
On the Modularity of Aspect-Oriented and Other Techniques
for Implementing Product Lines Variabilities

Márcio de Medeiros Ribeiro1, Pedro Matos Jr.1, Paulo Borba1, Ivan Cardim 1

1 Informatics Center – Federal University of Pernambuco
Caixa Postal 7851, 50740-540 – Recife – PE – Brazil

{mmr3,poamj,phmb,icc2 }@cin.ufpe.br

Abstract. Software Product Lines (SPLs) encompass a family of software-
intensive systems developed from reusable assets. One major issue during SPL
development is the decision about which technique should be used to implement
variabilities. Although Aspect-Oriented Programming (AOP) has been used to
this purpose, we still need to identify in which situations it is suitable or not. We
propose a catalog of variabilities at the source code level and a set of patterns
for implementing them. After analyzing these patterns, we concluded that AOP
is not the best technique to implement some kinds of variabilities from our cata-
log. We argue that our approach is useful to find the most suitable techniques to
handle specific variabilities at the source code level.

1. Introduction

Software Product Line (SPL) is a promising approach to improve the productivity of
the software development process by reducing both cost and time of developing and
maintaining increasingly complex systems [Kolb et al. 2005]. Such an approach re-
lies on core assets (representing the common artifacts present in products) and vari-
abilities (representing the differences among the products). However, reasoning about
how to combine both core assets and product variabilities is a very challenging task
[Anastasopoulos and Gacek 2001]. In addition, selecting the correct techniques to im-
plement these variabilities might have considerable effects on the cost to evolve the SPL.

Aspect-Oriented Programming (AOP) [Kiczales et al. 1997] is a well known tech-
nique for implementing crosscutting concerns through a unit of modularity called as-
pect. Although AOP has been used to implement variabilities in SPLs [Alves et al. 2005],
[Anastasopoulos and Gacek 2001] and [Anastasopoulos and Muthig 2004] argue that
AOP is not always suitable for this task. Furthermore, recent empirical studies
[Kulesza et al. 2006] have confirmed that AOP provides not only positive, but also nega-
tive effects on typical maintenance activities. In this context, a SPL developer must know
whether AOP is suitable or not for implementing specific kinds of variabilities.

In this paper, we provide a preliminary catalog of kinds of variabilities. Such a
catalog is code-centric, allowing SPL developers to choose more easily which technique
to use when handling variabilities at the source code level. We then define patterns to
address the implementation of these variabilities. For each of these patterns, we discuss
the advantages and disadvantages with respect to the modularity that it provides. In this
way, since each pattern uses a different technique, we are able to compare and discuss
whether AOP might be a benefit for those SPL developers. The techniques used in this
work are AOP, inheritance, mixins, and configuration files.

To derive our catalog and patterns, we analyzed two real and non-trivial SPLs of
different domains (J2ME Games and Mobile Phone Test Cases). In both, we found the
same kinds of variabilities, suggesting that they might be present in other domains. After-
wards, we have implemented these variabilities using the four aforementioned techniques.
Notice that we analyzed not only source code, but also test cases. In this way, we observed
that our catalog and patterns seem to be useful for both.

Our work is similar to others [Patzke and Muthig 2002, Tirila 2002,
Coplien 2000], but with two main differences (representing our contributions):

• We present a code-centric catalog of kinds of variabilities and patterns to imple-
ment them. Such patterns are the first step towards defining a systematic decision
model, which means that given a variability, we will be able to decide systemati-
cally which technique should be used for implementing it (Sections 2 and 3);

• When considering modularity, our work shows where in the source code AOP is
suitable for implementing variabilities in SPLs. The results are presented in what
follows: (i) AOP might be suitable, in accordance to [Alves et al. 2005]; (ii) AOP
makes no difference when compared to other techniques; and (iii) AOP is not
suitable (Section 4).

2. Towards a variabilities catalog

In this section we discuss some kinds of variabilities found in two real and non-trivial
SPLs: J2ME Games and Mobile Phone Test Cases. The first one handles the variabilities
using conditional compilation1, whereas the second handles them by usingif-elsestate-
ments. By the presence of duplicated code (present in the Mobile Phone Test Cases) and
concerns not modularized (present in both), we concluded that such techniques are not
sufficient for implementing those variabilities adequately.

In addition, we provide a preliminary catalog of kinds of variabilities extracted
from those SPLs. Given the different natures of the domains in which they were found,
we believe that such variabilities are likely to occur in many other domains as well.

2.1. J2ME Games

The first case study consists of a mobile game product line which can be instantiated for
17 device families and 6 different languages. The number of total possible instances for
this product line is 152. The original implementations analyzed use only one technique
(conditional compilation) to handle variabilities. This technique uses a special comment
symbol (//#), indicating that a code line will be preprocessed. The code snippet to be
compiled depends on variables used inif directives.

The After method call is the first kind of variability discussed in this work. It
occurs when some alternative or optional behavior might happen after a method call. Fig-
ure 1(a) shows an example of such variability. ThemainCanvasobject represents the area
where the screen elements of the game are drawn. Every time the canvas object is up-
dated it must also be repainted. However, the sequence of methods invoked to repaint the
canvas depends on the graphics API supported by the specific device (alternative feature2

1Technique that uses a source code preprocessor to conditonally compile blocks of code.
2Alternative features are represented as an open arc.

depicted in Figure 1(a): MIDP 2.0, Siemens, or other should be selected in the product
line instance).

this

this.

this.

this.

this.

.mainCanvas.update();

//#if device_graphics_canvas_midp2
//# || device_graphics_canvas_siemens
//# mainCanvas.paint();
//# mainCanvas.flushGraphics();
//#else
//# mainCanvas.repaint();
//# mainCanvas.serviceRepaints();
//#endif

Others

(a) After method call.

public class
public void int

SoundEffects {
playSound(soundIndex) {

//# if device_sound_api_nokia
//# [code_block_A]
//# elif device_sound_api_samsung
//# [code_block_B]
//# elif device_sound_api_siemens
//# [code_block_C]
//# endif

}
}

(b) Whole Method body.

Figure 1. Variabilities found in the J2ME Games.

The Whole method bodyvariability occurs when the whole body of a method
differs among product line instances. Figure 1(b) illustrates an example of such variabil-
ity. The playSoundmethod is invoked whenever a sound is to be played. The parameter
soundIndexholds the identifier of the sound to be played. The block of code that actually
plays the desired sound varies depending on the sound API provided by the phone. This
variability exists because phone manufacturers provide different proprietary APIs to deal
with sounds. The alternative sound APIs are depicted in Figure 1(b). Only one sound API
can be used in each product instance.

2.2. Mobile Phone Test Cases
The second case study analyzed in this work is a set of Mobile Phone Test Cases pro-
prietary of Motorola Industrial. The test cases are part of a complex system that has the
capability of testing families of Motorola mobile phones software.

Figure 2 illustrates three Motorola mobile phones. Notice thatPhone Adoes not
provide thestopbutton whereasPhone BandPhone Cdo. On the other hand,Phone B
provides thecamera landscape view, differently fromPhone AandPhone C.

Phone A Phone B Phone C

Figure 2. Variabilities on Motorola Phones.

The first kind of variability discussed here concernsConstant values. It occurs
whenever the value of a constant differs according to the selected product. Figure 3(a) il-
lustrates an example of this situation. The parameter of theloadWebSessionmethod varies

depending on the currently installed browser (alternative feature depicted in Figure 3(a):
eitherOperaor a proprietaryMotorola browser is selected in the product line instance).
Although it is not shown, theif-elsestatement is crosscutting throughout the test case.

public class extends

public void

public void

if

else

public void

TC_001 TestCase {

preconditions() {}

procedures() {
...

(has(PhoneFunctionality.OPERA_BROWSER)) {
loadWebSession(Session.WEB_SESSION_HTTP);

} {

}
...

}

postconditions() {}

}

loadWebSession(Session.WEB_SESSION_WAP);

(a) Constant values.

public class extends

public void

public void
...
if

...

public void

TC_002 TestCase {

preconditions() {}

procedures() {

(has(PhoneFunctionality.TRANSFLASH)) {

}

}

postconditions() {}

}

if
...
(has(PhoneFunctionality.BLUETOOTH)) {

}

Transflash Bluetooth

(b) After method execution.

Figure 3. Variabilities found in the Motorola Mobile Phone Test Cases.

The next kind of variability consists of anAfter method execution. Our example
(Figure 3(b)) illustrates two optional features3 implemented at the end of theprocedures
method. In this way, four instances of the product line are possible: (i) neithertransflash
norbluetoothare present in the phone; (ii) bothtransflashandbluetoothare present in the
phone; (iii) phones with onlytransflash; (iv) phones with onlybluetooth. Notice that the
order of execution of the steps (in this case, features) is extremely important: changing it
might break the test case. For example: suppose a test case that sets the alarm clock on a
phone. The first step is to access the alarm application, and the second is to set it up. You
can not do this in the reverse order.

2.3. Variabilities catalog

Due to space restrictions, we will not show in detail all the kinds of variabilities found in
the SPLs analyzed (some of them are outlined in Table 1). Notice that the catalog is code-
centric4, being useful for SPL developers on the task of choosing a particular technique
for a specific variability at the source code level.

Originally, all of these variabilities were implemented using conditional compi-
lation andif-elsestatements. However, we have observed serious problems concerning
modularity and duplicated code. The next section presents the patterns we created to ad-
dress these problems. The construction of the patterns was based on many techniques:
AOP, inheritance, mixins, and configuration files. This way, we are able to compare AOP
with such techniques when implementing our kinds of variabilities in SPLs, allowing us
to discuss the suitability of aspects in this context.

3Optional features are represented as open circles.
4In this case, we mean variabilities reflected in the source code.

Variability J2ME Games Motorola Framework
After / Before method call X X

After / Before method execution X X
Constant values X X

Conditional wrapping of method body X X
Whole method body X X

Interface implementation X -

Table 1. Preliminary catalog of kinds of variabilities.

3. Patterns for Implementing Variabilities

In this section, we provide some patterns5 aiming at implementing6 the kinds of variabil-
ities previously discussed. We will not use conditional compilation andif-elsestatements
in our patterns, since neither technique provides Separation of Concerns (SoC) when con-
sidering SPLs: there is no clear separation between core assets and variabilities.

3.1. After method call

Two patterns are proposed for this kind of variability:

• AOP: this implementation relies onafter advice. Two or more aspects implement
the variabilities separately. In the particular case of Figure 1(a), two aspects are
required: one for each alternative feature;

• Inheritance: relies on theDecorator design pattern [Gamma et al. 1995]. For
each alternative feature, a decorator is needed.

Both pattern implementations of this variability provide a better SoC when com-
pared to the original conditional compilation implementation (Figure 1(a)). However, in
both we observed a dependency between the modules that implement the variability al-
ternatives (aspects or decorators) and the public interface of the class which contains the
method to be intercepted. We observed that the AOP implementation is more modular
because the aspects depend only on the signature of the advised method. On the other
hand, the decorator pattern depends on the whole public interface of the decorated class.

3.2. Whole method body

We propose two patterns for this kind of variability: one using AOP and the other using
inheritance. We explain and compare these approaches below:

• AOP: to implement this kind of variability with AOP, the method declaration is
omitted from the class body. A set of aspects become responsible for introducing
the missing method into the class using aninter-typedeclaration, where each as-
pect introduces a different version of such method (Samsung, Nokia, or Siemens,
according to Figure 1(b)). Thus, exactly one of these aspects must be present on
each product instance;

• Inheritance: relies on the classicalStrategydesign pattern [Gamma et al. 1995].

5Please, refer tohttp://www.cin.ufpe.br/˜poamj/patterns for implementation details.
Notice that such codes are proprietary, which means that only code snippets are provided.

6Our implementations are based on AspectJ for AOP and CaesarJ for Mixins.

One issue of the AOP implementation pattern is that, using the Java compiler, the
base code might not compile in the absence of aspects because of the missing method. An
alternative to implement this kind of variability with AOP is to create a stub method on
the base class and use anaround adviceon the execution of this method to introduce the
variability code. The base code would not depend syntactically on the aspects, however
a semantic dependency [de Medeiros Ribeiro et al. 2007] will still exist: an aspect must
be present to implement the alternative variability, or the base code will be semantically
incomplete.

The inheritance pattern can implement this kind of variability in a modular way.
We propose the use of a well known design pattern which proved to be useful to handle
this kind of variability.

[Hannemann and Kiczales 2002] proposed an implementation of theStrategyde-
sign pattern using AOP. However, further studies showed that although this implementa-
tion leads to better SoC, it can also lead to worse results in other attributes, such as size,
coupling and cohesion [Garcia et al. 2005].

3.3. Constant values

Figure 3(a) illustrates theOpera Browserconcern tangled with respect to the test case.
For this variability, we propose two patterns:

• AOP: this implementation relies oninter-type declarations. This way,
two aspects implement the constants’ values (WEBSESSIONHTTP and
WEBSESSIONWAP) for each browser separately. Therefore, the test case uses
the constants introduced by the aspects as arguments of methods, eliminating the
if-elsestatements of the test. In the particular case of Figure 3(a), theloadWeb-
Sessionmethod would use a constant introduced by the aspect;

• Configuration Files: this implementation relies on a configuration file to provide
the constants’ values. Notice that in order to load the file, the test case must use
some object responsible for reading it.

The AOP and Configuration Files approaches provide a suitable SoC: the variabil-
ity in this case is implemented through aspects and files. The test case no longer handles
variability usingif-elsestatements. On the other hand, the main disadvantage of such ap-
proaches is the additional knowledge required of the tester regarding those new artifacts.
In other words, the test now depends on aspects and external files to work correctly.

3.4. After method execution

We have implemented this variability using three patterns. The details are presented as
follows:

• Inheritance: this implementation consists of overriding theproceduresmethod
(Figure 3(b)). Therefore, two classes inherits fromTC 002. Each class overrides
the aforementioned method and calls the super method followed by the specific
concern code (transflashor bluetooth);

• Mixins: analogous to inheritance;
• AOP: two aspects are created aiming at crosscutting theproceduresmethod using

anafter advice.

We have found problems in all three implementations. Inheritance does not enable
feature compositions suitably: for phones withtransflashandbluetoothit is necessary to
create a new class which duplicates the source code of the two classes previously created.
In addition, if we consider more than two features, the number of classes and compo-
sitions increases significantly (Figure 4(a)), being more difficult to maintain the whole
application. In spite of mixins solving the problem of duplicated code when considering
features composition, the increase on the number of classes and compositions problem
remains (Figure 4(b)).

Base

Code

Transflash Bluetooth New Feature
Transflash

and

BluetoothDuplicated Code

<< inherits >><< inherits >>

(a) After method execution using Inheritance.

Base
Code

New Feature Transflash Bluetooth

Transflash
and

Bluetooth

<< refines >><< refines >>

<< composes >>

(b) After method execution using Mixins.

Figure 4. After method execution: Inheritance x Mixins.

The AOP implementation relies on two aspects for implementing each feature,
plus an extra aspect to declare the precedence among the features. This approach provides
feature composition. Whenever a new feature must be considered, the aspects for that
feature are written, and the existing precedence aspect is modified to take the new feature
into consideration.

4. Evaluation

Our evaluation focuses on software modularity. In order to assess the modularity of our
patterns, we have used Design Structure Matrixes (DSMs) [Baldwin and Clark 2000]. In
this section, we show an evaluation whenever the AOP pattern is not the best solution.

4.1. Background

Design Structure Matrixes (DSMs) are used to visualize dependencies amongdesign pa-
rameters. These parameters correspond to any decision that needs to be made along the
product design.

Design parameters may have different abstraction levels. In software engineering,
some design decisions are related to process development, language, code/architectural
style, and so forth. Moreover, if we consider implementation as design activities, software
components like classes, interfaces, packages, and aspects should be represented as design
parameters.

The notion of dependency arises whenever a design parameter depends on another.
When considering DSMs, each design parameter appears both in the row headings and
the columns headings of the matrix.

Figure 5 represents software components as parameters in a DSM. A mark in row
B, column A represents that component B depends on component A. In the same way a X
in row A, column B represents that component A depends on component B. Whenever this
mutual dependency occurs, we have an example ofcyclical dependency, which implies
that both components can not be independently addressed. In other words, their parallel
development is compromised.

A B C

A x

B x x

C

Figure 5. Example of dependencies in a DSM.

4.2. Evaluating implementation patterns using DSMs

In order to compare the patterns, a DSM was constructed for each one. The notion of
dependency considered in this paper consists of explicit references between classes and
aspects. Moreover, we also considerSemantic Dependencies[Neto et al. 2007]. Such
dependencies are not syntactically defined in the code, so that there is no explicit reference
between classes and aspects.

Our previous work [de Medeiros Ribeiro et al. 2007] concluded that AOP con-
structs aimed to support crosscutting modularity might actually break class modularity.
This basically occurs by the existence of semantic dependencies.

Figure 6(a) and 6(b) regard theWhole method bodyvariability. Figure 6(a) illus-
trates the DSM of the AOP pattern. Notice that there are cyclical dependencies: aspects
depend on theSoundEffectsclass to introduce the missing method and the class depends
on the aspects to work correctly (the latter is a semantic dependency: there is no explicit
reference about the aspect in the class). Therefore, such components can not be inde-
pendently addressed, which compromises their parallel development. On the other hand,
Figure 6(b) shows the DSM for the inheritance pattern. Such implementation does not
create cyclical dependencies, allowing parallel development and better modularity.

1 x x x

2 x

3 x

4 x

NokiaPlayerAspect.aj

SiemensPlayerAspect.aj

Design Parameters

SoundEffects.java

SamsungPlayerAspect.aj

1 2 3 4

(a) AOP pattern.

1

2 x

3 x

4 x

5 x

5

NokiaPlayer.java

SiemensPlayer.java

SamsungPlayer.java

3 4

IPlayer.java

SoundEffects.java

Design Parameters 1 2

(b) Inheritance pattern.

Figure 6. Patterns of the Whole method body variability.

Figures 7(a) and 7(b) illustrate the DSMs of theConstant valuesvariability. Both
are identical and cyclical: in the first, the test case depends on the aspect to introduce the

constants. On the other hand, the aspect references the test case in a pointcut expression.
When considering configuration files, the problem of cyclical dependencies remains: de-
velopers of both class and configuration file must be aware of each other, for defining
attributes names, for example. We do not considered the infrastructure to load the file
(for example, an instance of thejava.util.Propertiesclass) in the DSM, since it is not
susceptible to change frequently.

1 x

2 x

TC_001.java

ConstantsAspect.aj

Design Parameters 1 2

(a) AOP pattern.

1 x

2 x

1 2

TC_001.java

ConfigurationFile

Design Parameters

(b) Config. Files pattern.

Figure 7. Patterns of the Constant values variability.

Table 2 summarizes our conclusions about which pattern to choose according to
the kind of variability.

After call Whole method body Constant values After execution
AOP Inheritance AOP Inheritance AOP Conf. Files AOP Inheritance Mixins

X X X X X

Table 2. Patterns choices regarding modularity.

5. Related Work

[Anastasopoulos and Gacek 2001] claims that little attention has been given on how to
deal with variabilities in SPLs at the source code level. To this end, they examine various
implementation approaches with respect to their use in a product line context. However,
this work provides neither a catalog of kinds of variabilities nor patterns as we do. Never-
theless, the work compares the techniques using attributes such as traceability, scalability,
and binding time. In contrast, we only analyzed the modularity attribute.

[Alves et al. 2005] proposes a method to address the creation and evolution of
SPLs focusing on the implementation and feature level. The method first bootstraps the
SPL and then evolves it with a reactive approach. Such a method relies on a collection
of provided refactorings at both the code and feature model levels. Although this work
provides a framework for comparing variability implementation techniques, the proposed
method relies only on AOP refactorings. On the other hand, our work proposes patterns
that use different techniques (not only AOP). We have also found some kinds of variabil-
ities to which AOP may not be suitable.

[Coplien 2000] proposes a method called Multi-Paradigm Design. This method
consists of analyzing commonalities and variabilities of a SPL (application domain anal-
ysis) and implementation techniques (solution domain analysis). Further, the commonal-
ities and variabilities are mapped on the available techniques (solution domain). Our ap-
proach differs from his work because we rely on a set of implementation patterns that are

code-centric and more fine-grained than the domain analysis solution that he proposes,
allowing SPL developers to choose more easily which technique to use when handling
variabilities at the source code level. Moreover, our patterns make the task of defining
refactorings easier, which means that the implementation of a code variability might mi-
grate from one technique to another. His work does not consider AOP.

[Tirila 2002] also provides a study on how to implement variabilities in SPLs. Al-
though he did not use AOP as a technique for implementing variabilities, Frames and
Frameworks are considered. In addition, he provides an evaluation based on scope, flexi-
bility, and efficiency.

6. Concluding Remarks
This paper presented a preliminary catalog at source code level of kinds of variabilities
extracted from two real and non-trivial SPLs of different domains (J2ME Games and
Mobile Phone Test Cases). Since they are from completely different domains, we believe
that such variabilities should be present in other domains as well. Such catalog is code-
centric, which allows SPL developers to choose more easily which technique to use when
handling variabilities at the source code level.

Besides, we provided patterns aiming at implementing such variabilities. These
patterns are based on many techniques: AOP, inheritance, mixins, and configuration files.
Advantages and disadvantages regarded to modularity provided by each pattern were dis-
cussed. In this way, since each pattern uses a different technique, we were able to analyze
whether AOP might be a benefit or not for SPLs developers when considering modularity.

Differently of existing works, we have analyzed not only source code, but also test
cases. In this way, we observed that our catalog and patterns seem to be useful for both.

Based on DSM analysis, we observed that to implement some kinds of variabilities
from our catalog, AOP might not be suitable or makes no difference when compared to
other techniques.

As future works, we intend to use software metrics in order to validate our quali-
tative analysis, calculating the coupling, cohesion, and Net Options Value (NOV) of our
patterns’ implementations. Afterwards, we should be able to implement a systematic de-
cision model based on both qualitative and quantitative analysis. Additionally, parameters
such as binding time, scalability and others will be analyzed.

7. Acknowledgments
We would like to thank CNPq, a Brazilian research funding agency, for partially support-
ing this work. In addition, we thank SPG7 members (especially Alberto Costa Neto) for
feedback and fruitful discussions about this paper. We also thank Silvia Sampaio, Anne
Ximenes, and Gisele Leal from Motorola Industrial for helping us on the Mobile Phone
Test Cases.

References
Alves, V., Jr., P. M., Cole, L., Borba, P., and Ramalho, G. (2005). Extracting and Evolving

Mobile Games Product Lines. InProceedings of the 9th International Software Prod-

7http://www.cin.ufpe.br/spg

uct Line Conference (SPLC’05), volume 3714 ofLecture Notes in Computer Science,
pages 70–81. Springer-Verlag.

Anastasopoulos, M. and Gacek, C. (2001). Implementing Product Line Variabilities. In
Proceedings of the 2001 Symposium on Software Reusability (SSR’01), pages 109–117,
New York, NY, USA. ACM Press.

Anastasopoulos, M. and Muthig, D. (2004). An Evaluation of Aspect-Oriented Program-
ming as a Product Line Implementation Technology. InICSR, pages 141–156.

Baldwin, C. Y. and Clark, K. B. (2000).Design Rules, Vol. 1: The Power of Modularity.
The MIT Press.

Coplien, J. (2000).Multi-Paradigm Design. PhD thesis, Vrije Universiteit Brussel, Etter-
beek, Belgium.

de Medeiros Ribeiro, M., D́osea, M., Bonif́acio, R., Neto, A. C., Borba, P., and Soares, S.
(2007). Analyzing Class and Crosscutting Modularity with Design Structure Matrixes.
In Proceedings of the 21th Brazilian Symposium on Software Engineering (SBES’07).
To appear.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design Patterns. Addison-
Wesley.

Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., and von Staa, A.
(2005). Modularizing Design Patterns with Aspects: A Quantitative Study. InPro-
ceedings of the 4th International Conference on Aspect-Oriented Software Develop-
ment (AOSD’05), New York, NY, USA. ACM Press.

Hannemann, J. and Kiczales, G. (2002). Design Pattern Implementation in Java and
AspectJ. InProceedings of the 17th ACM SIGPLAN conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’02), pages 161–173,
New York, NY, USA. ACM Press.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and Ir-
win, J. (1997). Aspect–Oriented Programming. InEuropean Conference on Object–
Oriented Programming (ECOOP’97), LNCS 1241, pages 220–242.

Kolb, R., Muthig, D., Patzke, T., and Yamauchi, K. (2005). A Case Study in Refac-
toring a Legacy Component for Reuse in a Product Line. InProceedings of the 21st
IEEE International Conference on Software Maintenance (ICSM’05), pages 369–378,
Washington, DC, USA. IEEE Computer Society.

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., von Staa, A., and Lucena, C. (2006).
Quantifying the Effects of Aspect-Oriented Programming: A Maintenance Study. In
Proceedings of the 22th IEEE International Conference on Software Maintenance
(ICSM’06), pages 223–233, Washington, DC, USA. IEEE Computer Society.

Neto, A. C., de Medeiros Ribeiro, M., D́osea, M., Bonif́acio, R., Borba, P., and Soares, S.
(2007). Semantic Dependencies and Modularity of Aspect-Oriented Software. InPro-
ceedings of 1st Workshop on Assessment of Contemporary Modularization Techniques
(ACoM’07), in conjunction with the 29th International Conference on Software Engi-
neering (ICSE’07), page 11, Minneapolis, Minnesota, USA. IEEE Computer Society.

Patzke, T. and Muthig, D. (2002). Product Line Implementation Technologies. Technical
Report 057.02/E, Fraunhofer Institut Experimentelles Software Engineering.

Tirila, A. (2002). Variability Enabling Techniques for Software Product Lines. Master’s
thesis, Tampere University of Technology, Tampere, Finland.

