A Field Study of Exploratory Learning
Strategies

JOHN RIEMAN
University of Colorado

It has been suggested that interactive computer users find “exploratory learning” to be an
effective and attractive strategy for learning a new system or investigating unknown features
of familiar software. In exploratory learning, instead of working through precisely sequenced
training materials, the user investigates a system on his or her own initiative, often in pursuit
of a real or artificial task. The value of exploratory learning has been studied in controlled
settings, with special attention to newly acquired systems, but there has been little investiga-
tion of its occurrence in natural situations or in support of ongoing learning. To address this
question, a field study of the behavior and attitudes of computer users in everyday working
situations was performed, using diaries and structured interviews that focused on learning
events. The study showed that task-oriented exploration was a widely accepted method for
learning, but that it often required support from manuals and from other users or system
support personnel. Exploration not related to a current or pending task was infrequent, and
most users believed it to be inefficient. These findings have implications for the design of
systems, documentation, and training.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—
user interfaces; H.5.2 [Information Interfaces and Presentation]: User Interfaces—train-
ing, help, and documentation

General Terms: Documentation, Human Factors

Additional Key Words and Phrases: Diary studies, discovery learning, exploratory learning,
learning in the workplace, learning on demand

1. EXPLORATORY LEARNING

In the early 1980s, when word processors brought the first wave of
interactive computing into the office environment, it seemed obvious to
many users and managers that these complicated, expensive machines
could only be operated by employees who had been formally trained in their

This work has been supported by grant number IRI-9116640 from the National Science
Foundation, with additional work funded by the UK Joint Councils Initiative. A preliminary
report of this study was presented at INTERCHI "93.

Authors’ address: Department of Computer Science, University of Colorado, Boulder, CO
80304; email: rieman@cs.colorado.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1996 ACM 1073-0516/96/0900-0189 $03.50

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996, Pages 189-218.

190 D John Rieman

use. Learning to operate the word processor in the office where the author
worked required two days of classroom training, and employees who had
not completed the course were not supposed to use the machine. When a
significantly revised version of the word processing software was installed,
another day of off-site training was required. A change of hardware vendor
brought yet another round of training. This was on systems with dedicated
keyboards and textual menus, 8-inch diskettes holding less than 200K of
data or program, and software that provided features numbering at best in
the dozens: insert, overstrike, cut, paste, underline (with the daisy-wheel
printer), simple mail merge, a rudimentary tabular facility, and a game
hidden on a diskette by the hardware repair person during one of her many
visits.

No one took classes to learn how to use the game, but it was not long
before all the secretaries and anyone’s visiting children knew how to play
it. The repair person had shown someone how to boot the program; one or
two fearless users played with it during coffee breaks until they had
discovered most of its features; and the knowledge of how to use it was
passed along within the work group.

Today it is not uncommon for an office worker to use several major pieces
of interactive software every day, including word processors, spreadsheets,
electronic mail, graphics programs, and the windowing front end to the
computer’s operating system. We have calculated, roughly, that this may
require a user to deal with a major software upgrade on the average of
every six months [Franzke and Rieman 1993]. And each piece of software
may have many hundreds, even thousands, of commands and options, the
majority of which any given user might never use [Fischer 1987; Nielsen, et
al. 1986]. In the face of this overwhelming need to continually relearn
job-critical software, do users still depend on formal classroom training to
maintain their skills?

Anecdotally, the answer is obvious. Many users, perhaps most, now learn
to use their productive software the way early users learned to use the
hidden games: through trial and error, through interaction with other
users, through occasional reference to manuals if they are available. In
short, they rely on what can be broadly defined as “exploratory learning.”
The purpose of the research described in this article is to put that anecdotal
observation on firmer footing and to discuss its implications for system
design and further investigations.

1.1 Studies of Exploratory Learning

The potential value of exploratory learning has been recognized since
interactive computing first began to enter the workplace. Malone [1982],
Carroll [1982], and Shneiderman [1983] all noted the success of computer
games and argued that other computer software should have some of the
same characteristics. Mastering the software should be intrinsically moti-
vating; features should be revealed incrementally; and the system should
be at least minimally useful with no formal training.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 191

Carroll and his colleagues began an extensive program of research in
support of this goal in 1981. This work initially analyzed the learnability of
office system interfaces in situations where novice users were given no
coaching or training [Carroll et al. 1985]. The research demonstrated that
most users were willing and able to learn by exploration, although there
were individual differences in exploratory aggressiveness [Carroll 1990;
Carroll and Rosson 1987]; see also Neal [1987]. It also showed that novices
attempting to explore a totally new system often made major and unrecov-
erable errors, even with the aid of basic manuals and tutorials [Carroll and
Mazur 1986].

Carroll and his associates continued this line of investigation, focusing on
a “minimalist approach” to training and manuals [Carroll 1990]. The
approach has shown dramatic success in bringing new users up to speed in
complex environments, and many users have expressed a preference for
this kind of guided exploratory learning.

The details of exploratory learning of an interface in the absence of
manuals or instruction have also been investigated. Shrager [1985] and
Shrager and Klahr [1986] gave subjects the unstructured task of learning
to operate a “BigTrak” toy, a six-wheeled truck with a built-in computer
controller, programmed with a simple keypad. Shrager found a common
pattern of behavior, beginning with orientation and continuing through the
generation and testing of hypotheses about individual keys. Significantly,
Shrager’s undergraduate subjects were able to uncover the major function-
ality of the interface; however, the task was time consuming, and the
behavior of more sophisticated controls was often not resolved.

Ongoing research by Lewis and Polson and their colleagues has also
investigated uninstructed behavior where no manuals are available [Polson
and Lewis 1990]. This work has examined the actions of users faced with
well-defined tasks and novel computer interfaces. In an early report on this
research, Engelbeck [1986] suggested that the behavior of subjects faced
with novel menus can be described by a “label-following” strategy, which is
related to the identity heuristic in Lewis’ [1988] EXPL theory. In label
following, users take the afforded actions on controls whose labels are
identical or similar to words and concepts in their current task. More
recently, Franzke [1995] observed users who are novices to a particular
software application, but who are competent users of the computing envi-
ronment in which the software is provided. Franzke’s work confirmed the
power of the label-following strategy. She reported that users are quick to
uncover basic functionality, but that their efforts to complete a task may be
seriously blocked by misconceptions or poorly labeled controls.

1.2 Research Approach and Overview

Each of the studies described has taken the view that users can learn a
system through exploration, and the more practically oriented research has
investigated ways to support that learning through better software, manu-
als, or training. The field study described in this article approaches the

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

192 D John Rieman

issue from a different, complementary direction. It asks: within the work
and computing environments currently available, when and how do users
learn to use the software they need for their daily tasks?

In brief, the study had two parts. First, diaries were maintained for one
work week by 14 interactive computer users, who represented a wide range
of computing skill and job duties. The diaries used predefined categories
covering computer interactions and all other work-related activities, with
an explicit focus on learning events. There was no attempt to focus
specifically on exploratory learning. Second, following the diary studies, a
structured interview was performed with each of the same users. The
questions in the interview also focused on learning, but extended the scope
of the study beyond the one-week time slice reported in the diary.

This approach distinguishes the current study from previous work on
several dimensions. Instead of investigating novices’ first experiences with
systems, the study observed users with a range of experience as they
extended their knowledge of systems they worked with every day. Instead
of performing a controlled comparison between types of manuals or train-
ing, or observing users forced to explore with no manuals at all, the study
observed users who chose their learning strategies under the constraints of
their real work and the available learning resources. Finally, the study
addressed a question frequently left unanswered by previous work: when
users are blocked in their unsupported exploratory efforts, what do they
do?

The results of the study are potentially valuable in several areas. Most
obviously, software designers should be able to craft more effective sys-
tems, including manuals and on-line documentation, if they know how
users learn software on the job. This will be especially true if the designers
can understand why the work environment causes a user to prefer a
specific resource for learning, such as manuals, on-line help, or exploration.
A similar argument holds for the design of training: a knowledge of users’
ongoing learning behavior helps define the need for initial baseline train-
ing. Finally, the study’s broad description of exploratory behavior can help
to guide more controlled laboratory experiments into specific issues [Fran-
zke 1995; Franzke and Rieman 1993]. As such, the study reflects one step
in a research paradigm that progresses from anecdotal evidence to focused
field studies to controlled laboratory studies, with a concomitant refine-
ment of theory and hypothesis at each stage [Rieman 1994].

1.3 Organization

The rest of this article is organized as follows. Section 2 describes the diary
study and its results, including a detailed discussion of the diary method
and a description of the users who participated in the study. Section 3
describes the results of subsequent in-depth interviews with the same
users. Section 4 concludes by summarizing the findings and discussing
their implications for training, systems design, and further research.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 193

2. THE DIARY STUDY

The diary study recorded the activities of 14 interactive computer users in
the course of one week of their ordinary work. The study was designed to
show the extent to which users learned new features about their systems
outside of a training situation, along with the strategies and resources used
during that learning.

2.1 Diary Method

In diary studies [Ericsson et al. 1990; Rieman 1993], informants record
their activities on a standard log form, which breaks the day into fixed
periods of time. Activities are allocated to predefined categories for later
analysis. For this study, the daily log form was supplemented by additional
forms on which the informants were asked to record learning events, if and
when they occurred.

The strength of the diary study is its ability to provide data about
real-life activities in the workplace. When combined with a follow-up
interview, the method promotes the collection of a structured set of core
data while providing an easy opportunity to recognize and collect additional
information. However, diaries and interviews both require that informants
self-report their activities after the fact. There are potential dangers with
this kind of self reporting. Informants may fail to recall all activities of
interest, so the report could be incomplete. Informants’ beliefs about the
study’s purpose may bias their selection of events to report or their
descriptions of those events. Informants could even adjust their behavior to
produce the activities that were apparently desired. The materials and
procedures were designed to avoid these problems as much as possible. In
addition, the use of a diary study followed by the interviews provided an
opportunity to acquire converging data on key questions.

2.1.1 Materials. Informants maintained their daily log of activities on
the form shown in Figure 1. The form was on 11-by-14-inch paper, and the
hours on the left side corresponded to the informant’s typical working
hours, with a few hours extra. Usually this was from 7 a.m. to 7 p.m., but
some subjects worked a later schedule and used a sheet that ran from 10
a.m. to 10 p.m. In addition to the log sheet, informants were supplied with
a stack of blank “Eureka Slips,” as shown in Figure 2. These were printed
on various bright colors of paper and held together with a colorful spring
clip. The categories on the log and on the Eureka slip were initially selected
based on anecdotal evidence of typical work activities and learning strate-
gies and were redefined after a small pilot study.

The field study was specifically designed to identify the existence and
context of learning events, without clearly exposing their structure. Conse-
quently, the grain size of the data solicited by these materials was
relatively large. Events that took several minutes could be reported, but
the low-level detail of those events would not be described. A log that
reported a more detailed temporal structure of learning events could have
been designed, but the burden of producing detailed reports might have

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

194 D John Rieman

.] Categories: Fill in at End of Da
Day.'];“_q/, 9 100 y
i s © w =8
LD & Zo Se _ §§29¢
o._g%g'a@g gﬁo&’@
. caglfLes=2cQas
Activity Log: XX ® 5 agggmomggo
. Tl =0c<OcE008E
Fill in Every Half Hour FRSCICLO0awWw3nOmxOO0
Gor CarFeg. >
8 - 8:30
CHeceED ErMAlL M
6:30 - 9 Proned ABeur CAR | |
' MoRE C€-MAI ol
5 9:30 Mer w/ Stupenr T
T CLAsS
9:30-10 A T
/\/\/\\\/\/

Fig. 1. The beginning of a diary log sheet for one day. The informant records activities, and
the investigator assigns categories during the end-of-day debriefing.

discouraged informants from reporting every event. (John and Packer
[1995] describe a diary study that focused on the structure of learning, but
they logged only learning events, not entire work days.)

Several features of the materials addressed the problems of self report-
ing. The focus of the study was learning, specifically exploratory learning,
but the daily log sheets helped to avoid bias by asking for a full report of
the day’s activities. The sheets provided a special section for computer
activity, but no category for learning. The Eureka slips narrowed the focus
to learning, but they were broad enough to cover many kinds of learning
activity, including both task-oriented and task-free exploration. The bright
colors and ready accessibility of the Eureka slips were intended to make
them clearly visible and increase the likelihood that informants would
remember to fill them in.

2.1.2 Procedure. The investigator gave a brief description of the log
materials to the informants at the time they were recruited. A log period
was scheduled at that time. As much as possible, the log period was
scheduled to be a week of “ordinary” activity for the user. A week when an
informant would be out of town for a conference, for example, would not be
logged (unless traveling to conferences was a common activity for that
user); but there was no effort made to prefer or avoid times when the user
had just started work with a new piece of software.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 195

"Eureka" Report

For Computers, Phones, Copiers, Fax Machines, Staplers,
Clocks, Thermostats, Window Locks, Cameras,
Recorders, Adjustable Chairs, and other Strange Devices

1.D. z Date & Time 2[[5' i Aol

Describe the problem you solved, or the new feature you
discovered, or what you figured out how to do.

Gror CoPIER To PuUT STAPLE
IN THE RIeHT CoRNER

How did you figure it out? (Check one or more, explain)
__Read the paper manual
__Used on-line "help" or "Man"
Tried different things until it worked
__ Stumbled onto it by accident
__Asked someone (in person or by phone)
___Sent e-mail or posted news request for heip
__Noticed someone else doing it
__ Other

Explain:
CAN'T REARD THRE
"INTERNATIONAL" SyMBoLS

Fig. 2. A “Eureka” report slip, for noting successful or attempted learning events.

Immediately before the log period began, the investigator met with the
informant and explained how the logs were to be used. Informants were to
fill in the left-hand side of the log sheet as each day progressed, using their
own terminology for the work they were doing. To protect their privacy,
they were allowed to mark any period as “breaks/personal” and provide no
further information. Informants were instructed to fill in a Eureka slip
whenever they learned something new about their computer system or
some other equipment in their work. They filled in the slips completely,
including the description of the problem, the strategy used to solve it, and
any additional comments. Informants were also asked to use Eureka slips
to record failed attempts to solve problems.

At the end of each log day, the investigator met with the informant (in
person for all but two informants, by phone for Informants 9 and 12). The
investigator spent 10 to 20 minutes talking over the day’s activities and
assigning them to the categories on the right-hand side of the log sheet.
The day’s Eureka slips, if any, were also discussed briefly during this
meeting, and the investigator sometimes made additional notes on the back
of the slips or corrected a strategy assignment.

The end-of-day meetings helped to regularize reporting among infor-
mants. The informants were willing but often busy, and the daily collection
of log sheets ensured their daily completion. If the discussion of logged
activities revealed a learning episode that had not been recorded on a

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

196 D John Rieman

Eureka slip, the investigator and the informant would fill one in for that
episode. The meeting also provided an opportunity for the informant to ask
for clarification about the reporting procedure; questions as to what consti-
tuted a “Eureka” event were common on the first day or two. These daily
personal interactions were also important in gaining and holding the
confidence of the informants, who were committing a fair amount of their
time and who would inevitably reveal some personal opinions and activities
during the course of the logs and the interview. However, the close
interactions also made it more likely that informants would adjust their
activities to please (or displease) the investigator, so it was especially
important that the logs and Eureka slips were minimally biased.

2.1.3 Informants. Fourteen informants participated in the study, seven
male and seven female. They are identified in this report as Informants 1
through 14, and are all referenced with male pronouns to help preserve
anonymity. All participants volunteered their time.

The informants were selected to provide a broad range of experience and
work demands. This section provides details as well as summary discussion
of the informants’ backgrounds and work situations during the diary
period, since these are key factors in determining the broader applicability
of the study. This information was collected as part of the first question in
the interview phase of the study. Table I provides a brief description of
each informant.

The informants’ current use of computers was a key factor in their being
asked to participate in the study. Four of the informants, identified by the
key word “clerical” in the computer-use column of the table, represented
the large population who use word processors and spreadsheets in an office
environment. Another three informants, categorized under “science sup-
port,” were selected to yield insights into the work of scientists who rely on
computers for text processing, graphics, and some data analysis, but are
not involved in computer modeling or other research that is fundamentally
computer based. The three informants whose computer use is described as
a “primary tool” represented the growing force of workers for whom the
work environment is not simply improved but is entirely defined by the
presence of computers. Two of these informants worked in business, where
they did financial modeling and analysis using interactive spreadsheets
and databases. The third informant in this group was a cognitive scientist
who used computers as a tool for cognitive modeling. Finally, four of the
informants were highly experienced computer scientists, categorized as
performing “work/research” in the field of computers themselves.

The informants’ experience with computers was also distributed across a
very wide range, in terms of both breadth and depth. Expressing this range
in units such as “years of experience” or even in broad categories such as
“novice” or “expert” is difficult. However, to provide an overview of the
sample characteristics, informants could be roughly assigned to three
groups. Six informants had experience as users that ranged from a single
word processor, email, and one other application, to several applications

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 197

Table I. Informants’ Background Experience
Operating

D Systems* Computer Use Position; Duties Background and Experience

1 Unix/ clerical secretary; general On-the-job and classroom training on

Workstation Unix-based and dedicated word
processing, spreadsheets.

2 Mac/VMS clerical secretary; general On-the-job training, some classes, on

dedicated word processors, PC and
Macintosh-based word processors and
spreadsheets.

3 Workstation/ work/research Ph.D. student in Industry experience in program

Unix computer science; Al development and support. Extensive
research, writing use of minicomputers, personal
computers, Al workstations.

4 Mac/Unix work/research Ph.D. student in Industry experience in program
computer science; Al development and support. Experience
research, writing with Unix, PCs; learning Macintosh.

Has taught computer science courses.

5 Mac/PC clerical undergraduate in Home experience with PCs. Work
engineering, clerical experience with word processing and
assistant duties; spreadsheets on Macintosh. Some
homework programming training.

6 Unix/ work/research faculty member in Extensive academic experience with

Workstation computer science; Al Unix systems and Al workstations.
research, teaching Limited PC/Macintosh background.
No industry experience.

7 Mac/Unix primary tool research faculty in Master’s degree in computer science,
cognitive science; Ph.D. in cognitive science; has taught
cognitive modehng, computer science courses. Macintosh
empirical research user and Lisp programmer. Research

focus in psychology.

8 Mac/PC clerical undergraduate in Work and home experience with several
pharmacy, clerical programs on PC and Macintosh. High
assist.; homework, school programming courses.
assigned duties Aggressive learner of new programs.

9 Unix/Mac work/research Ph.D. computer science Industry experience in program
researcher in industry; development and support. Extensive
program development use of minicomputers, personal

computers, Al workstations. Has
taught computer science courses.

10 PC/VMS science support faculty member in Extensive experience with personal
linguistics; research computers, both command-line and
teaching graphical interfaces. Relies heavily on

databases, word processors, and
presentation software for teaching
and research. Programs in database,
system command language.

11 Mac/VMS science support Ph.D. student in On-the-job experience with
psychology; empirical minicomputer statistics packages,
and bibliographic Macintosh spreadsheets, word
research processing, and graphics. Some

programming training, occasional
programming for research in statistics
programs, HyperCard.

12 PC/Mac primary tool financial analyst in Master’s-level training in information
industry; data systems. Programming courses in
analysis, predictions Fortran, Pascal. Extensive experience

with PCs and Macintosh, both as a
user and support person. Frequent
programmer in database and
spreadsheet packages.

13 Mac/VMS science support faculty member in On-the-job experience with Macintosh
psychology; empirical word processing, graphics, and
research, teaching statistics. Some experience with

similar programs on window-based
PCs. Email on minicomputer. Has
avoided learning to program.

14 PC/Mac primary tool financial analyst in Courses in programming (Fortran,

publishing; data
analysis, work flow

investigations, training

for job sharing

Cobol, Pascal) and finance. Extensive
experience evaluating Macintosh
application software in a development
environment. Heavy user of
spreadsheets and databases. Involved
in user support.

* Primary/secondary operating system; PC includes both MS-DOS and MS Windows.

198 D John Rieman

Table II. Hours Logged During the Diary Study

Total Mean SD Min Max
Hours Logged, Less Personal Time 476.5 34 4.3 27.0 39.5
Hours of Computing 242.6 17 8.4 1.0 34.4
% of Log Hrs Spent Computing 51 51 24 3.5 91.7

and systems. None of these informants programmed as a regular part of
their work. Another four informants had work experience with many
applications, some responsibility for the support of other users, and pro-
grammed frequently, either in traditional languages or in 4GL systems.
The last four informants were professional programmers in research or
industry, who had formal training and had taught or supported other
users.

Informants also used a variety of computer operating systems as their
primary system. Systems listed as “secondary” in Table I are those with
which informants had significant past experience or current access for
occasional use, typically for email purposes or as a home system. For some
uses it was difficult to say which was the primary system; in these cases
the system listed in the table is the one in which the user reported the most
computing during the log week.

2.2 Diary Results: Logged Time

This section presents a summary of the log sheet data. These data do not
report learning events, which were recorded on the Eureka slips. To a large
extent, the purpose of the log sheets was to draw the informant’s attention
to the diary process, so Eureka events would be recorded when they
occurred. However, the log sheet data is also of interest because it shows
the amount and character of computer interaction within which learning
events occurred.

2.2.1 Total Time and Time Computing. The data presented include only
logged time not marked as breaks/personal. All but two of 14 informants
kept their logs over a consecutive five-day period. One informant (2) kept a
log over 4.5 consecutive work days plus a half day a week later; for another
(9), one day of the five was eliminated from the data because the log was
only partially and inaccurately completed. For most informants, the log
skipped weekends and holidays, although some informants worked over the
weekend and logged that period.

The total time logged and time spent computing is given in Table II.
Informants spent about half their time, on average, working with comput-
ers (17 hours out of 34). However, the range for individuals extended from
2.5% (Informant 5, 1 hour out of 28.5) to 92% (Informant 7, 27.75 hours out
of 30.25). For the purposes of this analysis, computers were defined
narrowly to include PCs, minicomputers, and mainframes. They did not
include phone systems, VCRs, fax machines, copiers, and similar hardware

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 199

Table III. Hours Logged in Software Categories During the Diary Study

Percent of Informants’ Computing

Total Logged Times

Software Category Hours % Ttl Infs* Mean SD Min Max
Word Processing 88 36 12 38 31 0 89.5
Programming 29 12 4 8 26 0 97.3
Email 26 11 9 15 22 0 60.2
Database 26 11 4 8 14 0 40.6
Special Applications 24 10 4 14 27 0 85.9
Spreadsheets 17 7 5 6 15 0 55.2
Graphics 12 5 4 4 9 0 33.9
Telecom (up/dnload) 9 4 4 2 5 0 16.7
Operating System 7 3 7 3 6 0 21.0
Games 4 1 1 1 5 0 20.3
News/On-Line Info. 3 1 3 1 3 0 8.7
Unknown <1 <1 1 <1 <1 0 1.7
Total 243 14

* Number of informants who logged time in the category.

that typically has a dedicated internal microprocessor and a multifunction
interface.

2.2.2 Time in Application Categories. As part of the log, informants
recorded the category of computer application they were working with. The
data are summarized in Table III. The categories should be self-evident
except for “special applications,” which included mostly minicomputer-
based software that was custom programmed for some business function.
Operating system activities included disk formatting, directory manage-
ment, and backups; working with batch or command files was categorized
as programming. The news and on-line information category reflected
mostly internet news reading. The World Wide Web was not available to
these users when the study was performed.

The left side of the table is a simple total of all times recorded, with a
count of informants who reported spending time with each category. This is
an indication of the study’s application sample characteristics. The cate-
gory accounting for the most hours is word processing, which makes up
36% of the total computing hours logged. No other category stands out.

The right side of the table was developed by determining the percentage
of each informant’s total computing time that was spent in each category,
then calculating the averages of those percentages. This is a rough indica-
tion of the sample population’s work habits, and its most notable character-
istic is its variance. The mean percentage for word processing, where
informants on the average spent the largest proportion of their computing
time, is 38%, but with a very great range. Two of the 14 informants did no
word processing at all. Of the remaining categories in Table III, only
electronic mail shows a mean percentage (15) and a number of informants
(9) that even approaches a consensus.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

200 D John Rieman

Table IV. Hours and Eurekas Logged During the Diary Study

Total Mean SD Min Max
Hours of Computing 243 17 8.4 1 34
Number of Eurekas 60 4.3 4.0 0 15
Eurekas per 8—Hr Computing 1.7 1.7 1.3 0.0 4.1

(E/8hr)

2.2.3 Time Spent in Task-Free Exploration of Computer Systems. A
central question addressed by the study was whether the informants found
their computing environments intrinsically interesting enough to motivate
exploration in the absence of any work-related tasks. To avoid biasing the
informants toward this kind of behavior, the log sheets did not include an
express category for “exploration.” However, any extended exploration
would have been noted during the investigator’s daily debriefings, and it
would have generated a number of Eureka slips, described in greater detail
in the next section. These data sources show no evidence of time spent by
any informant in task-free exploratory learning of an interface. Informant
11 spent 15 minutes browsing the university’s on-line information system
with no set goal, but this was an exploration of information, not of the
interface. Informant 10, who had recently acquired new software, spent
more than five hours doing task-oriented exploration of the software’s
capabilities, out of 15.5 hours total computing time. The tasks were small
and artificial, and the informant admitted during the daily debriefings that
his work-related need for the software really was not great enough to
justify the time he was spending with it. Three other informants (4, 9, 14)
were working with new software during the log week, but all of them
structured their activities entirely around real, current tasks.

2.3 Eureka Slips

The Eureka slips recorded the learning events that the informants reported
during the log period. This data was analyzed to investigate the rate at
which learning events occurred and the strategies used for learning. A total
of 78 events were recorded. Of these, 18 involved copiers, phone systems, or
other equipment whose operation was not included in the calculation of
each informant’s “computing time.” Those 18 Eurekas are not included in
the detailed analysis that follows.

2.3.1 Eureka Distribution by Informant Category. The distribution of
the 60 computer-related Eurekas across informants is summarized in Table
IV. One informant (4) reported 15 Eurekas; the counts for the other
informants ranged from 0 (Informants 5 and 13, who both reported noncom-
puter Eurekas) to 8 (Informant 10). The total hours spent in computing for
each informant has been used to normalize the Eureka counts, providing an
indicator of learning events per computing time. The measure “Eurekas per
8 hours of computing” (E/8hr) was chosen as a meaningful unit.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 201

Table V. Eurekas per 8-Hour of Computing, by Informant Categories

Mean Mean* Values
Overall 1.7 1.2
by Gender:
female 2.0 1.3
male 1.5 1.1
by Computer Use:
clerical 1.2 1.2 (1.8, 2.3, 0, 0.62)
science support 2.1 1.1 (4.1, 2.2, 0)
primary tool 2.1 14 (1.7,1.1, 3.4)
work/research 1.7 1.1 (1.6, 3.5, 0.9, 0.9)
by Primary Operating System:7
Macintosh 1.5 1.1 (2.3,3.5,1.7,0.62, 2.2, 0, 0)
MS-DOS/MS Windows 2.9 1.1 (4.1, 1.1, 3.4)
Unix/VMS 1.2 1.2 (1.8, 0.9, 0.9)
Workstation 1.6 1.6 (1.6)

* mean of all values except the three scores exceeding 3.0 E/8hr; { not necessarily the system
in which all Eurekas occurred.

The mean E/8hr score for all informants is 1.7, but this is strongly
influenced by the relatively high scores for three users: Informants 4 (with
a raw Eureka count of 15), 10, and 14 had scores of 3.5, 4.1, and 3.4,
respectively. Not surprisingly, all of these users were actively involved in
learning newly acquired systems during the diary week. The E/8hr scores
for all other informants are less than or equal to 2.3, with a mean of 1.2
(SD = 0.8). By far the most prevalent case, therefore, is that of the user
who learns new things about a system infrequently, perhaps only two or
three times a week in an environment where spending half of one’s time in
computing activities is common.

In Table V, the E/8hr scores of informants are broken down by gender,
type of work, and principal operating system. There are no notably large
differences between the scores within any category, especially after the
values for the three unusually high E/8hr scores are removed from the
means.

Because of the difficulty in assigning experience ratings, no firm correla-
tions can be made between experience and E/8hr scores. An analysis using
the informal categories shown in Section 2.1.3 suggests that the number of
reported Eurekas did not change noticeably with experience. However,
examining the Eureka slips shows that novice users recorded many simple
Eurekas, such as learning how to select several files at one time on a
Macintosh; while more experienced users sometimes recorded complex
Eurekas, such as getting a simple “hello-world” program to run in a new
database language.

2.3.2 Eureka Distribution by Strategy. A central purpose of this re-
search was to identify the techniques that users apply when learning about
their systems. Table VI presents the Eureka data that are most relevant to
this issue. The table shows how often each of the strategies on the Eureka

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

202 D John Rieman

Table VI. Distribution of Eurekas by Strategy

Strategies Checked*

Total Try Read Ask Help Stmbl Notice Email Otherf

Totals
all informants 60 37 26 16 9 4 3 2 7
all but E/8hr >3.0 30 15 11 8 3 2 3 0 2

* total number of Eureka slips listing the category; some slips listed more than one category
(see Figure 2 for full text of strategies); T several user-defined strategies, no more than 2
Eurekas using any one strategy.

slips were used to solve a problem. Three strategies dominate the reports:
trying things out, reading the manual, and asking for help. Using on-line
help falls into a middle ground, and it is more common for the three
aggressive explorers than for the average informant. None of the other
strategies appears to be generally useful. The relative importance of these
learning resources is a key result of this study, and it will be supported by
the interviews described in Section 3.

Table VII shows the counts of strategies used alone and used in combina-
tion with other methods. The most striking value in this tabulation is the
number of times that trying things out is combined with reading the
manual. More than 25% of the Eurekas reported this approach. Trying
things out is also the only method that is found in combination with every
one of the other strategies. Conversely, the “Alone” column shows that
trying things out, reading the manual, and asking for help, identified in
Table VI as the most common strategies, are also the only strategies likely
to resolve a problem without recourse to some other method. It is especially
interesting that on-line help is never successful alone.

2.4 Key Results from the Diary Data

The logged time shows a sample population that is using word processing
roughly one third of the time, with the remaining time distributed across
many other applications. Within that environment, learning occurs infre-
quently, perhaps only one learning event for every eight hours of comput-
ing time for a user who is not actively involved in learning a new
application. Because the data is self-reported, this finding could be lower
than the actual value. The complexity of learning events varied across
informants, so some learning events may reflect the acquisition of more
facts than others.

The data are stronger when viewed as a sampling of learning events that
did occur, without regard to whether all such events were recorded. Across
a very wide range of situations and users, the Eureka reports showed that
the three preferred strategies for resolving problems are trying things out,
reading the manual, and asking for help. On-line help is occasionally used,
but other strategies are infrequent.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 203

Table VII. Combinations of Strategies Shown with Eureka Reports

In Combination with. . .*

Alone Try Read Ask Help Stmbl Notice Email Other
8 2 1 2 5

Try
Read
Ask
Help
Stmbl
Notice
Email
Other

o | 5

5 — — 2
2 2 — 1 —
— — 1 1

1 — — _
1 — — _
1 — — 1 —

= | oR| ©®oeo
<
SN N RS R

7
2
2
2
1

o |

* 10 Eurekas reported more than two strategies; for these, all combinations of the strategies
were incremented, i.e., try + read + ask added to 1 to try-ask, 1 to try-read, and 1 to read-ask.

3. INTERVIEWS

The diary logs reported a thin time slice of the informants’ working life,
covering only five days. To extend the investigation of each informant’s
behavior beyond that short period, another research technique was chosen:
the structured interview. The investigator interviewed each of the 14
informants individually, at a time convenient to them after they had
completed their log. Typically, the interview took place within two or three
days after the log period.

3.1 The Interview Method

The interviews were structured around a series of prepared questions
(Table VIII). The questions covered essentially the same topics that had
been the focus of the log period, but with some extensions to exploratory
behavior outside the workplace. The investigator would follow up infor-
mants’ initial answers on each question by encouraging them to give
examples or reasons. When necessary, the interviewer would clarify a
question by giving examples of the kinds of answer that might be appropri-
ate.

The interviews were designed to be complementary to the diary study in
several ways. The diary logs yielded quantitative results describing behav-
ior in the short term, while the interviews extended that result with more
qualitative descriptions of longer-term activities. The two methods also
probed for similar data in different ways, providing multiple retrieval
opportunities. For example, the logs asked informants to report learning
events as they occurred, then to categorize them as to strategy; in the
interviews, an alternative retrieval cue was strategy, to be exemplified by
events (Question 5). Finally, the daily debriefings in the diary study served
to lay a foundation for the interviews. They created a rapport and a
common vocabulary that enhanced the investigator’s ability to communi-
cate in the informants’ own terms.

All but one of the interviews were taped and transcribed by the investi-
gator. The transcriptions and notes taken during the interviews were

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

204 D John Rieman

Table VIII. Questions Asked in the Structured Interview

[u—y

. Can you give me some background information about your experience with computers?

. When you get a new piece of software, how do you learn to use it?

3. When you’re using a program that you already know, and you run across something that
you need to do but don’t know how, how do you figure out how to do it?

4. Do you ever play around with computers, just try things out to see what they will do?

5. On the Eureka slips there is a checklist of ways you might use to learn something new.
Can you give me specific examples of times you've learned things using each of those
strategies?

6. Do you ever “explore” things that aren’t related to computers? For example, do you go

shopping when you have nothing to buy, or wander around with no fixed itinerary when

traveling, or take apart things just to see how they work?

[\

The wording of each question varied slightly from one informant to another.

examined to produce the summaries in this section. (The answers to the
first question, on background, were summarized in Section 2.)

3.2 Question: Learning New Software

After the informants described their background, the interviewer asked
them, “When you get a new piece of software, how do you learn to use it?”

3.2.1 Five Approaches to Learning. The informants identified five main
ways to initially familiarize themselves with a new piece of software:

—reading the manual, usually explicitly identified as being done in con-
junction with one of the other methods (8 users: 2—4, 7-11),

—exploring its functionality, usually in the context of actual tasks (7 users:
3-6,9, 10, and 12),

—working through the supplied tutorial materials (6 users: 4, 5, 10-12,
and 14),

—having an experienced user demonstrate the package (5 users: 1, 2, 7, 8,
13),

—learning the basics initially, then learning more as the task demands (5
users: 8—-11, 14).

In addition to the five main strategies, a few users (1, 2, 8, 12) had taken
classes on some occasion, but this was always an exception to the way they
expected to learn a program. One user (11) said that watching other users
was a way to learn when no training materials or documentation were
available.

As informants recalled examples of past learning activities, it became
clear that the lines between the approaches were not clearly drawn.
Availability of training materials or experienced personnel partly defined
the strategies selected. Where tutorials were available, users had some-
times worked through examples as designed. At other times they used the
tutorials and examples as a foundation for task-free exploration, while in
still other situations they had used them as guide to a package’s function-
ality, then moved on to real-world tasks.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 205

3.2.2 Novice versus Expert Approaches. Several of the less experienced
users (5, 8, 11) described their approach to learning a new piece of software
in terms of a few past instances, which had offered different learning
options. In general, these users did not seem to have developed a consistent
approach to learning a new package, or at least none they were aware of.

The more experienced users, on the other hand, had clearly defined
learning strategies, which they stated without hesitation. The informants
who had worked primarily with PC- or Macintosh-based software typically
had a specific approach to using the mixture of documentation that has
become fairly standard in that arena. Informant 10, for example, always
started with the video if there was one, then followed the installation
instructions and did the tutorial, then tried small sample tasks, then
turned to larger, real tasks. Other informants had slightly different ap-
proaches.

Informants who had worked with a wider variety of systems, including
Unix and other time-shared computing environments, selected between two
distinct strategies, depending on the characteristics of the package they
were learning. Informant 4 specifically identified two kinds of software:
totally novel packages (“out of the blue”), for which the tutorial and
examples were required to reveal the software’s function, and packages
that were similar to known systems, such as editors, for which task-
oriented exploration was the preferred learning approach. He further
identified two “modes” of learning behavior: “project mode,” where getting
the current project completed was paramount, and “tool mode,” where
efforts were directed at learning the new tool, typically by redoing a task
that had already been completed with another tool. “Before I sit down at
the terminal I know which mode I'm in,” he said.

For informant 9, only simple software was worth a quick exploratory
foray, while large, complex packages demanded an in-depth understanding
of the manual and the program’s philosophy. He felt large systems were not
worth investigating without a real-world task to guide and justify the
learning effort. For these packages, he identified a sequence of investiga-
tory activities, beginning with the manual, proceeding to breadth-first,
task-free investigation of menus and controls, and finally moving into
depth-first, task-oriented work. Informant 3 made a similar distinction
between simple and complex packages, stating that reading and under-
standing, including an understanding of the source code, were preferred to
exploration for major software applications where the code was available.

3.2.3 Task-Oriented versus Task-Free Learning. Of the seven users who
identified exploration as one method of learning a package, six explained
that they performed this exploration in the context of tasks. One of these
informants (9) performed both task-oriented and task-free exploration.

For most users, the most effective approach was to use their own tasks.
Informant 4 used his own tasks because in “demand-driven” mode he would
not waste time learning what was not needed. Informant 10 would some-
times begin exploration with simple, trial tasks, but would soon progress to

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

206 D John Rieman

larger, real tasks. Informant 14 would look at example tasks provided in
the tutorials because they demonstrated the software’s functionality, but
he postponed learning until a real need arose. “I just keep them in mind if
I want to do something like that,” he explained, “because I know the
tutorial would walk you through those examples.” Only Informant 3
claimed a preference for the sample tasks provided with the system,
reasoning that the data for the examples had already been entered.

3.2.4 Use of Manuals in Initial Learning. Informant 14 expressed the
consensus opinion of the value of manuals when first investigating a
system: “Reading the user’s guide is, to me, useless. I only use the user’s
guide when I want to do something specific.” Eight informants did mention
using manuals while learning new software, but the manual was generally
used as a supplement or a support to other strategies, such as on-line
exploration or demonstration by another user. Only three informants (3, 4,
9) described situations in which they would start by reading the manual in
depth. These users were all highly experienced computer scientists, and the
occasions when they would read the manual typically involved learning a
complex new application, such as a programming environment.

3.2.5 Time Constraints. Many of the users explicitly identified time as a
constraint on their learning activities. Informant 1 did not like “reading
through all that stuff [the manuals] and trying to find the answer to my
problems.” He preferred a personal demonstration. As noted above, Infor-
mant 14 never read the manual until he had a specific problem to resolve,
and he initially looked at the examples only to see what could be done.
However, he liked the on-line tutorials, “because they’re short, and they
show you a lot of things right up front.”

Informant 2 volunteered his opinion of unstructured exploration: “It’s not
that I don’t like to do that, but I feel like if I'm working, it’s not a good use
of time.” Informant 6 described an extended exploratory session driven in
part by curiosity but also guided by a “cost/benefit analysis.” His initial
impression of the software was negative because of obvious problems, but
he decided to explore further to see if it contained features that might make
the earlier problems worth overcoming.

Informant 4, who had mentioned the efficiency of the “demand-driven”
approach to exploration, also described how he learned systems “incremen-
tally”: he would discover a problem, try to solve it unsuccessfully for a
while, then continue with his work. When the same problem came up again
on another day, he would take a few minutes to try a different solution, but
would give up again if that failed. “You know, I want to get this thing
edited,” he said, referring to his current task in the word processing
package he was learning, “and if I can’t find a feature fast, I'm just going to
forget it.”

3.2.6 Summary. When learning a new piece of software, inexperienced
users are likely to select whatever method is available to them. More
experienced users, however, select the learning strategy that they believe

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 207

will help them acquire the skills they need with the least possible invest-
ment of time. With relatively simple or standard packages and experienced
users, exploration in the context of the user’s immediate task may be an
effective first strategy. With complex, novel packages, however, experi-
enced users prepare themselves for task-oriented exploration by working
through on-line tutorials where available, reading the manual, and availing
themselves of their colleagues’ expertise through brief demonstrations.

3.3 Question: Resolving Problems

For many of the informants, there was no clear distinction between
learning a new piece of software and resolving problems with a software
package they had been using. This was the topic of the next question: “If
you're working with a program that you already know how to use, and you
run up against something that you don’t know how to do, how do you figure
out how to do it?”

The three strategies observed most often in the logged data also domi-
nated the answers to this question:

—Trying things out (exploration) was clearly identified as the first strategy
for 9 users (2-5, 10—14). An additional 2 users (2, 7) described their first
action as a combination of looking in the manual and trying things out.

—Looking in the printed manual was a first strategy for 3 users (1, 8, 9)
and a second strategy for 7 (1, 3, 5, 10-12, 14).

—Asking for help was a first strategy for 2 users (2, 6), a second strategy
for 5 (1, 5, 7, 8, 13), and the third strategy for 4 (3, 9, 10, 12).

Additional strategies identified were working around the problem (Infor-
mants 3, 4, 9, and 11, the first three of whom would sometimes use
programming for the workaround—although Informant 3 also praised the
efficacy of white-out), using on-line help (Informants 4, 6, and 10) and
looking at the source code (a first strategy in complex systems for Infor-
mant 3, and a second strategy, after asking colleagues, for Informant 10).

Some informants identified alternate “first” and “second” strategies,
depending on the problem, time, and resource availability, and in two cases
(1, 2), their mood at the time the problem arose. According to Informant 1,
“It depends on my mood [laughs], if I want to talk to somebody or if I want
to read it.”

Many informants distinguished between things they would immediately
ask system support personnel to handle and things they would try to
handle on their own. Hardware problems were almost always referred to as
systems support.

3.4 Question: Task-Free Exploration of Computer Systems

All but one of the informants answered that they did little or no exploration
of computer systems except for the purpose of performing current or
impending tasks. The one informant (10) who identified this as a common
activity had, during the diary week, spent one-third of his computer time

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

208 D John Rieman

exploring new software. Other examples he gave of exploratory behavior
were the changing of the appearance of his on-screen work space, “about
once a day,” and producing graphs or charts for course materials that were
unnecessarily decorated. “I really don’t need leather-look bar charts,” he
admitted. “And I don’t really need a sophisticated, vector-based graphics
program.” He specifically stated that he was a little embarrassed about this
behavior, because he knew it was not productive.

One other informant (8), an undergraduate, said he liked to do task-free
exploration, but did not have much opportunity. “[For] almost every pro-
gram, I try to find something fun about it,” he explained, giving the
example of learning to use the sound-recording capability of his depart-
ment’s Macintosh to record alarm messages in his own voice and the voices
of his coworkers.

The remainder of the informants answered either that they never or
almost never did that kind of thing, at least not in their current situation.
“Only once have I ever done that in my life,” said Informant 4, and then
gave the details of his experience with a Mandelbrot set program. Four of
the informants (3, 7, 9, 12) recalled doing more task-free exploration in the
past.

Essentially there were two reasons expressed for not exploring computer
systems. The most common reason was time constraints. Seven of the
informants (2, 3, 5-7, 12, 13) specifically said they did not have the time or
felt that exploration was not productive, at least not in their current job.

The second clearly expressed reason for avoiding task-free behavior was
that it was simply not interesting. “I use [computers] only as an instru-
ment, and I don’t see them as something fun,” explained Informant 13. A
similar attitude was expressed by Informant 7: “I don’t explore the actual
computer all that much. Of course, the computer’s a tool.” And Informant
11, while admitting to have tried a few adventure games, ranked the
computer low on the scale of interesting activities: “For leisure I like to run
around outside or watch TV. I wouldn’t normally come up with the idea of
switching on the computer to entertain myself.”

3.5 Question: Eureka Strategies

The informants had stated their preferred strategies for resolving prob-
lems, and these were largely validated by the Eureka counts. It is helpful to
understand the reasoning behind the users’ preferences. Were the pre-
ferred strategies the only ones available? Or were other strategies avoided
because past experience had shown them to be inefficient or unlikely to
succeed?

To investigate these issues, and to provide the informants with a differ-
ent index into their learning experiences, the interviewer asked: “You've
been using these Eureka slips in the diary study. Can you remember
specific occasions in the past when you learned something through each of
the methods listed on the slip?” For preferred strategies discussed with
users earlier in the interview, such as the use of manuals, the answers

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 209

Table IX. Answers to Question 4: “Can You Recall Examples of Learning Things Using
Each of the Categories in the Eureka Report?”

Strategy Used Not Used
Read paper all
manual
Use on-line help yes, praise or yes, but problems tried, doesn’t no, no comment
or man no comment 3,6,7,9,10, 11, work 5
1,4, 8,12 14 2,13
Tried things yes, de novo yes, with manual
until it all but three 7,8,9
worked
Stumbled onto yes, in yes, in manual maybe, can’t
by accident interface 3,4,7,13 recall
8, 10, 11 1,2,5,6,9,
12, 14
Asked in person colleagues or
or by phone system
support
all
Sent email unqualified yes yes w/reservations no, too slow no, no comment
4 3,7, 10, 11 1,2, 11 5,6, 8, 12,13
Posted to no, for reasons no, no comment
network news 1,2,3,6 5,7,9, 11, 13*
Noticed yes, only in training no, no comment or
someone else serendipitous or demo can’t recall
1,3,4,6,17, 5,7 2,10
11, 12, 183, 14
Other yes (user no, can’t think of
group, video, any
class) 4, 8, 13%*
3, 10, 14

* Informants 4, 8, 10, 14 did not answer the “net news” question; ** Informants 1, 2, 4, 6, 7, 9,
11, 12 did not answer the “other” question.

were usually short. But for other strategies the question provided a
springboard into discussion of the strengths and weaknesses of the ap-
proach.

The informants’ answers indicated that most of them had tried the
strategies available to them, but the ease with which they recalled specific
instances echoed the strategic preferences they had stated in Question 1.
(In the interviews, this question was asked after Question 4, Task-Free
Exploration, so informants were not so likely to immediately recall what
they had just said in Question 1.) The results of the question are summa-
rized in Table IX, and additional details are given below.

3.5.1 Strategy 1: Read the Paper Manual. Manuals had been mentioned
by most informants during earlier questions, and they all recalled in-
stances of solving problems by reading a manual, without much further
discussion. For some users, the most useful manual was a commercial
“How-to-Use-Program-X” text, written by someone other than the software
manufacturer. Additionally, users of networked systems often maintained

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

210 D John Rieman

written notebooks of procedures learned in training courses or from inter-
actions with system support personnel.

3.5.2 Strategy 2: Used On-Line “Help” or “Man.” All but one of the
informants had tried on-line help or the Unix system’s man, but for the
majority of them it was not highly regarded. Two users, both heavy
Macintosh users, had tried on-line help and decided it was useless. “It
never, ever, ever works for me,” stated Informant 13, explaining that he
either did not understand the help message or else that it clearly did not
answer his question. Informant 2 also complained that the messages were
difficult to understand and that they gave too much useless information: “I
mean, you ask it for help, and it tells you everything in the universe.”

Seven users recalled instances of finding things using on-line help, but
qualified their opinion of the approach. Informant 10 would use on-line
help on DOS systems, but only if the manual was not readily available.
Informants 3, 7, and 11 would use on-line help for command-oriented
systems (Unix, VMS, SAS), but not for the software they had used on the
Macintosh. On the other hand, Informants 9 and 14 would use on-line help
with the Macintosh, but not with command-line systems (Unix and DOS,
respectively). Comments on Unix man, even by informants who used it,
were negative but not specific as to the problems. Informant 6, for example,
stated that “it doesn’t usually amount to much.”

Only one user (Informant 4, a professional with experience in DOS,
Macintosh, and Unix) described on-line help (typically in DOS) as his first
fallback after trying things that had failed.

3.5.3 Strategy 3: Trial and Error. All informants recalled instances of
trying different things until they had resolved a problem. Many of the
examples had been given in answer to an earlier question or had arisen
during the diary study, and there was not a lot of further discussion. Three
of the informants (7, 8, 12) specifically noted that they often used trial and
error to disambiguate information from the manual. (Informants 7 and 2
had made the same comment in response to Question 1.)

One of the highly experienced informants (9) noted that this approach
was common in programming, where he defined it as “hacking.” He made
the distinction between a “quick and dirty approach” and doing a job well.
He associated trying things out with the quick and dirty approach, and said
he would try to read the manual and understand the software if he wanted
to learn it well. He had earlier provided details on his learning experiences
with Microsoft Word’s “styles” feature, where he described how the trial-
and-error approach had led him to use the program in an inefficient
manner.

3.5.4 Strategy 4: Stumble onto It by Accident. The phrase “stumble onto
it by accident” was intended to cover unplanned learning instances, such as
intending to enter the tab key to move the cursor forward but accidentally
entering shift-tab and discovering that it moved the cursor back. Infor-
mants generally had trouble recalling instances of this behavior. The only

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 211

situation in which subjects easily recalled stumbling across new features
was when reading manuals, where Informants 3, 4, 7, and 13 had noticed
things they were not looking for. Only two informants actually recalled
noticing an unsought feature in an interface: Informant 10 discovered a
table-formatting option that was in an inappropriate dialog box, and
Informant 11 discovered Microsoft Word’s “drag-and-drop” feature.

3.5.5 Strategy 5: Ask Someone (In Person or by Phone). All informants
easily recalled asking for help on computer software problems. However,
the availability of software help was clearly an issue. Informant 13, who
said he would “always!” ask for help, was a faculty member in a department
with responsive system support personnel. Three of the four informants
who pointed out problems by asking for help (3, 10, 12) were in situations
where support was not so readily available.

Several factors were raised that biased users against asking for help.
Two informants (10, 12) worked in situations where they were usually the
most experienced user of their software, so they could only get help from
the phone support lines, which they both did. Another informant (3), who
reported frequently calling a consultant for help, gave the opinion that
some expert users were annoyed by the frequent questions from other
users. Still another constraint was time. Informant 11 stated that he would
ask for help if someone was in the room or in a nearby office, but if no one
was readily available he would work around the problem, leaving the
question to be resolved later when a colleague was available.

An additional factor, pride in one’s ability to solve problems, was hinted
at in some of the interviews, but the stereotype of the lone computer
scientist may be a false one. Informant 4, a computer science graduate
student, summarized the case nicely: “I'm not an asker,” he said, “although,
this Ph.D. program has changed that. I ask more questions than I used to.
Something about graduating that appeals to me.”

3.5.6 Strategy 6: Send Email or Post News Request for Help. Neither
email nor network news programs were widely used by the informants as a
problem-solving resource, although email was used for other purposes by
nine out of the 14 informants (see Table III). Only five of the users recalled
sending email requests for help, and only one of these (14) preferred email
over phone conversations, because it allowed a more detailed communica-
tion.

Three of the users who said they would never use email gave time
constraints as the reason. “If a problem comes up, you don’t want to wait on
it,” explained Informant 1. The other users simply stated that they didn’t
use it or that they preferred phone calls.

None of the informants recalled posting to network news with a software
problem. Informants 2 and 11 said they would never put a question on
network news because it was too humiliating. Informant 2 also thought
news was too slow. “I don’t want to come back two hours later and get 20
replies.” Informant 6’s expectations were even lower: “If you post something

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

212 D John Rieman

saying ‘does anybody know how to do this?’ then you get back 12 replies
from people saying, ‘yeah, when you find out, tell me.”

3.5.7 Strategy 7: Noticed Someone Else Doing It. None of the informants
had a quick answer to this question, although 11 of them eventually
recalled examples of some sort. Six of the examples involved noticing a
specific command given by another user on a computer (1, 3, 11, 12, 14),
although the interviews did not always reveal whether the informants had
noticed the command itself or merely noticed its effect and then asked how
to achieve it. Another four (4, 6, 8, 13) clearly recalled noticing the effects
first. The remaining two occasions were in the contexts of demonstrations
or training sessions, which was not the intended meaning of the question.

Several interesting factors were noted by informants as they considered
this question. Informant 1 pointed out that this kind of learning event
happened more frequently when his work group had all just started on a
new system. Informant 10, who could not recall an example, is a faculty
member who explained that he almost never worked in an environment
where other people were using computers. Informant 13 stated a strong
preference for asking for help, and his example of noticing involved noticing
that a colleague could do something with the computer, then going back to
the colleague at a later date and asking how to do it.

3.5.8 Strategy 8: Other. One informant (3) mentioned user groups as a
place to learn things; another (11) suggested videos. Neither recalled
specific instances. A third informant (14) mentioned classes, and several
other informants had recalled attending classes when they described their
background. Most of the informants, who were reading the categories off a
Eureka slip as they gave their answers, simply skipped this category.

3.6 Question: Task-Free Exploration Outside of Computers

Question 4 had established that task-free exploration of computer systems
was uncommon for the users studied. It is of interest to compare infor-
mants’ behavior in the domain of computers to their behavior in other
domains. It might be that some users are especially inclined to exploratory
activities in general, an inclination that could show up in their computer
activities. Conversely, if the users did not explore any domain, then their
failure to explore computers might reflect a more fundamental preference
or limitation.

To investigate these issues, informants were asked to recall exploratory
activities in noncomputer domains. Because the words “exploratory activi-
ties” would have little meaning to the informants, the question was
supplemented by examples: traveling without a detailed itinerary or shop-
ping with nothing to buy.

All 14 of the informants readily recalled examples of unplanned, goal-free
activities. Travel was the most common domain for exploration. (This may
have reflected a bias in the examples given as part of the question.) Other
domains included shopping and hobbies, such as gardening. All of the

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 213

exploratory activities described by informants were recreational, which fits
with the opinions expressed earlier concerning exploration of computer
systems. In response to that question, several informants had indicated
that they did not find it interesting or appropriate to engage in recreational
activities with computers, which they considered tools of their work.

4. GENERAL DISCUSSION

As described in the introduction, earlier research had suggested that
exploratory learning could be a productive and enjoyable strategy for
learning about computer applications. However, there was reason to be-
lieve that unsupported instructionless learning, without resort to manuals
or other training aids, would be problematic. The goal of the diary logs was
to observe users’ learning strategies in the workplace, under the con-
straints of their daily jobs, with particular attention to strategic use of
available resources. The interviews were designed to validate the logs and
extend the study’s coverage to strategies for initially learning new comput-
ing systems. Taken together, the logs and interviews provide converging
evidence for several key points:

—Users are primarily concerned with accomplishing the tasks that define
their jobs. The time pressures associated with those tasks are a major
factor in determining what and how a user chooses to learn about a
computer system.

—Although many users will scan tutorials, manuals, and menus to gain an
initial overview of their software, they generally prefer a “just-in-time,”
task-driven approach to learning the details. Exploratory learning for
pleasure is rare.

—Trying different things with a system to discover how to accomplish a
task is an approach that users apply frequently and successfully in the
workplace. Although this approach can be successful on its own, it is
often combined with looking in manuals and asking other users or system
support personnel for help.

—On-line help is widely disliked, although it is sometimes used in conjunc-
tion with trial and error.

These results describe the behavior of a relatively well educated, comput-
er-sophisticated group of users, most of whom have had long-term access to
modern computing facilities. The behavior of these users, in particular
their reliance on manuals and help from support personnel and other users,
reflects both the information richness of their environment and the confi-
dence and sophistication of the individuals. Nardi [1993] and MacKay
[1990] found similar collaborative work in studies of spreadsheet and CAD
users. This is a situation that may be widespread in the culture of today’s
workers in large organizations, although it may not apply to individuals
who work at home or in very small offices.

The situation within large organizations may also change as computer
systems and their associated resources continue to evolve. Indeed, it is

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

214 D John Rieman

interesting to compare these results with those reported in Rosson’s [1984]
survey of 121 users of the Xedit word processing system. Those users
reported their most important learning resources as the manual (46.9% of
those surveyed), experimentation (21.2%), and assistance from other users
(17.7%). These are the same three resources that predominate in the
current study, but, at least for the ongoing learning reported by the Eureka
slips, experimentation has pushed the manual out of first place.

4.1 Implications for Exploratory Learning and Training

The increased willingness to use trial and error supports the direction of
design aids such as the Cognitive Walkthrough [Wharton et al. 1994],
which is biased toward the development of “walk-up-and-use” systems.
However, this recommendation needs to be tempered by the additional
finding that trial and error is typically used in conjunction with manuals
and asking for help. In the workplace today, users evidently do not expect a
system to be entirely comprehensible without some external help, and they
have evolved the skills to identify and acquire that assistance. Designers of
software applications need to keep those skills in mind as they balance
walk-up-and-use learnability against speed and ease of frequent opera-
tions.

The study also shows that users often prefer to postpone their learning
until driven to it by real tasks. Informants with this attitude would not “do”
supplied tutorials as a means of learning a new application. However, they
would skim through the tutorials in order to see what functions the
program offered and to acquire an overview of the procedures required.
Learning the details would be postponed until a real task demanded it.
Other users would work through the tutorials as designed, or with slight
changes to incorporate their own data. Both kinds of user might be better
served if tutorials were specifically designed to support high-level scanning
followed by later visits for detailed information. Many on-line tutorials
clearly fail in these respects, because they must be stepped through from
beginning to end or because they take over control of the primary applica-
tion.

The limited role that formal, application-specific training was found to
play in the lives of many users suggests the need for training in on-the-job
learning strategies themselves. The more experienced informants had
well-defined approaches for learning new programs and resolving problems.
The just-in-time, task-oriented strategy for learning software was one
example. Another was the resolving of problems by alternately trying
things out on the system and looking for external help. These general
strategies reflect a knowledge of which resources to access for certain kinds
of information, along with a repertoire of techniques, such as saving a large
file before trying a new global command. Draper [1984] makes a similar
point, noting that there are essentially no users with global expertise in
Unix, but the more experienced users know how to experiment with the
system, where to look for answers to their questions, and who to ask when

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 215

those resources fail. It could prove valuable to train novice users in these
skills.

4.2 Implications for Documentation and Support

Manuals, on-line help, and phone-in help lines are some of the features
typically supplied with software to support training and ongoing use.
Wright [1988], in her review of documentation design, describes a range of
functions that this documentation needs to serve, from tutorials to quick
references to detailed explanations. To meet these needs, many PC and
Macintosh programs today come with several major pieces of documenta-
tion, with titles such as “Getting Started,” “Tutorial,” “User Manual,” and
“Reference.”

The informants in this study, especially those with wide experience,
expressed a familiarity with these resource distinctions. Some of them
described how they would use different items to access different kinds of
information, such as an initial survey of a package’s functionality, an
overview of a procedure, or the step-by-step details. This not only supports
the need for multiple resources; it points to an opportunity for leveraging
off existing user skills. Documentation will benefit from maintaining a
consistency with the formats that are commonly found on a given platform.

For task-oriented problem solving, the informants would typically use
the documentation in combination with trying things out on the system
itself, an approach that is intentionally supported by “minimal” manuals
[Carroll 1990]. This strategy also calls for more than one kind of documen-
tation, including global or overview materials that provide a conceptual
framework for exploratory activity, and detailed references to consult when
trial and error fails [Holt et al. 1989; Lewis and Rieman 1994].

It is of interest that some users in the field study relied on third-party
manuals. This may be because these books are more easily acquired by
individuals in a site-licensed situation. However, another possibility is that
third-party texts help to overcome the “vocabulary problem” noted by
Furnas et al. [1987]. The manuals supplied with the system are likely to
use the same concepts and vocabulary as the software itself, which may
have already failed for the user during trial-and-error exploration. Third-
party texts can provide an alternative view of the same material.

The alternative viewpoint of third-party texts may also help to trap and
refocus low-level questions that reflect an erroneous mental model of the
software. An example of this problem was observed in laboratory trials
related to the field study. Franzke and Rieman [1993] gave users an
unfamiliar application and asked them to create a graph from a spread-
sheet. A few subjects did not realize that the program could automatically
plot the data; these users ignored the menus for graph creation and spent
their time looking for drawing tools. When this kind of problem occurs,
even a moment’s assistance from another user may be critical. It is also the
kind of problem that intrinsically motivating overviews or tutorial materi-
als may help to avoid, by catching the busy user’s attention and highlight-
ing key concepts.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

216 D John Rieman

4.3 Implications for On-Line Help

This study did not include a detailed assessment of the on-line help
systems available to each informant, but the range of systems was consid-
erable. They included the hypertext-style Symbolics Document Examiner,
the help systems supplied with various applications on Macintosh and PC
platforms, and the command-oriented “man” and “help” of Unix and VMS.
Although there were some instances where individual informants identified
a particular help system as useful, the overall finding was that on-line help
was inferior to manuals.

This result is paradoxical given the task-oriented and time-constrained
nature of users’ learning activities. Of all the external learning aids,
on-line help is the one resource with immediate access to at least some part
of the user’s current context. It may also be the most readily available,
especially in the increasingly common situation where users of site-licensed
software or laptop computers do not have copies of the manuals at hand.

A variety of reasons have been suggested for the weakness of on-line help
systems [Duffy et al. 1992]. One simple explanation is that the help window
obscures the task window. More sophisticated arguments in the same
direction involve cognitive load and interruption [Wright and Lickorish
1994]. The interviews and the Eureka data in Table VII lend support to
these ideas. Seventeen out of 26 instances of reading the manual, and 8 out
of 9 instances of using on-line help, were combined with trying things out
in the interface. For many systems, however, trying things out and using
on-line help cannot be done concurrently.

Additionally, the time constraints that users found so important may
seriously discourage them from using on-line help. On-line systems may be
slower than printed documents—or may appear slower—because of the
reduced readability of on-line text [Gould et al. 1987], the need to wait for
disk access or screen repainting, and the need to scroll through text in a
small window. The system will be especially discouraging to the user who is
visually scanning a large amount of help text in search of detailed informa-
tion described in an unfamiliar vocabulary. Two on-line systems that
actively target the vocabulary problem are the 1-2-3-to-Excel command
translation provided by Microsoft, and Superbook, using latent semantic
indexing [Egan et al. 1989].

4.4 Implications for Further Research

The results of this study identify the context in which exploratory learning
typically takes place. Task-free exploration is unlikely to occur, not only
because systems are uninteresting, but because the users’ fundamental
goal is to complete their work-related tasks. To that end, they will use their
knowledge of the available resources to choose the fastest, most focused
learning strategies available. Task-oriented exploration, however, is com-
mon, and its structure is shaped by the existence of a real, work-related
task, significant time constraints, and multiple fall-back resources that will
be turned to if on-line investigations fail.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

Exploratory Learning Strategies . 217

This real-world data from the field, along with broader data from instru-
ments such as surveys or more focused results from on-site videotaping, can be
used to improve the contextual validity and relevance of laboratory research.
This is a partial answer to the problems identified by proponents of situated
cognition and related design methodologies [Suchman 1987; Wixon et al.
1990]. The data have already helped to shape recent research in our laboratory
[Franzke 1995; Franzke and Rieman 1993; Rieman 1994], and they raise
important questions concerning the low-level details of resource selection, use,
and interaction during task-oriented exploration.

ACKNOWLEDGMENTS

I thank Clayton Lewis, Peter Polson, and Marita Franzke for their advice
and collaboration on the research effort of which this is a part. Anders
Ericsson provided suggestions as to the form of the diary logs. Jack Carroll,
three anonymous TOCHI reviewers, Richard Thomas, and my colleagues at
the MRC Applied Psychology Unit in Cambridge helped shape the final
draft. The 14 informants volunteered their time for the diary logs and
interviews; their cooperation is greatly appreciated.

REFERENCES

CARROLL, J. M. 1982. The adventure of getting to know a computer. IEEE Comput. 15, 11,
49-58.

CARROLL, J. M. 1990. The Nurnberg Funnel. MIT Press, Cambridge, Mass.

CARROLL, J.M., MAck, R.L., Lewis, C. H., GRISCHKOWSKY, N. L., AND ROBERTSON, S.P.
1985. Exploring a word processor. Hum. Comput. Interact. 1, 283-307.

CARROLL, J. M. AND MAZUR, S. A. 1986. Lisa learning. IEEE Comput. 19, 10, 35—-49.

CARROLL, J. M. AND Rosson, M. B. 1987. The paradox of the active user. In Interfacing
Thought: Cognitive Aspects of Human-Computer Interaction, J. M. Carroll, Ed. MIT Press/
Bradford Books, Cambridge, Mass., 80-111.

DrAPER, S. W. 1984. The nature of expertise in UNIX. In Human-Computer Interaction—
Interact ’84. Elsevier Science, Amsterdam, 465—-471.

Durry, T., MEHLENACHER, B., AND PALMER, J. E. 1992. On Line Help: Design and Evalua-
tion. Ablex, Norwood, N.dJ.

EcaNn, D. E., REMDE, J. R., GoMEZ, L. M., LANDAUER, T. K., EBERHARDT, J., AND LOCHBAUM,
C.C. 1989. Formative design-evaluation of Superbook. ACM Trans. Inf. Syst. 7, 1, 30-57.

ENGELBECK, G. E. 1986. Exceptions to generalizations: Implications for formal models of
human-computer interaction. Masters thesis, Dept. of Psychology, Univ. of Colorado, Boul-
der, Colo. Unpublished.

EricssoN, K. A., TescH-ROMER, C., AND KramPE, R.T. 1990. The role of practice and
motivation in the acquisition of expert-level performance in real life: An empirical evalua-
tion of a theoretical framework. In Encouraging the Development of Exceptional Skills and
Talents, M. J. A. Howe, Ed. The British Psychological Society, Leicester, 109-130.

FIsCHER, G. 1987. Cognitive view of reuse and redesign. IEEE Softw. 4 (July), 60-72.

FrANZKE, M. 1995. Turning research into practice: Characteristics of display-based interac-
tion. In Proceedings of the Conference on Human Factors in Computing Systems. ACM, New
York, 421-428.

FrANZKE, M. AND RIEMAN, J. 1993. Natural training wheels: Learning and transfer between
two versions of a computer application. In Proceedings of the Vienna Conference on Human
Computer Interaction 93. Springer-Verlag, Berlin, 317-328.

Furnas, G. W., LANDAUER, T. K., GoMmEZ, L. M., AND Dumails, S. T. 1987. The vocabulary
problem in human-system communication. Commun. ACM 30, 11 (Nov.), 964-971.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

218 D John Rieman

GouLp, J. D., ALFArO, L., FINN, R., HAupt, B., AND MiNUTO, A. 1987. Reading from CRT
displays can be as fast as reading from paper. Hum. Factors 26, 5, 497-515.

Hovt, R. W., BoEEM-DAvIs, D. A., AND ScHULTZ, A. C. 1989. Multilevel structured documen-
tation. Hum. Factors 31, 2, 215-228.

JOHN, B. E. AND PACKER, H. 1995. Learning and using the cognitive walkthrough method: A
case study approach. In Proceedings of the Conference on Human Factors in Computing
Systems. ACM, New York, 429-436.

LeEwis, C. 1988. Why and how to learn why: Analysis-based generalizations of procedures.
Cog. Sci. 12, 211-256.

Lewis, C. AND RIEMAN, J. 1993. Task-centered user interface design: A practical introduc-
tion. Shareware electronic publication. Available via anonymous ftp to ftp.cs.colorado.edu.
Mackay, W. 1990. Users and customizable software. A co-adaptive phenomenon. Ph.D.

dissertation, Sloan School of Management. MIT, Cambridge, Mass.

MaLoNE, T. W. 1982. Heuristics for designing enjoyable user interfaces: Lessons from
computer games. In Proceedings of the Conference on Human Factors in Computing Systems.
ACM, New York, 63—68.

Narpi1, B. 1993. A Small Matter of Programming. MIT Press, Cambridge, Mass.

NEaL, L. R. 1987. Cognition-sensitive design and user modeling for syntax-directed editors.
In Proceedings of CHI+GI °87 Conference on Human Factors in Computing Systems and
Graphics Interfaces. ACM, New York, 99-102.

NIELSEN, dJ., MACk, R. L., BERGENDORFF, K. H., AND GRISCHKOWSKY, N. L. 1986. Integrated
software usage in the professional work environment: Evidence from questionnaires and
interviews. In Proceedings of CHI'86 Conference on Human Factors in Computing Systems.
ACM, New York, 162-167.

PorsoN, P. G. anD Lewis, C. H. 1990. Theory-based design for easily learned interfaces.
Hum. Comput. Interact. 6, 191-220.

RiEMAN, J. 1993. The diary study: A workplace-oriented tool to guide laboratory studies. In
Proceedings of the InterCHI’93 Conference on Human Factors in Computer Systems. ACM,
New York, 321-326.

RiEMAN, J. 1994. Learning strategies and exploratory behavior of interactive computer
users. Ph.D. dissertation, Tech. Rep. CU-CS-723-94, Dept. of Computer Science, Univ. of
Colorado, Boulder, Colo.

Rosson, M. B. 1984. Effects of experience on learning, using, and evaluating a text-editor.
Hum. Factors 26, 463—475.

SCHNEIDERMAN, B. 1983. Direct manipulation: A step beyond programming languages.
IEEE Comput. 16, 8, 57—-69.

SHRAGER, J. 1985. Instructionless learning: Discovery of the mental model of a complex
device. Ph.D. dissertation, Carnegie-Mellon Univ., Pittsburgh, Pa. Unpublished.

SHRAGER, J. AND KLAHR, D. 1986. Instructionless learning about a complex device: The
paradigm and observations. Int. J. Man Mach. Stud. 25, 153—-189.

SucHMAN, L. A. 1987. Plans and Situated Actions. Cambridge University Press, Cambridge,
England.

WHARTON, C., RIEMAN, J., LEWIS, C., AND PoLsON, P. 1994. The cognitive walkthrough method:
A practitioner’s guide. In Usability Inspection Methods, J. Nielsen and R. L. Mack, Eds. John
Wiley and Sons, New York.

WixoN, D., HortzBLATT, K., AND KNOX, S. 1990. Contextual design: An emergent view of
system design. In Proceedings of the Conference on Human Factors in Computing Systems.
ACM, New York, 331-336.

WRIGHT, P. 1988. Issues of content and presentation in document design. In Handbook of
Human-Computer Interaction, M. Helander, Ed. Elsevier (North-Holland), Amsterdam,
629-652.

WRIGHT, P. AND LICKORISH, A. 1994. Menus and memory load: Navigation strategies in
interaction search tasks. Int. J. Hum. Comput. Stud. 40, 965-1008.

Received August 1994; accepted September 1995

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 3, September 1996.

