
 388

Contextual Prototyping of User Interfaces

Chris Stary
University of Linz

Department of Business Information Systems, Communications Engineering
Freistädterstraße 315, A-4040 Linz, Austria

fax: +43 732 2468 7111, tel: +43 732 2468 7102
email: office@ce.uni-linz.ac.at, URL: http://www.ce.uni-linz.ac.at/research/TADEUS

ABSTRACT
Contextual development differs from traditional user inter-

face development in several ways: It focuses on the context

of usage and the user population rather than on the techni-

cal features required for interaction. However, the latter

come into play when transforming context specifications

into user-interface code. Contextual development also con-

siders design to be a non-linear process based on activities

(re)engineering work processes rather than performing

traditional software-engineering tasks. Consequently, con-

textual development requires usage-relevant (re)pre-

sentation and execution mechanisms. Although the specifi-

cation of task- and user-knowledge has been recognized to

be crucial for contextual user interface design, seamless

development support is still lacking. The reported TA-

DEUS (Task Analysis/Design/End User Systems) project

targets toward an environment that allows contextual and

seamless design and prototyping based on user and task

knowledge. Due to its model-based nature TADEUS is

open with respect to diagrammatic notations for specifica-

tion, and different interaction platforms. As a result, differ-

ent perspectives on the context, development process and

its results can be kept consistent throughout development.

Keywords

Contextual design, seamless development, prototyping,

tools, user-centered system design, usability engineering,

lifecycle management, object-oriented modeling, interactive

work design, customization, model-based development

INTRODUCTION

Contextual development has been recognized to be cru-

cial for meeting the demands of user-centred systems design,

e.g., [16]. Not only particular methods have been proposed,

e.g. [2], but also approaches to standardize methodologies,

e.g., ISO DIS 13407. However, seamless development sup-

port is still lacking. For instance, when considering model-

based approaches for contextual design and prototyping, it

turns out that traditional approaches, e.g. [4], support differ-

ent perspectives on development knowledge, but tend not to

model how a system might be used by users in accomplishing

their work tasks.

These approaches rather attempt to provide designers

with structured facilities for engineering user interface soft-

ware, e.g., [11,15]. They lack structured representation of

context (tasks, users or work processes) as well as mecha-

nisms to transform that knowledge to code.

Contextual development, however, requires both. Devel-

opments in the field of task-based design, such as ADEPT [8]

and MUSE [10], based on experiences with cognitive engi-

neering approaches, such as GOMS [7], enable the represen-

tation of context information. Their prime concern is to im-

prove design by enhancing its suitability for end user tasks,

thus implementing the principles of user-centered design

[12]. Task-based techniques also focus on the process of

creating design solutions from information about the user's

tasks, increasing confidence that the system is compatible

with the tasks it is intended to support. Model-based and task-

based approaches have several features in common [21], such

as:

1. They both focus on the use of models to represent the

various sorts of information that contribute to the design

of interactive systems.

2. Both approaches discuss issues pertaining to the use of

the models in design activities (e.g., analysis, evaluation,

generation, verification etc.).

Due to their openness model- and task-based approaches are

candidates to capture the context of user interfaces compre-

hensively and derive context-sensitive design solutions. The

latter requires a minimal reduction of semantics along the

development process, i.e. seamless development, whereas

capturing the context requires high expressivity in terms of

language and tools [11].

 In the following we demonstrate the benefits of combining

model-driven and task-based development when reporting on

the TADEUS (Task Analysis/Design/End User Systems)

project. Its seamless methodology and the corresponding

development support allow for contextual specification and

prototyping. We detail the steps to be followed throughout

design based on different perspectives (models), the ontology

and diagrammatic (re)pre-sentation scheme for specification,

and implementation issues. We conclude discussing related

work, achievements, and future research activities.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DIS ’00, Brooklyn, New York.

Copyright 2000 ACM 1-58113-219-0/00/0008…$5.00.

388

 389

CONTEXTUAL DEVELOPMENT USING TADEUS
 The understanding of end users and their organization of

work requires a conceptual framework of context-sensitive

components of interactive systems. The TADEUS frame-

work puts the following components into mutual context

[19]: task model, user model, (problem domain) data

model, and interaction (domain) model. For the sake of

context-sensitivity all of them have to be related mutually,

statically and dynamically (see also Figure 1).

The task model comprises the decomposition of user

tasks according to the economic and the social organization

of work. The user model details the individual perception of

tasks, data structures and interaction devices, as well as

task/role-specific access modalities and permits to data. The

(problem domain) data model provides the static and dy-

namic specification of the data-related functionality. It has

to be derived from the task model. The interaction model

captures all devices and styles that might be used by the

users in the course of interaction. The final specification is

an application model. It integrates and synchronies struc-

ture and behavior specifications.

 relate to

 refine to Task Model Problem Domain

 Business Data Model

 Intelligence refine to

 Model relate to

 User Model relate to Interaction Domain

 Model

 refine to

 Application Model

 TADEUS-based user interface

 development prototype

Figure 1: The TADEUS Model-Based Frame of Reference

For contextual prototyping, basically three steps have to be

performed:

1. Task analysis, resulting in a business intelligence model

2. Task-based design, resulting in an application model

(based on the aforementioned models)

3. Workflow-driven prototyping, i.e. executing the specifica-

tion of an application model.

The analysis of work (step 1) is performed using TATAR

(TADEUS Task Analysis and Representation technique) [20]

which leads to a business intelligence model, i.e. a specifica-

tion of user and task settings. This model serves as the basis

for the subsequent design activities (step 2) that are described

below.

Task modeling: Specification of a task model relevant for

user interface design according to the organization of tasks

and users’ perception of work, usually being a part of the

business intelligence representation. Task modeling includes

modeling of the objectives users want or have to meet,

probably in response to particular situations or events, as well

as modeling of the different activities that users have to per-

form to accomplish their tasks, as, e.g., given by global and

local business processes.

User modeling: Setting up a role model by defining spe-

cific views on tasks and data (according to the functional

roles of users), as well as individual user characteristics or

particular features for user-adapted interaction, such as re-

quired left-hand assignments to interaction media (e.g.,

mouse buttons). User models become important components

of human-computer interfaces, as soon as it is recognized that

a software system will be able to exhibit user-oriented behav-

ior only if it has access to a user model that holds information

about users’ characteristics regarding certain tasks being

performed, as well as the styles and media used for interac-

tion.

(Problem Domain) Data Modeling: Specification of a

semantic data model derived from the tasks and user organi-

zation in the problem domain. In contrast to traditional data

modeling, in TADEUS both aspects of the data required for

task accomplishment, are captured, namely, the static and the

dynamic properties.

Interaction Modeling: Setting up an interaction model is

mostly based on a generic user interface architecture. It

should take into account devices, media, and modalities that

are initially considered to be relevant for task accomplish-

ment and user support. A device/widget model is derived

from the generic architecture. This way, a common look and

feel but still platform-conform solution for the application

under development can be specified.

Application Modeling: Final integration of the models,

namely the task, user, data and interaction model, through

mutually tuning them from a static and dynamic perspective.

This way, the architecture and behavior of the becomes task-

complete, in the sense that each task that requires interaction

support has been assigned to or has become part of a dialog.

389

 390

The activities described in step 2 do not have to be per-

formed in a linear way, except modeling the business intel-

ligence and deriving a task model, in order to have a well-

defined starting point for design. We observed design to be

based on switching between views (i.e. models). For in-

stance, as soon as a designer recognizes that some users

require a mouse for interaction, he/she selects the relevant

interaction elements from a platform specification in the

interaction model. Then, he/she switches (back) to the user

model and proceeds with detailing roles. Finally, in step 3 a

prototype can be generated directly from the specification,

namely from the application model. Figure 1 displays the

mentioned models and elementary activities of developers

(relate to, refine to) when using TADEUS.

KNOWLEDGE REPRESENTATION AND PRESENTATION
 The following conceptual entities are used to both cap-

ture the knowledge acquired through analysis, and to pro-

ceed with the design of task-based and user-centered inter-

action features in a seamless way: The organization and/or

organizational units are required to provide a framework

for the representation of organizational intelligence. They

might represent the set of departments the organization is

composed of, or vertically and/or horizontally placed struc-

tures, such as hierarchical layers within organizations. Roles

are required to achieve a comprehensive representation of

the organizational setting, and to model end users. Together

with the activities and the materials that are processed in the

course of task accomplishment, roles represent a part of the

organizational intelligence that is required to run business

processes.

 Activities are all actions that might be performed by

instances of roles or machines, as they occur in the course

of task accomplishment. They are part of tasks or sub tasks.

They might also depend on mutual temporal and causal

constraints, thus being part of the workflow to be sup-

ported. Materials can either be data or physical objects that

have to be processed in order to accomplish a task. Usually,

they are assigned to activities and manipulated in the course

of task accomplishment, finally representing the results of

work processes.

 Events are those points of reference that might have to

be considered as being particular for the business to be

supported. Events might lead to specific procedures, such

as handling emergency cases. Events might also be de-

scribed at several levels of detail, in order to understand the

consequences when particular situations occur.

 Table 1 shows the types of links representing conceptual

relationships between the entities listed above, as detailed

in [20]. They do not only support the structural perspective

on a business, but also the dynamic one. In particular, the

flow of work, i.e. how things are getting done, is modeled at

that layer of abstraction. In addition, particular relationships

may be composed of existing ones, in case the provided

ones do not suffice in accuracy or in semantics. In the table

the links are categorized according to their type of activity

in the course of analyzing and designing user interfaces, as

they turned out of being used in several TADEUS case

studies. The set up of a business specification requires basic

relationships, such as ‘employs’ or ‘has’. The first relation-

ship enables to assign functional roles to the identified

organization, whereas the second one enables the specifica-

tion of properties (attributes) to any node, such as ‘social

security number’ to ‘employee’. Refinement and abstrac-

tion are performed using the common generaliza-

tion/specialization and aggregation relationships, namely ‘is

a’ and ‘has part’, respectively. Relating, the third type of

development activity when using TADEUS, however,

means setting those relationships that constitute intelligence

specific to an organization. The listed set of relationships

comprises relationships between conceptual entities of the

same and different models.

 It is the latter part where TADEUS differs from other

contextual specification techniques, namely the provision of

dedicated relationships to prohibit design knowledge to fall

apart for the sake of software component specification. To

make that work, each of those relationships is checked

through particular algorithms according to its semantics

when being used for specification. Because of these opera-

tional definitions, the consistency of component specifica-

tions with the semantics of the application and its context

can be preserved along the different phases of development.

SET UP REFINE &

ABSTRACT

RELATE

EMPLOYS

HAS

IS A

HAS PART

HANDLES, CREATES, CONCERNS,

INFORMS, CONTROLS, REQUIRES,

BEFORE, IS BASED ON, CORRE-

SPONDS TO, IS ATTACHED TO

Table 1: Semantic Relationships in the Context of

 Development Activities

The operational definitions enable seamless development,

since parts of the business intelligence model can be di-

rectly mapped to the task, user, or data model, when using

the listed conceptual entities and relationships. Seamless

development is also supported at the level of presentation.

In TADEUS a diagrammatic notation is used, as requested

for object-oriented modeling ([9], p. 127) when being used

beyond software specification: “... using a higher level

language whose model for persistent objects and behavior

protocols is precisely the same model used for analysis,

specification, and design.” Hence, contextual development

is work system development, and requires “more inclusive”

(Ibid.) representation and presentation schemes than tradi-

tional software development.

 The diagrams used for presentation are supported by

most of the object-oriented software development tech-

niques, such as OSA [3] and UML [5]:

• ORDs (Object-Relationship Diagrams) describing the

structural relationships between classes or objects

• OBDs (Object-Behavior Diagrams) describing the

behavior (dynamics) of objects

390

 391

• OIDs (Object-Interaction Diagrams) describing the

interaction between life cycles of objects (specified

through OBDs).

These types of diagrams enriched with highly expressive

elements (see above) allow for effective integration of con-

text information with user interface specifications, as well

as for transforming environment knowledge to code. This

way, the shift of object-oriented specification techniques

from conceptual software-specification support [1] towards

systems engineering support [14] can be achieved, as re-

quested for contextual development support ([2], p. 222).

SPECIFICATION AND PROTOTYPING

 The diagrammatic (re)presentation has not only been

chosen for the sake of communicating development ideas,

user participation, and traceability of the design process,

but also to enable workflow-oriented prototyping. This way,

a better understanding of the context and system require-

ments can be achieved. In addition, it can be demonstrated

what is actually feasible with existing technologies.

 As we have seen, the ontology used for knowledge

representation empowers the analyst and the designer with a

semantically rich representation of the context. Based on

this specification of knowledge the initial designer’s task of

step 2 of the TADEUS methodology is to set up a task

model that captures all those relevant parts from the busi-

ness intelligence model that are considered to be relevant

for interactive computer support. Then, refinements and

preferences, problem domain data processing requirements,

and interface architecture have to be performed, a semantic-

cally rich representation of the context. Based on this speci

fication of knowledge the initial designer’s task of step 2 of

the TADEUS methodology is to set up a task complemen-

tary specifications according to the users’ roles model that

captures all those relevant parts from the business intelli-

gence model that are considered to be relevant until the

specification of the structure and behavior of the applica-

tion model enables prototyping.

Task Context Specification. Based on the business intelli-

gence model those tasks that are expected to be supported

through interactive software are selected. These tasks are

refined and related to each other, according to the sequence

of accomplishment in an Object Relationship Diagram

ORD. The tasks are represented as classes (containing iden-

tifiers and descriptions, but no methods and attributes) or

objects. The structural and behavior relationships are repre-

sented as links between the classes/objects. For instance,

the global task human resource management might be de-

composed like shown in Figure 2 (rectangles denote

classes, inks relationships – triangles correspond to spe-

cializations, black triangles to aggregations). In case, the

analysis leads to a representation of sufficient granularity

the task model can directly be extracted from the business

intelligence model (as in the sample case).

 This specification is the starting point for further re-

finement and the assignment to interaction elements, lead-

ing to instances of application specifications, such as shown

in Figure 3 for recruitment support. It has been generated

using the TADEUS prototyping engine.

Figure 2: A Sample Business Intelligence Model

391

 388

For each sub task at the end of an aggregation line of a

global task, the procedure to be followed for task accom-

plishment, including the input/output-behavior has to be

defined. As a consequence, the ORD of the static task

model is related to a set of Object Behavior Diagrams

(OBDs), each corresponding to the accomplishment of a

sub task. For instance, in Figure 4 the OBD for candidate

search is displayed (the rounded rectangles denote states,

the links transitions). The dummy „do nothing“-transition

has to be used for the sake of consistency.

User Context Specification. The static user model com-

prises user group definitions as the organization of tasks

requires. There are two ways to define user groups from the

perspective of an organization, namely the functional and

the individual perspective. For instance, each department of

the organization at hand has a particular set of privileges,

such as the right to manipulate salary data in case of human

resource management (functional perspective). Each staff

member has also a user profile based on individual skills

and preferences, such as accounting and the use of button

bars instead of menus. In TADEUS the integration of both

perspectives is performed at the level of ORDs. It propa-

gates to the concerned data (in the problem domain data

model) and dialog elements (in the interaction model), and

finally, to the application model.

Figure 3: A Sample Browser Window Prototype

Coupling the user context with the task context requires the

use of ‘handles’-relationships. Since TADEUS displays

specifications in a single workspace according to the

model-related view concept, the relationships can be set in

an effective and efficient way. The dynamic user model

captures the work process from the perspective of a particu-

lar role.

Figure 4: A Dynamic Task Model

For instance, an employee might be involved in tasks that

are processed by several departments, such as an accountant

doing human resource management as well as sales calcula-

tions. Hence, from the task perspective, the dynamic user

model is a synchronized combination of task model OBDs

under the umbrella of a particular user role. The specifica-

tion has to show the task-relevant, synchronized involve-

ment of a particular end user group in one or more subtasks.

In TADEUS this step does not require additional OBDs,

but might require synchronization of existing OBDs. Set-

ting synchronization relationships is supported through

OIDs. Using them, mutually dependent transitions of the

involved OBDs are simply connected by dragging visual

relationships denoting the passing of flow control – see for

instance Figure 6.

Deriving Problem Domain Data. The designer has to

define the classes of data required for task accom-

plish1ment. Identifiers, attributes, operations and relation-

ships have to be provided. For instance, handling human

resource applications requires to create an object of the

class ‘person’. Setting up a data model is also required, in

order to provide information for the integration of the data-

related functionality with the interaction facilities later on

(such as assigning input fields to data that are expected to

be entered by the user).

 In order to ensure the integrity and completeness with

respect to the tasks that are going to be supported, the ele-

ments of the static data model have to be put into the con-

text of the task elements of the static task model (ORD).

This step is achieved through setting the ‘is based on’ rela-

tionship between (sub) tasks and data specifications. For

instance, the task ‘search for candidates’ ‘is based on’ ‘per-

son’. Additionally, the relationships to the user model have

to be completed. It has to be checked whether the access

permits given through the role specification in the user

model fit to the specified data model elements, and vice

versa, whether each of the data classes has been actually

assigned to at least one functional role specified in the user

model. The behavior of the problem domain data has to be

specified. For instance, the life cycle of ‘person’ has to be

defined, according to the attributes and methods specified

in the class ‘person’. In case of multiple involvement of a

data element in several tasks, such as ‘person’ in handling

human resource applications and updating staff data, the

392

 389

dynamic specification integrates different behavior specifi-

cations in a single representation capturing all possible

states of that data element. Finally, the life cycle has to be

synchronized with one or more OBDs of the dynamic task

model, since each of the transitions concerning data has to

be performed in conformance to at least the tasks specified

in the task model. The results of this synchronization are

again OIDs.

Assigning Interactions. The first step in interaction model-

ing concerns the set up of generic interaction features. In

case of platform-specific solutions (e.g., for GUIs) the

structure of the elements and styles has to be loaded from

resource scripts. In assigning tasks and user actions to pres-

entation elements a platform-dependent design might, in

particular for GUI development, save time and effort for

specification. The second step in interaction modeling con-

cerns the static refinement and adjustment of generic inter-

action features, such as window management. In particular,

platform-specific structures have to be adjusted to particu-

lar constellations of the elements and styles, since they

provide a variety of arrangements (e.g., through recursive

structures, such as container objects). Before the tasks and

the problem domain data are assigned to the selection and

grouping of the interaction elements and styles, in this step

traditionally the fundamental look and feel of the interactive

application (for GUIs) is specified.

 The third step in interaction modeling can be considered

to be the first move towards application-specific design.

The selected and pre-arranged interaction elements are

further refined and tuned with other application elements, in

order to achieve fully customized interaction features. Plat-

form-specific elements and styles are adjusted to particular

constellations of task-, user-, and data-specific controls and

screen structures. This step leads to object definitions at an

abstract level, since these design elements are in a sense

unique for the application. For instance, it is specified at

this stage of development that the ‘human resource man-

agement’ menu contains the entries ‘recruitment’, ‘update

staff member’, ‘remove staff member’. The result is a struc-

tural specification (i.e. ORD) of the user-interface features

that have been specified in the context of the task, user, and

data model. The relationships used for assigning interaction

elements to task and data elements are TADEUS-specific

ones, such as ‘is attached to’, as well as commonly used

ones for object-oriented specification, such as ‘has part’

and ‘is a’. Typically, application elements are added as

subclasses to dialog classes, such as groupboxes in case of

GUI platforms (see Figure 5 for Microsoft MFC).

 For each of the elements of the customized interaction

ORD, an OBD has to be created to specify the task- and

user conform interaction. For instance, the life cycle of a

form has to be defined, according to the attributes and

methods specified in the class ‘form’. The life cycle has to

be synchronized with one or more OBDs of the other mod-

els, since each of the transitions concerning interaction

elements has to be performed in conformance to the tasks,

user roles, and data specified. The results of this synchroni-

zation process are again OIDs. This way it becomes evi-

dent, which of the interaction elements have to be manipu-

lated to accomplish each of the tasks (including the manipu-

lation of data). For instance, by the time personnel data

have to be inserted, the OBD for name field has to be syn-

chronized with an input field – see Figure 6 (JF = Jump

Forward, JB = Jump Backward).

Completing the Specification for Prototyping. Contex-

tual, in the sense of task-complete application design re-

quires the synchronization of the previously specified ac-

tivities involved in task accomplishment. This requirement

is met through providing synchronization points between

states and transitions that are required to accomplish tasks

successfully with the specified user interface architecture.

OIDs enable the diagrammatic specification of the global

behavior of the application according to the business proc-

esses to be supported at various levels.

Figure 5: Refining Generic Interaction Elements in the

Structural Interaction Model

Figure 6: Relating OBDs for Task-Conform Interaction

Additional (global) conditions can also be specified through

OIDs linking OBDs. In setting up an application model this

way, several issues are considered to be crucial:

• Which key events, eventually triggered by users, lead

to interactions with the software system?

• All interaction-relevant tasks, actions (i.e. operations

on data elements), and data have to be linked to or be a

393

 390

part of the interaction model, since they have to be pre-

sented to end users.

• Every possible interaction between interaction ele-

ments should be traceable, in order to avoid side ef-

fects in behavior.

Prototyping. Prototyping is enabled in TADEUS based on

the application model, and thus, can be performed before

the functional specification (of methods) is provided. The

TADEUS interpreter and consistency checker, both re-

quired for contextual design and prototyping, are explained

below. Based on the integrated specification available

through the application model the interaction window, as

shown in Figure 3 for the Search for Candidates example,

can be directly generated using the TADEUS user interface

generator.

IMPLEMENTATION ISSUES

It is important that every time a TADEUS semantic rela-

tionship is used its meaning is used as specified. This way

correctness, consistency and task completeness of the de-

sign specification can be preserved. A number of algo-

rithms checks the design representations statically and dy-

namically. These algorithms are stored in an extensible

library and are executed whenever a relationship is used to

connect two elements in an editor classes, or models in the

course of design.

 The library provides the designer with a general basis

upon which algorithms might be added, as soon as the de-

signer feels a specific need to do so in the course of appli-

cation development. The library is connected to the consis-

tency checker, repository and generator. This way, TA-

DEUS provides a basic library as well as an open work-

space, which cannot only be reused but also expanded for

novel design problems and notations. New algorithms can

be added to the library either before the design or during

the design process.

 In order to be able to execute the specification of an

application model, instances of the classes or objects are

required. The TADEUS generator produces an executable

user interface based on the following mechanism [19]:

Initialize runtime system

For each class do:

 For each instance do:

 Get current state of instance

 For each transition from this state do:

 Check if condition is true

 From all possible transitions choose the

 one with the highest priority

 Execute all actions of this transition

 Change into destination state

 Next Instance

Next Class

The execution is interrupted, if no further transitions can be

fired. However, execution can be continued by adding new

instances or other steps that may influence the conditions.

In Figure 7 the screenshot is given for tracing the flow of

control. It shows an additional form of presentation of

OIDs. A color scheme has been developed to provide a

comprehensive picture of possible and executed paths. This

dense but accurate presentation supports the navigation in

design knowledge when executing instances of interface

objects.

Figure 7: Tracing the Workflow During Prototyping

RELATED WORK

With respect to the specification of the application’s seman-

tics the need for proper representation schemes has already

become evident, e.g. through the work for LSI [6], a Lan-

guage for the Specification of Interfaces. LSI has been

intended to support user interface designers to validate

interface specification early in the development process.

The plan-based representation approach (i.e. goal trees) as

such integrates the model-based and user-centred approach

as discussed in the introduction. LSI tries to capture the

user’s perspective on the interface through extensive defini-

tions of the static semantics of an interface. In addition, LSI

tries to stick to the principle of user interface processing,

namely separating the presentation, dialog, and application

component, in order to assess architectural designs. Unfor-

tunately, the specification of behavior falls outside the

scope of LSI, since its capabilities are focusing on the struc-

tural (static) aspects. Finally, no data on LSI have been

provided with respect to its use for different modalities,

such as GUIs, and its effort to capture the semantics related

to that modality. The restriction of specifications to static

interface elements has also to be noticed for recently intro-

duced tools, such as MOBI-D [15]. However, the authors

recognize the importance of modeling end user tasks and

provide some representation facilities, as initially stated in

[17].

 With respect to methodology a variety of approaches

can be found in [22], in order to bridge the gap between

analysis, design, and prototyping. However, either the tech-

niques lack support of proper tools to bridge the gap be-

tween analysis, design and prototyping, or the tools do not

allow to proceed seamless, but still in a structured way from

analysis to design and prototyping. Finally, there exist only

few approaches, e.g. [18], that strive for executable specifi-

394

 391

cations. Unfortunately, these attempts do not support trace-

ability with respect to end user tasks and roles. As such they

do not meet the demand for structured and transparent user-

interface development. The same statement holds for ap-

proaches that try to derive presentation details from task

models, e.g. [13,16], although they provide high expressiv-

ity in describing the organization of work as well as rules

for transforming that knowledge to user interface designs.

CONCLUSIONS

 Contextual design and prototyping requires systems

design rather than software design. In order to accomplish

this task features from task-oriented approaches had to be

integrated with those of model-based approaches. In case

this integration is provided with a diagrammatic notation

with high expressivity they also allow seamless develop-

ment. TADEUS has been designed this way. Hence, it

overcomes several limitations of current approaches that are

tightly coupled with inherent representational problems. A

novel representation and interpretation scheme allows in

TADEUS to integrates different perspectives (including he

application context) through semantically linked models.

The completeness of specification with respect to the in-

tended task support, the consistency and transparency of

design, and the traceability of the development process

have been increased. In addition, the specification of the

entire application can be executed for prototyping purposes.

 One of the novelties concerns the relations between

elements of the models and between the models. They are

automatically checked at a high level of operational seman-

tics with the help of a series of algorithms. In addition, the

software architecture of the environment is open to embed

existing specification techniques and interaction platforms.

Future developments in TADEUS comprise the integration

of further industrial platforms (currently we support Micro-

soft MFC and browsers) and modeling techniques, such as

UML. Another issue concerns code generation. First at-

tempts have turned out to be promising to provide pieces of

application code and a high level specification language for

the specification of the data-related functionality.

REFERENCES
1. Bailin, S.: An Object-Oriented Requirements Specifi-

cation Method, CACM 32(5), pp. 608-623, 1989.

2. Beyer, H.; Holtzblatt, K.: Contextual Design. Defining

Customer-Centered Systems, Morgan Kaufmann, San

Francisco, 1998.

3. Embley, D. W. ; Kurtz, B. D.; Woodfield, S. N.: Ob-

ject-Oriented Systems Analysis. A Model-Driven Ap-

proach. Yourdon Press, Englewood Cliffs, NJ, 1992.

4. Foley, J.D.: History, Results and Bibliography of the

User Interface Design Environment (UIDE), an Early

Model-based Systems for User Interface Design and

Implementation, Proc. DSV-IS’94, pp. 3-14, 1994.

5. Fowler, M.; Kendall S.: UML Distilled - Applying the

Standard Object Modeling Language, Addison

Wesley, Reading, Massachusetts, 1997.

6. Jacquot, J.-P.; Quesnot, D.: Early Specification of

User-Interfacs: Toward a Formal Approach, Proc.

ICSE’97, Boston, MA, pp. 150-160, 1997.

7. John, B.E.; Kieras, D.E.: Using GOMS for User Inter-

face Design and Evaluation: Which Technique?, TO-

CHI 3(4), pp. 287-319, 1996.

8. Johnson, P.; Wilson, St.; Markopoulos, P.; Pycock, J.:

ADEPT - Advanced Design Environments for Prototy-

ping with Task Models, Proc. INTERCHI'93, p. 56,

1993.

9. Liddle, St.W.; Embley, D.W.; Woodfield, S.W.: A

Seamless Model for Object-Oriented Systems Devel-

opment, Proc. ISOOMS’94, pp. 123-141, 1994.

10. Lim, K.Y.; Long. J.: The MUSE Method for Usability

Engineering, Cambridge University Press, Cambridge,

1994.

11. Myers, B.: User Interface Software Tools, TO-CHI

2(1), pp. 65-103, 1995.

12. Norman, D.; Draper (eds.): User-Centered System

Design, Lawrence Erlbaum, 1986.

13. Paterno, F.D.; Breedvelt-Schouten, I.M.; de Koning,

N.M.: Deriving Presentations from Task Models, Proc.

EHCI’98, 1998.

14. Parsons, J.; Wand, Y.: Using Objects for Systems

Analysis, CACM 40(12), pp. 104-112, 1997.

15. Puerta, A.R.; Cheng, E.; Tunhow, O.; Min, J.: MO-

BILE: User-Centred Interface Building, Proc. CHI’99,

ACM, pp. 426-33, 1999.

16. Rodriguez, F.G.; Scapin, D.L.: Editing MAD* Task

Descriptions for Specifying User Interfaces, at Both

Semantic and Presentation Levels, Proc. DSV-IS’97,

pp. 215-225, 1997.

17. Rosson, M.B.; Carroll, J.M.: Integrating Task and

Software Development for Object-Oriented Applica-

tions, Proc. CHI'95, pp. 377-384, 1995.

18. Sage, M.; Johnson, Ch.: Interactors and Haggis: Execu-

table Specifications for Interactive Systems, Proc.

DSV-IS’97, pp. 101-117, 1997.

19. Stary, Ch., Vidakis, N., Mohacsi, St., Nagelholz, M.:

Workflow-Oriented Prototyping for the Development

of Interactive Software, Proc. IEEE COMPSAC´97,

pp. 530-535, 1997.

20. Stary, Ch; Peschl, M.: Representation Still Matters.

Cognitive Engineering and User Interface Design Rep-

resentations, Behavior and Information Technology

17(6), pp. 338-360, 1998.

21. Wilson, St., Johnson, P.: Bridging the Generation Gap:

From Work Tasks to User Interface Design, Proc.

CADUI'96, pp. 77-94, 1996.

22. Wood, L. (ed.): User Interface Design. Bridging the

Gap from User Requirements to Design, CRC Press,

Boca Raton, FL, 1998.

395

