
An Architecture supporting the development of Collaborative Applications for
Mobile Users

Vagner Sacramento, Markus Endler, Hana K. Rubinsztejn,
Luciana dos S. Lima, Kleder Gonçalves, Giulliano A. Bueno

Departamento de Informática, PUC-Rio
R. Marquês de São Vicente 225

22453-900, Rio de Janeiro
�vagner,endler,hana,lslima,kleder,giubueno�@inf.puc-rio.br

Abstract

This article presents a software architecture and services
which comprise a middleware infrastructure for the devel-
opment and operation of collaborative applications for mo-
bile users. The design of the architecture, named Mobile
Collaboration Architecture - MoCA, was driven by the fol-
lowing goals: support scalability in terms of the number of
users and services, flexibility and extensibility with respect
to the used communication protocols and the application
requirements, and facilitate the monitoring, processing and
use of context information regarding single users and the
collaborative group within the applications.

Keywords:
Mobile Computing, Middleware, Mobile Collaboration

1. Introduction

As portable computing devices with wireless commu-
nication interfaces, such as PDAs with GPRS or IEEE
802.11, Smart-phones, etc become more powerful and com-
mon place, the demand for the development of applica-
tion and services supporting communication and collabora-
tion among mobile users also increases. Although this new
distributed computing environment brings new challenges,
such as mobility, limited resources on the devices and in-
termittent connectivity, it also opens a new range of differ-
ent and yet unexplored forms of user interactions, in which
for example information about user locality and proximity
plays a distinguished role in determining the form and the
participants of an interaction

We argue that collaboration in a static and a mobile
network are quite different. While in collaboration envi-
ronments for static networks, one implicitly assumes an

”always-on” connectivity of all user devices, this assump-
tion cannot be made in a mobile setting. Due to the weak
and intermittent connectivity in these networks, a user may
become temporarily unavailable even though she is still en-
gaged in the collaboration session. Hence, synchronization
of views and mutual perception of the collaborating users
(i.e. Collaboration Awareness) must be redefined in this
new context.

Another difference is related to user mobility. When
the users are mobile, the group of collaborators tends to
be more dynamic, is formed spontaneously, and is mo-
tivated by a common interest or situation shared among
the peers. Hence, instead of supporting static (and task-
oriented) groups like in traditional groupware systems, en-
vironments for mobile collaboration should focus on sup-
porting mobile communities. Moreover, the form of interac-
tion of a (mobile) user with other community/group mem-
bers tends to be more variable, asynchronous and dependent
on her current context, her activity or current interest. For
example, the interaction of a person with a community may
be more or less active/engaged depending on her location
(e.g. at the working place, or at home), on her activity (e.g.
driving, walking, sitting) or even on her state of mind and
interest to communicate.

Finally and as already mentioned, collaboration between
mobile users is usually not driven by a global and pre-
defined goal or task, such as the cooperative work on a dig-
ital or physical artifact, but instead by spontaneous and oc-
casional initiatives to share with others some information,
contribute to the development or improvement of a public
knowledge. This makes participation in a collaboration be
more spontaneous, irregular, and moreover, motivated by
implicitly (or explicitly) gain of reputation due to the contri-
bution with higher-quality, more reliable, or more relevant
information [8].

All the aforementioned characteristics suggest that envi-

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



ronments for developing mobile collaboration applications
and services should incorporate new mechanisms facilitat-
ing the collection, the aggregation and the application-level
access to different kinds of information about the individ-
ual and collective context of a user or community, which
can be both made available to the collaborating peers (e.g.
mobile collaboration awareness), or used for adapting the
behavior of the application (e.g. available functions or user
interfaces) to the current situation.

This paper describes a middleware architecture for de-
veloping support services and applications for mobile col-
laboration named MoCA (MObile Collaboration Architec-
ture). The work is part of a wider project which aims at
experimenting with new forms of mobile collaboration and
implementing a flexible and extensible service-based envi-
ronment for the development of collaborative applications
for infrastructured mobile networks.

In the following session we present a general overview
of MoCA, its main components and their interactions. Sec-
tion 3 presents a simple Chat application with connectivity
awareness, which we implemented as a first proof of con-
cept of MoCA. In section 4 we discuss some related work
and make a comparison with the MoCA architecture. Fi-
nally, in section 5, we make some considerations with re-
gard to the MoCA properties, and mention other ongoing
work that in the scope of this project.

2. Overview of MoCA

The Mobile Collaboration Architecture (MoCA) was de-
signed for infrastructured wireless networks. The current
prototype of this architecture works with an 802.11 wireless
network based on the IP protocol stack, but the architecture
could as well be implemented for a cellular data network
protocol, such as GPRS.

The MoCA infrastructure consists of client and server
APIs, basic services supporting collaborative applications
and a framework for implementing application proxies
(ProxyFramework), which can be customized to the spe-
cific needs of the collaborative application and which fa-
cilitates the access to the basic services by the applica-
tions. The APIs and the basic services have been designed
to be generic and flexible, so as to be useful for differ-
ent types of collaborative applications, e.g. synchronous
or asynchronous interaction, message-oriented or artifact-
sharing-oriented.

In MoCA, each application has three parts: a server, a
proxy and a client, where the two first execute on a static
node in the wired network, while the client runs on a mo-
bile device. One or more proxies of the application are the
intermediates of any communication between the server and
the client components.

Applications with requirements to scale to large num-
bers of clients may have several proxies executing on dif-
ferent networks and interacting with a small(er) number of
servers. Actually, the number of proxies required will de-
pend on the type of application, the number of clients and
the current demand for interaction by the user community.
The proxy of an application may execute several tasks, such
as adaptation of the transferred data, e.g. compression, pro-
tocol conversion, encryption, user authentication, context
processing, distribution of context information, service reg-
istration and location, handover management and others.
Most of such tasks require quite a lot of processing effort,
and hence, the proxy also serves as a means of distributing
the application-specific processing among the server and its
proxies.

The main services offered by the architecture for the de-
velopment of collaborative applications are the following:

� Monitor: is a daemon executing on each mobile de-
vice, which is responsible for (i) collecting state infor-
mation of the device, such as connectivity quality, en-
ergy, CPU usage, free memory, current Access Point
(AP), list of all APs and their signal strengths that are
within the range of the mobile host, etc, and (ii) send-
ing this data to the CIS (Context Information Service),
executing on one (or more) node(s) of the wired net-
work.

� Configuration Service (CS): this service is in charge
of storing and managing the configuration information
for all mobile devices, so that these can use the MoCA
infrastructure. The configuration information is stored
in a persistent database, where each entry holds the fol-
lowing data: MAC address of the device, the (IP:port)
address of the CIS and Discovery Service, and the pe-
riodicity in which the Monitor will send the device’s
state information to the CIS.

� Context Information Service (CIS): This service re-
ceives and processes state information sent by the
Monitors. It also receives requests for notifications
(aka subscriptions) from application Proxies, and gen-
erates and delivers events to a proxy whenever a
change in a device’s state is of interest to this proxy.

� Discovery Service (DS): is in charge of storing, manag-
ing and locating information regarding any application
(servers and proxies) registered with the MoCA mid-
dleware.

� APIs and the ProxyFramework: The server and the
client of a collaborative application should be imple-
mented using the MoCA APIs. The Proxy of the ap-
plication will be an instance of the ProxyFramework,

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



Figure 1. Interaction between basic services and an collaborative application in MoCA

where its behavior is customized according to the spe-
cific needs of the application. Both the APIs and the
ProxyFramework hide from the application developer
all the details concerning the use of the services pro-
vided by the architecture.

Figure 1 shows the typical sequence of interactions
among the elements of the architecture, which is to illustrate
the roles played by these elements during registration and
execution of an collaborative application, composed of one
(or more) instances of an Application Server, a Proxy(ies)
and an Application Clients.

Initially, the Application Server registers itself at the DS
(step 1) informing the name and the properties of the col-
laborative service that it implements. Each Proxy of the
application also performs a similar registration at the DS
(step 2). This way, the Application Clients can query the
DS in order to discover how to access a given collaborative
service in their current network , i.e. either through the Ap-
plication Server or a Proxy. Each mobile device executes
the MoCA Monitor, which polls the current resource and
connectivity states of the device, and sends this information
to the CIS. The address of the target CIS and the periodic-
ity in which the state is to be sent are obtained from the CS
when the device is started (step 3). Thereafter, the Monitor
sends periodically the state information to the CIS (step 4).

After discovering a Proxy which implements the desired
collaborative service through the DS (in step 5), the client
can start sending requests to the Application Server. Every
such request gets routed through the corresponding Proxy
(step 6), which processes the client’s request with respect to
specific adaptation needs of the application, and forwards
it to the Application Server. For example, the Proxy may
send a request to the CIS (step 7) for registering its inter-
est in notifications of some (types of) events concerning the

Client it is representing, such as the one given by the fol-
lowing Interest Expression, �“FreeMem� 15%” OR “roa-
ming=True”�.

Now, whenever the CIS receives a device’s state infor-
mation (from the corresponding Monitor), it checks whether
this state change evaluates any Interest Expression to true.
In this case, CIS generates a notification event and sends it
to all Proxies which have registered interest in such change
of the device’s state.

When the Application Server receives the client’s request
(step 8), the request is processed and a reply is sent to some
(or all the) Proxies, which will then process (e.g. modify,
filter, etc.) the reply according to the context information re-
ceived from the CIS about the mobile device. Such context-
specific processing depends on the specific requirements of
the collaborative application. For example, if the Proxy is
informed that the quality of the wireless connectivity of a
mobile device has fallen below a certain threshold, it could
temporarily store the server’s reply data in a local buffer for
an optimized/bulk transfer, remove part of the data, e.g. fig-
ures, apply some compression to the data, etc. Moreover,
the Proxy could use other context information, such as the
device’s location, to determine what data, when and how it
should be sent to the client at the mobile device (step 9).

The architecture also implements mobility transparency
for the applications. When a mobile devices moves to a
new network (step 10), the Proxy performs the handover
at the application level, e.g. determining the most appropri-
ate Proxy for the device in the new network, and if avail-
able, transferring the collaboration session state to this new
Proxy. Figure 1 shows a scenario in which the client in net-
work B remains using the proxy of the previous network,
(which in turn uses CIS and DS of network A), since sup-
posedly these services are not available in its new local net-

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



work. But also in case of a successful handover to a new lo-
cal Proxy neither the Client nor the Server would be aware
of the migration. In any case, all of the client’s request
received by the current Proxy would be transparently for-
warded to the corresponding application server.

3. Wireless Chat: a case study

As a first proof of concept of MoCA we implemented
a Chat tool which we called W-Chat (from Wireless Chat)
and which has as its unique feature the diffusion of con-
nectivity status of each participant in a chat room (called
Forum) and support ”catch-up” after a disconnection. To
implement this extra feature, W-Chat uses connectivity in-
formation provided by CIS.

The W-Chat proxy intercepts all messages (commands
and events) from the client to the server, and vice-versa, and
has a local message buffer holding the last � undelivered
chat messages for every of its clients. It also registers at
CIS its interest in any disconnection and connection event
from any of its devices. This is done through the following
expression, where MacAddr stands for the specific MAC
Address of a device:

DeviceID: MacAddr,
Context: � (last state = connected AND curr state �

disconnected) OR (last state � disconnected AND
curr state � connected) �

The proxy also registers itself at CIS to receive events
about new clients requesting its services.

Like most traditional chat services, W-Chat enables users
to create new Forums (chat rooms), identify the users cur-
rently participating in a Forum, search for Forums by sub-
ject, participate simultaneously in several Forums, etc. In
addition, W-Chat displays the connectivity status of each
Forum participant. Therefore, when a participant becomes
disconnected, for example, because it moved to a region
without wireless coverage, a characteristic icon showing
this new status appears close to the user’s name in the list of
Forum participants. This additional information about mu-
tual availability for collaboration (i.e. a new form of Col-
laboration Awareness) helps users to decide if they should
or not expect immediate messages from other users. More-
over, being (temporarily) disconnected is obviously a differ-
ent state than leaving a Forum, and hence these two states
should be perceived differently by the other participants.

When a user reconnects to the network, W-Chat’s Client
and Proxy synchronize their states, and the user gets the �
most recent messages of each of the Forums in which she
was participating. For the communication between the W-
Chat client and Proxy we used JMS[1].

The MoCA architecture supported the implementation of
W-Chat application by handling transparently all problems
related to the mobility and temporary disconnection of the

clients and by offering a high-level interface to a service for
obtaining context information about the mobile devices, e.g.
the wireless connectivity.

Figure 2 shows a screen-shot of W-Chat’s client for Win-
dows on notebooks1, where the right window shows an open
Forum (named MoCA), with a list of 5 participating users,
of which two of them are currently disconnected from the
(wireless) network, as indicated by the crossed icons. The
left side window displays the set of all Forums available to
a user at a given moment. This window also allows her to
receive any message not related to a specific forum.

4. Related work

There are several other works which aim at providing
support for some sort of collaboration in mobile networks.
In this section we present and discuss some work most
closely related to our proposed architecture. Initially we
emphasize main characteristics of each system or environ-
ment, and at the end of the section we compare them with
MoCA.

YACO (Yet Another Collaboration Environment) [4] is
a framework for collaborative work, which is based on
SIENA [5], a distributed, content-based Pub/Sub communi-
cation infrastructure, and on MobiKit [3], which is an mo-
bility service toolkit based on proxies. Using MobiKit’s op-
eration moveOut a client can inform a server of its discon-
nection. Whenever the client is reconnected to the network
it may invoke operation moveIn, by which it is able replay
all the events missed during the period of time it was dis-
connected. As a collaboration environment, YACO offers
a message service, a service for discovery of users, and a
service for sharing of artifacts (files and programs).

The architecture MOTION [6] offers collaboration ser-
vices such as search and exchange of distributed artifacts
(on mobile devices) in a peer-to-peer architecture, and a
message system based on events publish/subscribe. MO-
TION provides TSW (TeamWork Services) for managing
user groups and access rights (through its DUMAS subsys-
tem), storage and sharing of artifacts, and support for dif-
ferent mobile devices.

STEAM [7] is an event-based middleware for collabora-
tive applications where location plays a central role. It is a
system specially designed for ad-hoc mobile networks, and
hence inherently distributed. It supports filtering of event
notifications both based on subject and on proximity. This
second kind of filtering is used to restrict the propagation of
events. Subject- and proximity-based filters can be associ-
ated with a event producer, while contents-based filters can
be applied by event consumers.

YCab [2] is also a framework for development of col-
laborative services for ad-hoc networks. It has a flexible

1Currently, we are also developing a W-Chat client for Compaq iPAQs

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



Figure 2. W-Chat Client Windows

API for the development of collaborative applications for
mobile users. The framework supports asynchronous and
multicast communication based on 802.11. The architecture
includes a module for message routing and modules manag-
ing the communication, the client component and its state.
Moreover, it provides support for decentralized control us-
ing algorithms for distributed coordinator election and ses-
sion management. Among the offered collaboration ser-
vices, there is a chat, a shared white-board, and sharing of
images (video-conferencing) and user files.

Analysing the aforementioned environments, we can see
that most of them essentially use the Pub/Sub communica-
tion paradigm, which seems to be best suited for environ-
ments with weak connectivity between clients and servers,
and peers. MoCA also supports event-based communica-
tion through appropriate operations at its APIs, but in ad-
dition, the application developer can also use others, e.g.
connection-oriented (RMI, TCP) or connectionless mecha-
nisms.

Another common feature observed in most systems is
their concern to shield from the application developer all as-
pects regarding mobility and user location, aiming the pro-
vision of a seamless, anywhere-available service. Except
for STEAM, which handles location information (obtained
via GPS receivers), no other work uses information about
the current context for triggering appropriate adaptations of
the application’s behavior (to conform to the new execution
environment) or enabling context-specific application func-
tions, such as the proximity-based selection of collaboration
partners, or the dissemination of the connectivity status of
mobile devices. YACO’s moveIn and moveOut in princi-
ple could be used to provide connectivity and approximate
location information, but this is not offered by the corre-

sponding API, since YACO’s main objective is to hide and
not to expose connectivity/location information.

In MoCA, we take a radically different approach, ex-
posing context information for the development of context-
aware applications. Through basic services and via the
ProxyFramework we make available to the application de-
veloper a wide range of context information, e.g. the user
device’s (approximate) location, the quality of the connec-
tivity, the device characteristics, available resources, user
preferences, etc., which she can use according to the spe-
cific needs of the application.

5. Conclusions

This work is part of a wider project which aims at inves-
tigating collaboration support for mobile users. We believe
that collaboration among mobile users requires new and dif-
ferent middleware services and functionality than the ones
provided by groupware for wired networks.

In particular, we believe that not only individual context
information of a user (such as her location or connectivity),
but also collective context information (such as the prox-
imity of two or more users) can be used not only to enrich
collaboration awareness, but as well allow for new forms of
collaboration, which have not been yet explored in conven-
tional, wired collaboration.

Compared with other middlewares and environments for
mobile collaboration, MoCA offers a generic and extensi-
ble infrastructure for the development both of new services
for context services (i.e. for collecting and/or processing
context information) and of collaborative applications that
make use of this information to determine the form, con-
tents and/or the group of collaboration.

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



So far, we have implemented the Monitor, the Configu-
raion Service, the Context Information Service and the Dis-
covery Service. We have versions of the Monitor for both
Linux and WindowsXP platforms, and they are mostly in-
dependent of the 802.11 PCMCIA card being used. For ef-
ficiency reasons we have used sockets/UDP for the com-
munication between the Monitor and CIS, but between the
MoCA basic services and the W-Chat Server and its Proxy
we have implemented asynchronous, event-based commu-
nication. Concerning the ProxyFramework till now we have
only a bare-bones implementation, which includes simpli-
fied versions of the components Discovery, Caching Man-
agement and Context Management, since only these were
required for the W-Chat Proxy.

During the development of W-Chat (which took only 2
weeks), we could perceive the benefits of using MoCA’s
services, APIs and ProxyFramework, which reduced con-
siderably the complexity of the application. The current
version of W-Chat was implemented using J2SE, but we
are now also working on a client for limited devices, using
J2ME/CDLC.

In addition, we are also developing a version of the
Monitor for the platforms Windows, PocketPC e PalmOS.
We have also started exploring other alternatives of using
context information for creating new forms of collabora-
tion. Using a probabilistic method we are implementing
an Approximate Positioning Service which is based on the
strength of the 802.11 RF signal received from various ac-
cess points. We are also designing a Proximity Service
which will use the APS and will allow the user to configure
her own set of neighborhoods with different levels of gran-
ularity, and detect the set of other users that are currently
co-located in her current neighborhood. Using such infor-
mation we are planning to design and implement new col-
laboration applications which are proximity-sensitive, e.g. a
user entering a (conference) room is automatically included
in a chat Forum of that room so that she can also participate
in message exchanges among the members of the audience,
or detect if there is someone to share files with.

In yet another thread of research, we are investigating
means of defining user interests using ontologies, and de-
signing services for the evaluation of affinity and discovery
of similar (or complementary) interests. The goal is to de-
sign collaborative applications which use both information
about co-localization and interest affinity in order to deter-
mine the peers and the form of collaboration.

References

[1] The Java Message Service Specification.
http://java.sun.com/products/jms/docs.html (Last visited:
November 2003).

[2] D. Buszko, W.-H. Lee, and A. Helal. Decentralized ad
hoc groupware API and framework for mobile collaboration.
In Proceedings of the 2001 International ACM SIGGROUP
Conference on Supporting Group Work, Boulder, USA, Oct.
2001.

[3] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and
evaluation of a support service for mobile, wireless pub-
lish/subscribe applications. IEEE Transaction of Software En-
gineering, 29(12):1059–1071, December 2003.

[4] M. Caporuscio and P. Inverardi. Yet another framework for
suporting mobile and collaborative work. In Proc. of the In-
ternational Workshop on Distributed & Mobile Collaboration
(DMC), at the 12th Workshop on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE), Linz,
Austria, June 2003. http://citeseer.nj.nec.com/583641.html
(Last visited: August 2003).

[5] A. Carzaniga, D. Rosenblum, and A. L. Wolf. Achieving scal-
ability and expressiveness in an internet-scale event notifica-
tion service. In Nineteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 219–227, July 2000.

[6] E. Kirda, P. Fenkam, G. Reif, and H. Gall. A service architec-
ture for mobile teamwork. In Proc. of the 14th International
Conference on Software Engineering and Knowledge Engi-
neering, Ischia, Italy, 2002.

[7] R. Meier and V. Cahil. Exploiting proximity in event-based
middleware for collaborative mobile applications. In 4th IFIP
International Conference on Distributed Applications and In-
teroperable Systems (DAIS’03), Paris, France, 2003.

[8] H. Rheingold. Smart Mobs: The Next Social Revolution.
Perseus Publishing, Oct. 2002. ISBN: 0738206083.

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 


