Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

Infrastructure Support for Mobile Collaboration

Radu Litiu and Amgad Zeitoun
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122, USA
{radu, azeitoun}@eecs.umich.edu

Abstract

Future groupware systems will need to extend collaboration
beyond the desktop. They will need to support computing
devices with a wide range of capabilities, varying network
connectivity, and increasing mobility of users. We have de-
signed and implemented a component-based framework for
building reconfigurable distributed applications that address
the specific needs of mobile environments. This paper focuses
on the use of this framework to support mobile collaboration.
Components of a groupware application can move across het-
erogeneous devices while maintaining persistent logical con-
nectivity with groupware services and other users, even during
transient network failures. Users do not see any interruptions
in the services accessed, and they do not need to manually
re-establish connections with the communication parties. New
collaboration features can be more easily implemented. For
instance, users may “park” their client agents temporarily at
a fixed host while they are disconnected. The parked agent can
continue to maintain connectivity with other group members
on behalf of the user, if desired. We show how this framework
can be used to structure distributed applications that adapt
their behavior and their interface to the context in which they
execute. We give examples of groupware applications we have
implemented.

1. Introduction

Ubiquitous computing [1] promises to help organize and
mediate social interactions wherever and whenever these sit-
uations might occur. Improved wireless communication capa-
bilities, continued increase in computing power, and improved
battery technology have lead to the large scale adoption of
a wide range of mobile computing devices, in addition to
traditional desktop-based system. Mobile collaboration has
become the norm, rather than the exception. Novel collab-
orative paradigms need to be developed to take into account
the intermittent application, resource, and user availability, the
variability in device capabilities, and the unreliable network
connectivity in mobile computing environments. A major goal
is to ensure that a user’s applications are available, in a suitably
adapted form, wherever the user goes. At the same time, user’s
applications should be able to participate, on a limited basis,
to collaborations on the user’s behalf, even while the user is
disconnected or is not active.

It is difficult to design a one-size-fits-all groupware system
that works well under all potential usage situations. Groupware

systems often end up making significant assumptions about the
environment and must be redesigned to be effectively used if
the assumptions no longer hold. For best performance and
functionality, different system architectures may be required
as we go from two-party to multi-party communication. The
architecture may need to evolve from peer-to-peer to client-
server, and from centralized to distributed. We believe there
is a need to develop techniques for designing flexible group-
ware systems that adapt better to user mobility and resource
availability.

Consider the following scenario: Bob is in his office work-
ing on the final details of a presentation he will give the
following day at a trade show. He uses a shared editor to
collaboratively work together with his colleagues Alice and
Paul. Each of them uses a set of resources (e.g., data files,
images) available only on the local machine. Besides the
editor, the collaborative session they established also runs a
videoconferencing tool. Bob realizes he is running out of time
and has to leave for the airport, and the presentation is not
ready yet. He “parks” on a corporate server the applications
running on his workstation, turns his computer off, and heads
for the airport. Once at the airport, Bob still has some time
left before the flight departure. He finds a hot-spot with
a wireless access point. Using his high-end PDA (Personal
Digital Assistant), he connects to the corporate server and pulls
the parked editor. Some of the slides reflect the recent changes
made by his colleagues. He is able to view and play the whole
presentation, but has limited capabilities for editing only the
textual information. The application realizes Bob is connecting
from an untrusted network and automatically loads a pair of
encryption/decryption modules into the data flow. In addition,
the application senses the weak connectivity of Bob’s PDA and
loads compression and decompression modules. Meanwhile,
Alice and Paul do not realize that Bob has been disconnected
and now he is connected from a different place.

We have developed a component-based framework, called
DACIA (Dynamic Adjustment of Component InterActions),
that addresses some of the challenges occurring in the scenario
above. DACIA provides a seamless collaborative environment
where network connectivity, computing devices, and user’s
behavior keep changing. It provides support for building
adaptable groupware systems. DACIA can be used to develop
groupware applications that support features such as dynamic
reconfiguration, persistent connectivity with user mobility, and
off-line collaboration.

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

Dynamic reconfiguration allows applications to adapt to
the continuously changing user demands, load on network
segments and intermediate processing nodes, and variations
in device capabilities and resource availability. A modular
architecture of an application, in which various components
implement individual functions, can easily mutate its structure
at runtime to adapt to different conditions. It can dynamically
load new components, change the way various components
interact and exchange data, move some of the functions from
one host to another, and replicate some functions across
multiple hosts.

Persistent connectivity encounters great challenge when
users are mobile. Mobility provides a flexible way to weave
computing and collaboration into user’s daily activities. In
a mobile environment, users connect from various points,
using a variety of devices. Operating in a mobile environment
raises the problem of dealing with the inherent unreliability
of mobile network connections and variations in connection
quality. Hence, masking transient network and communication
failures becomes an important issue for some applications in a
mobile environment. We show how persistent connections are
preserved in our DACIA framework. By maintaining logical
connections between moving components, a mobile user can
simply “pull” an application or application component from
one computing device and drop it on another computing de-
vice. Manual re-establishment of connections is not needed as
all connections are automatically re-established transparently
while maintaining application’s states.

Off-line collaboration provides a great opportunity for dis-
connected users to participate to collaborative activities on
a limited basis. In DACIA, such realization is applicable. It
would be nice to provide support to users so that they do not
have to close all the sessions with other parties and quit all
the collaborative applications, in order to move to a different
place short time later, restart the very same applications,
and manually establish the sessions. DACIA allows a mobile
application to be parked while its user is disconnected or
idle. A parked application can continue to interact, with some
limitations, with other parties on behalf of the user. The parked
application can reside on the same computing device the user
had been connected from, or it can move to a fixed host if
the user’s device is disconnected. When the user reconnects,
eventually from a different place, he can take over the control
from the parked application.

The rest of the paper is structured as follows. Section 2
presents related research work. Section 3 gives an overview
of the architectural features of DACIA. Section 4 shows
the support provided by DACIA for building collaborative
applications for mobile environments. We give examples of
several groupware applications we have implemented. Finally,
Section 5 presents some concluding remarks and directions for
future work.

2. Related Work

Our work enables the design of more flexible and adaptable
CSCW (Computer Supported Collaborative Work) systems

for mobile environments. Several researchers have pointed
out the importance of flexibility and adaptability in CSCW
systems [2,3]. The need to provide support for building
flexible architectures for computer-supported collaboration in
a heterogeneous and dynamic environment has also received a
considerable amount of attention [4, 5]. In fact, there are many
dimensions of flexibility and adaptability in CSCW systems,
such as: access control [6, 7], concurrency control [8], coupling
of views [9], and extensible architectures [10, 11].

A common observation in many of these papers is that there
are significant tradeoffs in CSCW system design along many
dimensions and many of these tradeoffs in fact cannot be made
a priori. They depend significantly on the context in which the
system is going to be used. DACIA is complementary to the
above work and focuses on providing infrastructure support
for dynamically adapting the architecture of CSCW systems
and the location of system components and services to the
context in which they are being used, scale of use, location of
users, and available resources.

Other researchers have emphasized the importance of con-
sidering resources (e.g., CPU, display, and network) in CSCW
systems design. Groupware systems need to be designed
to allow tradeoffs between context awareness and available
resources [12]. There is a cost to providing more awareness
information in terms of information overload, screen real-
estate, network resources, privacy, etc. In a world where users
are surrounded by a multitude of devices (e.g., computers,
PDAs, cell phones, large wall displays, sensors, etc.) and over-
whelmed by the wealth of information presented to them, user
attention has also been identified as a valuable resource [13].
There have been debates over the merits of centralized ar-
chitectures, peer-to-peer architectures, and replicated services
in building groupware systems. The goal of our work is to
provide mechanisms to CSCW system designers so that the
systems and their architecture can be more easily reconfigured,
at run-time if desired.

The need to support user mobility has also been pointed to
recently. The work in the cooperative buildings area assumes
that users are mobile inside buildings and the work should
be possible anywhere users are (coffee tables, walls, desktops,
etc.), rather than users having to work on a standard desk-
top [14]. Belloti and Bly argued that CSCW systems must be
designed to support mobility, since mobility can be critical to
many work settings [15]. They concluded that CSCW systems
must accommodate mobility rather than seek to eradicate it
via desktop collaboration tools. DACIA simplifies building
of groupware applications in which clients are mobile. We
extend the existing work on mobile code [16] and mobile
agent systems [17-19] and apply it to the construction of
distributed applications through the dynamic composition of
software components.

The goal of ubiquitous computing (or ubicomp, for
short) [1] is to make computational devices so pervasive
throughout an environment that they become transparent to
the human user. The ubicomp vision pushes computational
devices out of conventional desktop interfaces and into the

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

Host A (fixed PC)

Policy Layer - MONITOR

(optional)

Host B (mobile PC/PDA)

= Implement application-specific reconfiguration
policies
= Make reconfiguration decisions

Mechanism Layer - ENGINE

I

1

1

| .

| = Monitor performance
1

1

I

1

1 I
1 1
| = Maintain connections between hosts !
| = Handle component connectivity :
: = Handle message exchange !
| = Manage application structure :
'l = Relocate components |

Physical/Network connection

Policy Layer - MONITOR
(optional)

Logical
connections

- 1

Figure 1. A DACIA distributed application is a directed graph of connected components (ovals represent components). An engine runs on
every host. It manages the local components and the connections between components, both local and across different hosts. The monitor
gathers performance data and implements application-specific relocation and reconfiguration policies.

environment in increasingly transparent forms. In the ubiqui-
tous computing world personal organizers talk to cell phones
to cars to network computers, tailoring information to needs
as they arise. Context-aware applications [20] can follow
their users as they move around a building, and can adapt
to the characteristics of the environment where they execute.
They can change their behavior based on knowledge of the
user’s current location, using, for instance, active badges.
Novel software engineering solutions are needed to provide
the functional features required by ubiquitous and pervasive
computing [21,22].

Application adaptation based on reconnecting components
has been employed in ad hoc and sensor networks. For
example, MagnetOS [23] provides a single system image
of a unified Java virtual machine across a set of ad hoc
nodes that comprise the system. Application’s components
are dynamically placed at different nodes. The main goal of
MagnetOS is to provide power-aware computing.

3. Flexibility in Mobile Computing Systems

In this section, we briefly describe the component-based
architecture of DACIA. We discuss the support provided
for dynamic application reconfiguration and for component
mobility. We give examples of using mobility and supporting
disconnected users that wish to collaborate, with some limita-
tions, during their disconnection. Details of architectural issues
in DACIA are presented elsewhere, and are not the subject of
his paper.

3.1. Component-based Architecture

DACIA is a framework for building adaptive distributed
applications in a modular fashion, through the flexible compo-
sition of software modules implementing individual functions.
A DACIA application can be seen as a directed graph of con-
nected components. The links between components indicate
the direction of the data flow within the application.

In DACIA, a component is a PROC (Processing and ROut-
ing Component). A PROC can apply some transformations to

one or multiple input data streams. It can synchronize input
data streams; it can split the items in an input data stream
and alternately send them to multiple destinations. A PROC
is identified system-wide using a unique identifier.

The engine decouples an application and component-
specific code and functionality from the general administra-
tive tasks such as maintaining the list of PROCs and their
connections, migrating PROCs, establishing and maintaining
connections between hosts, and communicating between hosts.
A DACIA distributed application (Figure 1) uses an engine on
every host it runs on. We chose to use an engine per application
per host, as opposed to sharing an engine running on a host
between multiple applications, in order to minimize the cost
of communication between PROCs and between PROCs and
the engine.

PROCs communicate by exchanging messages through
ports. Communication can be either synchronous or asyn-
chronous. In the case of asynchronous communication, the
messages received by a PROC are inserted into the PROC’s
message queue. Every PROC has a thread that handles the
messages in the queue, usually in FIFO order. DACIA provides
a lightweight solution to local communication, by co-locating
local PROCs within the same address space. Thus, message
exchange translates into simple procedure calls. The engine
maps virtual connections between PROCs to either local
or remote network connections, and handles data transfers
accordingly. Multiple virtual remote connections between pairs
of PROCs are multiplexed over a single network connection
between two engines.

The engine may work in conjunction with a monitor'. The
monitor represents the part of an application that keeps track of
the application performance, makes reconfiguration decisions,
and instructs the engine accordingly. The engine is responsible
for establishing and removing connections between compo-
nents and for moving components to other hosts. Engines and
PROCs are general-purpose and they can be reused to build
multiple applications. Engines provide the mechanisms for

IThe use of a monitor is optional.

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

reconfiguration, while monitors implement application-specific
policies for reconfiguration.

3.2. Dynamic Application Reconfiguration

DACIA provides mechanisms for dynamically reconfiguring
an application. These mechanisms can be used to connect and
disconnect PROCs, introduce new PROCs in the data paths
or eliminate PROCs, and move PROCs across hosts. As a
result of reconfiguration, the application graph changes. Even
when users are not mobile, application reconfiguration can be
desirable to enable groupware applications to better adapt to
available resources and to the context of their execution. A
more efficient execution can be achieved through better usage
of the available resources and optimized inter-component com-
munication. Our solution to runtime reconfiguration ensures
that the application executes correctly both during and after
the reconfiguration.

There is a separation between reconfiguration policies and
mechanisms. An application developer can implement cus-
tomized policies in monitors. System administrators can also
manually reconfigure applications based on changing run-
time requirements and resource availability, using either a
command-line or a graphical interface. Through this interfaces,
the user or system administrator can issue commands to
change the application structure or to move parts of the
applications from one host to another.

3.3. Component Mobility and Persistent Connectivity

Traditional collaboration paradigms, in which users interact
using their desktop computers, are too rigid to provide ade-
quate support for novel environments, in which mobility has
become ubiquitous. Fixed hardware, combined with mobile
devices, form a set of resources with distinct interaction
and availability characteristics. Mobility is not restricted to
the mere use of mobile computing devices such as laptop
computers and PDAs. Non-conventional devices, such as video
cameras, touch-screen interactive displays, biometric devices,
etc., support the collaborative experience. Sensors and active
badges have been used together with telemetry software and a
location system to implement context-aware applications [20].
Cooperative buildings [14] use upgraded versions of mundane
objects such as walls, tables, and chairs as computing and
display devices.

DACIA allows application components to move from one
computing device to another. Our work addresses the problem
of capturing the state of a component and restoring it at the
destination. To reduce the overhead of component movement,
thus the amount of data that has to be moved, we do not
transfer the execution state of a PROC (e.g., program counter,
stack and registers content, thread state, etc.). However, a
moving PROC carries with it the state of its data members,
the messages received and not handled yet, and the state of
its connections. A locking mechanism synchronizes message
exchange with the PROC move. Our algorithm guarantees that
messages in traffic are reliably and orderly delivered to the
moving PROC.

In many cases, the temporary failure of a connection
between engines can be made transparent to PROCs and
applications. When a network connection is broken, the en-
gines will try to re-establish the connection during a timeout
interval. Assuming that the disconnection is temporary, an
engine caches messages addressed to a remote PROC until
the connection is re-established. The use of a timeout for re-
connection allows an administrator to briefly shut down an
application running on one host, and immediately restart it,
without other connected applications noticing it. All inter-
component connections are transparently re-established, and
neither one of the applications loses any state information. We
have found this feature useful during the testing, debugging,
and upgrading of distributed applications.

A logical connection between PROCs is maintained even
if the underlying physical/network connection changes. A
PROC can move between hosts while maintaining persistent
connectivity to other PROCs. The move is transparent to
communicating PROCs. The structure of the application does
not change and the flow of data in the system is not interrupted.
The seamless connectivity between DACIA components offers
a great benefit to mobile users, who can move applications
from one device to another without having to manually re-
establish all connections to other parties. It can also provide
transparency of the location of PROCs and users, if so desired.

Through mobility, users can share their previously private
work with others, for instance by moving a GUI component
from their personal desktop to a large touch-screen display,
where several other users can interact with it.

3.4. Example of Component Mobility

Figure 2 illustrates a simple example of component mobility,
in the case of a chat-box application, implemented using
DACIA. Two chat-box users are involved in a session from
their respective workstations. At some point, one of the users
moves her application to a different host. The Chat PROC
moves between the two machines and the users can continue
to exchange messages without having to explicitly re-establish
the connection. The move is transparent to the fixed user.
The messages previously exchanged (the state of the moved
PROC) are still displayed in the Chat window (the small grey
window at bottom right). Messages sent while the move was
undergoing are delivered to their destination.

A PROC is allowed to move from one device to a different
type of device that supports DACIA. Eventually, the PROC
adapts its functionality and its user interface to the capabilities
of the device. For example, the Chat PROC can move from a
desktop to a DACIA-enabled PDA, where it presents a text
interface to the user. The main requirement is that corre-
sponding PROC:s for different devices agree on the serialized
state format, so that a PROC move can be accomplished
by transferring the serialized state from the engine on one
device to the engine on another device. DACIA takes care of
transparently restoring the connectivity between PROCs.

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

Before relocation
host saturn

DACIA: application layout for host satum
File WView Engines Procs Help

saturn seoul

Connections E
Sockeffaddi=seoul eecs.umich.edu1 41 213.10

402016 443015
Chat Chat |
Local PROCS ~
402016 Chat1, 2 ports, host: satum
0 -> 4430164
e dinminn

femote PROCS LTI

443016 Chat
0ne ProciD 402016 —
Hostname sanjuan = |

1 oK Gancel

sanjuan

Enter a new message:

Latest message:

OUT: Hello, chat user from seoul
N : Where are you located ?

OUT: | am moving to sanjuan right now.
IN : OK, | am waiting...

host sanjuan

After relocation
host saturn

DACIA: application layout for host satum

=[Ol

File View Engines Procs Help |

satum senul

(449016
Chat

Connections &l
Sockef[addr=seoul. eecs.umich.edu/141.213.10.
FI—

Local PROCS =
Remote PROCS :
402016 Chat1, 2 ports, host: sanjuan
- 1

sanjuan

443016 Chat1, 2 ports, host: seoul
4020161
1 -=402016:0
402016
Chat
T
& - Close
) | | J

ot on the list

host sanjuan

=] DACIA: application layout for host sanjuan

[

= DACIA: application layout for host sanjuan

[

e View Ergines Froes Holp

Fibe View Tngines Proes Hlp

sanjuan

Connections 5
Sockefaddr=satum/141.213.10.100,port=6301,|

sanjuan

Connections 5
Sockeifaddr=saturn/141.213.10.100,port=6301,|

Local PROCS :
Remote PROCS :
Engine > print
Comnections :
Local PROCS :
Remote PROCS :
Engine > connect saturn 6301
Connection established: Socket[addr=saturn/141.213.10.100,port=63
01, localport=360741
Engine > print
Connections
Socket [addr=saturn/141.213.10. 100, port=6301, localport=36074]
Local PROCS :
Remote PROCS :
449016 Chat:1, 2 ports, host: seoul
0 -> 402016:1
-> 402016:0
Chat:1, 2 ports, host: saturn
-> 449016:1
-> 149016:0

1
402016
0

1
[zEngine > 0

ET ET |
402016
saturn Local PROCs B Chat saturn Lacal PROCs =
\ Remote PROCS \ 402016 Chat1, 2 ports, host: sanjuan
443016 Chat1, Z ports, host: seoul 0 -=443016:1
0 ->402016:1 1 ->443016:0
seoul aat 1 ->402016:0 - Remote FROCS
402016 Chat1, 2 ports, host saturn 4438016 Chat1, Z ports, host: seoul
0 ->443016:1 0 ->402016:1
1 -=449016.0 1 -=402016:0
1449016 443016
i
(3] 3]]
Clase Close,
\] . [\] (G
Can’t re-establish comnection to host saturn 01, localport=360741 ”
print Engine > print
Connections : Connections : | Chat | /| N

Socket [addr=saturn/141.213. 1|
Local PROCS : Menu
Remote PROCS :
449016 Chat:1, 2 ports,
-> 402016:1
-» 402016:0
402016 Chat:1, 2 ports,
0 —> 449016:1

host||Enter a new message:

mo

Send

host|
5t Latest message:

1 -> 449016:0

. 2 OUT: Hello, chat user from seoul &
Engine > print

IN : Where are you located ?

Connections : 4
Socket [addr=saturn/141.213. 1| @UT:lamonsaturn.
Local PR - OUT: | am moving to sanjuan right now.

0CS
402016 chat:1, 2 ports,
0 —> 449016:1

host|IN : OK, I'am waiting...

1 > 449016:0 i =
Remote PROCS :
449016 Chat:1, 2 ports,
0 > 402016:1

host: seoul

1 -> 402016:0
[zEngine > 0

Figure 2. A Chat PROC moves from one host (saturn, top left) to another one (sanjuan, bottom right). All PROCs remain connected and
continue to exchange data. The graphical interface windows on each host show the configuration of the application, both for the local and
remote hosts. Squares represent hosts, and small labeled rectangles represent PROCs.

3.5. Application Parking

Through application parking, component mobility and per-
sistent connectivity can be used to support off-line operation
of interactive applications. Initially developed in the context
of groupware applications, application parking is suitable
to any interactive distributed application. Using DACIA, a
parked application is able to continue to maintain state and to
participate, on a limited basis, to collaborations on the user’s
behalf, while the user is disconnected or is not active. When
the user reconnects, eventually from a different place, he can
take over the control from the parked application.

A parked application can reside on the same computing
device the user had been connected from, or it can move to

a fixed host if the user’s device is disconnected. Specialized
hosts can provide parking host services to mobile users. When
the user’s application moves to a different host, it maintains
its connections to services and collaborative partners, and it
continues its execution.

In current groupware applications (Figure 3.a), when a
user disconnects, the disconnection is usually treated as long-
term. The state of user’s application has to be saved on a
server (Figure 3.b). When the user reconnects, typically all
connections to collaboration services have to be manually
re-established. Using DACIA, the user can park her client
to a fixed, connected host. While the user is disconnected,
a parked client (Figure 3.c) can continue to maintain state.

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

1 State %

(a) User 1 connected

Server 2

(b) Traditional application

Parking Host
ed Cy

X

Figure 3. Application parking. (a&b) In traditional groupware
applications, when a user disconnects, the state of her application
has to be saved on a server. If the user later connects to a different
host, the state is transferred between servers and between the new
server and client. (c¢) Using DACIA, the user can park her client to a
fixed, connected host. While the user is disconnected, a parked client
can continue to maintain state and its connections, and it can interact
with collaborative partners.

(c) DACIA application

Moreover, the parked application maintains its connections
and it can interact with collaborative partners. The ability
to move applications without interrupting their participation
to collaborative sessions is particularly appealing in mobile
environments, in which users often change the point where
they connect to the system or the device they use.

A user can delegate various degrees of autonomy to a
parked application. For example, in the case of a parked chat
application, the application’s response to messages received
from other collaborators could be a simple message informing
them that the user is not active (similar to the vacation email
message). A more elaborate parked application could save
messages, forward notifications to the user via email, or notify
users of potential future activity schedule. The parked appli-
cation’s behavior can be made to change gradually, according
to the duration of user inactivity. For example, after a timeout
interval, it can potentially save its state to a server, and shut
itself down. There is a tradeoff between the complexity of the
parked application code and its ability to actively participate
to the collaboration.

4. Building Adaptive Groupware Applications
with DACIA

4.1. Graphical Interface for Application Management

Tools are needed to allow a system administrator to visualize
the component-based structure of DACIA applications (local
and remote PROCSs and their interconnections, and connections
between engines), and to reconfigure the application. We have
developed both a command-line interface and a graphical
interface for application management. In many cases, the
command-line interface is sufficient for experienced users

and application developers, who can easily map the textual
information to a spatial representation of the application.
However, for ordinary users, this mapping might not be
obvious. Furthermore, for large-scale applications that contain
tens of components at the minimum, textual information about
connections between components may be hard to read and
understand.

We have built a graphical tool that provides an interactive
environment for visualizing the structure of a distributed
application and performing manual reconfiguration of the
application. We considered the following requirements for the
design and implementation of this graphical interface (GUI):

o Graphical representation of the application’s struc-
ture: The GUI should accurately and clearly represent
an application as a graph of connected components,
distributed over multiple hosts.

o Consistency and efficiency: The graphical information
displayed should be consistent with the actual configu-
ration of the application at all times. It should react to
any changes in the application configuration and reflect
the up-to-date information about components and links.
Updating the graph should be efficient and should not
introduce significant overheads.

o Expressiveness and simplicity: The GUI should provide
a rich set of commands that can be used to reconfigure an
application. The operations available through the graphi-
cal interface should be intuitive and easy to use even for
a novice user.

o Separation from the application: The use of the graph-
ical tool in an application should be optional. The GUI
should be independent of and transparent to the applica-
tion.

Figure 4 displays a DACIA application, as it is represented
in the graphical interface. The GUI is divided into two parts.
The graph panel (left) graphically presents the structure of
the application. The information panel (right) shows textual
information about PROCS, their interconnections, and connec-
tions between engines’. The application presented in the figure
resides on 3 hosts, represented by the larger rectangles. The
local host (brussels, top left) has a slightly darker color than
the remote hosts (saturn and sanjuan). PROCs, represented by
the smaller rectangles, are identified by their name (in most
cases it corresponds to their type) and their unique numeric
ID. The graph displays the connections between hosts and
the ones between components. Commands for modifying the
application structure can be issued by selecting an option from
one of several menus available.

Although the user can manually change the position of hosts
and PROCs in the graph, an initial automatic placement of
nodes in the viewing window is necessary. The graph layout
involves two phases: positioning the boxes that represent hosts
and subsequently positioning the nodes that represent PROCs.

2Only connections between the local engine and remote engines are
displayed. By default, an engine has no knowledge about connections between
remote engines.

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

EADACIA: application layout for host brussels [_[E1x]
Fie ‘iew Engines Procs Help
brussels satum E =
Socketfaddr=satum/ 41.213.10.100,por=6301 i
P Socketfadt=sanjuan.eacs. umich edu 41.213.1
Chat 402017
Chiat
— [apz016 2
ChatSetver < 5
Loral PROCS =
357019 g 351019 Chat, 1 parts, host brussels
Chat ® 0-»361018:2
y 361018 Chat0, 1 ports, host. brussels
e 6:1
3961017 Chat0, 1 ports, host brussels
Sanjuary StartProc 0-+ 361016:0
- 361016 ChatServer(, 10 pors, host brussels
A 0->361017:0
257018 Disconne: ct Froc 1-» 361018:0
e e 57 e
357017 Remove Pros 4-= 357018:0
Chat
R Remote PROCS :
. it St 357019 Chat0, 1 ports, host: saturn -
Start Mornitar ‘ v
Stop Monitor
.
Show Info b _CEEJ
Update host

Hosts PROCs Information panel

Graph panel Pop-up menu

Figure 4. The graphical interface (GUI) provides an interactive
environment for visualizing the graph structure of a distributed
application and performing manual reconfiguration of the application.

Hosts are initially placed as vertices of an equilateral polygon.
PROCs are randomly positioned inside the boxes representing
their hosts. It is assumed that only a few (less than a dozen)
hosts are involved in an application and they contain about
the same number of PROCs. While a polygon-shaped graph
avoids the overlapping of some links, it does not scale well
for applications with a large number of hosts. As more hosts
are added to the graph, they are placed in the blank area at the
bottom of the graph, without affecting the position of existing
hosts.

4.2. Structuring Distributed Applications

Our preliminary experience with using DACIA in building
groupware applications indicates that certain types of PROCs
are likely to be useful. The PROCs used to develop groupware
applications (Figure 5) can be classified according to their
characteristics and functionality as follows:

o User Interface PROCs represent interfaces between hu-
man users and applications.

e User Agent PROCs are persistent representations of users
of a groupware application. They represent the non-
interface part of a client-side application. The important
state of the client should be part of the User Agent.

o Server/Service PROCs perform the actual computation
in a collaborative application. They can be used to
implement various services, such as data processing and
distribution, caching and storage, group and session man-
agement, etc. A particular service can be implemented
in various ways, using different sets of components,
connected in multiple configurations.

e Gateway PROCs enable a DACIA application to interact
with other applications. A Gateway PROC implements
both the communication protocols used by DACIA and
other protocols used to communicate with other systems.
Each Gateway PROC maps messages between an external
protocol (e.g., HTTP) and PROC-to-PROC messages.

DACIA
applications

Intlélggce User
Agent
Monitor

Figure 5. A DACIA collaborative application may contain PROCs
of various types: User Interface, User Agent, Service, and Gateway.

A client-side application consists of User Interface and
User Agent PROCs. If desired, they can be combined into
a single PROC. This is the case of the Chat client used by
the application in Figure 2. The system can be potentially
enhanced by adding sensors that detect a user’s presence next
to a host, as in [20]. Based on sensor data, the User Agent
can be moved by a monitor to the new host and an Interface
can be instantiated accordingly.

Separating the client code into User Interface and User
Agent PROCs is useful if the client is expected to run
with different interfaces on various devices. It simplifies
development—similar to the separation of Model and Views
in the Model-View-Controller development paradigm. The
separation also simplifies client parking. While a user is
disconnected, its corresponding agent can still participate
to collaborative activities on behalf of the user. The User
Interface is not needed in such a case. The user uses the unique
PROC identifiers in order to locate and reconnect to its agent.

Different parts of a large-scale collaborative application
may fall under different administrative domains. They employ
different coordination policies, resource management routines,
and reconfiguration algorithms. Application-specific monitors
can be used to provide distributed coordination for various
parts of a groupware system. For instance, in Figure 5, one
monitor can manage the interactions between PROCs imple-
menting a service, while another monitor controls a client-side
application.

4.3. Multi-party Communication

Using DACIA, we have implemented an adaptive multi-
party communication application that can be used as a basis for
building various groupware systems. The application consists
of client (C) and server (S) PROCs (Figure 6). Through the
servers, a client sends messages to the whole group. A server
can be located on a different host than the ones where the
clients run. Initially, when there are only 2 clients, they are

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

1E i@l (o) c

“@©
@ e

e/[¢][¢

© NG

E| Chat: 357017 i)
Menu
Enter a new message:
B Send
B
Latest message: [Movetohost satum —
402017 : What are you doing? il = .
OUT : I'm going home soon. _JSend emailto | radu@eecs.umich.edi]
402017 What if | want to reach you in the meantime? L
OUT : Ill have my Chat parked. R]
QUT : Drop me a note. I'll get it through email. J M

P
®

Figure 6. Adaptive multi-party communication. Servers are denoted
by S, and clients are denoted by C. Rectangles represent hosts. New
servers are created as the number of participants grows.

connected directly (Figure 6.a), without using a server. This
is a typical architecture for two-party communication tools.
When a third client tries to join the communication group, a
server module is spawned, and all the clients will connect to
the server and will exchange data through it (Figure 6.b).

Various adaptive algorithms can be implemented to allocate
and deallocate server modules and to handle clients distribu-
tion. For example, in our implementation, when the number
of clients on a server reaches an upper threshold, an engine
spawns a new server, which connects to the existing servers.
The clients are distributed over the two servers. When there
is a large number of clients in the group, the application will
contain several servers, connected to each other in a certain
configuration, with the clients being equally assigned to all
servers® (Figure 6.c). As clients leave the group and the load
on a server goes below a lower threshold, a server module
is deallocated and its clients are distributed to other servers.
Alternatively, two servers with load under the lower threshold
can be replaced by a single server supporting all their clients.

DACIA only provides support for ordered delivery of
messages along a channel between two PROCs. Messages
originating at different clients may arrive in any order at dif-
ferent destinations. In multi-party communication, sometimes
stronger guarantees such as totally ordered message delivery
may be required. To provide totally ordered delivery using the
current DACIA, a possible solution is to require that the graph
formed by the servers does not have cycles (it is a tree) and
one server acts as sequencer for group messages.

In our implementation of the application in Figure 6, the
servers were stateless. They simply routed messages and
no consistency of state among the servers was required. If
maintaining a group’s state at the servers is required, currently
the easiest way to do this is to provide a store component to the
system, that maintains the group’s state. In future versions of
DACIA, we plan to provide support for replicating components
and maintaining consistency of their states.

The application structure and the adaptive algorithms pre-
sented can be used to implement various server-based group
communication applications. Below, we describe two appli-
cations we developed on top of this group communication
service: a multi-party chat-box application and a shared white-
board. Little programming effort is required to develop these

3clients’ locations are also a factor in choosing an appropriate server

Figure 7. The multi-user chat-box application allows users to
exchange text messages. A parked Chat client can be moved to a
parking host (the right image represents the parking dialog). It can
send email notifications to its user when messages are received.

specific collaborative applications, as well as other applica-
tions. In fact, we keep the base application in Figure 6 as
it is. Client components (C) are seen as user agents. The
personalization consists of adding user interface components
corresponding to the chat-box and whiteboard applications,
respectively. These interface components are responsible for
interpreting the group messages exchanged as either chat
messages or updates to a shared drawing, and for appropri-
ately presenting the information to the user. All collaboration
features (e.g., group membership, awareness, notifications) are
implemented between user agents. The same monitor can be
used for dynamically reconfiguring both applications to scale
up to a large number of clients and to reduce communication
latencies.

4.3.1. Chat-box: The multi-user chat-box application al-
lows a group of users to exchange text messages. It provides an
editing area for composing messages and a scrollable area for
displaying a list of received messages (Figure 7). A message
sent by one user will be distributed to the whole group through
the servers.

Chat PROCs are mobile. When a PROC moves to a different
host, its state is transferred as the list of text messages
previously received. The frame of the chat client is not moved.
Instead, it is initialized at the destination using default param-
eters. Thus, the amount of state that needs to be serialized is
reduced. The interface component usually changes when the
Chat client moves to a different type of device, e.g., from a
desktop to a PDA.

A Chat user can park her application while the user is not
active or she is disconnected. A parked Chat client can reside
on the same host the user had been previously connected
from, or it can move to a parking host if the user’s device
is disconnected. While the Chat client is parked, it it still
connected to a server, it can receive messages from other
clients, and it can update its internal state based on these
messages. If desired, the user can set an email address where
she can receive notifications from the parked chat when
messages are received. The handling of messages received
while a Chat is parked can be further improved. For instance,
the parked Chat can filter the messages received based on their
sender or priority, it can selectively send notifications to the
user, or send some predefined replies to certain messages.

4.3.2. Whiteboard: Acting both as a shared notebook and
a drawing board, the whiteboard (Figure 8) allows users to

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

- =

Owner On Share Read-only

[
File Draw Help Layer

Aayer0 saturn

Current layer: layerO
Current Delete| Modify New

oK Cancel

spinning wheel

the Layer dialog

Pen size: 2 Color: blue

Currentlayer: layerD

Shape: Line

Figure 8. The shared whiteboard enables users to collaboratively
draw figures, take notes, and import and share images. An image
consists of multiple layers, that can belong to different users. The
owner of a layer can set its visibility, shareability, and writability
properties.

collaboratively draw figures, take notes, and import and share
images. The basic drawing elements are line, point, and text.
Raster images (e.g., .gif and .jpg) can be loaded from the local
file system as the background.

The graphic information is organized into layers. A user
can create her own layers and send one or multiple layers
to a remote whiteboard. The image displayed on the canvas
contains multiple layers, overlapped in a particular order. Each
layer has a name and an owner. The name is globally unique.
The owner of a layer is the host where it was created. Each
layer has three additional attributes: visibility, shareability, and
writability. A user can turn on/off a layer, make the layer
shared or private, or make it read-only. Layers owned by other
users are always read-only.

Currently, a whiteboard has two duplex ports, thus it can
directly connect to two other peer whiteboards or servers.
When the Send command is invoked, the message is sent to
both ports, if they are connected. If more than two connections
are necessary, Server PROCs can be used to allow multiple
whiteboard users to collaborate.

Whiteboard PROCs are mobile. The serialized state of the
moving PROC contains all the data in all layers displayed
by the whiteboard. Imported images are managed as bitmaps.
Drawings and text are managed as objects, potentially reducing
the size of the serialized state.

4.4. Easy Application Development

We have implemented the DACIA framework, as well as
several applications, in Java. An important goal for our system
has been to enable inexperienced users to build customized
applications and write application-specific adaptation modules
with only a small programming and configuration effort. We
strove to put as much as possible of the functionality common
to most DACIA applications into the framework, so that an
application’s code becomes very simple.

We provide application developers with a comprehensive
API that contains primitives for creating and destroying
PROCs, connecting applications running on different hosts,
connecting and disconnecting PROCs, moving PROCs from
one host to another, and registering and starting a monitor.
Using this API and assuming that the code for the PROCs (and

public class Chat extends Proc {
ChatFrame frame = null;
String text = null;

public Chat () {
super ("Chat", 1); //name, I port
frame = new ChatFrame (this) ;
frame.init () ;

}

public void handleMessage (Message msg, int port) {
// display the message received in the output window
frame.displayMessage ((String)msg.getData()) ;

public void handleAsyncMessage () {
Message msg = null;
while (true) {
// retrieve a message from the message queue
msg = getMessage() ;
frame.displayMessage ((String)msg.getDatal()) ;

}

// send to the output port a message typed by the user in the input window
void sendMessage (String message) {
Message msg = new Message () ;
msg.setData ((Object)message) ;
output (1, msg, 1); /port0, message, 1-synchronous

public void pack() {
text = frame.getText () ;
frame.quit () ;
frame = null;

}

public void unpack() {
frame = new ChatFrame (this);
frame.init () ;
frame.displayText (text) ;

}
}

Figure 9. Code added to a previously existing Java object to make
it a mobile PROC, in the case of a Chat object.

for a monitor, if applicable) is provided, a simple distributed
application can be written using 10-15 lines of code.

In most cases, the programming effort to transform a Java
object into a mobile PROC is modest. It consists of adding a
PROC wrapper to the object, implementing message handling
routines, and eventually writing methods for serializing and
de-serializing the state of the object. For the multi-user chat-
box application in Section 4.3.1, we used 26 lines of code
to transform a Java object for a previously written multi-user
Chat program (it included a graphical interface, with menus,
input/output text areas, and buttons) into a PROC (Figure 9).
The Chat PROC has one port. It displays to an output text
area the content of the messages received on the port, and it
sends to the port the messages typed by a user in an input text
area. The pack() and unpack() methods are used before/after
moving the PROC to discard/restore the chat frame. The string
text contains the state of the Chat PROC while it is moving.

The programming API can also be used to write application-
specific adaptive monitors. For example, we used 54 lines of
code to write the monitor used by the multi-party commu-
nication application in Section 4.3 to allocate and deallocate
servers, and to balance the load among servers.

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

5. Conclusions

Our work focuses on the use of reconfigurable component-
based applications to support the specific needs of mobile
users. We are particularly concerned with the application and
resource availability and the intermittent connectivity in a
mobile collaboration environment. In this paper, we presented
DACIA, a mobile component framework used to develop
applications that can adapt to environmental changes. They
can dynamically reconfigure by loading new components,
changing the way components interact and exchange data,
and moving components from one host to another. DACIA
provides support for application and user mobility across
heterogeneous devices, and it enables persistent connectivity
between moving components.

We presented a taxonomy of components that can be used to
structure collaborative applications. We showed several recon-
figurable groupware applications implemented using DACIA.
Applications include groupware clients that relocate based on
user’s location, and mobile clients that can be parked while
their users are disconnected. A parked client may continue
to participate, on a limited basis, to collaborations on the
user’s behalf. DACIA has also been used to build collaboration
services that adapt to available resources and the number of
users. Such reconfigurable services are useful even when users
are not mobile.

We are currently extending DACIA to address the security
concerns of both mobile components and the hosts where
they execute. We are also in the course of developing a
set of general-purpose adaptive policies that optimize the
performance of distributed applications through dynamic re-
configuration and component relocation. Future challenges in-
clude using and evaluating DACIA-enabled collaboration tools
in real collaboration settings, and providing access control
features for users to control the applications’ structure and
the mobility of their components.

6. Acknowledgments

This work has been supported in part by the National
Science Foundation under Grant No. ATM-9873025.

References

[1] M. Weiser, “Hot Topics: Ubiquitous Computing,” IEEE Computer, Oct.
1993.

[2] R. Bentley and P. Dourish, “Medium versus Mechanism: Supporting
Collaboration through Customisation,” in Proceedings of the Fourth
European Conference on Computer-Supported Cooperative Work (EC-
SCW’95), Stockholm, Sweden, 1995.

[3] M. Roseman and S. Greenberg, “Building Flexible Groupware through
Open Protocols,” in Proceedings of the ACM Conference on Organiza-
tional Computing Systems, California, 1993.

[4] P. Dourish, “The Parting of the Ways: Divergence, Data Management
and Collaborative Work,” in Proceedings of the Fourth European
Conference on Computer-Supported Cooperative Work (ECSCW’95),
Stockholm, Sweden, 1995.

[5]1 S. Greenberg and M. Boyle, “Moving Between Personal Devices and
Public Displays,” Nov. 1998.

[6] W. K. Edwards, “Policies and Roles in Collaborative Applications,”
in Proceedings of the ACM 1994 Conference on Computer-Supported
Cooperative Work (CSCW ’96), Boston, MA, Nov.. 1996, pp. 11-20.

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

A. H. Shen and A. P. Dewan, “Access Control in Collaborative Envi-
ronments,” in Proceedings of the 1992 ACM Conference on Computer-
Supported Cooperative Work, (CSCW °92), 1992, pp. 51-58.

S. Greenberg and D. Marwood, “Real Time Groupware as a Dis-
tributed System: Concurrency Control and its Effect on the Interface,”
in Proceedings of the 1994 ACM Conference on Computer-Supported
Cooperative Work, (CSCW ’94), Chapel Hill, NC, Oct. 1994, pp. 207-
217.

P. Dewan and R. Choudhary, “Coupling the User Interfaces of a Mul-
tiuser Program,” ACM Transactions on Computer Human Interaction,
vol. 2, no. 1, pp. 1-39, March 1995.

G. Fitzpatrick, S. Kaplan, and T. Mansfield, “Physical Spaces, Virtual
Places and Social Worlds: A study of Work in the Virtual,” in Proceed-
ings of the 1996 ACM Conference on Computer-Supported Cooperative
Work, (CSCW ’96), Boston, MA, Nov. 1996, pp. 334-343.

J. H. Lee, A. Prakash, T. Jaeger, and G. Wu, “Supporting Multi-User,
Multi-Applet Workspaces in CBE,” in Proceedings of 1996 the ACM
Conference on Computer-Supported Cooperative Work, (CSCW ’96),
Boston, MA, Nov. 1996, pp. 344-353.

S. E. Hudson and 1. Smith, “Techniques for Addressing Fundamental
Privacy and Disruption Tradeoffs in Awareness Support Systems,” in
Proceedings of the 1996 ACM Conference on Computer-Supported
Cooperative Work, (CSCW ’96), Boston, MA, Nov. 1996, pp. 248-257.
E. Horvitz, A. Jacobs, and D. Hovel, “Attention-sensitive Alerting,”
in Proceedings of the 15th Conference on Uncertainty and Artificial
Intelligence, Stockholm, Sweden, July 1999, pp. 305-313.

N. A. Streitz, J. Geisler, and T. Holmer, “Roomware for Cooperative
Buildings: Integrated Design of Architectural Spaces and Information
Spaces,” Cooperative Buildings: Integrating Information, Organization,
and Architecture, Springer-Verlag, Lecture Notes in Computer Science,
1370, pp. 4-21, 1998.

V. Belloti and A. S. Bly, “Walking Away from the Desktop Computer:
Distributed Collaboration and Mobility in a Product Design Team,”
in Proceedings of the 1996 ACM Conference on Computer-Supported
Cooperative Work, (CSCW ’96), Boston, MA, Nov. 1996, pp. 209-218.
A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility,”
IEEE Trans. on Software Engineering, vol. 24, no. 5, May 1998.

D. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

J. Baumann, F. Hohl, K. Rothermel, M. Schwehm, and M. Straer,
“Mole 3.0: A Middleware for Java-Based Mobile Software Agents,” in
Proceedings of Middleware 98, Lake District, U.K., Sep. 1998.

A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh, “Mobile
Agent Programming in Ajanta,” in Proceedings of the 19th International
Conference on Distributed Computing Systems (ICDCS’99), Austin, TX,
May 1999, pp. 190-197.

A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The
Anatomy of a Context-Aware Application,” in Proceedings of Mobicom
’99, Seattle, WA, Aug 1999.

G. D. Abowd, “Software Engineering Issues for Ubiquitous Comput-
ing,” in Proceedings of the 21st International Conference on Software
Engineering (ICSE '99), Los Angeles, CA, May 1999.

G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and
D. Zukowski, “Challenges: An Application Model for Pervasive Com-
puting,” in Proceedings of the Sixth Annual International Conference
on Mobile Computing and Networking (MOBICOM 2000), Boston, MA,
Aug. 2000, pp. 266-274.

R. Barr, J. Bicket, D. Dantas, B. Du, T. D. Kim, B. Zhou, and
E. Sirer, “On the Need for System-Level Support for Ad hoc and Sensor
Networks,” in ACM Operating Systems Review, April 2002.

0-7695-2056-1/04 $17.00 (C) 2004 IEEE

10

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

