
Semantic Dependencies and Modularity of Aspect-Oriented Software

Alberto Costa Neto, Ḿarcio Ribeiro, Marcos D́osea, Rodrigo Bonifácio, Paulo Borba
Informatics Center

Federal University of Pernambuco
Recife, Pernambuco, Brazil

{acn, mmr3, mbd2, rba2, phmb}@cin.ufpe.br

Sérgio Soares
Computing Systems Department

Pernambuco State University
Recife, Pernambuco, Brazil

sergio@dsc.upe.br

Abstract

Modularization of crosscutting concerns is the main ben-
efit provided by Aspect-Oriented constructs. In order to rig-
orously assess the overall impact of this kind of modulariza-
tion, we use Design Structure Matrixes (DSMs) to analyze
different versions (OO and AO) of a system. This is sup-
ported by the concept of semantic dependencies between
classes and aspects, leading to a more faithful notion of
coupling for AO systems. We also show how design rules
can make those dependencies explicit and, consequently,
yield a more modular design.

1 Introduction

Quality in software design is essential to cope with the
increasing complexity in system development. Modularity
is one of the most desirable software attributes that con-
tributes to the quality. A prerequisite to improve such char-
acteristic is the ability to identify, among design options,
which can lead to a better design.

Aspect-Oriented Programming (AOP) [9] is well known
as a useful technique to modularize crosscutting concerns
by using a concept called aspects. However, since AOP is
a relatively new approach, there is not yet consensus about
how to evaluate designs or even about which dimensions of
modularity are supported by AOP.

Some researchers have evaluated AO software with re-
spect to Cohesion, Coupling, Size, Complexity and Sep-
aration of Concerns using different techniques like met-
rics [5, 6] and dependence graphs [8, 19, 18]. Others use

Design Structure Matrixes (DSMs) and Net Option Value
(NOV) as an analysis model [17, 11, 12] to compare alter-
native designs (OO against AO, for example).

In this paper, we use DSMs to analyze the structure of
different versions of the Health Watcher (HW) system [16],
which is described in Section 2. In particular, we build the
DSMs considering semantic dependencies between aspects
and classes. This kind of dependence has not been deeply
discussed by other works, but has a significant impact on
dimensions of modularity such as parallel development of
modules.

The main contributions of this paper are (Section 3):

• A reasoning about semantic dependencies between
classes and aspects. We argue that those dependen-
cies should be expressed as design rules, reducing the
dependencies between modules and consequently pro-
moting modularity.

• Applying and discussing the concepts presented in
three versions (Object-Oriented, Aspect-Oriented and
Aspect-Oriented with Design Rules) of a real software
application.

2 Health Watcher

The Health Watcher (HW) is a real web-based system in-
formation originally implemented in Java and restructured
to use AspectJ [9], a general purpose AO extension to Java.
The system was developed to improve the quality of the ser-
vices provided by health care institutions, allowing citizens
to register complaints regarding health issues, and heath
care institutions to investigate and take the required actions.

This system was selected because it is particularly rich
in kinds of non-crosscutting and crosscutting concerns pre-
sented in its design. Furthermore, it involves a number of
recurring concerns and technologies common in day-to-day
software development, such as GUI, persistence, concur-
rency, RMI, Servlets and JDBC.

HealthUnitRecord

ComplaintRecord
EmployeeRecord

HWFacade

Business

Repository
Factory
Mem
RDB

Data Access

View

Distribution

Concurrency
Persistence

LIB

HealthUnit

Complaint
Employee

Model

IFBusiness

Figure 1. Base Architecture of the Health
Watcher.

Figure 1 shows the base architecture of the HW system
utilized in this work. This architecture aims at modularizing
user interface, distribution, business rules, and data man-
agement concerns. Although this structure prevents some
code tangling, it is not completely avoided. For instance,
the HWFacadeclass implements several concerns, includ-
ing transaction management (persistence) and distribution.
This architecture also fails to prevent code scattering. Al-
most all components must deal with the Exception Handling
concern, for instance.

Below we describe the major architectural components
of the HW system:

View Layer: related with the HW web interface. The
implementation of this layer is based on Front Con-
troller [1] and Command [4] patterns, using servlet
and plain java objects components. The communica-
tion with the business layer is implemented with calls
to theIFBusiness, which may be distributed or not.

Business Layer: responsible for the implementation of
business logic and transactional concern. TheHealth-
WatcherFacade, which implementsIFBusiness, is the
unique point of interaction with this layer. This class
usesrecord components to interact with the Data Ac-
cess Layer.

Data Access Layer: responsible to abstract the persistence
mechanism implementation following the Data Access
Object pattern [1]. Some interfaces to manage data

persistence are defined in this layer. Two implemen-
tations are available: the first one uses the volatile
memory whereas the second one is based on relational
databases.

Model: responsible to implement thetransfer objects. This
objects represent the core concepts of the application;
transit between all architectural layers; and have few
implementation logic.

Lib Components: represent reusable components that are
useful in the implementation of concerns like persis-
tence, distribution, and concurrency.

3 Assessing Health Watcher’s Modularity

The concept of modularity applied to software develop-
ment was first introduced by Parnas [13]. In his paper, the
modular design is an attribute that enables better compre-
hensibility, changeability, and independent development.

More recently, Baldwin and Clark [2] have defined a the-
ory adopted in many industries, that considers modularity as
a key factor to innovation and market growth. Their theory
uses DSMs to reason about dependencies between artifacts
and explicites that tasks structure organization is closely re-
lated to them. Therefore, if two modules are coupled, their
parallel and independent development is impossible.

Sullivan and Cristina Lopes have already applied Bald-
win and Clark theory to assess software design, confirming
the usefulness of the theory in this context [11, 12, 17].

An essential step for DSM construction consists of se-
lecting and clustering design parameters. Adesign param-
eter is any decision that needs to be made along the product
design. The notion of dependency arises whenever a design
decision depends on another. Using DSMs, each design pa-
rameter is disposed in both rows and columns of the matrix.
The dependency between two parameters is marked with a
X. A mark in row B, column A represents that component
B depends on component A.

Design parameters may have different levels of abstrac-
tion. In software industry, some design decisions are related
to development process, language, code/architectural style,
and so forth. Moreover, if we consider implementation as
design activities, software components like classes, inter-
faces, packages, and aspects could also be represented as
design parameters.

Design Rules are parameters used as the interface be-
tween modules and that are less likely to be changed [12].
In this way, they can promote decoupling of design param-
eters, like component interfaces decrease the coupling be-
tween software components.

In our work, since one of the main focus is to com-
pare the design structures of different implementations of
the HW, only software components will be represented in

DSMs. In addition, we do not use X to represent the depen-
dencies. Rather than, we summarize the number of depen-
dencies between design parameters, and write this number
in the matrix, according to the cell of each component. A
similar approach was presented elsewhere [14].

Initially our notion of dependency was associated with
explicit references between components, like the instantia-
tion of a class inside a method, inheritance or composition
relationships1. Nevertheless, when we analyzed AO de-
pendencies, we realized that this notion is not enough, as
mentioned in Section 3.3.

3.1 Health Watcher OO version

Figure 2 illustrates a DSM of the HW OO version. The
result is a modular design with some dependencies within
thehealth watchercomponents. TheConceptual Modelde-
sign rule defines the core concepts (complaint, employee,
health unit) that are referenced by the other models, as
we can see in Column1. Without establishing this de-
sign rule, the dependencies towards core concepts would be
widespread throughout the matrix. Also, thehealth watcher
components have dependencies withlib components.

Figure 2. Health Watcher OO DSM

This design structure follows the hierarchical pattern [2],
which requires a sequential development: only after thede-
sign rulesandlib components have been designed, it is pos-
sible to develop the other ones. The parallel development of
such components is possible because there are only internal
dependencies on them.

The design parametersmodelanddatacould also be de-
veloped in parallel because they do not depend on the others
health watcherparameters. Afterwards, the development of
the parametersview, businessandpatternscould be started.

3.2 Health Watcher AO version

Using AOP some dependencies betweenhealth watcher
components andlib components were removed. Examples

1Dependencies between application components and native API com-
ponents are not considered

of such removing are shown in Listings 1 and 2. Listing 1
presents the implementation of a method that saves an em-
ployee into a specific repository. Notice that Lines4 and
11 make explicit references to an instance ofConcurrency-
Managerclass.

Listing 1. Inserting an Employee Method
1 pub l i c vo id i n s e r t (Employee employee)throws
2 Ob jec tNo tVa l i dExcep t i on , O b j e c t A l r e a d y I n s e r t e d E x c e p t i o n ,
3 Ob jec tNo tVa l i dExcep t i on , R e p o s i t o r y E x c e p t i o n{
4 manager . b e g i n E x e c u t i o n (employee . ge tLog in ()) ;
5 i f (emp loyeeRepos i to ry . e x i s t s (employee . ge tLog in ())){
6 throw new O b j e c t A l r e a d y I n s e r t e d E x c e p t i o n (
7 Excep t ionMessages . EXCJA EXISTE) ;
8 } e l s e {
9 emp loyeeRepos i t o ry . i n s e r t (employee) ;

10 }
11 manager . endExecu t i on (employee . ge tLog in ()) ;
12 }

Implementing the concurrency concern as an aspect
(Listing 2) removes this kind of dependency. Following this
design solution provides a better separation of concerns and
possibly enhances the support to parallel development.

Listing 2. Synchronization Aspect
1 pub l i c aspec t HWManagedSynchronizat ion{
2 p r i v a t e ConcurrencyManager
3 manager =new ConcurrencyManager () ;
4
5 pub l i c p o in t cu t s y n c h r o n i z a t i o n (Employee emp) :
6 execu t i on(∗ EmployeeRecord . i n s e r t (Employee))
7 && args (emp) ;
8
9 be fo re (Employee emp) : s y n c h r o n i z a t i o n (emp){

10 manager . b e g i n E x e c u t i o n (emp . ge tLog in ()) ;
11 }
12
13 a f t e r (Employee emp) : s y n c h r o n i z a t i o n P o i n t s (emp){
14 manager . endExecu t i on (emp . ge tLog in ()) ;
15 }
16 }

Figure 3 presents the DSM of the HW AO version.
A substantial reduction between the coupling ofhealth
watchercomponents with thelib components can be ob-
served. However, these dependencies were transferred to
aspectcomponents. Although the number of dependencies
in the AO version is greater than OO version, the decoupling
betweenhealth watchercomponents andlib components
turns the application more reusable and suitable to business
changes.

Looking at Figure 3, we can conclude that thehealth
watchercomponents could be developed before theaspect
components. On the other hand, there are dependencies be-
tween these components that are not present in the source
code and consequently in the DSM, blocking the sequen-
tial development of those components. This kind of depen-
dency is discussed in the next section.

Figure 3. Health Watcher AO DSM

3.3 Syntactic x Semantic Coupling

Syntacticcoupling in OO software components (classes
and interfaces) occurs when there is a direct reference be-
tween them, such as inheritance, composition, methods
signatures (parameters, return types, exceptions throwing),
class instantiations, and so forth. This coupling causes com-
pile errors whenever a component is modified or removed
from the system, being thus easily detected.

In the same way of classes and interfaces, direct refer-
ences can appear between aspects and other components,
which means that aspects can also have such syntactic cou-
pling. However, we report in this paper that syntactic cou-
pling is not enough for a complete study of coupling in AO
systems.

Thus, we argue that there is another kind of coupling
when considering AOP. Such coupling is not so easy to re-
alize because it is not visible as the syntactic coupling. For
this reason, we call thissemanticcoupling. Semantic cou-
pling is a dependency which is not syntactically defined in
the code, so that there is no direct reference between the
aspects and classes/interfaces (and vice-versa). Besides,
this kind of coupling does not cause compile errors when
removing or modifying components. As we describe in
the following examples, such coupling is not suitable when
considering parallel development.

Three examples of semantic coupling are described in
this paper. The first one is achieved by the use of wildcards
in the aspects, which provide an economical way [10] to
capture join points throughout the system. Listing 3 illus-
trates part of an aspect responsible to inject the transaction
management into the methods of theHealthWatcherFacade
class. The use of wildcards in this example matches every
facade method, except the static ones.

Suppose that a class developer is unconscious about the
aspect and creates a method in theHealthWatcherFacade
class that does not need transaction management. Accord-

ing to the Listing 3, the aspect will add the transaction con-
cern into this method. In this case, the class will have an
unintended behavior: executions of such method will create
a new transaction which is no longer needed.

Listing 3. Transactional Methods pointcut
1 po in t cu t t r a n s a c t i o n a l M e t h o d s () :
2
3 execu t i on(∗ Hea l thWatcherFacade .∗ (. .)) & &
4
5 ! execu t i on(s t a t i c ∗ ∗ . ∗ (. .)) ;

The second example of the semantic coupling occurs
when the class depends on the aspect to work correctly: if
the pointcut of Listing 3 is changed, some methods could
not be matched. Because they need transactions, these
methods will not work as desired. From the class developer
point of view, this dependency is semantic because he can
not see any dependency with the aspect. Moreover, we can
observe that removing such aspect does not cause compile
errors in the class which depends on it.

Although the use of wildcards does not impose a syntac-
tic dependency, it is difficult to implement the transaction
concern in parallel if there is no set of rules previously de-
fined by the class and aspect developers (naming conven-
tions, for example) so that class and aspect can work cor-
rectly.

The third example is about dynamic join points. When
using thecflowor cflowbelowpointcuts, for example, we do
not know in advance which points of the program will be
matched at compile time. Therefore, we believe that this is
the worst case to identify the semantic coupling because it
will only be realized at execution time. In this example, the
parallel development is not possible unless the details of the
program control flow intercepted by the aspects are known
by the aspect developer.

Semantic coupling is highlighted in Figure 4. According
to this concept, dependencies so far hidden between aspects
and thehealth watchercomponents have arose. Moreover,
due to the cyclical dependencies between the parameters in-
side these modules, it is difficult to independently evolve the
design.

We concluded that it is necessary to improve the existing
AOP coupling metrics [15, 19]. Considering only syntactic
dependencies we can derive inconsistent analysis. The next
section proposes using design rules in order to reduce the
syntactic and semantic dependencies betweenaspectsand
health watchercomponents.

3.4 Health Watcher AO with new Design
Rules

In this section we will discuss the use of design rules
as a strategy to establish and document the dependencies

Figure 4. Health Watcher AO DSM with se-
mantic coupling

between classes and aspects. These design rules must be
specified during the design activities.

Some examples of constraints present in the new design
rules are:

• All classes inmodelcomponents must be serializable,
in order to support the distribution concern;

• The method used to insert an employee must deal with
synchronization problems; and

• All methods of business facade must have a transac-
tional management support.

Figure 5. Health Watcher AO DSM with new
Design Rules

Figure 5 presents the DSM of the HW AO version with
new design rules that decouple classes and aspects. The
semantic dependencies between classes and aspects were
converted to dependencies between classes and the design
rules, as shown in the DSM (Rows 13-17, Columns 6-9).
Moreover, the dependencies between aspects and classes

were removed, originating dependencies between aspects
and design rules.

Using design rules requires bothaspectandbase code
developers agree with them. In this way, it promotes the de-
coupling betweenhealth watcherandaspectcomponents,
allowing their parallel development.

4 Related Work

Metric Suites - Zhao uses the concept of dependence
graphs, that represents various dependency relations in a
program, to create a dependence model for AO software.
Based on this model he proposed methods to assess the
complexity [18], coupling [19] and cohesion [8]. Santanna
et al [15] presented an assessment framework for AO soft-
ware that consisted of an extension to the metrics suite
(known as CK metrics) proposed by Chidamber and Ke-
merer in [3]. They proposed some metrics for measuring
separation of concerns (useful in AO context) and reviewed
the size, coupling and cohesion to consider aspects. Sub-
sequent work evaluated their framework in practical case
studies, like the GoF Design Patterns [5, 6]. We refined the
notion of coupling presented by the aforementioned papers
to consider semantic coupling, since some kinds of depen-
dencies were not addressed by these works.

DSM - Lopes and Bajracharya [11, 12] used DSM and
NOV to compare the modularity achieved by different de-
sign options. They concluded that aspects can increase the
value of an already modularized design. We did not mea-
sure the HW NOV but we discussed the dependencies ob-
served in the DSMs. On the other hand, we explored the
concept of dependencies between aspects and classes in
more detail and confirmed the importance of establishing
design rules.

XPI - Sullivan et al [17] presented a comparative anal-
ysis between an AO system developed following an obliv-
ious approach, with the same system developed with clear
design rules that document interfaces between classes and
aspects. Griswold et al [7] show how to transform part
of the design rules into a set of aspects Crosscutting Pro-
gramming Interfaces (XPIs) that are useful to document and
check part of the design rules (contracts). In our work, the
design rules responsible for dealing with semantic coupling
could be mapped into XPIs.

5 Conclusion

We have presented an analysis of the different versions
of the Health Watcher system using DSMs. We started from
the OO version and compared it with the AO version. Also,
we presented the notion of syntactic and semantic coupling
and showed a different DSM including both of them. Usu-

ally, only the first one is considered for coupling measure-
ment, but in our opinion it is not enough for a complete
study of the coupling metric when considering AO systems.

Our analysis using DSMs showed that without consider-
ing the Semantic Coupling it is impossible to achieve the
independent development, an essential feature, according
Parnas[13], to categorize a software as modular.

We observed that DSMs are useful to reason about de-
pendencies between a significant number of components,
assisting the tasks structuring activity.

Finally, a version with design rules was analyzed and we
confirmed that it provides a better modularization than pre-
vious versions. Such version showed how design rules can
make those dependencies explicit and, consequently, yield
a more modular design.

References

[1] D. Alur, D. Malks, and J. Crupi.Core J2EE Patterns: Best
Practices and Design Strategies. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

[2] C. Y. Baldwin and K. B. Clark.Design Rules, Vol. 1: The
Power of Modularity. The MIT Press, March 2000.

[3] S. Chidamber and C. Kemerer. A Metrics Suite for Object
Oriented Design. InIEEE Transactions on Software Engi-
neering, volume 20, pages 476–493. IEEE Software, June
1994.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison-Wesley, January 1995.

[5] A. Garcia, C. Sant́Anna, E. Figueiredo, U. Kulesza, C. Lu-
cena, and A. von Staa. Modularizing Design Patterns with
Aspects: A Quantitative Study. InProceedings of the 4th
International Conference on Aspect-Oriented Software De-
velopment (AOSD’05), New York, NY, USA, March 2005.
ACM Press.

[6] A. Garcia, C. Sant́Anna, E. Figueiredo, U. Kulesza, C. Lu-
cena, and A. von Staa. Modularizing Design Patterns with
Aspects: A Quantitative Study. InLNCS Transactions
on Aspect-Oriented Software Development I, pages 36–74.
Springer, 2006.

[7] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,
Y. Cai, and H. Rajan. Modular Software Design with Cross-
cutting Interfaces.IEEE Software, 23(1):51–60, 2006.

[8] B. X. Jianjun Zhao. Measuring Aspect Cohesion. In
Proc. Fundamental Approaches to Software Engineering
(FASE’2004), 2004.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect–Oriented Pro-
gramming. InEuropean Conference on Object–Oriented
Programming, ECOOP’97, LNCS 1241, pages 220–242,
1997.

[10] R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT,
USA, 2003.

[11] C. V. Lopes and S. K. Bajracharya. An Analysis of Modu-
larity in Aspect-Oriented Design. InProceedings of the 4th

International Conference on Aspect-Oriented Software De-
velopment (AOSD’05), pages 15–26, New York, NY, USA,
March 2005. ACM Press.

[12] C. V. Lopes and S. K. Bajracharya. An Analysis of Mod-
ularity in Aspect-Oriented Design. InLNCS Transactions
on Aspect-Oriented Software Development I, pages 1–35.
Springer, 2006.

[13] D. L. Parnas. On the criteria to be used in decomposing
systems into modules.Commun. ACM, 15(12):1053–1058,
1972.

[14] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using de-
pendency models to manage complex software architecture.
In OOPSLA ’05: Proceedings of the 20th annual ACM SIG-
PLAN conference on Object oriented programming, systems,
languages, and applications, pages 167–176, New York,
NY, USA, 2005. ACM Press.

[15] C. Sant́anna, A. Garcia, C. Chavez, C. Lucena, and A. von
Staa. On the Reuse and Maintenance of Aspect-Oriented
Software: A Assessment Framework. InProc. of Brazilian
Symposium on Software Engineering (SBES’03), pages 19–
34, October 2003.

[16] S. Soares, E. Laureano, and P. Borba. Implementing distri-
bution and persistence aspects with AspectJ. In17th Annual
ACM Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications, OOPSLA’2002, pages
174–190, Seattle, USA, 4th–8th November 2002.

[17] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, and H. Rajan. Information Hiding Interfaces for
Aspect-Oriented Design. InProceedings of the 10th Eu-
ropean Software Engineering Conference held jointly with
13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 166–175,
New York, NY, USA, 2005. ACM Press.

[18] J. Zhao. Towards A Metrics Suite for Aspect-Oriented Soft-
ware. Technical Report SE-136-25, Information Processing
Society of Japan (IPSJ), March 2002.

[19] J. Zhao. Measuring Coupling in Aspect-Oriented Systems.
In 10th International Software Metrics Symposium (Met-
rics’04), 2004.

