
IEEE DISTRIBUTED SYSTEMS ONLINE 1541-4922 © 2004 Published by the IEEE Computer 
Society 
Vol. 5, No. 10; October 2004 

MoCA: A Middleware for Developing 
Collaborative Applications for Mobile Users 

Vagner Sacramento, Markus Endler, Hana K. Rubinsztejn, Luciana S. Lima, Kleder 
Gonçalves, Fernando N. Nascimento, Giulliano A. Bueno, Departamento de Informática, 
Pontifícia Universidade Católica do Rio de Janeiro 

MoCA the Mobile Collaboration Architecture is a middleware for developing and 
deploying context-aware collaborative applications for mobile users. It comprises client and 
server APIs, core services for monitoring and inferring the mobile devices' context, and an 
object-oriented framework for instantiating customized application proxies.

Portable computing devices with wireless communication interfaces such as PDAs or smart 
phones are becoming more powerful and commonplace. Consequently, demand has 
increased for applications and services that support communication and collaboration among 
mobile users. This new distributed computing environment poses new challenges, such as host 
mobility, limited device resources, and intermittent connectivity. However, it also opens up a 
range of different and unexplored forms of collaboration among mobile users, in which, for 
example, information about user locality and proximity could play a distinguished role in 
determining an interaction's form and participants.

We argue that collaboration in a static network differs significantly from collaboration in a 
mobile network. While for collaboration based on static networks, one implicitly assumes that 
all user devices have stable connectivity, this isn't the case in a mobile environment. Because 
mobile networks suffer from weak and intermittent connectivity, a user might become 
temporarily unavailable even though he or she is still engaged in the collaboration session. 
Hence, in a mobile setting, the requirements for synchronous views and mutual perception for 
the collaborating peers (collaboration awareness) needs to be redefined.

Another difference is related to user mobility. When users are mobile, the collaborating group 

1
IEEE Distributed Systems Online October 2004 



tends to be more dynamic and arises spontaneously, motivated by a shared common interest or 
situation. Moreover, the way a mobile user interacts with other community or group members 
tends to be more variable, asynchronous, and dependent on the user's current context, activity, 
or interest.

Finally, collaboration between mobile users usually isn't driven by a global and predefined 
goal or task, such as cooperative work on a digital or physical artifact. Instead, it's driven by 
spontaneous and occasional initiatives for mutual sharing of information, contribution to the 
development or improvement of public knowledge, and so on. This makes participation in a 
collaboration more spontaneous and irregular, and usually motivated by implicitly (or 
explicitly) assessed gain of reputation owing to the contribution of higher-quality, more 
precise, or more relevant information.1 

All the aforementioned characteristics suggest that environments for developing mobile 
collaboration applications and services should incorporate new mechanisms that would 
facilitate collecting, aggregating, and accessing (at the application level) different kinds of 
information about the individual and collective contexts of collaborating users. This 
information can become directly available to the collaborating peers (for example, for 
enhancing the group's collaboration awareness) or can be used for adapting the application's 
behavior (for example, its available functions or user interfaces) to the current situation.

MoCA (mobile collaboration architecture) is a middleware architecture for developing context-
processing services and context-sensitive applications for mobile collaboration. Our work on 
this architecture is part of a wider project that aims to experiment with new forms of mobile 
collaboration and implement a flexible and extensible service-based environment for 
developing collaborative applications for infrastructured mobile networks.

MoCA overview

We designed MoCA for infrastructured wireless networks. The current prototype works with 
802.11 wireless networks, but it will also be possible to adapt the architecture for cellular data 
network protocols, such as General Packet Radio Service.

The MoCA infrastructure consists of client and server APIs, basic services supporting 
collaborative applications, and a framework for implementing application proxies (the 
ProxyFramework). Each application has three types of elements: servers, proxies, and clients. 
The first two execute on nodes of the static network, while clients run on mobile devices. The 
proxy intermediates all communication between the application servers and the clients. 
Applications with requirements to scale to numerous clients might have several proxies 

2
IEEE Distributed Systems Online October 2004 



executing on different networks. An application's proxy could be in charge of several tasks, 
such as adapting the transferred data for example, applying data compression, protocol 
conversion, encryption, user authentication, context processing, service discovery, handover 
management, and others. Most of these tasks require significant processing effort, so the 
proxy is also a way to distribute the application-specific processing among the server and its 
proxies.

A collaborative application's server and client should be implemented using the MoCA APIs 
because they hide from the application developer most details concerning the interactions with 
the services that the architecture provides (which we discuss in the next section). We designed 
the APIs and the basic services to be generic and flexible, so they'd be useful for different 
types of collaborative applications for example, those based on synchronous or 
asynchronous, message- or sharing-oriented communication.

The ProxyFramework a white-box framework2 can be used to create application proxies 
according to the collaborative application's specific needs. It facilitates access to MoCA's 
basic services and the programming of application-specific adaptations triggered by events 
related to context changes.

In MoCA, most of these tasks require significant processing effort, so the proxy is also a way 
to distribute the application-specific processing among the server and its proxies.

Additionally, the architecture offers the following components and core services, which 
support the development of context-aware collaborative applications.

The monitor is a daemon executing on each mobile device. It collects data concerning the 
device and network's state and sends this data to the context information service (CIS) 
executing on one or more nodes of the wired network. The collected data includes the wireless 
quality, remaining energy, CPU usage, free memory, current access point (AP), and the set of 
APs with their corresponding signal strengths that are within the mobile device's range.

The CIS is distributed, and each of its servers receives and processes the mobile device's 
context information sent by the corresponding monitors. It also receives requests for 
notifications (that is, subscriptions) from application proxies and generates and delivers events 
to them whenever a change in a device's state is of interest to this proxy.

The discovery service (DS) stores information such as name, properties, addresses, and so 
on about any application (that is, its servers and proxies) or any service registered with the 
MoCA middleware.

The configuration service (CS) stores and manages configuration information for all mobile 

3
IEEE Distributed Systems Online October 2004 



devices so that they can use MoCA's core services, such as the CIS and the DS. The CS stores 
the configuration information in a persistent hash table, where each entry (indexed by the 
mobile device's media access control address) holds the CIS and DS servers' addresses (IP and 
port), and the periodicity by which the monitor must send the device's information to the CIS. 
The media access control address-specific indexing is essential for implementing a distributed 
CIS, where each server gets approximately the same context processing load.

The location inference service (LIS) infers a device's approximate geographical location by 
comparing the device's current radio frequency (RF) signal pattern (received from all 
"audible" 802.11 APs) with the signal patterns previously measured at predefined reference 
points in an indoor or outdoor area, using a similar algorithm as in the RADAR project.3 For 
this, the LIS uses the device's context information collected by the CIS, and measures the 
mean value (10 probes) of the Eucledian distance to each reference point. Because the RF 
signal is subject to much variation and interference, the location inference is only 
approximate. Its precision depends on the number of audible APs and reference points in the 
area. The LIS lets the administrator define symbolic regions of arbitrary size and rectangular 
shape and a hierarchical description of regions and nested subregions.

Registering and executing a collaborative application

Figure 1 shows the typical sequence of interactions among MoCA's elements, illustrating the 
roles these elements play during registration and execution of a collaborative application.

4
IEEE Distributed Systems Online October 2004 



Figure 1. A typical interaction sequence between a collaborative application and MoCA's core 
services. 

Initially, the application server registers itself at the DS (Step 1), informing the name and the 
properties of the collaborative service that it implements. Each proxy of the application also 
performs a similar registration at the DS (Step 2). This way, the application clients can query 
the DS to discover how to access a given collaborative service in their current network

usually through the "closest" proxy. The monitor executing on each mobile device polls the 
state of the local resources and the RF signals and sends this context information to the CIS. 
As we mentioned, the monitor obtains the address of the target CIS and the periodicity for 
sending the context information from the CS when it is started (Step 3). Thereafter, the 
monitor periodically sends the device's context data to the CIS (Step 4).

After discovering a proxy that implements the desired collaborative service through the DS 
(Step 5), the client can start sending requests to the application server. Each request gets 
routed through the corresponding proxy (Step 6), which processes the client's request, 
applying the application's specific adaptations, and forwards it to the application server. For 
example, the proxy might subscribe at the CIS with an interest expression (Step 7), registering 
its interest in notifications about context changes of a particular client (device). An interest 

5
IEEE Distributed Systems Online October 2004 



expression could be, for example, {"FreeMem < 10KB" OR "APChange = True"}, which 
would generate a notification if either the device has little free memory or has switched the 
access point.

Now, whenever the CIS receives a device's context information (from the corresponding 
monitor), it checks whether this new context evaluates any stored interest expression to true. 
If so, the CIS generates a notification and sends it to all proxies that have registered interest in 
this change of the device's state.

Applications that require location information register their interest with the LIS (Step 8), 
which in turn subscribes to the CIS (Step 9) to receive periodic updates of the device's RF 
signals. The LIS uses these signals to infer the device's location and send the corresponding 
notification to the application proxy.

When the application server receives the client's request, the request is processed and a reply 
is sent back to some or all proxies (Step 10), which can then adapt or process the reply (for 
example, compress it, filter it, and so on) according to the new state of the corresponding 
mobile device on its wireless connection. Such context-specific adaptation depends on the 
collaborative application's specific requirements. For example, if the proxy is informed that 
the quality of a mobile device's wireless connectivity has fallen below a certain threshold, it 
could temporarily store the server's reply data in a local buffer for an optimized bulk transfer, 
remove part of the data, such as the figures, apply some compression to the data, and so on. 
Moreover, the proxy could use other context information, such as the device's location, to 
determine when and how data should be delivered to the client (Step 11).

The architecture also implements mobility transparency for the applications. When a mobile 
device moves to another network, the monitor detects this and the CIS notifies the proxy. The 
proxy performs the handover at the application level by determining the most appropriate 
proxy for the device in the new network, and if the proxy is available, the collaboration 
session state is transferred to this new proxy.

Programming support

As we mentioned, MoCA provides server and client APIs and the ProxyFramework to 
implement an application.

Server API 

The server API offers some interfaces that handle the server's configuration and 

6
IEEE Distributed Systems Online October 2004 



communication options. Through primitive init(serviceName, properties, 
key, protType), the application server registers its name, address, and properties at the 
DS so that clients can discover it. The communication between the server and its proxies is set 
using protType and can be done through either an event service (using primitives 
subscribe/publish) or sockets (using primitives send/recv).

Client API 

This API offers interfaces to configure the client, find a proxy, send and receive data from the 
proxy, and obtain information on its current execution context.

Primitive init(serviceName, properties, protType), configures the 
application client so that it can use the services MoCA offers. It also starts the monitor (as a 
daemon). Moreover, it queries the DS to discover all the available proxies for the 
corresponding application. It does this by sending the application or service name, its 
properties, and the specific protocol to be used when interacting with the proxy (for example, 
short message service, User Datagram Protocol, Transmission Control Protocol, Java 
Messaging Service, or Wireless Application Protocol). With this information, the client can 
select the corresponding implementation of the client API's primitives (send/recv, 
publish/subscribe). Through the getStatus() interface, the client can query the 
context information collected by the monitor, which the application can use to trigger a local 
adaptation on the client side. This interface returns a reference to an XML-based description 
of the context information.

ProxyFramework 

MoCA offers an object-oriented framework that supports the development of the application's 
proxy. This framework gives the application developer simple mechanisms for accessing 
context information related to client devices that interact with the server through the proxy 
and for defining how the proxy should adapt to changes in the client's context.

The ProxyFramework offers such facilities through common features and design patterns that 
can be found in most distributed applications that use a proxy to cope with device mobility 
and intermittent connectivity. The framework consists of interfaces for a set of concrete 
components (frozen spots), which implement the proxy's common and predefined 
functionalities, and interfaces for a set of abstract components (hot spots), which can be 
implemented and extended according to each application's specific demands.

Context-aware mobile collaboration

7
IEEE Distributed Systems Online October 2004 



We have developed two context-aware collaborative applications as MoCA case studies. W-
Chat (wireless chat) simply uses the connectivity information of a device's context, while 
NITA (Notes in the Air) uses location information inferred by the LIS.

W-Chat 

W-Chat is a simple chat program distinguished by its ability to diffuse the connectivity status 
of chat room participants and support "conversational catch up" after a temporary device 
disconnection that is, the user gets all messages posted during the disconnection time. To 
implement these functions, W-Chat uses connectivity information from the CIS.

W-Chat's proxy intercepts all messages (commands and events) from the client to the server 
and vice versa. It also has a local message buffer for each client, so when a user reconnects to 
the network, W-Chat's client and proxy synchronize their states, and the user gets the set of 
most recent messages from each chat room in which he or she was participating. The proxy 
also registers at the CIS its interest in any disconnection and reconnection event from any of 
its client's devices.

When any W-Chat client disconnects for example, when having moved to a region without 
wireless coverage a characteristic icon showing this new connectivity status appears close 
to the user's name in the list of chat room participants. This additional information about 
mutual availability for collaboration (a new form of collaboration awareness) helps users 
decide if they should expect immediate messages from other users. We implemented W-Chat 
in Java 2 Micro Edition (J2ME).

NITA 

NITA is an application for posting text messages (and files in general) to a symbolic region as 
if it were a chat room. So, any user that's currently in (or that enters) this region and is 
properly authorized will automatically receive these messages. In the literature we can find 
several other projects with similar services combining messaging with spatial events.4,5 
However, most of these services were implemented from scratch or without a general 
middleware support for context monitoring and inference.

In NITA, when sending a message, a user can specify its destination (a symbolic region), 
names of the users authorized to read it, and how long the message will be readable. 
Moreover, a client can search for available NITA servers, their regions, and visible users in 
each of those regions. Potential receivers can set their visibility flag (on/off), choose which 
types of messages they want to receive, and choose whether to immediately display the 

8
IEEE Distributed Systems Online October 2004 



message or log it for future reading.

Because NITA is essentially a message retrieval service driven by spatial events (device X 
detected in region Y) and communication events, it interacts closely with the LIS.

The NITA proxy is responsible for querying the LIS about the area's structure and registering 
interest in its clients' location changes. Moreover, it manages the client's profile that is, it 
decides whether to filter out some messages, log the messages, or forward them to the client. 
Although the NITA server could perform many of these tasks as well, moving these tasks to 
the proxy was necessary for scalability purposes.

Conclusion

As we mentioned, this work is part of a wider project that aims to investigate collaboration 
support for mobile users. Collaboration among mobile users requires new and different 
middleware services than the ones traditional groupware provides for wired networks. In 
particular, we believe that not only a user's individual context information (such as his or her 
location or connectivity) but also collective context information (such as users' proximity to 
each other) can help enrich collaboration awareness and also allow for new forms of 
collaboration that haven't yet been explored in conventional, wired collaboration.

Compared with other middleware and environments for mobile collaboration (see the 
"Related Work"), MoCA offers a generic and extensible infrastructure for developing both 
new services for context acquisition and inference, and collaborative applications that use this 
context information to determine the form, contents, and participants of a collaboration.

So far, we've implemented the monitor for WinXP and Linux (mostly independent of the 
802.11b chip set), the configuration service, and prototypes of the CIS and LIS. Concerning 
the ProxyFramework, so far we have only a bare-bones implementation for W-Chat that 
includes simplified versions of the discovery, caching-management, and context management 
components because these are necessary for W-Chat.

During the development of the W-Chat application, we could perceive the benefits of using 
MoCA's services, APIs, and the ProxyFramework, which considerably reduced the 
application's complexity. Also, for the NITA application, we noticed that using MoCA's LIS 
significantly facilitated its development.

In another research thread, we're investigating ways to define user interests using ontologies 
and designing a service for evaluating user affinity and discovering similar (or 

9
IEEE Distributed Systems Online October 2004 



complementary) interests. Our goal is to design collaborative applications that use information 
about both user proximity and interest affinity to determine the participants of a collaboration.

Acknowledgments

The following research grants support this work: Brazilian National Research Funding 
Agency (CNPq) project numbers 552.068/02-0 and 5.2028/02-9.

References

1. H. Rheingold , Smart Mobs: The Next Social Revolution, Perseus, 2002. 
2. M. Fayad and D.C. Schmidt , "Object-Oriented Application Frameworks,"Comm. ACM, 

vol. 40, no. 10, 1997, pp. 32 38. 
3. P. Bahl and V.N. Padmanabhan , "RADAR: An In-Building RF-Based User Location 

and Tracking System,"Proc. 19th Ann. Joint Conf. IEEE Computer and Comm. Socs. 
(INFOCOM 2000), vol. 2, IEEE CS Press, 2000,pp. 775 784. 

4. D. Nicklas , M. Grossmann and T. Schwarz , "NexusScout: An Advanced Location-
Based Application on a Distributed, Open Mediation Platform,"Proc. 29th Int'l Conf. Very 
Large Data Bases (VLDB 2003), Morgan Kaufmann, 2003, pp. 1089 1092. 

5. P. Coschurba , K. Rothermel and F. Durr , "A Fine-Grained Addressing Concept for 
Geocast,"Trends in Network and Pervasive Computing: Proc. Int'l Conf. Architecture of 
Computing Systems (ARCS 2002), LNCS 2299, Springer-Verlag, 2002, pp. 101 113. 

Vagner Sacramento is a PhD candidate in the Department of Informatics at 
the Pontifícia Universidade Católica in Rio de Janeiro (PUC-Rio). His 
research interests include distributed systems and protocols, mobile 
computing, middleware, and network security. He received his MSc in 
computer science from UFRN in 2002. Contact him at vagner@inf.puc-

rio.br. 

Markus Endler is an assistant professor at PUC-Rio's Department of 
Informatics. His main research interests are distributed algorithms and 
systems, mobile and ubiquitous computing, and middleware for mobile 
networks. He received his Dr.rer.nat. in computer science from the 
Technical University in Berlin and the title "Professor Livre-docente" from 

the University of São Paulo. He is member of the ACM and the Brazilian Computer Society 
(SBC). Contact him at endler@inf.puc-rio.br. 

10
IEEE Distributed Systems Online October 2004 



Hana K. Rubinsztejn is a PhD candidate in PUC-Rio's Department of 
Informatics. Her current research interests are mobile and ubiquitous 
computing and middleware for distributed and mobile systems. She received 
her MSc in computer science from the University of Campinas. Contact her 
at hana@inf.puc-rio.br. 

Luciana S. Lima is a PhD candidate in PUC-Rio's Department of 
Informatics and a researcher at the PUC-Rio's TeleMídia Laboratory. Her 
main research interests are quality of service, mobile and ubiquitous 
computing, and context-aware computing. She received her MSc in 
computer science from PUC-Rio. Contact her at slima@inf.puc-rio.br. 

Kleder Gonçalves is an MSc candidate at PUC-Rio's Department of 
Informatics. His current research interests are mobile and ubiquitous 
computing and software engineering. He received his BSc in computer 
science from Universidade Federal do Pará. Contact him at kleder@inf.puc-
rio.br. 

Fernando N. Nascimento is an MSc candidate at PUC-Rio's Department of 
Informatics. His main research interests are middleware for distributed 
systems, component-based systems and mobile computing. He received his 
BSc in computer science from the Federal University of Rio Grande do 
Norte. Contact him at ney@inf.puc-rio.br. 

Giulliano A. Bueno is a third-year undergraduate student at PUC-Rio's 
Department of Informatics. His current research interests are mobile and 
distributed computing. Contact him at giubueno@lac.inf.puc-rio.br. 

Related Work

Researchers have done considerable work related to middleware and programming 
environments for mobile and context-aware applications,1,2 and much of this research has 
influenced our work. However, due to space limitations, we only discuss architectures and 
environments with similar goals to ours.

YACO (Yet Another Collaboration Environment)3 is a framework for collaborative work 
based on SIENA ,4 a distributed, content-based publish-subscribe communication 
infrastructure, and on MobiKit,5 a mobility service toolkit based on proxies. Using MobiKit's 
operation moveOut, a client can inform a server of its disconnection. Whenever the client 

11
IEEE Distributed Systems Online October 2004 



reconnects to the network, it can invoke operation moveIn, which lets it replay all the events 
missed during the time period it was disconnected. As a collaboration environment, YACO 
offers a message service, a service for user discovery, and a service for sharing artifacts (files 
and programs).

The architecture MOTION 6 offers collaboration services such as search and exchange of 
distributed artifacts (on mobile devices) in a peer-to-peer architecture, and a message system 
based on publish-subscribe. MOTION provides teamwork services for managing user groups 
and access rights (through its DUMAS subsystem), artifact storage and sharing, and support 
for different mobile devices.

ActiveCampus7 is a large project at the University of California, San Diego, that provides an 
infrastructure that focuses on integrating location-based services for academic communities. It 
employs a centralized and extensible architecture with five layers (data, entity modeling, 
situation modeling, environment proxy, and device) that supports a clear separation of the 
context information's collection, interpretation, association with physical entities, and service-
specific representation. The project researchers have implemented and deployed two 
applications: ActiveCampus Explorer, which uses students' locations to help engage them in 
campus life, and ActiveClass, a client-server application for enhancing participation in 
classrooms via PDAs. As with MoCA, ActiveClass determines location by measuring the 
radio frequency signals from 802.11 access points.

STEAM 8 is event-based middleware for collaborative applications where location plays a 
central role. The system is specially designed for ad hoc mobile networks, so it's inherently 
distributed. It supports filtering of event notifications on the basis of both subject and 
proximity.

YCab9 is also a framework for developing collaborative services for ad hoc networks. The 
framework supports asynchronous and multicast communication based on 802.11. The 
architecture includes a module for message routing and modules managing communication, 
the client component, and its state. Among the offered collaboration services is a chat, a 
shared white-board, image sharing (video-conferencing), and file sharing.

Most of the aforementioned environments try to shield all aspects regarding mobility and user 
location from the application developer, aiming for a seamless, anywhere-available service. 
Of all the systems presented, only STEAM and ActiveCampus use information about the 
current context (for example, location) to trigger appropriate adaptations of the application's 
behavior or enable context-specific application functions, such as selecting collaboration 
partners on the basis of proximity or disseminating mobile devices' connectivity status.

MoCA's approach is similar to that of ActiveCampus, where (any mobile user's) context 

12
IEEE Distributed Systems Online October 2004 



information might not only trigger user-transparent adaptations, but could also affect the 
specific functions available (and the behavior) of the application at each point in time and 
space. Through its core services and the ProxyFramework, MoCA makes available to the 
application developer a wide range of context information for example, the user device's 
(approximate) location, the connectivity quality, the device characteristics, and available 
resources which he or she can use according to the application's specific needs.

Compared to ActiveCampus's architecture, MoCA provides a decentralized context 
information service, which other services can use to derive some higher-level and application-
specific context information. Moreover, MoCA also supports service integration, extensibility, 
and evolution through the discovery service and well-defined interfaces between the core 
services.

References

1. G. Chen and D. Kotz, , A Survey of Context-Aware Mobile Computing Research, tech. 
report TR2000-381, Dept. of Computer Science, Dartmouth College, 2000. 

2. C. Mascolo , L. Capra, and W. Emmerich, , "Mobile Computing 
Middleware,"Advanced Lectures on Networking: NETWORKING 2002 Tutorials, LNCS 
2497, Springer-Verlag, 2002, pp. 20 52. 

3. M. Caporuscio and P. Inverard, , "Yet Another Framework for Supporting Mobile and 
Collaborative Work,"Proc. 12th IEEE Int'l Workshops Enabling Technologies: Infrastructure 
for Collaborative Enterprises (WETICE 03), IEEE CS Press, 2003, pp. 81 86; 
http://citeseer.nj.nec.com/583641.html. 

4. A. Carzaniga , D.S. Rosenblum, and A.L. Wolf, , "Achieving Scalability and 
Expressiveness in an Internet-Scale Event Notification Service,"Proc. 19th Ann. ACM Symp. 
Principles of Distributed Computing, ACM Press, 2000, pp. 219 227. 

5. M. Caporuscio , A. Carzaniga, and A.L. Wolf, , Design and Evaluation of a Support 
Service for Mobile, Wireless Publish/Subscribe Applications, tech. report, Dept. of Computer 
Science, Univ. of Colorado, 2003; http://citeseer.nj.nec.com/565390.html. 

6. E. Kirda , et al., "A Service Architecture for Mobile Teamwork,"Proc. 14th Int'l Conf. 
Software Eng. and Knowledge Eng., ACM Press, 2002, pp. 513 518. 

7. W.G. Griswold , et al., "A Component Architecture for an Extensible, Highly 
Integrated Context-Aware Computing Infrastructure,"Proc. 25th Int'l Conf. Software Eng. 
(ICSE 2003), ACM Press, 2003,pp. 363 372. 

8. R. Meier and V. Cahil, , "Exploiting Proximity in Event-Based Middleware for 
Collaborative Mobile Applications,"Proc. Distributed Applications and Interoperable 
Systems: 4th IFIP WG6.1 Int'l Conf. (DAIS 03), LNCS 2893, Springer-Verlag, 2003, pp. 285

296. 
9. D. Buszko , W.H. Lee, and A.S. Helal, , "Decentralized Ad Hoc Groupware API and 

Framework for Mobile Collaboration,"Proc. Int'l ACM SIGGROUP Conf. Supporting Group 
Work, ACM Press, 2001,pp. 5 14. 

13
IEEE Distributed Systems Online October 2004 



Cite this article: Vagner Sacramento, Markus Endler, Hana K. Rubinsztejn, Luciana S. Lima, 
Kleder Gonçalves, Fernando N. Nascimento, and Giulliano A. Bueno, "MoCA: A Middleware 
for Developing Collaborative Applications for Mobile Users," IEEE Distributed Systems 
Online, vol. 5, no. 10, 2004.

14
IEEE Distributed Systems Online October 2004 


