
Developing Enterprise Applications with Support to
Dynamic Unanticipated Evolution

Hyggo O. de Almeida, Marcos F. Pereira, Márcio de M. Ribeiro, Angelo Perkusich, Emerson Loureiro and
Evandro Costa

Abstract— This paper presents a component based frame-
work for developing enterprise applications with support to
dynamic unanticipated evolution. The framework is based on
the COMPOR Component Model Specification, which provides
mechanisms to manage unpredicted evolution even at runtime.
We describe the framework design that is based on design
patterns and aspect-oriented concepts. Finally, we present a
example application of the framework in the context of electronic
commerce.

Index Terms— Unanticipated Software Evolution, Enterprise
Applications, Component-Based Development

I. INTRODUCTION

Enterprise information systems are applications for handling
company-wide information and delivering services to a wide
range of users. Such systems must be: secure, to protect users
and the enterprise; scalable, to ensure that users simultaneously
take advantage of various services; and reliable, to ensure the
consistency of the transactions processing.

Besides these features, enterprise applications change fre-
quently. Considering the complexity of these applications,
requirement changes cause a great impact on the system
architecture, design and code. This impact is even more
relevant when such changes are not predicted at design time.
Unanticipated changes have been pointed out as the main
reason of problems related to software evolution activities [1].
In the case of enterprise applications that cannot be interrupted
for financial or safety reasons, it becomes even more difficult
to manage unanticipated evolution at runtime.

J2EE [2] and .NET [3] are well known platforms for
developing and deploying enterprise applications. Developers
using such platforms save time by not looking at a diverse
range of products and services, since they are already provided
by those platforms. Such services include security, persistence,
distribution, load balancing, and transaction management,
among others. Nevertheless, J2EE and .NET do not support
adequately dynamic unanticipated software evolution. This
occurs due to the high coupling among components, which
makes difficult to implement unpredicted changes on the fly.

To deal with this problem, in [4] is proposed a component
model to develop software supporting dynamic unanticipated

The authors are with the Embedded System and Pervasive Computing Labo-
ratory, Department of Electrical Engineering, Federal University of Campina
Grande, C.P. 10105 - 58109-970 - Campina Grande - PB - Brazil, emails:
hyggo@dsc.ufcg.edu.br, marcos@embedded.ufcg.edu.br, mmr3@cin.ufpe.br,
perkusic@dee.ufcg.edu.br, evandro@ic.ufal.br

evolution named COMPOR Component Model Specification
(CMS). Such a model allows changing any part of the soft-
ware, by removing and/or adding components, even at runtime.
It is also proposed a Java implementation of CMS called Java
Component Framework (JCF), which is used to develop Java
applications supporting dynamic unanticipated evolution.

However, the JCF framework do not provide support for
developing enterprise applications. When developing software
with JCF, developers have to implement all features related
to enterprise applications, such as security, distribution and
transactions management from scratch. In this paper we intro-
duce an extension of JCF framework for developing enterprise
applications with support to dynamic unanticipated evolution.
More specifically, we describe how to extend JCF design to
implement distribution, security and transaction management
by using design patterns and aspect-oriented programming.

The remainder of this paper is organized as follows. In
Section II, we present the extension for enterprise applications.
Section III describes a example application of the framework.
Section IV discusses some related works. Finally, in Section V,
we present the final remarks.

II. SUPPORT FOR ENTERPRISE APPLICATION

In this section we present the extension of JCF to develop
enterprise applications. More specifically, we describe how
to extend JCF to provide support for security, transaction
management and distribution features.

A. Security

According to CMS, an alias is used to uniquely identify ser-
vices and events with the same name for different components.
However, such a strategy introduces a security problem into
the model. For example, it is possible to interpose a provider X
between another provider Y and its clients in order to intercept
the client requests towards Y. This may represent an intrusive
way to make something undesirable in the system, since the
interposed provider X may be seen as an intruder.

As this security issue is not tackled by the component
model, the JCF must provide means for dealing with security
policies for the interaction and deployment models. Such
policies must then be satisfied when some service is requested
or an event is announced as well as a component is inserted
into or removed from a container. This security infrastructure,
shown in Figure 1, was developed using aspect oriented



programming, with AspectJ [5]. Aspects have allowed to hide
the complexity of the security mechanism from the developer
as well as to simplify the development of systems without
security requirements. The security mechanism illustrated in
Figure 1 is explained as follows.

Crosscutted aspect

securityActive = true;

SecurityManager.activeSecurity();

Encrypted
Password FileLoad

System
Password

script.start();

Container 1

Container 2

X Y

Container 3

K

ExecutionScript

receiveRequest(...)
doIt(SecurityRequest)SecurityAspect

SecurityManager

System
Developer

2

4

5

6

7

C
h
e
c
k
 p

a
s
s
w

o
rd

3

Password
File

“password”

1

Cryptography
API

Fig. 1. Aspect oriented security architecture.

1) The application developer creates a “.security” file con-
taining the password for accessing the system as well
as the service access policies. Then, uses the Java
cryptography API to encrypt the file.

2) When developing the application, the security
mechanism should be activated calling the
activeSecurity() method of the SecurityManager
singleton class. This operation defines that all service
invocations, event announcements and component
additions must be verified.

3) The SecurityManager retrieves the password and the
policy information and stores them in memory.

4) After starting the root container, all of its components
are also started and the application runs by means of
a sequence of service invocations and event announce-
ments.

5) A component invokes a service. With the security ac-
tivated, the service requester component must forward
a SecurityServiceRequest instance as parameter,
containing the system password.

6) The component receives the request via the receive

Request method, then the SecurityAspect aspect
intercepts the method invocation and asks the Security
Manager to verify the request password.

7) SecurityManager verifies the request password
and allows the service execution. Otherwise, a
ComporSecurity Exception is thrown.

B. Transaction

Figure 2 illustrates the component K requiring the execution
of two services. The first (withdraw) is implemented by the
component X, whereas the second (deposit) is implemented by
the component Y. Because it represents a money transferring,
such operation must be atomic (or indivisible), which means
that the money either moves between the two accounts or it
stays in the first account.

Container 1

X Y K

Service Component

Transfer K

Container 2 Container 3

Service Component

Withdraw X

Deposit Y

Transfer Container 3

Service Component

Withdraw Container 2

Deposit Container 2

doIt(...“withdraw”...); doIt(...“deposit”...);

Fig. 2. Necessity of atomic operations.

In order to handle with atomic situations, a transaction
mechanism is available. Such mechanism implements the two-
phase commit protocol, a popular protocol used to guarantee
consensus between the participating members of a transac-
tion [6].

In the same way of the security mechanism, the Aspect-
Oriented approach was used, allowing us to separate the
transaction concern as well as to develop systems without it
by simply removing the aspect responsible for implementing
the mechanism. Therefore, the simplicity of the CMS model
was maintained, since it does not depend on the transaction
mechanism.

The two-phase commit protocol defines a coordinator that
is responsible for governing the outcome of the transaction.
In the first phase of the protocol, the participants (in our case,
components) must invoke their init service. According to the
all participants answers, in the second phase the coordinator
decides whether it will commit or rollback the transaction by
sending a message with its decision to all participants.

According to the CMS model, when clients invoke services,
they must use instances of the ServiceRequest class. However,
if clients have to execute transactional services, they must
use instances of the TransactionServiceRequest class instead.
Notice that a such class extends ServiceRequest.

Each CMS component must extend the FunctionalCom-
ponent class, which has an important method named re-
ceiveRequest [4]. Since receiveRequest is called by the frame-
work before the execution of services, the aspect responsible
for the transaction mechanism verifies the instance of the
service request. If the request is an instance of the Ser-
viceRequest class, the service is executed normally. Otherwise,
a transaction is started.

Notice that the verification about which service (init, com-
mit, or rollback) will be executed is weaved by the aspect
in the receiveRequest method. Hence, the implementation of
the protocol is guaranteed by this verification. In addition,
the consistence of information through atomic operations is
guaranteed as well.

Aiming at completing the ACID properties, the mechanism
also provide isolation of transactions through synchronization



of threads. Besides, in order to guarantee the consistence
of data in case of hardware crashes, each transaction is
logged. When the system comes back, the aspect crosscuts
its initialization and recovers the transactions automatically
through the log file reading.

C. Distribution

Distribution is a desirable feature for enterprise applications,
since it might provide performance increasing, economies of
scale, reliability (if carefully designed), and resource sharing
(through the use of a computer network).

When considering distributed software, each module of the
software might reside in different computers in the network.
The communication among those modules is based on sending
messages to each other. In the component based development
context, these modules consist of components of software.

Similarly to the J2EE and CORBA, JCF containers play a
fundamental role in the distribution implementation as well. In
this context, each JCF container extension is responsible for
sending requests and event announcements to their distributed
components children. Figure 3 illustrates the distribution
mechanism, which relies on the Decorator [7] and Proxy [7]
design patterns. Notice that it is an extension of the CMS
model. This way, the simplicity of the model remains, since
it does not depend on the referred mechanism.

<<AbstractComponent>>

+ doIt(ServiceRequest):ServiceResponse
+ receiveRequest(ServiceRequest):ServiceResponse

Container

+ doIt(ServiceRequest):ServiceResponse
+ receiveRequest(ServiceRequest):ServiceResponse

FunctionalComponent

+ doIt(ServiceRequest):ServiceResponse
+ receiveRequest(ServiceRequest):ServiceResponse

ProxyFunctionalComponentProxyContainer

RpcServer RpcClient

Registry

+ getComponent(String, String):AbstractComponent

CMS

Distribution

N*

NN

Remote Procedure Call

Fig. 3. Distribution architecture.

The architecture of the distribution mechanism is explained
as follows. Containers have children which consist of rep-
resentative entities (relying in Proxy [7] implementation).
Notice that such entities point out to the remote functional
component and the parent of the remote components is also a
representative entity. Nevertheless, it points out to the remote
container instead.

In order to get started with a distributed application, as
illustrated in Figure 4, the application developer must deploy
the desired part of the hierarchy into each participant host. For
each host, such a developer must execute the following steps
to configure the distribution:

1) In the host 192.168.10.6, he must add an instance of
ProxyFunctionalComponent retrieved from the host
192.168.10.1 (by a remote procedure call), such instance
is a proxy to the real component which resides in the
host 192.168.10.1. Notice that the real component is
child of the container localized in the host 192.168.10.6.

2) In the host 192.168.10.6 the real component is
added as a child of the ProxyCont1, which is a
ProxyContainer instance retrieved from the host
192.168.10.6 (also a remote procedure call).

Cont1

192.168.10.6

192.168.10.1

Proxy A

Remote Procedure
Call Communication

System Developer

Deploys “A”

Deploys “Cont1”

A

Proxy Cont 1

Fig. 4. Deploy and interaction of distribution mechanism.

Each instance of ProxyFunctionalComponent and also
of the ProxyContainer class automatically register itself into
an instance of the Register class. Such operation is necessary
because the Register class is used to find proxy instances
from other hosts.

In the distributed hierarchy, the component model exchanges
service requests and event announcements between two com-
puters in a transparent way. In order to implement the network
communication, the JCF distribution mechanism relies on the
Apache [8] implementation of the XML-RPC specification [9].

III. EXAMPLE APPLICATION

The e-commerce application is a proof concept of our
enterprise mechanisms. Such application provides a list of
products to be purchased. In order to buy items, the user might
select them. After confirming the operation, the system shows
the total price of the selected items to be bought (Figure 5).
When the user decides to buy something, the system invokes
the buy service implemented in an CMS based hierarchy. This
service withdraws the needed money from the user’s account
of a bank and deposits it into the system’s account of another
bank. By the presence of the transaction mechanism (described
in Section II-B), the application executes the withdraw
and deposit services atomically. In addition, our mechanism
guarantees hardware crashes by logging the operations done
by the system.



Fig. 5. Purchasing a list of items.

As illustrated in Figure 6, for security reasons, each bank
is responsible for developing and maintaining both withdraw
and deposit operations. The communication between the banks
and the e-commerce application occurs through the distribution
described in Section II-C.

This way, the application must trust in each bank compo-
nents. Beyond the components, each bank must maintain a en-
crypted password file as illustrated in Figure 6. This password
is used by the security mechanism, which is demonstrated in
Section II-A.

B2C-Container

Proxy-Banks-CT Proxy-Banks-CT

Banks-CTSupply-FC

withdraw

Services

deposit

Services

buy

Services

192.168.10.2 192.168.10.3

192.168.10.1

Proxy-Bank-1 Proxy-Bank-2

Bank-1 Bank-2

Encrypted
Password

File

Encrypted
Password

File

Policies Policies

Fig. 6. E-Commerce component hierarchy.

IV. RELATED WORKS

There are two main component models used for developing
enterprise applications currently, Enterprise JavaBeans (EJB)
in the J2EE platform and Microsoft’s .NET. The main reason
is the support to the following required services in software
development for enterprise applications: security, distribution,
transaction, web server, etc. These features are essential and
must be present into almost all applications, mainly enterprise
ones.

Moreover, enterprises demand on-the-fly changes of running
applications, because the downtime of their software directly

causes big looses. This demand includes a new feature: The
dynamic unanticipated software evolution. However neither,
EJB nor .NET provide native support for this feature. This
feature might be implemented in these component models, but
it is a difficult task because the design of them has a high
coupling among components.

There are some works which could be used to add dynamic
unanticipated evolution support to these models. One of them
have created a new class loader type for use in J2EE platform.
This class loader might minimize the barrier between two or
more class loaders [10]. Another work [11] proposes a new
way to load DLL libraries in .NET.

V. FINAL REMARKS

In this paper we presented a component based framework
for developing enterprise applications supporting dynamic
unanticipated evolution. Such a framework is an extension of
the COMPOR Java Component Framework, which implements
a component model called CMS that promotes software evo-
lution even at runtime.

We described the framework design that is based on design
patterns and aspect-oriented programming. The framework
includes support to security, distribution and transaction man-
agement, but still maintaining the CMS simplicity. We describe
also an e-commerce case study of the application of our
approach.

As future work, we plan to develop other features of
enterprise applications as extensions of JCF, such as load bal-
ancing, persistence, logging, and integration to legacy systems.
Also, we are working on applying the proposed framework to
develop a web-based e-commerce application.

REFERENCES

[1] G. Kniesel, J. Noppen, T. Mens, and J. Buckley, “1st Int. Workshop on
Unanticipated Software Evolution,” in ECOOP Workshop Reader, ser.
LNCS, vol. 2548. Springer Verlag, 2002.

[2] SUN, “Sun developer network (sdn),” July 2007,
http://java.sun.com/javaee/.

[3] Microsoft, “.net framework developer center,” August 2007,
http://msdn.microsoft.com/netframework/.

[4] H. Almeida, G. Ferreira, E. Loureiro, A. Perkusich, and E. Costa,
“A Component Model to Support Dynamic Unanticipated Software
Evolution,” in Proceedings of International Conference on Software
Engineering and Knowledge Engineering, vol. 18, San Francisco, USA,
2006, pp. 262–267.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold, “An Overview of AspectJ,” in ECOOP ’01: Proceedings of the
15th European Conference on Object-Oriented Programming. London,
UK: Springer-Verlag, 2001, pp. 327–353.

[6] M. Little, J. Maron, and G. Pavlik, Java Transaction Processing, 1st ed.
Prentice Hall PTR, 2004.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley, 1995.

[8] Apache, “Apache software foundation,” August 2007,
http://www.apache.org/.

[9] XML-RPC, “Xml-rpc home page,” August 2007,
http://www.xmlrpc.com/.

[10] Y. Sato and S. Chiba, “Negligent class loaders for software evolution.”
in RAM-SE, 2004, pp. 53–58.

[11] S. Eisenbach, V. Jurisic, and C. Sadler, “Managing the evolution of
.net programs.” [Online]. Available: citeseer.ist.psu.edu/728246.html


