Semantic Dependencies and Modularity of Aspect-Oriented Software

Alberto Costa Neto, Mrcio Ribeiro, Marcos Dsea, Rodrigo Bondfcio, Paulo Borba
Informatics Center
Federal University of Pernambuco
Recife, Pernambuco, Brazil
{acn, mmr3, mbd2, rba2, phrh@cin.ufpe.br

Sérgio Soares
Computing Systems Department
Pernambuco State University
Recife, Pernambuco, Brazil
sergio@dsc.upe.br

Abstract Design Structure Matrixes (DSMs) and Net Option Value
(NOV) as an analysis model [17, 11, 12] to compare alter-
Modularization of crosscutting concerns is the main ben- native designs (OO against AO, for example).

efit provided by Aspect-Oriented constructs. In ordertorig- In this paper, we use DSMs to analyze the structure of

orously assess the overall impact of this kind of modulariza- different versions of the Health Watcher (HW) system [16],

tion, we use Design Structure Matrixes (DSMs) to analyze which is described in Section 2. In particular, we build the

different versions (OO and AO) of a system. This is sup- DSMs considering semantic dependencies between aspects

ported by the concept of semantic dependencies betweeand classes. This kind of dependence has not been deeply

classes and aspects, leading to a more faithful notion of discussed by other works, but has a significant impact on

coupling for AO systems. We also show how design rulesdimensions of modularity such as parallel development of

can make those dependencies explicit and, consequentlynodules.

yield a more modular design. The main contributions of this paper are (Section 3):

e A reasoning about semantic dependencies between
classes and aspects. We argue that those dependen-
cies should be expressed as design rules, reducing the
dependencies between modules and consequently pro-
Quality in software design is essential to cope with the moting modularity.
increasing complexity in system development. Modularity
is one of the most desirable software attributes that con-
tributes to the quality. A prerequisite to improve such char-
acteristic is the ability to identify, among design options,
which can lead to a better design.
Aspect-Oriented Programming (AOP) [9] is well known
as a useful technique to modularize crosscutting concerns?2 Health Watcher
by using a concept called aspects. However, since AOP is
a relatively new approach, there is not yet consensus about The Health Watcher (HW) is a real web-based system in-
how to evaluate designs or even about which dimensions offormation originally implemented in Java and restructured
modularity are supported by AOP. to use AspectJ [9], a general purpose AO extension to Java.
Some researchers have evaluated AO software with re-The system was developed to improve the quality of the ser-
spect to Cohesion, Coupling, Size, Complexity and Sep-vices provided by health care institutions, allowing citizens
aration of Concerns using different techniques like met- to register complaints regarding health issues, and heath
rics [5, 6] and dependence graphs [8, 19, 18]. Others usecare institutions to investigate and take the required actions.

1 Introduction

e Applying and discussing the concepts presented in
three versions (Object-Oriented, Aspect-Oriented and
Aspect-Oriented with Design Rules) of a real software
application.

This system was selected because it is particularly rich persistence are defined in this layer. Two implemen-
in kinds of non-crosscutting and crosscutting concerns pre- tations are available: the first one uses the volatile
sented in its design. Furthermore, it involves a number of memory whereas the second one is based on relational
recurring concerns and technologies common in day-to-day databases.

software development, such as GUI, persistence, concur—lvI del: ible to impl heansfer obiectsThi
rency, RMI, Servlets and JDBC. odel: responsible to implement thiensfer objectsThis

objects represent the core concepts of the application;
transit between all architectural layers; and have few

Cview | implementation logic.
Lib Components: represent reusable components that are
; § useful in the implementation of concerns like persis-
Bagimss] .Fau%mss el § tence, distribution, and concurrency.
E HWFacade F5 Complaint
777777777777 E3ComplaintRecord ____5/EIEmployee ; ,)
| £ EmployeeRecord S Heahln 3 Assessing Health Watcher’'s Modularity
LIB [rrmy/eszed ‘ X .
£ istribution ;f:e:::;jfy - § The concept of modularity applied to software develop-
B3 Concurrency e ment was first introduced by Parnas [13]. In his paper, the
CRDE modular design is an attribute that enables better compre-
hensibility, changeability, and independent development.
Figure 1. Base Architecture of the Health More recgntly, Balem apd Clark [2] hgve defined the—
Watcher. ory adopted in many industries, that considers modularity as

a key factor to innovation and market growth. Their theory
uses DSMs to reason about dependencies between artifacts
Figure 1 shows the base architecture of the HW systemand explicites that tasks structure organization is closely re-

utilized in this work. This architecture aims at modularizing lated to them. Therefore, if two modules are coupled, their
user interface, distribution, business rules, and data manJparallel and independent development is impossible.
agement concerns. Although this structure prevents some Sullivan and Cristina Lopes have already applied Bald-
code tangling, it is not completely avoided. For instance, win and Clark theory to assess software design, confirming
the HWFacadeclass implements several concerns, includ- the usefulness of the theory in this context [11, 12, 17].
ing transaction management (persistence) and distribution. An essential step for DSM construction consists of se-
This architecture also fails to prevent code scattering. Al- lecting and clustering design parametersdésign param-
most all components must deal with the Exception Handling eteris any decision that needs to be made along the product

concern, for instance. design. The notion of dependency arises whenever a design
Below we describe the major architectural components decision depends on another. Using DSMs, each design pa-
of the HW system: rameter is disposed in both rows and columns of the matrix.

The dependency between two parameters is marked with a
View Layer: related with the HW web interface. The X. A markinrow B, column A represents that component
implementation of this layer is based on Front Con- B depends on component A.
troller [1] and Command [4] patterns, using servlet Design parameters may have different levels of abstrac-
and plain java objects components. The communica- tion. In software industry, some design decisions are related
tion with the business layer is implemented with calls t0 development process, language, code/architectural style,
to thelFBusinesswhich may be distributed or not. and so forth. Moreover, if we consider implementation as
design activities, software components like classes, inter-
Business Layer: responsible for the implementation of faces, packages, and aspects could also be represented as
business logic and transactional concern. Health- design parameters.
WatcherFacadewhich implementdFBusinessis the Design Rules are parameters used as the interface be-
unique point of interaction with this layer. This class tween modules and that are less likely to be changed [12].
usesrecord components to interact with the Data Ac- In this way, they can promote decoupling of design param-
cess Layer. eters, like component interfaces decrease the coupling be-
tween software components.
Data Access Layer: responsible to abstract the persistence In our work, since one of the main focus is to com-
mechanism implementation following the Data Access pare the design structures of different implementations of
Object pattern [1]. Some interfaces to manage datathe HW, only software components will be represented in

DSMs. In addition, we do not use X to represent the depen-of such removing are shown in Listings 1 and 2. Listing 1

dencies. Rather than, we summarize the number of depenpresents the implementation of a method that saves an em-

dencies between design parameters, and write this numbeployee into a specific repository. Notice that Linesand

in the matrix, according to the cell of each component. A 11 make explicit references to an instanceGaincurrency-

similar approach was presented elsewhere [14]. Managerclass.

Initially our notion of dependency was associated with

explicit references between components, like the instantia-

tion of a class inside a method, inheritance or composition Listing 1. Inserting an Employee Method

relationshipst. Nevertheless, when we analyzed AO dé-| public void insert(Employee employee jhrows _
. 2 ObjectNotValidException , ObjectAlreadylnsertedExceptiq

pendencies, we realized that this notion is not enough,zas objectNotvalidException , RepositoryExceptio

mentioned in Section 3.3. manager. beginExecution (employee . getLogin ());
5 if (employeeRepository.exists (employee.getLogin (){)
6 throw new ObjectAlreadylnsertedException (

7 ExceptionMessages . EXCA_EXISTE);

8 } else {
9

e

=}

I

3.1 Health Watcher OO version
employeeRepository.insert(employee);
Figure 2 illustrates a DSM of the HW OO version. Th
result is a modular design with some dependencies wiﬁéin
thehealth watchecomponents. Th€onceptual Modetle-
sign rule defines the core concepts (complaint, employee,
health unit) that are referenced by the other models, as Implementing the concurrency concern as an aspect
we can see in Columi. Without establishing this de- (Listing 2) removes this kind of dependency. Following this
sign rule, the dependencies towards core concepts would bé&lesign solution provides a better separation of concerns and
widespread throughout the matrix. Also, thealth watcher ~ Possibly enhances the support to parallel development.
components have dependencies itthcomponents.

manager.endExecution (employee.getLogin ());

—

| Design Rules | Lib | Health VWatcher | LIStInq 2. SVnChronization ASDeCt
L 2 3 4 & 8 7 s 9]0 11 12 13 14 - .
_ 1 | public aspect HWManagedSynchronizatio{
1 ;"Fg‘cfﬁf”f”*““'e' 2 | private ConcurrencyManager
2 istnbution _ .
3 IFPersistence . i manager =new ConcurrencyManager ();
4 IFView 4 - 1
5 IFData 7 . 5 public pointcut synchronization (Employee emp) :
6 _IFPatterns 6 execution(x EmployeeRecord.insert(Employee))
7 Distribution 7 && args(emp);
g Persistence 8
190 T E— . 9 | before(Employee emp) : synchronization (emg)
Viodel 2 4 = X A . .
11 View 35 2 e 10 manager. beginExecution (emp.getLogin ());
12 Business 10 1 1 & 1 11 5 ol 11| }
13 Data 19 7 12 - 12
14 Pattems 12 11 16 8 2 12 -] 13 after (Employee emp) : synchronizationPoints (emp)
14 manager.endExecution (emp.getLogin ());
. 15
Figure 2. Health Watcher OO DSM 16 |}

This design structure follows the hierarchical pattern [2],
which requires a sequential development: only afterdiie Figure 3 presents the DSM of the HW AO version.
sign rulesandlib components have been designed, itis pos- A substantial reduction between the coupling hefalth
sible to develop the other ones. The parallel development ofwatcher components with théib components can be ob-
such components is possible because there are only internggerved. However, these dependencies were transferred to
dependencies on them. aspectcomponents. Although the number of dependencies
The design parametensodelanddatacould also be de- inthe AO version is greater than OO version, the decoupling
veloped in parallel because they do not depend on the other§etweenhealth watchercomponents andib components
health watcheparameters. Afterwards, the development of turns the application more reusable and suitable to business
the parametergiew, businesandpatternscould be started. ~ changes.

Looking at Figure 3, we can conclude that thealth
3.2 Health Watcher AO version watchercomponents could be developed before dspect
components. On the other hand, there are dependencies be-
Using AOP some dependencies betwealth watcher tween these components that are not present in the source
components antib components were removed. Examples code and consequently in the DSM, blocking the sequen-
1Dependencies between application components and native API com-tial development of those components. This kind of depen-
ponents are not considered dency is discussed in the next section.

pesaniles | oo eath facher | fekects ing to the Listing 3, the aspect will add the transaction con-
2 3 4 sl 6 7/ 8 9/10 11 12] 13] 14/15 16/ 17 g : . .
cern into this method. In this case, the class will have an
3 ooceplual Model Ry unintended behavior: executions of such method will create
) ew 4 a new transaction which is no longer needed.
5 [FPatterns
6 Distr?buhcn -
? Persistence. — Listing 3. Transactional Methods pointcut
9 Model - - 1 | pointcut transactionalMethods ():
10 View 35 17 -1 2
11 Business 10 1.5 3 | execution(x HealthWatcherFacade(..)) &&
12 Data 19 6 12 - 4
13 Pattems __ 2 1 |15 1088 5 | lexecution(static * *.x(..));
14 Aspects - Concurrency | 2 i 1 1 3 1 - 1
15 Aspects - Dlstr!huhcn 4 1 7 11
s Peeeenee | oy |4 : The second example of the semantic coupling occurs
7 Aspects - Fatterns 32 2 29 2 9 - N
when the class depends on the aspect to work correctly: if
Figure 3. Health Watcher AO DSM the pointcut of Listing 3 is changed, some methods could

not be matched. Because they need transactions, these
methods will not work as desired. From the class developer
3.3 Syntactic x Semantic Coupling point of view, this dependency is semantic because he can
not see any dependency with the aspect. Moreover, we can
Syntacticcoupling in OO software components (classes observ_e that removing such aspect d_oes not cause compile
errors in the class which depends on it.

and interfaces) occurs when there is a direct reference be- Althouah th f wildcards d .
tween them, such as inheritance, composition, methods though the use of wildcards does not impose a syntac-

signatures (parameters, return types, exceptions throwing),t'c dependency, it is difficult to implement the transaction

class instantiations, and so forth. This coupling causes com-concem in parallel if there is no set of rules prev_iously de-
pile errors whenever a component is modified or removedf!ned by the class and aspect developers (naming conven-
from the system, being thus easily detected tions, for example) so that class and aspect can work cor-
In the same way of classes and interfaces, direct refer—reC;_IK' third le is about d S ints. Wh
ences can appear between aspects and other components, . ih I;I exarrploe LS F out tynz::\mlfc join p0|r|1 S: den
which means that aspects can also have such syntactic COLHSItnE <! owgrc ow ek]?f"’”! (f[u S’f t%r exampre, Wef” g
pling. However, we report in this paper that syntactic cou- not know in advance which points of the program witl be

pling is not enough for a complete study of coupling in AO matched at compile time. Therefore, we believe that this is
systems the worst case to identify the semantic coupling because it

. . . will only be realized at execution time. In this example, the
Thus, we argue that there is another kind of coupling : . X
o N parallel development is not possible unless the details of the
when considering AOP. Such coupling is not so easy to re- .
. - Iy . . program control flow intercepted by the aspects are known
alize because it is not visible as the syntactic coupling. For

this reason, we call thisemanticcoupling. Semantic cou- by the aspect developer.

pling is a dependency which is not syntactically defined in ngannc coupling is hlghllghted n .Flgure 4. According
the code, so that there is no direct reference between the® this concept, dependencies so far hidden between aspects

aspects and classes/interfaces (and vice-versa). Beside%‘,nd tth::ﬂealthvaaltc(;jhelcorgponentts) r:ave art?]se. Morec:ver,.
this kind of coupling does not cause compile errors when .lée tc;] c Cycclic? e.??nd.ff.nuﬁ? .e(\j/veen d © Earam|e e;ﬁ n-
removing or modifying components. As we describe in side tnese modules, itis dificultto Independently evolve the

the following examples, such coupling is not suitable when design. luded that it . h -
considering parallel development. We concluded that it is necessary to improve the existing

Three examples of semantic coupling are described inﬁop Cg“p".”g metrics 515,_ 19.]' Con§|der|ng o?ly.sy?rtr?ctlc
this paper. The first one is achieved by the use of wildcards ependencies we can derive |nconS|st.ent analysis. The next
in the aspects, which provide an economical way [10] to section proposes using design ruIe_s in order to reduce the
capture join points throughout the system. Listing 3 illus- syntactic and semantic dependencies betwesectsand

trates part of an aspect responsible to inject the transactior{qealth watchecomponents.
management into the methods of thealthWatcherFacade . .
class. The use of wildcards in this example matches every3.4 Health Watcher AO with new Design

facade method, except the static ones. Rules
Suppose that a class developer is unconscious about the
aspect and creates a method in thealthWatcherFacade In this section we will discuss the use of design rules

class that does not need transaction management. Accordas a strategy to establish and document the dependencies

Design Rules |

Lib

| Health Watcher |

Aspect

5|

[

2 3 4 8] 68 7

8] 90 100 117127 13 147 157 16] 17|

1 Conceptual Model
2 IFPersistence

3 IFView 4
4 IFData 7
5 |[FPatterns

G Distribution
7 |Persistence
8 Concurrency

9 Model

10 View 5
11 Business 10
12 Data 19
13 Patterns 22

Concurrenc] 2
Distribution | 76
Persistence
Patterns

14 Aspects -
15 Aspects -
16 Aspects -
17 Aspects -

110

a

Figure 4. Health Watcher AO DSM with se-
mantic coupling

between classes and aspects. These design rules must

specified during the design activities.
Some examples of constraints present in the new desigrthe size, coupling and cohesion to consider aspects. Sub-

rules are:

were removed, originating dependencies between aspects
and design rules.

Using design rules requires bo#ispectand base code
developers agree with them. In this way, it promotes the de-
coupling betweerhealth watcherand aspectcomponents,
allowing their parallel development.

4 Related Work

Metric Suites - Zhao uses the concept of dependence
graphs, that represents various dependency relations in a
program, to create a dependence model for AO software.
Based on this model he proposed methods to assess the
complexity [18], coupling [19] and cohesion [8]. Santanna
et al [15] presented an assessment framework for AO soft-
ware that consisted of an extension to the metrics suite
(known as CK metrics) proposed by Chidamber and Ke-
eerer in [3]. They proposed some metrics for measuring
separation of concerns (useful in AO context) and reviewed

sequent work evaluated their framework in practical case
studies, like the GoF Design Patterns [5, 6]. We refined the

* All classes inmodelcomponents must be serializable, notion of coupling presented by the aforementioned papers
in order to support the distribution concern;

to consider semantic coupling, since some kinds of depen-

e The method used to insert an employee must deal withdenCIes were not addressed by these works.
synchronization problems; and

DSM - Lopes and Bajracharya [11, 12] used DSM and
NOV to compare the modularity achieved by different de-

¢ All methods of business facade must have a transac-sign options. They concluded that aspects can increase the
tional management support.

| Lib |

Health Watcher |

Aspects

[2 3 4

Design Rules
5 6

5 7 8

s| 10 1] 12] 13 14| 15

16 _17] 18

19 20

21]

1/Conceptual Model
2|IFPersistence
3/IFView 4
4 IFData 7
5|IFPattemns
6 DRConcurrency
7| DRDistribution
8 DRPersistence
9 DRPatterns

10| Distribution
11| Persistence
12| Concurrency
13|Model
14| View 35
15 Business
16|Data 19 8
17|Patterns
18] Aspects - Concurrency | 2

19 Aspects - Distribution | 16

20| Aspects - Persistence 4
21 Aspects - Patterns 32

[N IS N

Figure 5. Health Watcher AO DSM with new

Design Rules

Figure 5 presents the DSM of the HW AO version with

value of an already modularized design. We did not mea-
sure the HW NOV but we discussed the dependencies ob-
served in the DSMs. On the other hand, we explored the
concept of dependencies between aspects and classes in
more detail and confirmed the importance of establishing
design rules.

XPI - Sullivan et al [17] presented a comparative anal-
ysis between an AO system developed following an obliv-
ious approach, with the same system developed with clear
design rules that document interfaces between classes and
aspects. Griswold et al [7] show how to transform part
of the design rules into a set of aspects Crosscutting Pro-
gramming Interfaces (XPIs) that are useful to document and
check part of the design rules (contracts). In our work, the
design rules responsible for dealing with semantic coupling
could be mapped into XPlIs.

5 Conclusion

new design rules that decouple classes and aspects. The We have presented an analysis of the different versions
semantic dependencies between classes and aspects wenéthe Health Watcher system using DSMs. We started from
converted to dependencies between classes and the desighe OO version and compared it with the AO version. Also,
rules, as shown in the DSM (Rows 13-17, Columns 6-9). we presented the notion of syntactic and semantic coupling
Moreover, the dependencies between aspects and classesd showed a different DSM including both of them. Usu-

ally, only the first one is considered for coupling measure- International Conference on Aspect-Oriented Software De-
ment, but in our opinion it is not enough for a complete velopment (AOSD’'05pages 15-26, New York, NY, USA,
study of the coupling metric when considering AO systems. March 2005. ACM Press. _

Our analysis using DSMs showed that without consider- [12] C. V. Lopes and S. K. Bajracharya. An Analysis of Mod-
ing the Semantic Coupling it is impossible to achieve the ularity in Aspect-Oriented Design. IbNCS Transactions

independent development, an essential feature, according gr;rﬁzp;ctz-(%éented Software Developmenpages 1-35.

Parnas[13], to categorize a software as modular. [13] D. L. Parnas. On the criteria to be used in decomposing
We observed that DSMs are useful to reason about de- systems into modulesCommun. ACM15(12):1053-1058,

pendencies between a significant number of components, 1972.

assisting the tasks structuring activity. [14] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using de-
Finally, a version with design rules was analyzed and we pendency models to manage complex software architecture.

confirmed that it provides a better modularization than pre- In OOPSLA"05: Proceedings of the 20th annual ACM SIG-

vious versions. Such version showed how design rules can ~ PLAN conference on Object oriented programming, systems,

make those dependencies explicit and, consequently, yield ﬁ:;gagiesz'o%gd :g&ligationq)ages 167-176, New York,
a more modular design. ' : : ress.

[15] C. Sanénna, A. Garcia, C. Chavez, C. Lucena, and A. von
Staa. On the Reuse and Maintenance of Aspect-Oriented

References Software: A Assessment Framework. Rroc. of Brazilian
Symposium on Software Engineering (SBES’papes 19—
34, October 2003.

[16] S. Soares, E. Laureano, and P. Borba. Implementing distri-
bution and persistence aspects with Aspectl.7iih Annual
ACM Conference on Object-Oriented Programming, Sys-

[2] C.Y. Baldwin anq K. B. Clark.Design Rules, Vol. 1: The tems, Languages and Applications, OOPSLA2008ges
Power of Modularity The MIT Press, March 2000.

31 S. Chidamb 4C. K A Metrics Suite for Obi 174-190, Seattle, USA, 4th—8th November 2002.

[3] S. Idamber an - Kemerer. etrics Suite for Object [17] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,

Oriented Design. IHEEE Transactions on Software Engi-
neering volume 20, pages 476-493. IEEE Software, June
1994.

[1] D. Alur, D. Malks, and J. CrupiCore J2EE Patterns: Best
Practices and Design StrategieBrentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

N. Tewari, and H. Rajan. Information Hiding Interfaces for
Aspect-Oriented Design. IRroceedings of the 10th Eu-

. . ropean Software Engineering Conference held jointly with
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissid@ssign 13th ACM SIGSOFT International Symposium on Founda-

Patterns Addison-Wesley, January 1995. tions of Software Engineering (ESEC/FSEages 166175,
[5] A. Garcia, C. Samknna, E. Figueiredo, U. Kulesza, C. Lu- New York, NY, USA, 2005. ACM Press.

cena, and A. von Staa. Modularizing Design Patterns with (18]

DL > J. Zhao. Towards A Metrics Suite for Aspect-Oriented Soft-
Aspects: A Quantitative Study. IRroceedings of the 4th

ware. Technical Report SE-136-25, Information Processing

International Conference on Aspect-Oriented Software De- Society of Japan (IPSJ), March 2002.

velopment (AOSD'05)New York, NY, USA, March 2005. [19] J. Zhao. Measuring Coupling in Aspect-Oriented Systems.

ACM Press.) o In 10th International Software Metrics Symposium (Met-
[6] A. Garcia, C. Samtnna, E. Figueiredo, U. Kulesza, C. Lu- rics'04), 2004.

cena, and A. von Staa. Modularizing Design Patterns with
Aspects: A Quantitative Study. IhNCS Transactions
on Aspect-Oriented Software Developmerpdges 36—74.
Springer, 2006.

[7] W.G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,
Y. Cai, and H. Rajan. Modular Software Design with Cross-
cutting Interfaces|EEE Software23(1):51-60, 2006.

[8] B. X. Jianjun Zhao. Measuring Aspect Cohesion. In
Proc. Fundamental Approaches to Software Engineering
(FASE’2004) 2004.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. InEuropean Conference on Object—Oriented
Programming, ECOOP’97LNCS 1241, pages 220-242,
1997.

[10] R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming Manning Publications Co., Greenwich, CT,
USA, 2003.

[11] C. V. Lopes and S. K. Bajracharya. An Analysis of Modu-
larity in Aspect-Oriented Design. IRroceedings of the 4th

