

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Figure 1. Analyzing the distribution of flight arrival delays for U.S. airports using QDS. We observe two maps showing the probability of flights
being late for January and December 2014. Airports are colored using a divergent color scale representing the cumulative distribution function of
the arrival delays at the value 0. We assign red color shades to airports with a higher probability of having late arriving flights and blue shades
for airports in which flights are more likely to be early. Notice how the trend changes from more likely delayed flights on the Northeastern airports
in January to Southwestern ones (particularly in California) in December. The pattern of delay in January 2014 is due to the snowstorms that
pounded the Northeast of the U.S. in January. The Western delay pattern in December is due to the so-called “California’s storm of the decade"
that affected the region in the middle of December 2014. The temporal band plots on the bottom show the evolution of the arrival delay quantiles
(0.1,0.25,0.5,0.75,0.9) for both the JFK (left) and SFO airport (right). Dates with a substantial increase in the median arrival delays (black line) are
the peaks of these events (e.g., January 4 on the left and December 15 and 19 on the right).

and visual data communication [9], [10]. The most common
approach relies on visualizations of the mean and standard
deviation such as bar charts and error bar plots. This ap-
proach is dubious, sensitive to outliers and may not only
introduce bias but also hide essential features of the data
(as illustrated in Fig. 2). For these reasons, this approach
has been discouraged by researches in the fields of visu-
alization [11], neuroscience [12] and biology [13]. Scientific
publications also incentive the use of more accurate distribu-
tion representation such as boxplots [14] to summarize large
datasets [15]. Furthermore, recent studies by Kay et al. [16]
and Fernandes et al. [17] showed that presenting detailed
distribution information improves decision making com-
pared to scenarios where this information is not present. In
addition, these studies showed that specialized visual sum-
maries based on order statistics improved decision making
in an uncertainty judgment in a transit scenario. Our work
builds on these observations and proposes a data structure
that provides accurate distribution approximations for large
spatiotemporal datasets.

Interactive Visualization of Large Datasets. The problem
of providing interactive analytics and visualization for large
datasets has attracted the attention of researchers both in
the visualization and databases community. Solutions to
this problem follow two main strategies: sampling and
pre-computation. The sampling strategy uses progressively
increasing samples of a population to approximate/estimate
the result of a given query [18]. The survey by Chaudhuri
et al. [19] describes several techniques for query estimation
and data handling in this scenario. In systems using the
sampling strategy, users face evolving visualizations that
indicate current estimates and, possibly, the uncertainty
inherent to the estimation process [20]. While flexible com-
pared to the precomputation strategy, the understanding of
the user experience in this scenario is still incipient [21], thus
motivating new visualizations and interactions to support

users in analytical environments [22], [23].
On the other hand, the pre-computation strategy relies

on computing aggregations over several dimensions fol-
lowing the datacube concept. Systems such as Immens [3],
Nanocubes (NC) [4] and Hashedcubes (HC) [5] were pro-
posed to reduce the huge memory footprint, but are lim-
ited to provide results in counting queries. Recent systems
such as TopKube [24] and Gaussian Cubes (GC) [7] extend
ordinary datacubes to perform more complex analysis in
real-time while respecting reasonable memory constraints.
QDS also follows the datacube approach. However, we
relax the requirements of exact representation from previous
systems to provide a non-parametric approximation of the
data distribution. A recent work by Peng et al. [25] proposed
a hybrid approach that mixes the sampling and precompu-
tation strategies. However, neither this work or the ones
cited above support the quantile queries provided by QDS.

Applications of Event Detection in Visual Analytics. Sta-
tistical techniques can be used to identify events or anomaly
situations, which has been shown to be a powerful tool
for visual anlytics [26]. Maciejewski et al. [27] couple vi-
sual exploration with modeling strategies to find abnormal
spatiotemporal hotspots. Wilkinson et al. [28] use a statisti-
cal algorithm for detecting multidimensional outliers. QDS
provides a powerful and flexible way to find relevant and
complex events using quantiles from the distributions of
large datasets.

3 BACKGROUND

We briefly discuss the background of probability theory and
data sketches, and refer to Rosenthal [29] and Cormode
et al. [30] for a detailed description. We define the cumu-
lative distribution function (cdf) of a random variable X
by FX(t) = Pr(X ≤ t). Quantiles are landmark values
of a given cdf that define specific points where FX has

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(a) Uniform Distribution (b) Bimodal Distribution

(c) Exponential Distribution (d) p-digest

Figure 2. Gaussian distributions are the most common approach of
modeling data for analysis and visualization. While this method has
theoretical advantages, real-world data is rarely normally distributed.
As we observe in (a)-(c) modeling data with normal distributions (black
curves) can introduce biases and hide essential features such as mul-
timodality and skewness. As illustrated by the equi-depth histograms
produced using p-digest in (d) (darker shades of blue represent higher
data density) can efficiently describe the distributions of the other plots.

accumulated a fraction of its total probability. For example, a
value t is the qth quantile of Fx if FX(t) = q. Intuitively, one
can obtain the value of the qth quantile by F−1

X (q) by simply
inverting the cdf . In this presentation, we focus on the
intuition and overlook the fact that cdf ’s are not necessarily
invertible. We define the first (q1), second (q2) and third (q3)
quartiles as the quantiles that divide the density in four equal
parts, i.e., 0.25th, 0.5th and 0.75th respectively. We define a
random field as a function FM that associates to each point
in a spatial domain (e.g. geographical coordinates) a ran-
dom variable. We define quantile heatmaps and outlierness
queries supported by QDS (Sec. 5.1) using random fields.

Unlike moment statistics, such as average and variance,
quantiles are robust to the presence of outliers [28]. How-
ever, it is not possible to combine quantiles of different
datasets (e.g. cdfs) without processing the input datasets
entirely. This limits the use of quantiles in scenarios that re-
quire hierarchical/dynamic aggregation such as datacubes.
An alternative is to use approximation schemes called quan-
tile sketches [31]. A data sketch is “a data structure that can
be easily updated with new or modified data and supports a
set of queries whose results approximate queries on the full
dataset" [31]. Quantile sketches are data sketches that sup-
port queries of quantile and cdf estimation. Methods vary in
memory usage and approximation performance, leading to
two groups of methods. The first one has sketches that have
proven approximation bounds such as the proposals of Shri-
vastava et al. [32], Agarwal et al. [33], Karnin et al. [34] and
Felber and Ostrovsky [35]. Such methods have performance
requirements which incur in complex algorithms that use
large amounts of memory in practice (see discussion in [36]).
The second group of methods lack rigorous algorithmic
analysis but relies on heuristics to provide empirical results
for query accuracy and reduced memory usage. Examples
of methods in this group are the GK sketch [37], the S-Hist
sketch [36] and the t-digest by Dunning [8].

4 THE T-DIGEST DATA SKETCH

The simplicity and approximation accuracy of t-digest sin-
gles it out from other quantile sketches. The t-digest sum-

centroid 2 6

weight 2 1

centroid 1 2 4.75 5.3 6 10

weight 1 2 3 3 1 1

t1 t2

centroid 1 4.625 5.075 5.375 10

weight 0.5 0.5 1 1 1 1 1 1 0.5 0.5

(a)

(b)

(c)

{ 1, 4.5,4.75, 5,5.15, 5.25,5.5,10}

m erge(t 1,t 2)

t 1.cdf(5.075) t 1.cdf(5.18)

t 1.qnt (0.5) t 1.qnt (0.6)

Figure 3. The t-digest sketch: (a) construction of a t-digest t1. The cdf
of the input dataset is represented by a set of weighted centroids. (b)
Different quantile sketches t1 and t2 can be combined using the merge
operation. (c) A quantile query, qnt(value), interpolates the centroid
weights compared to the fraction of the total weight defined by the input
value to compute the estimate of the result quantile.

marizes the (empirical) cdf of an input dataset by a set
of weighted values called centroids (Fig. 3). To choose
centroids we group elements on subsequences of varying
size following an adaptive strategy. Given an input com-
pression parameter δ that defines the maximum number
of centroids, the strategy gives high priority to extreme
quantiles (closer to 0 and 1), as defined by the function
kδ(q) = δ((sin−1(2q − 1) + π)/2π). The size of each sub-
sequence is smaller (i.e., more resolution) for centroids near
the beginning or the end of the dataset, but larger towards
the middle. This strategy tries to make queries for extreme
quantiles, in general, more accurate than the ones closer to
the median for outlier detection purposes. The construction
process of t-digest, illustrated in Fig. 3(a), is closely related
to the process of merging two sketches (Fig. 3(b)). The
construction of one sketch requires merging a dataset (the
elements correspond to centroids with weights equal to 1)
against an empty t-digest. This process consists of sorting
the weighted centroids and performing the grouping of
subsequences as before but considering the given weights.
To perform the query for a quantile we divide the weight of
each centroid into two equal parts to the left and the right of
the centroid. The quantile query receives the desired q and
loops through the ordered list of centroids accumulating all
the weights that have already been seen and comparing it
to q ∗ |D|, where |D| represents the sum of weights (size of
the dataset). If the desired weight ends up on a centroid,
the value of that centroid is returned. This happens in the
median query qnt(0.5) in Fig. 3(c). On the other hand, if
the weight ends up between two centroids, the value of the
quantile is derived by linearly interpolating the values of the
corresponding centroids using their weights (e.g., qnt(0.6)).
The cdf query is implemented as the inverse of the result of
a quantile query. Counting queries are also supported and
return the sum of the weights of each centroid.

The publicly available implementations of t-digest were
designed for applications in a data streaming scenario with
low memory constraints. Their large memory overhead
makes them not adequate to be used in datacube structures.
We propose an optimized method called p-digest that re-
duces the memory footprint of the previous implementa-
tions and, therefore, suitable for our applications.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Figure 4. Queries supported by QDS. Let FM be the random field
formed by merging quantile sketches of selected bins. (a) The quantile
and cdf queries receive a parameter x and returns the result of the
corresponding query for each quantile sketch. (b) The pipeline query:
we use the result of a given query as a parameter to a second one
using a right join process. In case the parameter has “missing” bins the
result query can have undefined (purple X) values.

5 QUANTILE DATACUBE STRUCTURE

In this section, we describe the Quantile Datacube Structure
(QDS). We present the queries supported, its internal repre-
sentation, query algorithm, and implementation details.

5.1 Overview and Query Types
Consider, for example, a hypothetical scenario of the anal-
ysis of flight delays in U.S. airports. We are interested in
answering questions like T1:“How likely is a flight operated
by Delta Airlines to be delayed more than 10 minutes at JFK
airport?", T2:“How does the distribution of flight delays for two
airports compare to each other in the past month?" and T3:“How
unusual are the delays experienced by Delta flights on January
29th, 2017?”. To answer such queries QDS stores a quantile
sketch as a payload at each node of a datacube to allow fast
data selection and accurate querying for distribution statis-
tics. QDS supports the following primary type of query:

select AGGR from QDS where CONSTRAINTS [group BY G]

The CONSTRAINTS part of the query represent con-
ditions defined on any set of the index dimensions (e.g.,
carrier=Delta, airport=JFK) and specify the datacube nodes
to consider. QDS groups these nodes into bins according
to the group by dimension G (or create one group for all
nodes if this optional information is not given). The quantile
sketches associated with each datacube node in each group
are merged to represent the distribution of the data in
each group. In case a group by dimension G is specified,
we merge sketches according to the bins of D forming a
random field. For example, in our flight’s scenario, grouping
by the airport dimension will result in a collection of p-
digests associated with each airport. Similarly, grouping by
a temporal dimension with a given time granularity will
result in a p-digest associated with each timestamp. The
same is valid to spatial grouping (e.g., map tiles with res-
olution = 8 produces a maximum 256x256 p-digest per tile).
The aggregation function (AGGR) is executed on a measure
dimension (e.g., arrival delay) and defines the quantile sketch
query we execute on the random field: quantile, cdf or count.
This process is illustrated in Fig. 4 (a).

Quantile and cdf queries can answer questions T1 and T2
above. To answer question T3, we use another query called
pipeline (Fig. 4 (b)), which use the output of a query as input
to a second one. In the T3 example, we perform the first
query to select all flight delays for Delta on January 29th. Let
a second query select the total distribution of flight delays
by Delta. QDS performs an operation of right join between

Figure 5. QDS indexing scheme and shared pointers. We use an exam-
ple to compare the indexes of HC (a) and QDS (b). The input dataset
has eight records, each with three dimensions. In HC, each dimension
stores pivots in a pivot array that refers to intervals in the input dataset.
In QDS, in addition to the pivot array for each dimension (primary pivot
array), we keep a secondary pivot array for each element. In graphical
terms, the primary array is displayed horizontally, while the secondary
array is displayed vertically. Searching for values equal to F in QDS
can be simply done by following vertically the secondary pivot array
associated with F in dimension 2. The number of pivots stored in the
QDS is not larger than in HC. Each pivot has an additional payload
(marked with *) that can store quantile information. (c) Pivot arrays tend
to have duplicate information across dimensions. To save memory, QDS
used shared pointers to compact shared pivot and payload information.

the bins resulting from these two queries and compute the
aggregation of the second query for each value in the output
of the first query. The result is a score quantifying the cdf
for January 29th in each airport. As described in Sec. 6.3,
pipeline queries are the base for our event detection method.

The last query type supported by QDS is used to quan-
tify the total deviation from the median over a period of
time. Given a start/end timestamp and a temporal reso-
lution (e.g., days) this query performs a set of pipeline
queries for each timestep. In each timestep, the values are
added up to create a score for each temporal bin. We name
these composite queries and give examples in the use cases of
Sec. 7. A detailed description of the execution of the query
algorithm is presented in Sec. 5.3 and illustrated in Fig. 6.

5.2 Internal Representation
Datacube-inspired structures have as a common challenge
the need to store data as compressed as possible while
supporting fast query response. The exploration of data
with order statistics creates additional challenges. We de-
scribe below the indexing scheme, compression of shared
information, and p-digest sketch that stores quantile data.

5.2.1 Indexing Scheme
The design of QDS is inspired by Hashedcubes (HC) be-
cause it offers the best trade-off regarding storage and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

efficiency. Since both structures have similar concepts, it is
important first to review the design of Hashedcubes. To do
so, we will use a simple dataset containing eight records
(labeled from 0 to 7), each containing three categorical
dimensions (location, app, and device) shown on the top of
Fig. 5. Following a pre-defined ordering of the dimensions
of the input dataset, HC keeps a multi-level index. For
each dimension, this index stores an array of pivots that
delimits a consecutive interval in the sorted input array with
equal values. Fig. 5(a) shows an example of the index (pivot
arrays) created with our sample dataset. In dimension 1
(location), one entry in the array has a pivot [4−5] associated
to the value E (Europe), meaning that in the input array,
entries from 4 to 5 have values E in the first dimension.
Observe that at dimension two there is more than one pivot
associated with the values F (Facebook), T (Twitter) and W
(Whatsapp). As a result, a query for F in the second dimen-
sion must find all its non-contiguous pivots. This is a simple
example of pivot fragmentation which is a consequence of
the multi-key sorting of pivot arrays in each dimension. As
more dimensions are used, fragmentation increases, which
causes queries that use subsequent dimensions to examine a
possibly considerable number of pivots We experienced this
corner case when implementing HC (see Sec. 8).

QDS’s novel pivot index (Fig. 5(b)) fixes the fragmen-
tation issue as well as supports the varied set of queries
described previously. Starting at the second dimension, in-
stead of a single pivot array, we keep an additional secondary
pivot array that can be used to recover all pivots associated
with a given value. For example, searching for values equal
to F in the second dimension can be done by following
the secondary pivot array associated with values F , which
return the pivots [0-0] and [4-5]. The secondary pivot array
allows keys associated with pivots to be stored only once,
thus saving memory. Another improvement is related to the
fact that pivot arrays for distinct dimensions in HC often
have duplicated entries, leading to redundant storage. QDS
overcomes this problem with a shared container abstraction.
For example, in Fig. 5(b) we have the pivot [4-5] appearing
in dimensions 1 and 2. Using a shared abstraction we
create a single payload that is shared for both pivots, as
show in Fig. 5(c). A second, and more sophisticated sharing
happens when the secondary array is identical for different
dimensions. In Fig. 5(b), the secondary array associated
with the value T in the second dimension has pivots [1-
2] and [6-6]. Similarly, the secondary array associated with
the value S in the third dimension also has pivots [1-2] and
[6-6]. In such cases, we share both the payload as well as the
pivots, as shown in Fig. 5(c). We refer to Sec. 8 for experi-
mental results of memory saved by these optimizations.

5.2.2 The p-digest data sketch
The t-digest described in Sec. 4 was our choice for storing
payload information because it supports compressed and
accurate on-line order statistics. There are, however, lim-
itations in the two publicly available implementations of
t-digest. The main implementation, described in [8], uses
a balanced binary search tree (AVL) to store centroid infor-
mation, consuming 80 bytes per centroid. A secondary (and
under construction) implementation uses an array, which
reduces memory usage to 40 bytes per centroid. Such mem-

Figure 6. The QDS query algorithm demonstrated using the dataset of
Fig. 5. The input query has constraints in all dimensions. In the selection
step, the pivot array of each dimension is processed to check the pivots
that satisfy the query for that dimension. In the intersection step, we
compute in sequence the intersection of the results of previous steps.
The aggregation step compacts the results of the previous step.

ory requirements are adequate for the streaming processing
applications of t-digest, but in our datacube scenario, it
results in prohibitive memory usage.

We made several changes to the array implementation
of t-digest to comply with our performance requirements,
For instance, we reduced the centroid memory storage by
implementing the sketch as a stream of numbers, with both
centroid and weight arrays as a single chunk of floats.
The memory requirements for the centroid is at most 8
bytes, using 4 bytes for each of the centroid and weighted
arrays. Using QDS with real data, a situation that frequently
occurs is the weight array have all values equal to 1. To
leverage this property and reduce memory usage, we added
a boolean field to the end of the payload structure to indicate
the storage of both centroid and weighted arrays. When
this field is 0, the weight values are all equal to 1, and
weights are not stored explicitly, only the centroid values.
On average the cost for centroids is just 4 bytes. Similarly,
we do not store the weight array when all its values are
equal. Such optimization is efficient for (very) small pivots
in deeper dimensions. The merge and query operations
were modified to work with this modified structure. For
convenience, we call this modified structure by the name
p-digest, since in QDS it associates one such sketch to each
pivot. We implemented p-digest as a standalone library that
can also be used outside QDS, which is available as an
alternate implementation of t-digest (Sec. 5.4).

5.3 Query Algorithm
While QDS’s and Hashedcubes’s indices use similar con-
cepts, their structural differences and the sophisticated set
of queries supported by QDS makes querying our structure

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

a very different process. QDS’s query algorithm (Fig. 6) is re-
sponsible for efficiently selecting nodes and satisfying a set
of query constraints. This algorithm was designed to handle
a great variety of query combinations following a progres-
sive refinement approach. In a high-level description, for a
given multi-dimensional query, the query algorithm is com-
posed of three steps executed in sequence: selection, intersec-
tion, and aggregation. In the selection step, for each dimension
specified in the query, the algorithm selects the pivots from
the pivot arrays that satisfies the query individually for
each dimension. The primary and secondary pivot arrays
are responsible for efficiently discarding queries that return
empty results, thus avoiding the HC corner cases mentioned
before (see a discussion on Sec. 8). The intersection step is
responsible for combining the pivots, resulting from the
selection step, that simultaneously satisfies the query for all
dimensions. The result of the intersection step are pivots
that might not be contiguous since the previous steps might
leave similar elements distributed over distinct pivots. The
aggregation step groups pivots by compacting disjoint pivots
that contiguously represent the same value. For example, if
pivots [1-2] and [3-5] refer to the same value F , we replace
by a single pivot [1-5] of value F .

5.4 Implementation

QDS is implemented in C++ and uses a client-server archi-
tecture. The server consumes an input, and builds a QDS
in a pre-processing step. QDS supports multiple categorical,
temporal and spatial dimensions for its indexing schemas.
We discretize spatial and temporal dimensions like in NC or
HC: quadtree based map tile coordinates and user-defined
time bins, respectively. Unlike NC and HC, QDS can stack
and intercalate different types of dimensions without a
predefined order (e.g, categorical-temporal-spatial, or even,
NC and HC ordering of spatial-categorical-temporal), since
it impacts both memory usage and running time. Note that
QDS default layout is the inverse of both NC and HC, since
we find this to be a good compromise between performance
and memory usage (refer to Sec. 8). We also support mul-
tiple measure dimensions by storing unique combinations
(i.e., pivots) into individual primitive arrays (referenced
as payloads). Each payload uses a header to determine the
beginning and end of each dimension. Other low-level QDS
optimizations are accessible in its open source code available
at https://github.com/cicerolp/qds.

6 BUILDING VISUALIZATIONS WITH QDS
We illustrate below general scenarios of analytical tasks and
visualizations enabled by QDS to support the visual analysis
of large datasets with order statistics data.

6.1 Extending Usual Visualizations

The query capabilities of QDS support the analysis of data
distribution patterns in spatial, temporal and categorical
dimensions. For example, we define quantile heatmaps as
heatmaps obtained from QDS’s quantile queries. Fig. 7
compares the standard mean heatmap (a) against quartile
queries (b,c,d) of taxi trip fares (in US dollars) in NYC

0 26.3+ 2.3 4.6 6.9 9.2 11.5 13.8 16.1 18.4 21.7 24.0(US$)

(a) mean (b) q1(0.25)

(c) q2(0.5) (d) q3(0.75)
Figure 7. Quantile heatmaps of taxi trip fares in NYC during the month
of October 2014 based on their pick-up locations. The mean based
heatmap (a) conveys high prices similar to the third quartile map(d).
The median heatmap shows lower fares (c) indicating the robustness
with respect to outliers. The first quartile map (b) indicates mostly lower
values except on regions close to the Queens–Midtown Expressway
near the high traffic region of Queens—Midtown Tunnel’s toll station
(right dashed box).

based on their pick-up locations. We notice how the quan-
tile heatmaps convey a different message than the mean
heatmap. While the mean map (a) suggests high prices
(above 16 dollars) for the region of Midtown (left dashed
boxes), both maps of the first quartile (b) and median (c)
suggest that these prices are usually smaller in that region
(below 14 dollars). Also, notice how the mean map is similar
to the third quartile map (d). This reflects the sensitivity of
the mean to outliers. Furthermore, by performing a simple
arithmetic operation on quantile heatmaps, we visualize
spatial properties of the underlying distributions such as
interquartile range (a robust alternative to variance as a
measure of spread/uncertainty) and skewness (a measure of
asymmetry in the distribution) [38]. Another novel notion of
heatmap enabled by QDS is called cdf heatmaps. These maps
use the cdf query to display how likely a distribution in a
given location is to be smaller than a certain value. Fig. 1
shows examples of this concept. The color on the maps
represent the probability of flights being late, i.e., cdf(0).
These maps make it intuitive to observe the changes in the
geographical delay pattern from east to west in 2014.

The temporal aspect of quantiles can be explored for
example by constructing band plots (Fig. 1 bottom). The
median (black) curve gives a robust notion of centrality
and therefore the typical temporal behavior of the variable
in consideration. The curves of the first quartile (bottom
curve) and third quartile (top curve) form dark red bands.
The lighter red band is formed by quantiles 0.1 (bottom)
and 0.9 (top). This choice was made to avoid minimum
and maximum outlier values. Notice how the additional

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

quantiles help in the identification of the variability of the
distribution. Finally, we also notice different forms in the
average and error bar based temporal plots (produced by
GC [7]). The bands formed are not necessarily symmetric
around the median curve and are a more faithful represen-
tation of the distribution behavior over time.

As the last example, QDS can be used to understand
the distribution of quantitative values related to categorical
dimensions. In fact, this can be done by using the quantile
information to build the widely used box plots (Fig. 8) and
equi-depth histograms (Fig. 2(d)). Unlike conventional his-
tograms, the bins in equi-depth histograms contain a fixed
fraction of the data population (equally spaced quantiles).
In Fig. 2(d) the bins are colored proportional to their data
density to better depict the data distribution.

6.2 Easing the Reading of Uncertainty Visualizations
Interpreting uncertainty visualizations is not an easy task,
even for trained individuals, One issued for this difficulty
is performing statistical inferences by eye to quantify the
uncertainty related to analytical tasks. An example of such
scenario can be seen in Fig. 8. How likely is it for each of
the distributions to be smaller than the red line (which rep-
resents the threshold of considering a flight to be late)? To
simplify this problem, Ferreira at al. [22] proposed interac-
tive annotations that enrich usual uncertainty visualizations
by visually quantifying uncertainty. One of these annotation
allows the user to drag a line and the likelihood of the
distribution to be smaller than this line would be mapped
to colors. They provide a user evaluation that indicates the
effectiveness of annotations in the sense that it improves
“justified confidence”, i.e., the correlation between the user
being correct and being confident her answer. However,
Ferreira at al. [22] did not propose an efficient data handling
method to support these interactions. In fact, they used
an ad-hoc sampling scheme which neither scales with the
number of distributions nor supports slicing and dicing.
Therefore it can not be used in a real visual analytics system.
QDS can be used to support the interaction described above:
it suffices to use the cdf query in each box plot with the value
represented by the red line as parameter. The results of these
operations are used to color the box plots in Fig. 8.

6.3 Uncovering the Unexpected
Performing visual exploration on large amounts of spa-
tiotemporal data can be a time-consuming process. In fact,
due to the inherent complexity of this data unusual (and
possibly interesting) patterns might occur at multiple ag-
gregation scales and therefore finding them requires users
to inspect a large number of data slices over time and space.
Thus, these patterns might remain undiscovered even after
the use of visual exploration tools [26]. For this reason,
the application of event detection techniques is essential
to find these patterns. QDS’s ability to retrieve the (ap-
proximate) distribution to an arbitrary portion of the data
interactively is a powerful tool to perform event detection
in a visual analytics system. In fact, given a value t and
the distribution function FX of a random variable X , we
can define a measure of outlierness of t concerning FX
as [39]: φ̂(t, FX) = 2(|0.5−FX(t)|). A low value of φ̂(t, FX)

𝑦
𝑙𝑖𝑚

=
−
2
0
,2
0

𝑦
𝑙𝑖𝑚

=
𝑚
𝑖𝑛
,𝑚

𝑎
𝑥

Figure 8. Box plot of flight arrival delays per carrier. The boxes are
colored and sorted according to the probability of each distribution being
below 15 minutes (red line), which represents the proportion of on-time
flights.

means that t is a "normal" data instance, while high values
mean instances closer to extreme values of the distribution
and therefore judged as "events". Fraiman and Muniz [39]
proposed a method to extend this measure of outlierness
to higher dimensional data. To describe this extension, we
use as an example a heatmap m (analogous to t in the
unidimensional case) of prices of taxi trips similar to the
example given in Fig. 7(a). The function m assigns, for each
geographical location p, a value m(p), corresponding to
the average price of taxi trips starting from that location.
We assume to be given the random field FM of the prices
of taxi trips for every geographical location (analogous to
FX). We define the outlierness of m concerning FM as
φ(m,FM) =

∫
φ̂(m(p), FM (p))dp, where the integral is

taken over all points p on the map domain, and m(p) and
FM (p) denote the value of the heatmap m and the distribu-
tion of fare values at location p respectively. We compute the
value of φ(m,FM) using QDS’s pipeline query described
in Sec. 5.1. We choose the geographical coordinates as the
group by dimension. In this manner, we can perform a cdf
query for each tile on the map. To obtain the final result, we
simply compute φ̂ on each of these values and add up all
the results. Such an approach can be used to find events in
datasets with a long temporal range (Fig. 9).

7 USE CASES

We demonstrate the capabilities of QDS in real exploration
scenarios. We obtain all analyses while exploring datasets
with millions of records interactively in a prototype visu-
alization system using QDS, as can be seen in the demo
video1. In all use cases we used p-digest’s compression
parameter δ = 50 for the QDS construction.

7.1 Analyzing Flights Delays
Delayed flights have a large impact on the finances of air car-
riers. According to the trade group Airlines of America each
minute of delay costs around $62.55 to U.S. airlines [40].
Such costs represent a significant loss considering that some
airlines accumulate millions of delay minutes every year.

1. https://youtu.be/WSzTJXIVUw4

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) Delta (b) JetBlue (c) SouthWest

2017-05-25 https://tinyurl.com/y7torrzj

2017-12-29 https://tinyurl.com/ydbxeyjd

2017-01-29 https://tinyurl.com/jdoxs4v

2017-04-08 https://tinyurl.com/yaoq8g2y

2017-09-12 https://tinyurl.com/y8eg5pul

(1)

(2)

(3)

(4)

(5)

(d) Flight delays news

Figure 9. Daily arrival delay outlierness in 2017 for Delta JetBlue and Southwest airlines. Delta had an abnormal first week of April due to severe
weather in its hub city Atlanta. Similarly, weather events created abnormal arrival times for JetBlue and Southwest in May and August respectively.
January 29th is another odd day: a computer outage grounded all Delta’s flights. The news on the side corroborate the unexpected events found.

The On-time Performance dataset made available by the
U.S. Department of Transportation [41] tracks the delays
of U.S. air carriers domestic flights. This dataset has over
178 million flights in 30 years (1987 to 2017). To analyze
this data we built a QDS structure on 9 of the 29 original
columns of the dataset. As part of the index scheme, we
used the categorical dimensions canceled, diverted, carrier,
departureAirport, the temporal dimensions departure time,
and latitude and longitude as the spatial dimension. We used
the departure delay and arrival delay as payload dimensions.

The U.S. Bureau of Transportation Statistics (USBTS) pub-
lishes periodic reports of carrier on-time performance. In
these reports, a flight is on-time if it arrives no later than
15 minutes of its scheduled time. Fig. 8 shows a box plot of
flight arrival delays distributions for some U.S. airlines, ob-
tained using the QDS, using the data from the January 2017
through October of the same year. We use the sliding line
interaction described in Sec. 6.2 to quantify the proportion
of delayed flights according to the 15 minutes threshold.
The results of cdf(15) are used to color the boxes in the
box plots. We also used them to sort the boxes in ascending
order, to rank the airlines according to their delays. An
interesting observation is a bad performance represented by
the company JetBlue, for which 2017 was the worst year
of flight delays in the previous decade (Fig. 9(d)-5). Also,
we highlight that the ranking of carriers obtained by QDS
matches the one reported by the USBTS for the period and
the inferred densities are very close to the ones reported [42].

We study the JetBlue, Southwest, and Delta airlines
to understand events that affect their delay patterns. For
each company, we use QDS’s outlierness query (Sec. 6.3)
to quantify how unusual one day is if compared to the
distribution of delays over the entire year. The results of
this analysis are presented in Fig. 9. Days colored in red,
yellow and blue have high, medium, and low measures of
outlierness respectively. An interesting case is the entire red
week for Delta at the beginning of April. This odd week
for the company was caused by severe thunderstorms that
happen in Delta’s hub city of Atlanta. During this week
more than 3000 Delta flights were canceled (Fig. 9(d)-2). At
the end of May, JetBlue had delays due to heavy rains in
the Northeast of the U.S, leading to cancellations in main
airports for JetBlue in New York City and Boston (Fig. 9(d)-
3). Southwest experienced unusual delays in August due

to Summer thunderstorms, the Hurricane Harvey, and the
high seasonal demand (Fig. 9(d)-4). While weather is the
main cause of flight delays in the U.S., we found an equip-
ment malfunction event (a computer outage) that grounded
all Delta’s domestic flights on January 29 (Fig. 9(d)-1).

7.2 Exploring Outlierness in Taxi Trip Records

New York City (NYC) is one of the largest cities in the world.
Its taxi system is a big part of the city’s life, with more
than 13 thousand cabs driving every day. The NYC Taxi
and Limousine Commission have collected and distributed
monthly yellow taxi trips records since 2009 [43]. We use
QDS to analyze some of the fields in this dataset. The
QDS index has pickup location (latitude and longitude) as
the spatial dimension, pickup date-time as the temporal
dimension and passenger count and payment type as the
categorical dimension. As payload dimensions, we use the
total fare and trip distance.

We describe interesting events that happened during
October of 2014. For each day in that month, we computed
the outlierness of the total fare of trips compared to the
distribution of the entire month (Fig. 10). We observe that
Mondays in that month (days 6, 13, 20 and 27) have the
lowest outlierness (shaded red region). On the other hand,
days colored in shaded green are on top of the outlier
list, corresponding to Thursdays (23, 30), Sundays (12) and
Fridays (10, 17, 24, 31). The top of the list a Friday (31). To
justify this, we notice, for example, that Sunday 12 was the
day preceding the Columbus day holiday on which some
events changed the traffic on major avenues most of the day.
In fact the CBGB Music Festival blocked a portion of Broad-
way from 10:30 AM to 19:30 PM and the Hispanic Columbus
Day Parade closed a long portion of Fifth Avenue from noon
to 5 PM [44]. We explore the top candidate according to our
outlierness metric, October 31. To investigate what makes
this day stand out, we performed another outlierness time
analysis now comparing each hour on this day against the
distribution of total fare of all hours in the month. The
resulting time-series can be seen in Fig. 10(b). We see that
the outlierness attains its highest values at the end of the
day starting at 7 PM. To understand what makes this hour
to stand out, we use a composite cdf query to map how the
distribution of these hours (7 PM to midnight) compares to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

(a) Daily Outlierness in Oct. 2014

(b) Hourly Outlierness on Oct. 31 2014 (c) Heatmaps showing composite cdf query results for 31 Oct. 2014 - 7 to 10 PM
Figure 10. Exploration of NYC yellow taxi trips in October 2014. (a) Outlierness coefficients with respect to total fare vary widely during the month
with peaks on days 10, 12, 17, 23, 24 and 31. This last one being the highest. (b) Analyzing how the outlierness vary over the day 31 we see that the
day got more "unusual" with the highest values on the period starting at 7 PM. (c) The heatmap resulting from the pipeline query in this period we
observe from left to right that trips are more expensive than normal in the Greenwich Village Region. Zooming in we see that a portion of the streets
(purple) that unusually did not have any trips. This corresponds to the area where the annual Greenwich Village Halloween parade happened.

Table 1
Overall summary of the relevant information for building QDS.

dataset size index schema(bits) payload schema QDS Memory/Time HC Memory/Time
leaf-size = 1 leaf-size = 32 or 64 leaf-size = 32 or 64

brightkite 4.5 M dayOfWeek (3), hourOfDay (5), time (16), lat (25), lon (25) NA 455 MB/9s 276 MB/7s 366 MB/7s
gowalla 6.4 M dayOfWeek (3), hourOfDay (5), time (16), lat (25), lon (25) NA 711 MB/13s 367 MB/11s 743 MB/13s
twitter-small 210.6 M device (3), time (16), lat (17), lon (17) NA 3.1 GB/05:55m 2.7 GB/05:54m 4.9 GB/10:53m
twitter 210.6 M app (2), device (3), language (5), time (16), lat (17), lon (17) NA 4.6 GB/06:39m 4.2 GB/06:37m 9.4 GB/12:04m
flights 121.2 M dep. delay (4), carrier (11), dep. time (16), lat (25), lon (25) arrDelay, depDelay 1.4 GB/02:50m 1.4GB/02:50m 457 MB/03:56m
green-taxis-small 42 M pickupDateTime (16), lat (22), lon (22) ttlAmount, distance 1.3 GB/01:24m 1.2 GB/01:16m 788 MB/03:56m
green-taxis 42 M dayOfWeek (3), hourOfDay (5), pickupTime (16), lat (22), lon (22) ttlAmount, distance 1.3 GB/01:16m 1.2 GB/01:15m 3.0 GB/01:49m
yellow-taxis-small 706 M pickupDateTime (16), lat (22), lon (22) ttlAmount, distance 9.7 GB/27:53m 9.3 GB/28:04m 7.0 GB/18:14m
yellow-taxis 706 M dayOfWeek (3), hourOfDay (5), pickupTime (day), lat (22), lon (22) ttlAmount, distance 9.7 GB/31:37m 9.3 GB/31:33m 12.6 GB/20:38m

the rest of the month. Colors in the map reflect the results of
the composite cdf query: blue, yellow, red and purple mean
low, medium, high and missing quantile values respectively.
Looking at the map of the city (Fig. 10(c)) we see a large red
region (trips more expensive than normal) on the Greenwich
Village. Such trips have fares 75% more expensive than fares
of the entire month. A zoom in this area shows progressively
more details of this pattern, revealing that expensive trips
happened around an area where no trips happened (purple
region) during the interval from 7 PM to midnight. This area
corresponds to a portion of the 6th avenue, where the annual
Greenwich Village Halloween parade happened in 2014.

8 EXPERIMENTAL RESULTS

We evaluate our method in two sets of experiments. The
first one evaluates the QDS index. We begin by performing
a direct comparison to HC regarding construction time
and memory usage for several datasets and schemas. Later
we compare the response time of count queries in QDS
as well as to the three commonly used databases SQLite,
PostgreSQL and MonetDB. The second set of experiments
evaluates the p-digest payload performance concerning ap-
proximation accuracy, memory usage, and computational
performance. We compare against the quantile query capa-
bilities present in the database solutions previously men-
tioned. The experiments were performed in a Linux-based
machine, with an Intel Core i7 4790 with 32GB of main
memory. We used the default options of the databases and
the SQLite in-memory configuration. Benchmark data and
code are available at the QDS’s code repository.

8.1 The QDS Index Experiments

Memory usage. We compare the memory usage and con-
struction time of QDS and HC for different datasets and
schemas (Table 1). HC adopts a minimum leaf-size in its
spatial dimension to improve query time and memory foot-
print. On the other hand, it leads to poor visual accuracy for
regions with a low number of elements and, more impor-
tantly, for outliers. To enable a direct comparison with HC,
for this benchmark, we build an experimental version of
QDS with a modified implementation of both construction
and query algorithms that integrate the minimum leaf-
size technique. We notice that QDS’s memory usage is
comparable (and in some cases much better than) with
Hashedcubes (leaf-size = 32 or 64). Regarding construction
time, our method achieved better results than HC in most
of the datasets considered even if we do not modify the
leaf-size (leaf-size = 1).
Query Latency. We assess the performance of QDS’s index
by measuring its latency on the same 87449 spatio-temporal
count queries (with spatial, categorical and temporal con-
straints) used on the HC paper. These queries were collected
on the public NC site while users explored the brightkite,
gowalla, flights and twitter datasets. We compare the results
from QDS, HC and spatial extensions of SQLite [45], Post-
greSQL [46] and MonetDB [47], using their recommend
approach to accelerate spatial queries. To enable the direct
comparison of data cube structures and database solutions,
we translated the set of queries mentioned above to the
appropriate format of each system. As observed in Fig. 11,
QDS outperforms all the tested solutions with query latency
typically lying below 10ms. We highlight that it successfully
avoids HC corner cases.We notice that SQLite, PostgreSQL
and MonetDB spatial indexes implementations were unable

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Figure 11. Performance comparison of QDS, HC and database alterna-
tives computing count queries. QDS novel index successfully avoid HC
corner cases and offers a query latency that typically lies below 10ms in
various datasets.

to offer efficient mechanisms to perform spatial filtering
while combining categorical and temporal constraints. We
specially notice that MonetDB does not support any special
accelerators for spatial objects2 and hence its poor perfor-
mance. Overall, QDS’s index offers real-time (< 40ms) slic-
ing and dicing with ease, which we use to provide complex
quantile queries at interactive rates (e.g., pipeline queries).

8.2 The p-digest Sketch Experiments

We now report accuracy, performance and memory usage
of p-digest through five experiments. The first three of them
evaluate the QDS’s memory/accuracy trade-off introduced
by p-digest’s compression parameter δ. To evaluate this
trade-off, we measure the quality of quantile estimation in
different conditions of data compression, merge effective-
ness and queried quantile, while varying δ. For this exper-
iments, we used the green-taxis dataset to stress p-digest
worst-case scenarios. The values shown in the accuracy
experiments are computed by measuring the relative error
of estimated quantile to the actual empirical quantile for the
input data: |qestimated − qempirical|/(|qempirical|+ 1).

Accuracy per Spatial Quadtree Node. This experiment
gives an insight into the accuracy of p-digest when dealing
with input data that range from 1 element to 100 million
elements. After loading the dataset into QDS, we query
each region of the spatial index independently from root
to leafs at height 25, measuring the accuracy during
the process. This benchmark exploits p-digest capacity to
approximate different set sizes. Fig. 12 (a) shows that
quantile estimation is accurate for small input data and
nearly unaffected for variations on compression parameter
δ. The average error is somewhat constant for larger inputs.

Accuracy per Spatial Quadtree Level. In this experiment,
we combine each quadtree level into its respective p-digest,
i.e., for every level, we execute (at most) 4Z p-digest merge
operations while keeping the same input data. Fig. 12 (b)
shows that accuracy increases when the input data is broken
into more parts, because data is spread across more p-digest
arrays. QDS benefits from this since pivot intersections
(and as a result, p-digest merges) are commonly executed
to answer the range of queries we support. Compression
parameter δ = 50 was the default value because it has the
right balance between (i) accuracy per number of elements,
(ii) accuracy per number of merges and (iii) memory usage.

2. https://www.monetdb.org/Documentation/Extensions/GIS.

Figure 12. Evaluation of p-digest’s quantile estimation with respect to (a)
pivot size, (b) number of merge operations and (c) queried quantile.

Accuracy by Varying qth ∈ (0,1). To measure accuracy
on extreme quantiles, we merge each quadtree level into its
respective p-digest and aggregate the estimated quantiles
per qth (Fig. 12 (c)). This experiment gives an insight into
the error of a typical real-world query and the importance of
the choice of the compression parameter δ. The relative error
of compression parameter δ = 25 gets worse near q = 1.
This behavior reflects a poor choice of this parameter for the
distributions that we are trying to approximate. Notice how
the performance improves for larger values of δ.

Performance. We now compare the latency of QDS quan-
tile queries against similar queries provided by SQLite,
PostgreSQL and MonetDB. As a baseline for evaluation of
p-digest, we also implemented an experimental variaion
QDS, here referenced as QDS (w/o p-digest), that performs
exact quantile computation. To do so we use QDS index and
store at each pivot a sorted array containing the correspond-
ing payload t values. This baseline give us an insight about
the performance of QDS index when using a naive approach
to calculate quantiles.

For this experiment we use a synthetic dataset composed
of 50 million points (x, y, t), where the spatial dimensions
x, y are independent and uniformly distributed in the in-
terval [0, 10]. The payload dimension t is generated by
sampling the standard normal distribution. The goal is to
compute the median of payload values over the points con-
tained in randomly generated spatial regions of varying size
that covers from 10% up to 90% of the dataset domain. As
shown in Fig. 13, SQLite and PostgreSQL employ different
acceleration strategies but are unable to provide queries
at interactive rates. As already stated, MonetDB lacks any
sort of index to accelerate spatial queries, translating to a
constant latency, no matter the number of filtered points. We
highlight that all database solutions perform exact quantile
computations, which makes necessary to scan all elements
filtered by the spatial query. The regular build of QDS (with
p-digest) was the only method able to provide quantile
queries at interactive rates. QDS qnt computation time is
dominated by merge operations. When measured individ-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

100
101
102
103
104
105

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of Synthetic Dataset (50M)

T
im

e
(m

s)
Bench ● ● ● ● ●QDS QDS (w/o p−digest) SQLite PostgreSQL MonetDB

Figure 13. Comparison of qnt(0.5) computation on a synthetic dataset
using QDS, QDS without p-digest and database alternatives. As shown,
QDS can provide quantile queries at interactive rates.

ually, merging times were less than one millisecond while
using compression parameter δ = 50.

Memory usage. Memory usage was a relevant factor when
designing p-digest. The ability to share pivots and payload
data, as well as memory saving strategies, prevent QDS
size to be directly proportional to the p-digest compression
(δ) parameter. While the average number of data items per
p-digest is small, it is necessary to use a quantile sketch
algorithm to enable quantile computation in large datasets,
as shown in Fig. 13. As datasets become larger, allocating
a buffer to store temporary data from the naïve approach
becomes worse, since its size is proportional to the number
of elements to compute the quantile. As observed in Table 2,
the variation of compression (δ) parameter values has little
impact on memory usage. Compression ratio ranges from
1.16x up to 1.34x when compared with the naïve solution.

9 DISCUSSION

In this section, we further discuss issues related to QDS per-
formance, applicability, and limitations. We first highlight
that QDS improves on NC, Immens and Hashedcubes with
respect to both capabilities, since these systems only support
count queries and performance as described in Sec. 8. We
also notice that having an (approximate) description of the
distribution of a dataset is more powerful than using a
parametric distribution, such as the Gaussians (used by GC).
In fact, using p-digest we can retrieve the (approximate)
values for moment statistics. However, the quantiles of a
parametric distribution fitted to a dataset are in general
far from the original ones (as illustrated in Fig. 8). This
makes QDS widely applicable for the analysis of large
spatiotemporal datasets. An interesting application scenario
is the analysis of ensemble datasets in which different model
predictions are put together to represent the diversity of the
phenomenon under study.

A limitation of QDS compared to GC is the fact that it can
only deal with univariate distributions (due to a limitation
of p-digest) and, therefore, treats its payload dimensions as
independent variables. Finally, while we have shown that
QDS achieves a good approximation, it does not provide
error bounds. We intend to investigate how to quantify
and communicate the uncertainty in the approximation to
the user. Also, we want to perform a formal user study to
evaluate the use of QDS and the supported visualizations.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we presented QDS, a fast and memory efficient
data structure that supports real-time (virtually immedi-
ate feedback) data exploration based on order statistics

Table 2
Compression results for different p-digest configurations.

dataset
p-digest compression

naïve δ = 25 δ = 50 δ = 100

memory time memory
(compression) time memory

(compression) time memory
(compression) time

flights 12.9 GB 05:35 m 9.9 GB
(1.31 x) 07:57 m 10.5 GB

(1.22 x) 08:09 m 10.9 GB
(1.18 x) 08:19 m

green-taxis 9.0 GB 01:54 m 6.7 GB
(1.34 x) 03:02 m 7.0 GB

(1.30 x) 03:05 m 7.2 GB
(1.25 x) 03:08 m

green-taxis-
small 8.4 GB 01:52 m 6.7 GB

(1.25x) 02:50 m 7.0 GB
(1.20 x) 02:54 m 7.2 GB

(1.16 x) 02:57 m

yellow-taxis-
small NA 12.7 GB

(-) 54:57 m 12.9 GB
(-) 55:59 m 13.3 GB

(-) 56:04 m

on large multidimensional datasets. We believe that these
capabilities open a large number of opportunities to design
novel visual encodings and interaction techniques. In fact,
other visualizations (matrix heatmaps, attributed network
and etc) based on averages could be adapted to use their
robust counterparts. Furthermore, we want to explore the
possible use of QDS to speed-up computations in machine
learning techniques for non-Gaussian distributions such as
quantile regression and quantile based clustering. We see
the coupling of cutting edge data sketching techniques
with powerful precomputed indices to support interactive
visual analytics as a promising future research direction.
For example, we would like to explore how we can use
of matrix and tensor sketching techniques to support the
execution of complex analytical algorithms interactively.
Another research direction is to define a data sketch to
represent multivariate distributions with features similar to
how t-digest can represent univariate distributions. To the
best of our knowledge we are not aware of a solution to this
problem. We believe the queries provided by QDS provide
changes in the mindset during the analysis, allowing users
to reason on the likelyhood of a hypothetical scenario like
in Fig. 1. We intend to investigate these ideas in the future.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for
their valuable comments and suggestions. This study was
financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001, CNPq 308851/2015-3 and CNPq 140313/2017-6.

REFERENCES

[1] Z. Liu and J. Heer, “The Effects of Interactive Latency on Ex-
ploratory Visual Analysis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 12, pp. 2122–2131, 2014.

[2] L. Battle, R. Chang, and M. Stonebraker, “Dynamic Prefetching of
Data Tiles for Interactive Visualization,” in Proceedings of the 2016
International Conference on Management of Data. ACM, 2016, pp.
1363–1375.

[3] Z. Liu, B. Jiang, and J. Heer, “imMens: Real-time Visual Querying
of Big Data,” in Computer Graphics Forum, vol. 32, no. 3pt4. Wiley
Online Library, 2013, pp. 421–430.

[4] L. Lins, J. T. Klosowski, and C. Scheidegger, “Nanocubes for Real-
Time Exploration of Spatiotemporal Datasets,” IEEE Transactions
on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2456–
2465, Dec 2013.

[5] C. A. L. Pahins, S. A. Stephens, C. Scheidegger, and J. L. D.
Comba, “Hashedcubes: Simple, Low Memory, Real-Time Visual
Exploration of Big Data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 1, pp. 671–680, Jan 2017.

[6] J. Matejka and G. Fitzmaurice, “Same Stats, Different Graphs:
Generating Datasets with Varied Appearance and Identical Statis-
tics Through Simulated Annealing,” in Proc. Conference on Human
Factors in Computing Systems (CHI). ACM, 2017, pp. 1290–1294.

[7] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and C. Scheidegger,
“Gaussian Cubes: Real-Time Modeling for Visual Exploration of
Large Multidimensional Datasets,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 23, no. 1, pp. 681–690, Jan 2017.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[8] T. Dunning and O. Ertl, “Computing Extremely Accurate Quan-
tiles Using t-Digests,” https://github.com/tdunning/t-digest, ac-
cessed: 2018-07-18.

[9] K. Potter, J. Kniss, R. Riesenfeld, and C. R. Johnson, “Visualizing
Summary Statistics and Uncertainty,” in Computer Graphics Forum,
vol. 29, no. 3. Wiley Online Library, 2010, pp. 823–832.

[10] R. Maciejewski, A. Pattath, S. Ko, R. Hafen, W. S. Cleveland, and
D. S. Ebert, “Automated box-cox transformations for improved
visual encoding,” IEEE transactions on visualization and computer
graphics, vol. 19, no. 1, pp. 130–140, 2013.

[11] M. Correll and M. Gleicher, “Error bars Considered Harmful:
Exploring Alternate Encodings for Mean and Error,” IEEE trans-
actions on Visualization and Computer Graphics, vol. 20, no. 12, pp.
2142–2151, 2014.

[12] G. A. Rousselet, J. J. Foxe, and J. P. Bolam, “A Few Simple Steps
to Improve the Description of Group Results in Neuroscience,”
European Journal of Neuroscience, vol. 44, no. 9, pp. 2647–2651, 2016.

[13] T. L. Weissgerber, N. M. Milic, S. J. Winham, and V. D. Garovic,
“Beyond Bar and Line Graphs: Time for a New Data Presentation
Paradigm,” PLoS Biology, vol. 13, no. 4, p. e1002128, 2015.

[14] H. Wickham and L. Stryjewski, “40 Years of Boxplots,” Am. Statis-
tician, 2011.

[15] “Kick the bar chart habit,” Nature Methods, vol. 11, pp. 113 EP –,
01 2014. [Online]. Available: https://doi.org/10.1038/nmeth.2837

[16] M. Kay, T. Kola, J. R. Hullman, and S. A. Munson, “When (ish) is
my bus?: User-centered visualizations of uncertainty in everyday,
mobile predictive systems,” in Proceedings of the 2016 CHI Confer-
ence on Human Factors in Computing Systems. ACM, 2016, pp.
5092–5103.

[17] M. Fernandes, L. Walls, S. Munson, J. Hullman, and M. Kay,
“Uncertainty Displays Using Quantile Dotplots or CDFs Improve
Transit Decision-Making,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, 2018, p. 144.

[18] D. Fisher, I. Popov, S. Drucker et al., “Trust me, I’m Partially Right:
Incremental Visualization Lets Analysts Explore Large Datasets
Faster,” in Proc. Conference on Human Factors in Computing Systems
(CHI). ACM, 2012, pp. 1673–1682.

[19] S. Chaudhuri, B. Ding, and S. Kandula, “Approximate Query
Processing: No Silver Bullet,” in Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 2017, pp.
511–519.

[20] J. Jo, W. Kim, S. Yoo, B. Kim, and J. Seo, “Swifttuna: Responsive
and incremental visual exploration of large-scale multidimen-
sional data,” in Proc. Pacific Visualization Symposium (PacificVis),
April 2017, pp. 131–140.

[21] D. Moritz and D. Fisher, “What Users Don’t Expect about Ex-
ploratory Data Analysis on Approximate Query Processing Sys-
tems,” in Proceedings of the 2nd Workshop on Human-In-the-Loop Data
Analytics. ACM, 2017, p. 9.

[22] N. Ferreira, D. Fisher, and A. C. Konig, “Sample-oriented Task-
driven Visualizations: Allowing Users to Make Better, More Confi-
dent Decisions,” in Proc. Conference on Human Factors in Computing
Systems (CHI). ACM, 2014, pp. 571–580.

[23] D. Moritz, D. Fisher, B. Ding, and C. Wang, “Trust, but Verify:
Optimistic Visualizations of Approximate Queries for Exploring
Big Data,” in Proc. Conference on Human Factors in Computing
Systems (CHI). ACM, 2017, pp. 2904–2915.

[24] F. Miranda, L. Lins, J. Klosowski, and C. Silva, “TopKube: A Rank-
Aware Data Cube for Real-Time Exploration of Spatiotemporal
Data,” IEEE Transactions on Visualization and Computer Graphics,
vol. PP, no. 99, pp. 1–1, 2017.

[25] J. Peng, D. Zhang, J. Wang, and J. Pei, “Aqp++: Connecting
approximate query processing with aggregate precomputation
for interactive analytics,” in Proceedings of the 2018 International
Conference on Management of Data. ACM, 2018, pp. 1477–1492.

[26] H. Doraiswamy, N. Ferreira, T. Damoulas, J. Freire, and C. T. Silva,
“Using Topological Analysis to Support Event-guided Exploration
in Urban Data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 12, pp. 2634–2643, 2014.

[27] R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout,
M. Ouzzani, W. S. Cleveland, S. J. Grannis, and D. S. Ebert,
“A Visual Analytics Approach to Understanding Spatiotemporal
Hotspots,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 16, no. 2, pp. 205–220, 2010.

[28] L. Wilkinson, “Visualizing Big Data Outliers Through Distributed
Aggregation,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 256–266, Jan 2018.

[29] J. S. Rosenthal, A First Look at Rigorous Probability Theory, 2nd ed.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.

[30] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine,
“Synopses for Massive Data: Samples, Histograms, Wavelets,
Sketches,” Foundations and Trends in Databases, vol. 4, no. 1–3, pp.
1–294, 2012.

[31] J. M. Phillips, “Coresets and sketches,” arXiv preprint
arXiv:1601.00617, 2016.

[32] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians
and Beyond: New Aggregation Techniques for Sensor Networks,”
in Proc. International Conference on Embedded Networked Sensor Sys-
tems (SenSys), 2004, pp. 239–249.

[33] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei,
and K. Yi, “Mergeable Summaries,” ACM Transactions on Database
Systems, vol. 38, no. 4, p. 26, 2013.

[34] Z. Karnin, K. Lang, and E. Liberty, “Optimal Quantile Approxi-
mation in Streams,” in Symp. on Foundations of Computer Science
(FOCS), Oct 2016, pp. 71–78.

[35] D. Felber and R. Ostrovsky, “A randomized online quantile sum-
mary in O((1/ε) log(1/ε)) words,” Theory of Computing, vol. 13,
no. 14, pp. 1–17, 2017.

[36] Y. Ben-Haim and E. Tom-Tov, “A Streaming Parallel Decision Tree
Algorithm,” Journal of Machine Learning Research, vol. 11, no. Feb,
pp. 849–872, 2010.

[37] M. Greenwald and S. Khanna, “Space-efficient online computation
of quantile summaries,” SIGMOD Records, vol. 30, no. 2, pp. 58–66,
May 2001.

[38] J. Kenney and E. Keeping, Mathematics of Statistics, ser.
Mathematics of Statistics. Van Nostrand company, 1954, no. v. 1.
[Online]. Available: https://tinyurl.com/ybpyupad

[39] R. Fraiman and G. Muniz, “Trimmed Means for Functional Data,”
Test, vol. 10, no. 2, pp. 419–440, 2001.

[40] Airlines for America, “U.S. Passenger Carrier Delay Costs,” https:
//tinyurl.com/ycmxgcoy, accessed: 2018-07-18.

[41] US Department of Transportation, “On-Time Performance
Dataset,” https://tinyurl.com/y7tngze8, accessed: 2018-07-18.

[42] US Bureau of Transportation Statistics, “Air Travel Consumer
Report,” https://tinyurl.com/yde9nwo4, accessed: 2018-07-18.

[43] NYC Taxi and Limousine Commission, “Taxi Trip Records,” https:
//tinyurl.com/q66cby3, accessed: 2018-07-18.

[44] NYPD, “NYC Police Department announces street closures and
expected traffic delays for October 11-12th 2014,” https://tinyurl.
com/ybyooj4w, accessed: 2018-07-18.

[45] SpatiaLite, “SpatiaLite,” https://tinyurl.com/d9re6ss, accessed:
2019-01-19.

[46] PostGIS, “Spatial and Geographic Objects for PostgreSQL,” https:
//tinyurl.com/ycptpbsv, accessed: 2019-01-19.

[47] MonetDB B.V., “GeoSpatial | MonetDB,” https://tinyurl.com/
yal5gwev, accessed: 2019-01-19.

Cicero A. L. Pahins Cícero A. L. Pahins is a Ph.D
candidate in Computer Science from Federal University
of Rio Grande do Sul (UFRGS), where he conducts re-
search activities in the area of Scalability, Exploration and
Interactive Visualization of Big Data through the develop-
ment of innovative data structures. He has experience in
subjects like visualization and data analysis, scientific vi-
sualization, spatial data structures and graphic hardware.

Nivan Ferreira Nivan Ferreira is an Assistant Professor
at Universidade Federal de Pernambuco (UFPE) in Brazil.
He received a BSc in Computer Science and MSc in
Mathematics from UFPE and PhD in Computer Science
from New York University. Nivan was also a Post-Doc at
the Department of Computer Science at the University
of Arizona. Nivan’s research focuses on many aspects
of interactive data visualization, in particular systems and
techniques for analysis spatiotemporal datasets.

João L. Comba João L. Comba is a Full Professor at
the Instituto de Informática of the Universidade Federal
do Rio Grande do Sul (UFRGS). Dr. Comba has a Ph.D.
in Computer Science from Stanford University, a MSc
in Systems Engineering and Computation from UFRJ
(Brazil) and a BSc in Computer Science from UFRGS.
His current research is on Visual Data Analysis, with
emphasis on visual analytics, spatial data structures and
high-performance computing. He is co-chair of the Visu-

alization Corner column of the journal Computing in Science & Engineering.

