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Abstract

In this paper we characterize a mathematical model called Maximum
Common Subelement (MCS) Model and prove the existence of four differ-
ent metrics on such model. We generalize metrics on graphs previously
proposed in the literature and identify new ones by showing three different
examples of MCS Models on graphs based on (1) subgraphs, (2) induced
subgraphs and (3) an extended notion of subgraphs. This latter example
can be used to model graphs with complex labels (e.g., graphs whose labels
are other graphs), and hence to derive metrics on them. Furthermore, we
also use (3) to show that graph edit distance, when a metric, is related to
a maximum common subelement in a corresponding MCS Model.

1 Introduction

Graphs are a natural model for a number of concepts in many different domains
such as molecules in chemistry, interaction networks in social studies and bio-
chemistry, workflow descriptions in scientific computing, just to name a few.
In each of these domains, when dealing with collections of such objects, it is
usually important to have a precise notion of similarity/dissimilarity between
them. An adequate and precise way to define similarity/dissimilarity between
graphs is by means of a metric on (the set of) graphs.

Bunke and Shearer [2] showed that the function

dB(g1, g2) = 1− v12i

max{v1, v2}

is a metric on the set of graphs when g1 and g2 are graphs with, respectively, v1

and v2 vertices, and v12i is the maximum number of vertices of a common induced
subgraph of g1 and g2. Later, Wallis et al. [7] showed that, by rearranging the
same terms, the function

dW (g1, g2) = 1− v12i

v1 + v2 − v12i

1



is also a metric on the set of graphs. We say that these two metrics are based
on induced subgraphs because the term v12i is related to a common induced
subgraph of input graphs g1 and g2.

An initial motivation for this work was to identify metrics on the set of graphs
based on subgraphs instead of induced subgraphs that would be analogous dB
and dW . Note in Figure 1 that, for the same two graphs, the largest number of
vertices of a common subgraph and of a common induced subgraph can be sig-
nificatively different. This observation leads to the fact that, depending on the
application, the graph similarity/dissimilarity notion is better modeled either
by a function based on subgraphs or by one based on induced subgraphs. One
application where a function based on subgraphs is a better fit is reported by [5].
In their paper, they argue that a common subgraph (not necessarily an induced
one) that has the largest number of edges is a better model for the similarity
of chemical graphs since, in their words, “it is the bonded interactions between
atoms in a molecule that are the most responsible for its perceived activity”. In
this application for chemical graphs, analogous versions of dB and dW based on
subgraphs would be more adequate.

One metric on the set of graphs based on subgraphs was shown by Fernández
and Valiente [4]. Their function is equivalent to the following definition:

dF (g1, g2) = (v1 + e1) + (v2 + e2)− 2(v12s + e12s),

where the new terms e1 and e2 are the number of edges of g1 and g2, and v12s

and e12s are the number of vertices and edges of a common subgraph of g1 and
g2 that maximizes the sum of number of vertices and number of edges among
all subgraphs of g1 and g2.

In this paper we characterize a mathematical structure called Maximum
Common Subelement (MCS) Model (Section 3.2), that generalizes the one de-
scribed by [3], and show that four metrics are valid in such model (Theorem 1),
including general analogous versions of the functions dB , dW , and dF . We then
show three examples of MCS Models on graphs. The first two examples are
based on the usual notions of subgraphs (Section 4.2) and induced subgraphs
(Section 4.3), and the third example is based on a notion of extended subgraphs
(Section 4.4). We refer to these three MCS Model on graphs as, respectively,
S-MCS Model, I-MCS Model, and E-MCS Model. The importance of these
MCS Models on graphs is that they enable us to reproduce previous metrics on
graphs (e.g., dB , dW , dF ), extend them (weighting scheme), and derive new ones
(e.g., analogous of dB and dW based on subgraphs, the metrics on the E-MCS
Model).

One interesting aspect of the E-MCS Model is that the (vertex and edge)
labels of its graphs are elements of other MCS Models. This permits an E-MCS
Model to describe rich structured objects (e.g., graphs whose labels are other
graphs) and similarity models on them (i.e., the general MCS Model metrics are
readly available for these rich structured objects). In Section 5, we use E-MCS
Models to show that for any graph edit distance that is a metric on graphs, we
can derive a corresponding MCS Model where the edit distance of two graphs
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is related to the size of a maximum common subelement of the two graphs in
this corresponding MCS Model.

2 Preliminaries

For the sake of completeness, in this section we state some standard concepts
that are fundamental for the rest of the paper.

Definition 1. (Metric, Metric Space) A metric d on a set X is a function
d :X×X→ [0,∞) that, for any x1, x2, x3 ∈ X, the following conditions hold

(M1) d(x1, x1) = 0;

(M2) d(x1, x2) = d(x2, x1);

(M3) d(x1, x3) ≤ d(x1, x2) + d(x2, x3);

(M4) if d(x1, x2) = 0 then x1 = x2.

In this case, the pair (X, d) is called a metric space. If X is finite then we also
refer to (X, d) as a finite metric space.

Definition 2. (Partial Order) Let 4 be a relation on a set X, i.e. 4 is a
subset of X ×X. We use the notation x1 4 x2 to mean (x1, x2) is an element
of 4. We say 4 is a partial order on X if the following conditions hold:

(R1) x 4 x (reflexivity)

(R2) x1 4 x2 and x2 4 x3 then x1 4 x3 (transitivity)

(R3) x1 4 x2 and x2 4 x1 then x1 = x2 (antisymmetry)

Furthermore, we use the notations |A|, P(A), and [A]k to mean, respectively,
the number of elements in set A, the power set of A, and the set of all sets
containin k ≥ 1 elements of A.

3 Maximum Common Subelement (MCS) Model

In general, a natural model to the similarity of two objects is given by a num-
ber reflecting how much do the two objects overlap. The Maximum Common
Subelement (MCS) Model is a precise way of encoding this idea of similarity,
framed in a general language that can fit many different scenarios (our focus
application in the following sections are graphs). A MCS Model is composed of
three parts. The first part is a set also called the domain of the model. The
second part, used to to make the informal notion of overlap precise, is a partial
order on the set or domain of the model. The third and last part, used to quan-
tify how much is an overlap, is a size function which assigns a size value for
each element of the domain. The following definitions fix some notation before
we formally define a MCS Model.
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Figure 1: Difference between the maximum number of vertices of a common
induced subgraph and of a common subgraph of graphs g1 and g2 shown in (a).
No common induced subgraph of g1 and g2 has more than 6 vertices (b), while
there exist a common subgraph with 9 vertices (c). (these graphs represent
scientific workflow descriptions generated using [6] (2008))
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Definition 3. (Subelement, Superelement, Common Subelements) Let
4 be a partial order on a set X. For x1, x2 ∈ X, if x1 4 x2, we say that x1 is
a subelement of x2 and that x2 is a superelement of x1. We define the function
common subelements, denoted by cs, as

cs(X ′) = { x ∈ X : x 4 y,∀y ∈ X ′}, for X ′ ⊆ X.

Definition 4. (Size Function) Let 4 be a partial order on X. We say a
function s : X → [0,∞) is a size function on (X,4) if, for x1, x2 ∈ X, the
following conditions hold

(S1) if x1 4 x2 then s(x1) ≤ s(x2);

(S2) if x1 4 x2 and s(x1) = s(x2) then x1 = x2.

The size function conditions (S1) and (S2) formalizes the idea that a subele-
ment must have either a smaller size (proper subelement), or have the same
size and be the same element (a non-proper subelement). Now we are ready to
define a MCS Model.

Definition 5. (Maximum Common Subelement Model) A Maximum Com-
mon Subelement (MCS) Model on a set X is a triple

(X,4, s),

where 4 is a partial order on X, and s is a size function on (X,4) such that

(A1) Given x1, x2 ∈ X, cs({x1, x2}) 6= ∅ and

{s(x) |x ∈ cs({x1, x2})} has a maximum;

(A2) Given x1, x2, x ∈ X and x1, x2 4 x there exists x12 ∈ cs({x1, x2})
such that s(x) ≥ s(x1) + s(x2)− s(x12).

Condition (A1) on a MCS Model states that any two elements (not neces-
sarily distinct) have at least one common subelement, and, among all common
subelements, there is at least one (could be more than one) whose size is the
largest possible. Condition (A2) is rooted on the idea that a superelement of
any two elements must, some how, contain these two elements simultaneously,
in other words, it contain a kind of union of these two elements. Imagine two
finite sets S1 and S2, intuitively we expect that the number of elements of any
superset S of sets S1 and S2 to have at least as much elements as their union:
|S| ≥ |S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|, but never fewer elements than that.

The MCS Model is a generalization of the model proposed by [3], referred
here as the DR Model. The motivation to define the DR Model in their paper
was the same we had to define the MCS Model here: a template to fit applied
situations into, and derive metrics. A terminology difference between the DR
Model and the MCS Model is that the terms pattern, generalization, special-
ization in the former becomes, respectivelly, element, subelement, superelement
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in the latter. A more important difference is that, in our terminology, while
the DR Model requires every two elements to have at least one subelement and
one superelement, the MCS Model only requires the subelement to exist. Once
the terminology between the two models is aligned, it is straightfoward to prove
that MCS Model is in fact a generalization of the DR Model (e.g., diamond in-
equality there is equivalent to condition (A2)). Thus, all the examples given in
that paper, namely weighted sets, strings and trees (with appropriate partial
order relations and size functions) are also examples of MCS Models. [3] proved
one metric function to be valid in any DR Model. In this paper (Theorem 1)
we extend this list to four metric functions to be valid in an even more general
model: the MCS Model.

When presenting examples of MCS Models in the following sections, instead
of showing that property (A1) is valid, we show that the following more restric-
tive property (A1’) is valid:

(A1’) 0 < |cs({x1, x2})| <∞;

Clearly, (A1’) implies (A1), since the number of subelements of any two elements
is finite.

Before going into some properties and the metrics of MCS Models we set
more terminology

Definition 6. (Auxiliar Functions) If (X,4, s) is a MCS Model and X ′

is a subset of X then the maximum common subelements size function, denoted
by s′, is defined by

s′(X ′) = max{ s(x) : x ∈ cs(X ′) },

and the maximum common subelements function, denoted by mcs, is defined by

mcs(X ′) = {x : s(x) = s′(X ′), x ∈ cs(X ′) }.

Note that, in general, s′ and mcs might not be well defined (e.g., common
subelements of three elements might be empty). By (A1), these functions are
well defined when when |X ′| ≤ 2. In the rest of the paper we should use these
functions only when they are well defined.

3.1 Some Properties of MCS Models

Proposition 1 (Uniqueness of minimum size element). Let (X,4, s) be a
MCS Model and let x0 ∈ X be such that s(x0) = min({s(x)|x ∈ X}). Then, the
following statements are true:

(a) if x ∈ X is such that s(x) = s(x0), then x = x0.

(b) The element x0 is a global subelement, i.e., x0 ∈ cs(X).
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Proof. (a) Let y ∈ cs({x0, x}). It exists by (A1). By (S1), we conclude that
s(y) = s(x0) = s(x) and using (S2), we conclude that x = y = x0. (b) Let
y ∈ X and, again, let z ∈ cs({x0, y}). By (S1), we conclude that s(z) = s(x0),
and using (S2), we have that x0 = z ⇒ x0 4 y.

The following lemma provides a way to derive a MCS Model from a finite
metric space. The interesting relation between this metric space and its derived
MCS Model is that the metric is somehow preserved in the structure of the
MCS Model. Figure 2 presents a finite metric space and a visual illustration
of its derived MCS Model. We use this lemma in Section 5 to built a relation
between Graph Edit Distance and MCS Models.

Lemma 1 (Metric Space to MCS Model). Let Σ be a finite set and the function
d : Σ× Σ→ [0,∞) be a metric on Σ. In this case, there is a MCS Model

MX = (X,4X, sX)

where Σ ⊆ X and, for σ1, σ2 ∈ Σ,

d(σ1, σ2) = sX(σ1) + sX(σ2)− 2s′X({σ1, σ2}). (1)

Proof. Let n = |Σ| and Kn = (Σ, [Σ]2) be a complete (unlabeled simple) graph.
Assume the natural interpretation: in Kn, an edge {σ1, σ2} ∈ [Σ]2 has endpoints
σ1, σ2 ∈ Σ. Furthermore, let Z be all non empty subsets of edges in Kn that
induces a connected subgraph of Kn. We are now able to define the elements
of our MX : the set X, the order relation 4X, and the size function sX . First,
the elements of X are the vertices of Kn plus every subset of edges in Kn that
induces a connected subgraph of Kn:

X = Σ ∪ Z.

For x1, x2 ∈ X, let x14X x2 if

(O1) x1 = x2,

(O2) x1 = E ⊆ [Σ]2, x2 = σ ∈ Σ,

and vertex σ is an endpoint of some edge in E.

(O3) x1, x2 ⊆ [Σ]2 and x1 ⊇ x2.

Define R to be

R = θ +
1

2

∑
{σ1,σ2}
∈[Σ]2

d(σ1, σ2),

for some θ > 0. For x ∈ X define

sX(x) =


R, if x ∈ Σ,

R− 1

2

∑
{σ1,σ2}

∈x

d(σ1, σ2), for x ⊆ [Σ]2.,
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Figure 2: Metric d on the set Σ = {A,B,C,D} and MCS ModelMX = (X,4X
, sX) on a set X where Σ ⊆ X. Each element of X is represented by a circle and
A,B,C,D are the top four circles. Two elements x1, x2 in MX are related by
x14X x2 if there is an upward path from x1 to x2. The size function sX grows
bottom-up and its values are shown below each corresponding element. Model
MX is related to d by the fact that d(σ1, σ2) = sX(σ1)+sX(σ2)−2s′X({σ1, σ2})
for any σ1, σ2 in Σ. By Lemma 1 for any other metric (on a finite set) there is
a MCS Model satisfying the same properties as in this example.
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Note that, with this definition of sX , θ is the size of [Σ]2 (which is an element in
Z and is the smallest element in MX). We now prove that MX = (X,4X, sX)
is a MCS Model:

• (4X is a partial order)

– (Reflexive) By (O1),4X is reflexive.

– (Transitive) Assume

(H1) x14X x2 and (H2) x24X x3.

If x1, x2, x3 ∈ Z, then, by (O3), x3 ⊇ x2 ⊇ x1, therefore, x3 ⊇ x1

and, again by (O3), x1 4 x3. Note that, if x ∈ Σ, then it is maximal
on4X. Therefore, for 1 ≤ i < j ≤ 3, if xi ∈ Σ, then xj = xi. If x1 ∈ Σ
then x1 = x2 = x3 and, by (O1), x1 4 x3. If x1 ∈ Z and x2 ∈ Σ,
then x2 = x3 and (H1) is equivalent to x1 4X x3. If x1, x2 ∈ Z and
x3 ∈ Σ, then, by (H1), x1 ⊇ x2 and, by (H2), x1 is an endpoint of
some edge e in x2. As edge e is also en edge in x1 we can conclude
x14X x3.

– (Antisymmetric) Assume

(H3) x14X x2 and (H4) x24X x1.

If x1 ∈ Σ, then, by (H3), we must have x1 = x2. If x1, x2 ∈ Z, then
(H3) and (H4) means x1 ⊇ x1 and x2 ⊇ x2 therefore x1 = x2.

• (sX is a size function) First, by the definitions of R and sX it is easy
to check that sX(x) ≥ 0 for all x ∈ X. If x1 4X x2 then three cases can
occur:

(C1) x1, x2 ∈ Z, (C2) x1 ∈ Z, x2 ∈ Σ, (C3) x1, x2 ⊆ Σ.

– (S1) We need to show that:

if x14X x2 then s(x1) ≤ s(x2).

If (C1) occurs then x1 ⊇ x1 and, by definition, the expression for
sX(x1) will subtract from R at least the same edge terms d(σ1, σ2)/2
as the expression for sX(x1), therefore, sX(x1) ≤ sX(x2). If case
(2) occurs, x1 has at least one edge e and the expression for sX(x1)
subtracts at least one positive value from R (e.g., the value relative
to e). Since x2 = R, then s(x1) ≤ s(x2). If case (3) occurs, then
x1 = x2, therefore s(x1) ≤ s(x2).

– (S2) We need to show that:

if x1 4 x2 and s(x1) = s(x2) then x1 = x2.

Assume x1 4X x2 and s(x1) = s(x2). If (C1) occurs, then x1 ⊇ x2

and, by definition, the expression for sX(x1) subtracts from R at
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least the same edges as in sX(x2). If we assume x1 6= x2 then sX(x1)
would subtract at least one more positive term from R and there-
fore sX(x1) < sX(x2), which contradicts the assumption sX(x1) =
sX(x2). Case (C2) cannot occur, because x1 4X x2, x1 ∈ Z, and
x2 ∈ Σ would imply sX(x1) < sX(x2) since s(x2) = R and s(x1) def-
inition subtracts at least one positive term from R. If (C3) occurs,
then necessarily x1 = x2.

• (A1) We are going that (A1) holds, by showing that (A1’) also holds. In
order to do so, let x1, x2 ∈ X. By definition, the element x = [Σ]2 ∈ X is
a subelement of all other objects in X, therefore |cs({x1, x2})| ≥ 1, for all
x1, x2 ∈ X. As X is finite, then |cs({x1, x2})| must be finite.

• (A2) We have to show that

Given x1, x2, x ∈ X and x1, x2 4 x

there exists x12 ∈ cs({x1, x2})
such that s(x) ≥ s(x1) + s(x2)− s(x12).

Before going into this axiom, we first note that if x1, x2 ∈ Z, x ∈ X and
x1, x24X x, then x1∪x2 is also an element of Z. To see this fact, let σ ∈ Σ
be equal to x, x ∈ Σ, or an endpoint of one edge in x if x ∈ Z. Suppose
σa is a vertex in x1 and σb is a vertex in x2 (both are in x1 ∪ x2). There
must be a path from σa to σ in x1 (which is contained in x1 ∪ x2) and
there must be a path from σb to σ in x2 (which is contained in x1 ∪ x2).
By joining these paths we have a path from σa to σb in x1∪x2. Therefore,
x1 ∪ x2 ∈ Z.

We will split this into three cases: (1) x1 ∈ Σ; (2) x ∈ Z; (3) x ∈ Σ and
x1, x2 ∈ Z. By the symmetric roles that x1 and x2 take in this axiom,
these cases are enough to cover all possibilities.

– Case (1): As x1 ∈ Σ, then we must have x = x1 and making x12 = x2

we have the axiom, since

sX(x) ≥ sX(x) = sX(x1)

= sX(x1) + sX(x2) + sX(x2)

= sX(x1) + sX(x2) + sX(x12).

– Case (2): As x ∈ Z, then x1 ⊇ x, x2 ⊇ x. Note that x1 ∩ x2 ⊇ x
and x has at least one edge since it is an element in Z. Making
x12 = x1 ∪ x2 we have the axiom since:

sX(x)sX(x1 ∩ x2)

= sX(x1) + sX(x2) + sX(x12).

Note that x1∩x2 might not be a member of Z, but, since the formula
for sX is well defined any subset of [Σ]2, we used it.
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– Case (3): Note that the inequation

sX(x) ≥ sX(x1 ∩ x2)

is also true in this case. If x1 ∩ x2 is the empty set we have that the
only element in common between the graphs induced by x1 and x2

is the single vertex x. We can use the same development as in the
previous case to estbilish the axiom in this case.

It now remains to show that Equation 1 is valid. The case where σ1 = σ2

is trivially true. Suppose σ1 6= σ2. By the definition of 4X we know that
{{σ1, σ2}}4X σ1 and {{σ1, σ2}}4X σ2. Furthermore, by the definition of sX ,

sX({{σ1, σ2}}) = R− 1

2
d(σ1, σ2)

≡ 2sX({{σ1, σ2}}) = 2(R)− d(σ1, σ2)

≡ d(σ1, σ2) = 2(R− 2sX({{σ1, σ2}})
≡ d(σ1, σ2) = sX(x1) + xX(x2)− 2sX({{σ1, σ2}})

which is in the form of Equation 1. If {{σ1, σ2}} ∈ mcs({σ1, σ2}) then we
have the result. Let’s show that this is indeed true. Let x be a memeber of
mcs({σ1, σ2}). It then satisfies: x4X σ1, σ2. It also must be in Z since σ1 6= σ2.
There must be a path σ1, β1, β2, . . . , βk, σ2 in x otherwise x4X σ1 and x4X σ2

would not be true. Actually x must induce a path from σ1 to σ2 otherwise we
could remove the extra (non-path) edges and still get a set of edges inducing a
connected subgraph and with a larger sX . Furthermore, for paths of the form
σ1, β1, β2, . . . , βk, σ2, replacing edges {σ1, β1} and {β1, β2} by {σ1, β2} we still
have a path, and, by the fact that d is a metric, we have not increased the size
sX of our x. This way we can erase all intermediate graphs and get that the
graph that induces the path σ1, σ2 must be a member of mcs({σ1, σ2}). With
this, the result is estabilished.

Lemma 2 is a technical property used in Section 3.2 in the proof of Theo-
rem 1.

Lemma 2. Let (X,4, s) be a MCS Model. The inequality

s′({x1, x2}) + s′({x2, x3}) ≤ s(x2) + s′({x1, x3}). (2)

holds for all x1, x2, x3 ∈ X.

Proof. Let x12 ∈ mcs({x1, x2}) and x23 ∈ mcs({x2, x3}). As x12, x23 4 x2, we
can use axiom (A2) to conclude that there exists x123 ∈ cs({x12, x23}) such that
s(x2) ≥ s(x12) + s(x23)− s(x123). We then can write

s′({x1, x2}) + s′({x2, x3}) = s(x12) + s(x23)

≤ s(x2) + s(x123) ≤ s(x2) + s′({x1, x3}).
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3.2 Metrics on MCS Models

The main result in this section is the Theorem 1 which states that four different
functions are indeed metrics on MCS Models.

Theorem 1 (Metrics on MCS Models). Let M = (X,4, s) be a MCS
Model on X and let da, db, dc, dd be

da(x1, x2) = s(x1) + s(x2)− 2s′({x1, x2}), (3)

db(x1, x2) = max{s(x1), s(x2)} − s′({x1, x2}), (4)

dc(x1, x2) =


0 , if s(x1) = s(x2) = 0

1− s′({x1, x2})
max{s(x1), s(x2)}

, otherwise.

(5)

dd(x1, x2) =


0 , if s(x1) = s(x2) = 0

1− s′({x1, x2})
s(x1) + s(x2)− s′({x1, x2})

, otherwise.

(6)

Then, all of them are metrics on X.

Proof. Since s′({x1, x1}) = s(x1), it is easy to check that (M1) is true for all
formulas. Furthermore, as s′({x1, x2}) = s′({x2, x1}), it is also easy to see that
(M2) is true for all formulas. Note that for any Maximum Common Subelement
Model we have

x1 6= x2 ⇒ s′({x1, x2}) < max({s(x1), s(x2)}) (7)

≤ s(x1) + s(x2)− s′({x1, x2}).

It is now easy to see that (M4) is true in all formulas (except for the case
s(x1) = s(x2) = 0 on dc and dd) by using its contrapositive form

if x1 6= x2 then d(x1, x2) 6= 0.

Assume x1 6= x2 and check that, using Equation 7 above, each of the four
distance formulas will result in a positive number. The case when s(x1) =
s(x2) = 0 on the formulas dc and dd is also true because, by Proposition 1,
there can be only one element with size zero in a MCS Model. The proof of
(M3) will be given separately for each formula. For all the following proofs let
x1, x2, x3 ∈ X.
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• (M3) is valid for da: Using the Lemma 2, we can write

0 ≤ s(x2) + s′({x1, x3})− s′({x1, x2})− s′({x2, x3})
⇒ 0 ≤ 2s(x2) + 2s′({x1, x3})− 2s′({x1, x2})− 2s′({x2, x3})
⇒ s(x1) + s(x3)− 2s′(x1, x3) ≤ s(x1) + s(x2)

− s′(x1, x2) + s(x2) + s(x3)− 2s′(x2, x3)

⇒ da(x1, x3) ≤ da(x1, x2) + da(x2, x3).

which proves (M3) for da.

• (M3) is valid for db: We split this proof in three cases. These are the
only cases need to be considered, since the role played by x1 and x3 in
(M3) are symmetric.

– (Case 1) If s(x2) ≤ s(x1) ≤ s(x3) We can write:

Lemma 2⇒ 0 ≤ s(x1) + s′({x1, x3})− s′({x1, x2})− s′({x2, x3})
⇒ s(x3)− s′({x1, x3}) ≤ s(x1)

− s′({x1, x2}) + s(x3)− s′({x2, x3})
⇔ max({s(x1), s(x3)})− s′({x1, x3}) ≤

max({s(x1), s(x2)})− s′({x1, x2})
+ max({s(x2), s(x3)})− s′({x2, x3})

⇒ db(x1, x3) ≤ db(x1, x2) + db(x2, x3).

– (Case 2) If s(x1) ≤ s(x2) ≤ s(x3), adding s(x3) to both sides of (2)
we have

s(x3)− s′({x1, x3}) ≤ s(x2)

− s′({x1, x2}) + s(x3)− s′({x2, x3})
⇔ max({s(x1), s(x3)})− s′({x1, x3}) ≤

max({s(x1), s(x2)})− s′({x1, x2})
+ max({s(x2), s(x3)})− s′({x2, x3})

⇒ db(x1, x3) ≤ db(x1, x2) + db(x2, x3).

– (Case 3) If s(x1) ≤ s(x3) ≤ s(x2), adding s(x3) to the left hand side
and s(x2) to the right hand side of (2) we have

s(x3)− s′({x1, x3}) ≤ s(x2)

− s′({x1, x2}) + s(x2)− s′({x2, x3})
⇔ max({s(x1), s(x3)})− s′({x1, x3}) ≤

max({s(x1), s(x2)})− s′({x1, x2})
+ max({s(x2), s(x3)})− s′({x2, x3})

⇒ db(x1, x3) ≤ db(x1, x2) + db(x2, x3).
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• (M3) is valid for dc: The triangle inequality (M3) requires expression
dc(x1, x2) +dc(x2, x3)−dc(x1, x3) to be greater than or equal to zero. We
split this into three cases:

– (Case 1) If s(x1) = s(x2) = 0, then, by Property 1, x1 = x2 and the
triangle inequality becomes dc(x1, x1) + dc(x1, x3) − dc(x1, x3) ≥ 0
which, by definition of dc, can be reduced to dc(x1, x3) ≥ dc(x1, x3)
which is obviously true. An analogous argument can be made to
show that (M3) is valid in the cases where s(x1) = s(x3) = 0 and
s(x2) = s(x3) = 0.

If (Case 1) doesn’t occur, then at least two elements in {x1, x2, x3} have
size s greater than zero and the definition of dc we need to use is the
bottom one in Equation (5). In this case, the expression for (M3) becomes
(8) ≥ 0, where (8) is

1 +
s′{x1, x3}
M13

− s′{x1, x2}
M12

− s′{x2, x3}
M23

(8)

and Mij is a short name for max{s(xi), s(xj)}. The remaining cases that
are sufficient to prove that (M3) is valid for dc are:

– (Case 2) If not (Case 1) and s(x2) ≥ s(x1), s(x3) then

s(x2)× (8)

= s(x2)×

(
1 +

s′{x1, x3}
M13

− s′{x1, x2}
M12

− s′{x2, x3}
M23

)
≥ s(x2) + s′{x1, x3} − s′{x1, x2} − s′{x2, x3}
≥ 0,by Lemma 2.

Since s(x2) > 0, this implies that (8) ≥ 0.

– (Case 3) Similarly, if not (Case 1) and s(x1) ≥ s(x2), s(x3) then

s(x1)× (8)

= s(x1)×

(
1 +

s′{x1, x3}
M13

− s′{x1, x2}
M12

− s′{x2, x3}
M23

)

= s(x1)

(
1− s′{x2, x3}

M23

)
+ s′{x1, x3} − s′{x1, x2}

≥ s(x2)

(
1− s′{x2, x3}

M23

)
+ s′{x1, x3} − s′{x1, x2}

= s(x2)− s(x2)s′{x2, x3}
M23

+ s′{x1, x3} − s′{x1, x2}

≥ s(x2)− s′{x2, x3}+ s′{x1, x3} − s′{x1, x2}
≥ 0,by Lemma 2.
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Since s(x1) > 0, this implies that (8) ≥ 0.

• (M3) is valid for dd: This proof follow the same lines as the one
given for graphs in [7]. The triangle inequality (M3) requires expression
dd(x1, x2)+dd(x2, x3)−dd(x1, x3) to be greater than or equal to zero. We
split this into three cases:

– (Case 1) If s(x1) = s(x2) = 0, then, by Property 1, x1 = x2 and the
triangle inequality becomes dd(x1, x1) + dd(x1, x3) − dd(x1, x3) ≥ 0
which can be reduced to dd(x1, x3) ≥ dd(x1, x3) which is obviously
true. An analogous argument can be made to show that (M3) is
valid in the cases where s(x1) = s(x3) = 0 and s(x2) = s(x3) = 0.

If (Case 1) doesn’t occur, then at least two elements in {x1, x2, x3} have
size s greater than zero and the definition of dd we need to use is the
bottom one in Equation (5). In this case, the expression for (M3) becomes
(9) ≥ 0, where (9) is

1 +
s′{x1, x3}

U13
− s′{x1, x2}

U12
− s′{x2, x3}

U23
(9)

and Uij = s(xi) + s(xj)− s′{xi, xj}. Let xij ∈ mcs({xi, xj}). By (A2) of
a Maximum Common Subelement Model there exists x123 4 x12, x23 such
that s(x123) ≤ s(x13) = s′{x1, x3} and s(x123) ≥ s(x12) + s(x23)− s(x2).
In this way we can write

(9) = 1 +
s(x13)

U13
− s(x12)

U12
− s(x23)

U23

≥ 1 +
s(x123)

s(x1) + s(x3)− s(x123)
− s(x12)

U12
− s(x23)

U23
. (10)

Let non negative numbers a1, a2, a3, a12, a23, a123 be defined by s(x123) =
a123; s(x12) = a12 + a123; s(x23) = a23 + a123; s(x1) = a1 + a12 + a123;
s(x2) = a2 + a12 + a23 + a123; s(x3) = a3 + a23 + a123;. And let T =
a1 + a2 + a3 + a12 + a23 + a123. We now can write

(10) = 1 +
a123

T − a2
− a12 + a123

T − a3
− a23 + a123

T − a1
(11)

To show that (11) ≥ 0 it is sufficient to show that (11) times a positive
number is greater than or equal to zero. Let (T − a1)(T − a2)(T − a3) be
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this positive number, since (Case 1) is false.

(11)× (T − a1)(T − a2)(T − a3)

= (T − a1)(T − a2)(T − a3) + a123(T − a1)(T − a3)

− (a12 + a123)(T − a1)(T − a2)

− (a23 + a123)(T − a2)(T − a3)

= a1a2(T − a3) + T (a1a3 + a2a3 + a1a12 + a2a12

+ a2a123 + a2a23 + a3a23 + a2a123)

+ (a1a3a123 + a1a2a12 + a1a2a123 + a2a3a23 + a2a3a123)

≥ 0

The proof of Theorem 1 is complete.

4 Graph MCS Models

In this section we present three examples of MCS Models on graphs and use
Theorem 1 to derive different metrics on graphs for each of these examples. In
particular, we are able to reproduce and generalize previous metrics on graphs
based on subgraphs and induced subgraphs, and obtain new metrics on graphs
based on an extended subgraph notion.

4.1 Graphs Terminology

Here is a series of graph related definitions we use in the rest of the paper. We
chose undirected simple graphs as our default case, but the results we present
in the following sections also work for directed graphs.

Definition 7. (Graph) A graph is a 4-tuple g = (V,E, `v, `e) where
• V is a finite set of vertices;

• E ⊆ [V ]2 is the set of edges;

• `V : V → ΣV is a function that assigns labels to vertices;

• `E : E → ΣE is a function that assigns labels to edges;

If V = ∅ then g is called the empty graph.

Definition 8. (Subgraph) A graph g′ = (V ′, E′, `′V , `
′
E) is said to be a sub-

graph of g = (V,E, `V , `E), if V ′ ⊆ V , E′ ⊆ E ∩ [V ′]2, `′V (v) = `V (v) for
v ∈ V ′, and `′E(e) = `E(e) for e ∈ E′.

Definition 9. ( Induced Subgraph) A graph g′ = (V ′, E′, `′V , `
′
E) is said

to be an induced subgraph of g = (V,E, `V , `E) if g′ is a subgraph of g and
E′ = E ∩ [V ′]2.
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Definition 10. ( Isomorphism) Let g1 = (V1, E1, `V 1, `E1) and g2 = (V2, E2,
`V 2, `E2) be graphs. A bijection φ : V1 → V2 is an isomorphism between g1 and
g2 if the conditions four conditions are valid: (1) E2 = {{φ(u), φ(v)} : {u, v} ∈
E1}; (2) `V 1(v) = `V 2(φ(v)), for v ∈ V1; (3) `E1({u, v}) = `E2({φ(u), φ(v)}),
for {u, v} ∈ E1. If there exists an isomorphism between two graphs we say they
are isomorphic.

Remark 1. We use the notion φ(e), where e = {u, v} ∈ E1 and u, v ∈ V1, to
mean the edge {φ(u), φ(v)} ∈ E2.

Definition 11. (Subgraph Isomorphic) A graph g is subgraph isomorphic
to a graph g′, denoted by g′ ⊆ g, if there exists a subgraph of g that is isomorphic
to g′.

Definition 12. ( Induced Subgraph Isomorphic) A graph g is induced sub-
graph isomorphic to a graph g′, denoted by g′ ⊆i g, if there exists an induced
subgraph of g that is isomorphic to g′.

Definition 13. (Graph n-Completion) Let g = (V,E, `V , `E) be a graph
with vertex labels in ΣV and edge labels in ΣE. For n ≥ |V |, a special vertex
label εV , and a special edge label εE, we define the graph n-completion of g as

κεV ,εEn (g) = (V ′, E′, `′V , `
′
E)

where

• V ′ = V ∪ {v1, . . . , vn−|V |},

• E′ = [V ′]2,

• `′(v) =

{
`(v), if v ∈ V,
εV if v ∈ V ′\V,

• `′(e) =

{
`(e), if e ∈ E,
εE if e ∈ E′\E.

When εV and εE are clear in the context, we will denote the graph n-completion
of g as κn(g).

4.2 Subgraph MCS Model

The first example of MCS Model on graphs is based on the subgraph relation
⊆ (Definition 11).
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Definition 14. (S-MCS Model) A subgraph MCS Model or S-MCS Model
is a triple

(G,⊆, sGV Eα),

where

• G is the set of graphs (Definition 7) with vertex labels in ΣV , and edge
labels in ΣE. Furthermore, we consider two graphs g1, g2 ∈ G that are
isomorphic to be the same graph: g1 = g2.

• ⊆ is the subgraph isomorphic relation on G (Definition 11);

• sGV Eα : G → [0,+∞) is a function based on a label weighting function
α : (ΣV ∪ ΣE)→ (0,+∞) and, for g = (V,E, `V , `E), is defined by

sGV Eα(g) =


0, if V = ∅;∑
v∈V

α(`V (v)) +
∑
e∈E

α(`E(e)), otherwise.
(12)

The following theorem shows a S-MCS Model is indeed a MCS Model.

Theorem 2. The S-MCS Model is a MCS Model.

Proof. It can be verified that ⊆ is a partial order on G. Here we are only going
to show (S1), (S2), (A1) and (A2).

(S1) Let g1 = (V1, E1, `V 1, `E1) and g2 = (V2, E2, `V 2, `E2) be graphs in G. If
g1 ⊆ g2 then there is an isomorphism φ between g1 and g′2, a subgraph of
g2. It should be clear that s(g1) = s(g′2) since for every vertex and edge in
g1 there is a φ-corresponding, equally labeled, vertex and edge in g′2 and
vice-versa. As the vertices and edges of g′2 are subsets of V2 and E2, then
s(g′2) ≤ s(g2), since the vertex and edge sums in sGV Eα would run over
these subsets. From this we can conclude sGV Eα(g1) ≤ sGV Eα(g2).

(S2) Consider the same setup as in (S1) above: g1 ⊆ g2 and g1 isomorphic to
subgraph g′2 of g2. Add the extra hypothesis that sGV Eα(s1) = sGV Eα(s2).
This implies, as sGV Eα(g1) = sGV Eα(g′2), that sGV Eα(g′2) = sGV Eα(g2)
which implies that the vertices and edges of g′2 are exactily V2 and E2. In
other words, g′2 = g2 and g1 is isomorphic to g2 which in our case is the
same as g1 = g2.

(A1) We are going to show that (A1’) holds. In fact, the empty graph is a
subgraph of any other graph. This implies that, for any pair g1, g2 ∈ G,
we have {“empty graph”} ⊆ cs({g1, g2}) and, consequently, 0 < 1 ≤
|cs({g1, g2})|. Also, by our definition, graphs have finite number of vertices
and edges. This implies that all subgraphs of a graph is also finite (all
possible subsets of the vertex and edge sets of a graph are finite). As
we are consider isomorphic graphs to be equal, we know cs({g1, g2}) ⊆
cs({g1}) = “subgraphs of g1”. As the right set in the previous chain is
finite implies cs({g1, g2}) is also finite.
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(A2) Let g1, g2 ⊆ h. Let φ1 be an isomorphim between g1 and a subgraph
h1 = (Vh1 , Eh1 , `V h1 , `Eh1) of h and φ2 be an isomorphism between g2

and a subgraph h2 = (Vh2
, Eh2

, `V h2
, `Eh2

) of h. Define h12 to be another
subgraph of h whose vertices and edges are, respectively, Vh1

∩ Vh2
and

Eh1
∩ Eh2

. The vertex and edges labels of h12 are chosen to match the
ones in h. With this construction of h12 it can be verified that h12 ⊆ g1, g2

and that

sGV Eα(h) ≥ sGV Eα(g1) + sGV Eα(g2)− sGV Eα(h12).

To see this last inequation one should only notice that every vertex and
edge of h that was counted twice in the sum sGV Eα(g1) + sGV Eα(g2) is
decreased once when we subtract sGV Eα(h12).

This completes the proof of Theorem 2.

The Theorem 2 is true, if we use directed graph instead of undirected ones.
Hence, we conclude, as a corollary of Theorem 2, that (G,⊆, sGV Eα1

), where α1

denotes the constant function equal to one, is a MCS model and hence dF is a
metric on G (since, by Theorem 1, da is a metric on G), with this we reobtain
the result in [4]. Furthermore, again by Theorem 1, dc and dd are metrics on G,
which shows versions of dB and dW based on subgraphs (note that we need to
use as size function the sum of the number of edges and the number of vertices).

It is worth noting that the Theorem 2 enables the use of different label
weighting functions that makes possible to enconde application domain knowl-
edge in the MCS Model definition and hence in the metrics in Theorem 1.

4.3 Induced Subgraph MCS Model

The second example of MCS Model on graphs is based on the induced subgraph
relation ⊆i (Definition 12).

Definition 15. ( I-MCS Model) An induced subgraph MCS Model or I-MCS
Model is a triple

(G,⊆i, sGV α),

where
• G is the set graphs (Definition 7) with vertex labels in ΣV , and edge labels

in ΣE. Furthermore, we consider two graphs g1, g2 ∈ G that are isomor-
phic to be the same graph: g1 = g2.

• ⊆i is the induced subgraph relation on G (Definition 12);

• and sGV α : G→ [0,+∞) is a function based on a label weighting function
α : ΣV → (0,+∞) and, for g = (V,E, `V , `E), is defined by

sGV α(g) =


0, if V = ∅;∑
v∈V

α(`V (v)), otherwise.
(13)
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The following theorem shows that I-MCS Models are indeed a MCS Model.

Theorem 3. The I-MCS Model is a MCS Model.

Proof. It can be verified that ⊆i is a partial order on G. The arguments to
show that (S1), (S2) and (A1) are valid here are essentially the same as in the
proof of Theorem 2 if we replace the terms “subgraph” by “induced subgraph”
and sGV Eα by sGV α. For (A2) it is sufficient to notice that the construction of
h12 in the other proof replacing “subgraph” by “induced subgraph” yields an
induced subgraph of g1 and g2 and the same argument used there to show the
(A2) inequation was valid with h12 can also be used here.

Again, Theorem 3 also holds if we deal with directed graphs. Thus, we can
get as corollary of Theorem 2 the fact that (G,⊆i, sGVα1

) is a MCS Model, where
α1 denotes the constant function equal to one. Thus, dB and dW are metrics on
G (since, by Theorem 1, dc and dd are metrics on G), with this we reobtain the
results by [2] and [7]. Furthermore, since da is a metric on G, we get a version of
dF based on the induced subgraph relation (using as size function the number
of vertices). Also, as in the previous case, the use of different label weighting
function allows application domain knowledge to be used in the definition of the
metrics (similarity notion).

Figure 3: Effect of α (label weighting) on the notion of maximum common
subelement of (a) S-MCS Model and (b) I-MCS Model. Vertex labels are letters
superscripted with their α values. Edge labels match their α value in (a) and are
ommited in (b), since they are not considered by sGV α. Note that depending
on α, the maximum common subelement changes.

In Figure 3 we illustrate the effect on the notion of maximum common
subelement (subgraphs and induced subgraphs) caused by using different label
weighting functions α.

20



4.4 Extended Subgraph MCS Model

The previous two examples of MCS Models on graphs were based on two well
known partial orders on graphs: subgraphs and induced subgraphs. We now
define a third kind of partial order on graphs that we call extended subgraphs.
The idea is a simple generalization of the subgraph partial order. Suppose that
we fix partial orders on the vertex and edge label sets of a graph. Informally
we say that a graph g1 is an extended subgraph of a graph g2 with respect to
these label partial orders, if we can fit the structure of g1 into g2 in a way that
each aligned vertex and edge has a label in g1 that is a subelement (by the label
partial order) of the corresponding aligned element in g2. This informal idea is
defined preciselly in the following two definitions.

Definition 16. (Extended Subgraph) Let g′ = (V ′, E′, `′V , `
′
E) and g =

(V,E, `V , `E) be graphs with vertex labels in ΣV and edge labels in ΣE. If 4ΣV

is a parital order on ΣV and 4ΣE is a partial order on ΣE, we say g′ is an
extended subgraph of g with respect to 4ΣV and 4ΣE if

V ′ ⊆ V, E′ ⊆ E ∩ [V ′]2,

`′V (v) 4ΣV `V (v), for v ∈ V ′,
`′E(e) 4ΣE `E(e), for e ∈ E′.

When 4ΣV and 4ΣE are clear in the context we simply say that g′ is an extended
subgraph of g.

Definition 17. (Extended Subgraph Isomorphic) If g′ is isomorphic to
a graph that is an extended subgraph of g with respect to 4ΣV and 4ΣE , we say
that g is extended subgraph isomorphic to g′, and denote this fact by g′ ⊆e g.

We are now able to define the third example of MCS Model on graphs based
on the extended subgraph relation ⊆e (Definition 17).

Definition 18. (E-MCS Model) Let MV and ME be MCS Modelson ΣV
and ΣE

MV = (ΣV ,4ΣV , sΣV ),

ME = (ΣE ,4ΣE , sΣE ),

with size functions being strictly positive: sΣV > 0 and sΣE > 0. An extended
subgraph MCS or E-MCS Model with respect to MV and ME is a triple

(G,⊆e, sGES)

where,

• G is the set of graphs (Definition 7) with vertex labels in ΣV , and edge
labels in ΣE; Furthermore, we consider two graphs g1, g2 ∈ G that are
isomorphic to be the same graph: g1 = g2.
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• ⊆e is the extended subgraph relation on G with respect to 4ΣV and 4ΣE

(Definition 17);

• and for g = (V,E, `V , `E) ∈ G,

sGES(g) =


0 , if V = ∅;∑
v∈V

sΣV (`V (v)) +
∑
e∈E

sΣE (`E(e)), otherwise.
(14)

The following theorem shows that E-MCS Models are indeed MCS Models.

Theorem 4. The E-MCS Model is a MCS Model.

Proof. The proof goes as follows:

(S1) Let g1, g2 be graphs such that g1 4e g2. By definition of 4e, there exists
an extended subgraph g′2 of g2 that is isomorphic to g1, and, clearly,
sGES(g1) = sGES(g′2). Since sGES(g′2) is a sum running over a subset
of the vertices and edges of sGES(g′2), and each vertex or edge in the sum
of sGES(g′2) yields a smaller or equal value than the one in the sum of
sGES(g2), we can conclude that (S1) is valid.

(S2) Let g1 4e g2 and s(g1) = s(g2). By definition of 4e, there exists an ex-
tended subgraph g′2 of g2 that is isomorphic to g1 and, clearly, sGES(g1) =
sGES(g′2). This implies sGES(g′2) = sGES(g2). As g′2 is a subgraph of g2

the only option to make sGES(g′2) = sGES(g2) is to have g2 = g′2.

(A1) Again, let g1 = (V1, E1, `V 1, `E1) and g2 = (V2, E2, `V 2, `E2) be two
graphs. The fact that the empty graph is a subgraph of any graph implies
that {empty graph} ⊆ cs({g1, g2}) and, consequently, 0 < |cs({g1, g2})|.
In order to prove that the set {s(g)|g 4e g1, g2} has a maximum, let
g∅1 = (V1, E1) and g∅2 = (V2, E2) be the unlabelled copies (same struc-
ture) of g1 and g2 respectivelly. The set of common subgraphs (by the
subgraph isomorphic relation) of g∅1 and g∅2 is finite, as in the proof of
Theorem 2. Denote this set by cs(g∅1 , g

∅
2) = {h1, ..., hn}. For each hi,

let Φi = {φi, ..., φkii } be the set of all subgraph isomorphisms between hi
and g1. Similarly, let Ψi = {ψi, ..., ψlii } be the set of all subgraph isomor-
phisms between hi and g2. Now, for each s = 1, ..., ki and t = 1, ..., li,
the map φsi ◦ (ψti)

−1 defines a isomorphism from a subgraph gst1 of g∅1
and a subgraph gst2 of g∅2 . Finally, denote by gst the extended sub-
graph of g1 and g2 that has the vertex and edge set the same as gst1
and the labels are defined as follows: for each vertex v and edge e of
gst define its label as an element of mcs(`V 1(v), `V 2(φsi ◦ (ψti)

−1(v))) and
mcs(`E1(e), `E2(φsi ◦ (ψti)

−1(e))), respectively. Now let s0 and t0 be such
that sGES(gs0t0) = max({sGES(gst)|s = 1, ..., ki and t = 1, ..., li}). By
construction, such gs0t0 is the extended subgraph of g1 and g2 with max-
imum size.
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(A2) Let g1, g2 ⊆e h. Let φ1 be an isomorphim between g1 and an extended
subgraph h1 = (Vh1 , Eh1 , `V h1 , `Eh1) of h and φ2 be an extended iso-
morphism between g2 and a subgraph h2 = (Vh2

, Eh2
, `V h2

, `Eh2
) of h.

Define h12 to be another extended subgraph of h whose vertices and edges
are, respectively, Vh1

∩ Vh2
and Eh1

∩ Eh2
. The label of vertex v of h12

is defined as follows: let σh, σh1 , σh2 be the label of v in, respectively,
h, h1, h2; by the fact that h1, h2 are extended subgraphs of h, we have
that σh1

, σh2
4ΣV σh; by axiom (A2) in MV there exist σh12

∈ ΣV such
that sΣV (σh) ≥ sΣV (σh1

) + sΣV (σh2
)− sΣV (σh12

); define the label of v in
h12 to be σ12. The label of an edge of h12 is defined in an analogous way.
With this construction of h12 it can be verified that h12 ⊆ g1, g2 and that

sGES(h) ≥ sGES(g1) + sGES(g2)− sGES(h12).

The proof of Theorem 4 is complete.

When modeling real world concepts using graphs, it is usually important to
have flexibility when defining what information a vertex or an edge will carry.
For example, in scientific workflow descriptions vertices represent parameterized
modules that represent some kind of computation. Usually a single module
is configured with a set of parameters and values which are not adequately
represented by a single symbol, but, instead, by a more complicated object.
The nesting property of E-MCS Modelsthat enables plugging other MCS Model
elements as labels of vertices and edges, and be able to derive metrics for these
objects that take into account all parts that form the final object is an interesting
one.

To illustrate E-MCS Models, we will use them, in next section, to build a
link between Graph Edit Distance and MCS Models. Before that we need an
additional property of E-MCS Models that states that if we restrict the elements
(graphs) of an E-MCS Model to complete graphs of n vertices, we still have a
MCS Model. We will refer to this MCS model as a n-restricted E-MCS Model.

Proposition 2. Let M = (G,⊆e, sGES) be an E-MCS Model with respect to
MV = (ΣV ,4ΣV , sΣV ) and ME = (ΣE ,4ΣE , sΣE ). Let Kn be the subset of G
formed of complete graphs with n vertices. Let 4Kn and sKn be the restrictions
of ⊆e and sGES to Kn. In this context, the triple MKn = (Kn,4Kn , sKn) is
also a MCS Model.

Proof. Properties (R1),(R2) and (R3) clearly hold for 4Kn , since they are valid
for ⊆e. Similarly, the properties (S1) and (S2) hold for sKn , since they hold for
sGES .

• (A1) Let g1 = (V1, E1, `V 1, `E1), g2 = (V2, E2, `V 2, `E2) ∈ Kn. Let φ be a
bijection between V1 and V2. Then, φ defines a one-to-one correspondence
between any vertex and edge of g1 and g2. Then, we can define a graph
g12 ∈ Kn, by using the same vertex and edge sets as in g1 and defining
the label for each vertex v ∈ V1 as an element of cs({`V 1(v), `V 2(φ(v))})
and for each edge e ∈ E1 as an element of cs({`E1(e), `E2(φ(e))}).
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Now let {φ1, ..., φn!} be the set of all bijection between V1 and V2. For
each bijection φk, we can define a extended subgraph gk12 of g1 and g2 as
before, but chosing as labels for each vertex an element of mcs({`V 1(v),
`V 2(φk(v))}) and for each edge an element of cs({`E1(e), `E2(φk(e))}).
Let k0 be the index associated with the largest graph among gk12, i.e.,
s(gk0

12) = max({sKn(gk12)|k = 1, ..., n!)}). By construction, s(gk0
12) =

max({sKn(g)|g ∈ cs({g1, g2})}).

• (A2) Let g1 = (V1, E1, `V 1, `E1), g2 = (V2, E2, `V 2, `E1) ∈ Kn and let
also g = (V,E, `V , `E) ∈ Kn be such that g1, g2 4Kn g. We want to
define a complete graph g12 = (V12, E12, `V 12, `E12) such that g12 4Kn
g1, g2 4Kn g and also that s(g) ≥ s(g1) + s(g2) − s(g12). In order to do
so, we fix one correspondences φ12 (bijection) between V12 and V1 and
other one φ1 between V1 and V2. We are going to denote v ∈ V12, φ12(v)
and φ1(φ12(v)), just by v. We define the label of g12 as follows: For
each v ∈ V12 we know that `V 1(v), `V 2(v) 4 `V (v), then we can use
the axiom (A2) for the MCS Model(ΣV ,4ΣV , sΣV ) and conclude that
there exists a label α12 such that α12 4ΣV `V 1(v), `V 2(v) 4ΣV `V (v)
and sΣV (`V (v)) ≥ sΣV (`V 1(v)) + sΣV (`V 2(v)) − sΣV (α12). We define
`V 12(v) = α12. With a similar construction, we can define the edge label
function `E12. One can verify that g12 constructed this way satisfy the
axiom (A2).

5 Relation between Graph Edit Distance and
MCS Models

In this section we show a relation between graph edit distance and MCS Models.
Informally speaking, this connection states that if dGED is a graph edit distance
and a metric on G, then there is a corresponding MCS Model M such that

dGED(g1, g2) = da(θ(g1), θ(g2)),

where g1, g2 ∈ G, θ takes the elements of G into their corresponding elements
in M, and da is the first of the four metrics in Theorem 1 valid in M. Thus,
the MCS Model M encodes dGED. The problem of finding the graph edit
distance between g1 and g2 becomes the problem of finiding a maximum common
subelement between θ(g1) and θ(g2) in M.

Before stating the main result of this section, we define precisely what we
mean by graph edit distance. We use the notion of graph completion in this
definition to facilitate the exposition: for any two graphs we can refer to bijec-
tions between the vertices of their completed versions instead of having to deal
with functions between subsets of the vertices of the first graph into the ver-
tices of the second graph. This definition of graph edit distance is equivalent to
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the common use of the term, where the cost of each vertex and edge operation
(i.e., addition, deletion, and substitution) is based on labels and these operation
costs are known a priori.

Definition 19. (Graph Edit Distance) Let g1 and g2 be graphs with vertex
labels in ΣV and edge labels in ΣE. Furthermore, let

cV : (ΣV ∪ {εV })2 → [0,∞],

cE : (ΣE ∪ {εE})2 → [0,∞]

be, respectivelly, edit cost functions on vertex and edge labels, where εV and εE
are special labels. Assume that

g′1 = κεV ,εE|V1|+|V2|(g1) = (V ′1 , E
′
1, `
′
V 1, `

′
E1),

g′2 = κεV ,εE|V1|+|V2|(g2) = (V ′2 , E
′
2, `
′
V 2, `

′
E2).

Let F be the set of bijections from V ′1 to V ′2 . The cost c(f) for f ∈ F is defined
as

c(f) =
∑
v∈V ′

1

cV (`′V 1(v), `′V 2(f(v))) +
∑
e∈E′

1

cE(`′V 1(e), `′E2(f(e))). (15)

In this context, we define the graph edit distance between g1 and g2 as

dGED(g1, g2) = min
f∈F

c(f).

Some uses of the term graph edit distance refer to a more general idea. For
example, [1] shows a correspondence between the maximum number of vertices
of a common induced subgraph and a specific graph edit distance notion where
the edge operation cost depends on which operation was done in its end vertices.

Now we are able to state the main result of this section.

Theorem 5 (GED and MCS Model). Let Gn be the set of graphs with n or
less vertices on finite label sets ΣV and ΣE. Let cV : (ΣV ∪ εV )2 → [0,∞) and
cE : (ΣE ∪ εE)2 → [0,∞) be edit cost functions. Furthermore, let cV and cE be
metrics on ΣV ∪ {εV } and ΣE ∪ {εE}. Then, there exists a MCS Model

Mn = (X,4X, sX)

and an injective function θ : Gn → X such that

dGED(g1, g2) = sX(θ(g1)) + sX(θ(g2))− 2s′X({θ(g1), θ(g2)}).

Proof. Apply Lemma 1 on the finite metric spaces (ΣV ∪ {εV }, cV ) and (ΣE ∪
{εE}, cE) to obtain corresponding MCS Models MV = (Σ′V ,4Σ′

V
, sΣ′

V
) and

ME = (Σ′E ,4Σ′
E
, sΣ′

E
), where the size of the smallest element in these MCS

Models are strictly positive. Let G′ be the set of graphs with labels in Σ′V and
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Σ′E . Observe that the triple (G′,⊆e, sGES) with respect toMV andME is an E-
MCS Model. Define X = K2n to be the subset of G′ consisting only of complete
graphs with 2n vertices. By Proposition 2 we know that Mn = (X,4X , sX)
is a MCS Model, when 4X and sX are restrictions of ⊆e and sGES to the set
X. Assume g1, g2 ∈ Gn and their vertex sets are, respectively, V1 and V2. By
definition, the graph edit distance between g1 and g2 is the minimum value
of function c (Equation 15) for a vertex bijection between κεV ,εE|V1|+|V2|(g1) and

κεV ,εE|V1|+|V2|(g2). It can be checked that for our metric cV and cE this minimum

value of function c is the same if we consider vertex bijections between κεV ,εE2n (g1)
and κεV ,εE2n (g2). Define θ : Gn → X to be the graph completion κεV ,εE2n . Make
x1 = θ(g1) = (V ′1 , E

′
1, `
′
V1
, `′E1

) and x2 = θ(g2) = (V ′2 , E
′
2, `
′
V2
, `′E2

). Let f be a
bijection between the vertices of x1 and x2. Define xf ∈ X in the following
way: for every vertex v in x1 there corresponds a vertex in xf labeled with
an element (any element) of mcs({`′V1

(v), `′V2
(f(v))}), and for every edge e in

x1 there corresponds an edge in xf labeled with an element (any element) of
mcs({`′E1

(e), `′E2
(f(e))}). Using this construction for xf it is clear that xf 4X

x1, x2 and it can be verified that c(f) = sX(x1) + sX(x2)− 2sX(xf ). Let f0 be
the bijection between vertices of x1 and x2 that yields the graph edit distance
between g1 and g2. At this point we can write

dGED(g1, g2) = c(f0) = sX(x1) + sX(x2)− 2sX(xf0
).

To conclude the proof it remains showing that sX(xf0
) = s′X({x1, x2}). As-

sume sX(xf0
) < s′X({x1, x2}) and x12 ∈ mcs({x1, x2}). Let φ1 and φ2 be

isomorphisms between x12 and extended subgraphs of x1 and x2. Define f12 =
φ2 ◦ φ−1

1 . Note that f12 is a bijection between vertices of x1 and of x2 and
that sX(x12) = sX(xf12

). In this case, we can write sX(xf0
) < s′X({x1, x2}) =

sX(x12) = sX(xf12
), for bijection f12. This contradicts the hypothesis that

sX(xf0
) is the maximum possible for a bijection between vertices of x1 and x2.

The theorem is proven.

An interesting aspect of this theorem is that it brings a different and precise
materialization for the meaning of a metric graph edit distance between two
graphs: we can see it encoded in an element of a corresponding MCS Model.
We see as applications of this connection, the interpretation of natural notions
in the MCS Model in terms of the original metric graph edit distance. For
example, a maximum common subelement of three or more elements of the
MCS Model could correspond to a natural generalization of the metric graph
edit distance between three or more graphs.

6 Conclusions

In this paper we have introduced MCS Model which is a generalization of a
model proposed by [3]. We then showed four metric functions to be valid in any
MCS Model (three additional metrics to the one shown in [3]). The usefulness
of the MCS Model is that it serves as a template to fit into applied scenarios
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and ease the derivation of metrics (precise similarity notions) in those scenarios.
We show this usage of MCS Models by presenting three examples on graphs:
the S-MCS (based on subgraphs), I-MCS (based on induced subgraphs), and E-
MCS (based on a less common partial order that we name extended subgraphs).
With these examples we are able to reproduce and extend previous reported
metrics on graphs [2, 7, 4] as well as new ones (e.g., subgraph versions of dB
and dW ). The E-MCS Model has an interesting nesting property that allows
one to derive distance metric for graphs with complex labels, which might be
of important value when modeling real scenarios. A final contribution of this
paper is an interpretation of the graph edit distance that is a metric on graphs
as, essentially, a maximum common subelement on a corresponding MCS Model.
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