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In the two decades hand-held calculators have been readily available, there has been
ample time to develop a usable design and to educate the consumer public into choosing
quality devices. This article reviews a representative calculator that is &&state of the art''
and shows it has an execrable design. The design is shown to be confusing and essentially
non-mathematical. Substantial evidence is presented that illustrates the inadequate docu-
mentation, bad implementation, feature interaction, and feature incoherence. These prob-
lems are shown to be typical of calculators generally. Despite the domain (arithmetic)
being well de"ned, the design problems are profound, widespread, confusing*and
needless. Worrying questions are begged: about design quality control, about consumer
behaviour, and about the role of education*both at school level (training children to
acquiesce to bad design) and at university level (training professionals to design unusable
products). The article concludes with recommendations.

&&The problem of e$cient and uniform notations is perhaps the most serious one
facing the mathematical public.'' Florian Cajori (1993)

&&[. . .] contrivances adapted to peculiar purposes [. . .] and what is worse than all,
a profusion of notations (when we regard the whole science) which threaten, if not
duly corrected, to multiply our di$culties instead of promoting our progress.''
Charles Babbage, quoted in Cajori (1993). ( 2000 Academic Press

KEYWORDS: consumer product user interfaces; feature interaction; feature incoherence; calcula-
tor and calculator user interfaces.
1. Introduction

My daughter is 11 years old and her school recommends that she buys a particular make
and model of hand-held calculator. This calculator ba%es me, even though I have three
degrees, one in physics and two in computing. My di$culties are not because I am
incompetent in my use of the calculator; my di$culties are unusual because I have
noticed them and spelt them out. They are everyone's problems (Thimbleby 1999). Given
that a primary school recommends the calculator to its children, and its manufacturers
intend it to be better than the already most popular calculator of its class (Appendix C),
I would have thought that no basically numerate adult should have any trouble
understanding anything written here! This is not so; therefore there is a problem.

Something odd is going on in the world: that a primary school recommends something
so complex, and that someone with a numerate Ph.D. cannot understand it.
1071-5819/00/061031#39 $35.00/0 ( 2000 Academic Press
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Nobody seems to notice or care that there might be a problem in all this. That critical
and analytic thought is not recruited by consumers to critique complicated gadgets
suggests manufacturers should take special care over their product design. On the
contrary, it is possible that manufacturers do not want consumers to understand their
products. Electronic calculators have been around for many years. There is evidence that
manufacturers do develop their products (Section 3); thus each year, the manufacturers
could have made further improvement in the products, using standard methods such as
iterative design (Nielsen, 1993)*had they been engaged in it. There are no valid excuses
for manufacturers, like cost, ignorance or novelty.

Calculators have been widely studied, by computer scientists (Aho, Sethi & Ullman,
1985; Thimbleby, 1996a) psychologists (Halasz & Moran, 1983; Young, 1981, 1983) and
designers. Standard design tools, such as compiler}compilers have been widely available
since the 1970s (Johnson, 1975); their use would have automatically picked up some of the
numerous design problems discussed here. The calculator this papers critiques is made
by a leading manufacturer, and it is hardly exceptional in its problems (Section 3). Why
are these things so badly designed? One wonders just how long the manufacturers
themselves spent evaluating the design or, more pointedly, just what they evaluated it
for. Given that these products are sold to children, and especially given that they are
sold to do calculations*often a serious activity, for "nancial work, for medical work,
for teaching children what mathematics is about*there ought to be an obligation to
design them with care and to make them easier to understand. This article indicates
numerous ways in which the particular calculator and calculators in general can be
improved.

There is a temptation to blame usability problems on users, rather than on design
(Thimbleby, 1993). Doing studies of users might tend to focus attention on to users'
behaviour rather than on to design issues. Blaming users happens particularly when
errors have signi"cant consequences, as in safety critical systems (Leveson, 1995)*in
hindsight, users could have done something else, so users are to blame for the errors*or
they should have bought a di!erent calculator to start with.

We already know that users try to understand systems and that documentation plays
a major part in the success of users (Carroll, 1998). Lack of design insight, a symptom of
which is inadequate explanation, is one of the main reasons for poor design. The lack of
documentation then exacerbates the users' problems: the device is badly designed, badly
documented, and therefore the bad design is even harder to cope with. Knowledge of the
di$culties of users does not in itself provide an explanation that would help make the
calculator better. Moreover, users' experience alone is not a guide for better design
(Christensen, 1997), because better design requires a deeper understanding.

What of the user's conceptual models? A few thousand years of the development of the
notations of mathematics have developed a representation for mathematical models.
Calculators can be designed that are directly consistent with such models (Thimbleby,
1996a, 1997). (How cognitive approximations to mathematical models are compromised
by broken calculators is an interesting area of study but is beyond the scope of this article.)

The calculator's domain, mathematics, is well de"ned, its notations are well de"ned,
and its technologies, microelectronics and computer science, are well established. All
the technical problems (such as portability, parsing, numerical techniques and reliability)
are solved. One infers that opportunities to design well have not been exploited
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by the manufacturers. We take the evidence from the calculator's inadequate
documentation as a symptom of a serious mismatch between the potential and what
actually happens.

Style of this article: This article describes problems with a &&simple'' gadget. I have
speci"ed particular models so readers can double check facts. The calculators are as
I describe them. It would not be possible to make substantial claims without grounding
this article in speci"c products. However, there may be a danger that this article is taken
as an attack on Casio, the manufacturer of the calculator, or on a speci"c product.
Section 3 shows that the problems are generic: they apply to more calculators and to
more manufacturers. In any case, a school recommends the speci"c Casio calculator: in
some sense, then, there is external evidence that this calculator is &&best'', and therefore it
is appropriate to critique this particular model. Casio themselves appear to think highly
of the model (Appendix C).

This article is analytic, not empirical. Experiments are a good way of falsifying
conjectures or of determining statistical parameters; they are not, however, a good way of
evaluating nonsense*an example given by Deutsch (1997) is that no experiment is
required to establish that eating grass does not cure the common cold because we have
a good explanation of the cold. We have a good explanation for calculators, but nobody
has been using it.

Notation: The Casio fx-83= is complex, so there is a balance between explaining it
clearly against being faithful to how it actually is. The manufactuer's;ser1s Guide adopts
the convention that when a key has several meanings (e.g. see Figure 1) the ;ser1s Guide
shows the meaning determined by the context. Thus, to store the current result in the
memory M actually requires the keys STO M# to be pressed, but as M is one of
the several labels of the key M# it is clearer to write STO M , even though no key
M exists.
There is one exception to this convention used in this article (but not in the User's

Guide) the key SHIFT is not shown. For example, the percent key is represented here by

% but in fact is keyed by pressing two keys, SHIFT " . This one exception means we

do not discuss, for instance, that SHIFT hyp sin and hyp SHIFT sin have the
FIGURE1. Schematic of the M# key. The key is black with M# in white. The labels M} and CL are in yellow;
the M (top right) in red; and the DT and lines underneath are in blue. The SD mode (&&standard deviation'') uses
blue labels, and the shifted functions are yellow: the colour coding of the CL function is meant to indicate that in

SD mode, a shifted M# press obtains the function CL, not M}.



FIGURE 2. Schematic of the fx-83W calculator liquid crystal display. The &&2#4'' (top left) is displayed in a dot
matrix font, and the &&150.'' is displayed in a 7-segment font. The small D is a custom symbol, indicating the
calculator is in degrees mode. While a sum is entered, it is displayed in the top line and the answer line is blank.
Here, the sum 2#4 has been entered, and the answer is shown as 150 (it would have been 6 if " had been

pressed, but % was pressed instead*note that it is not possible to tell what causes the result shown).
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same e!ect, because both meanings would be represented here as hyp sin!1 .- We will
not be concerned with the shift key as such further in this article, because it only causes
minor confusion that could be easily avoided if desired (by relabelling keys)*an example
taken from the calculator's User's Guide is: SHIFT B by which it means pressing

SHIFT 8 , whereas ALPHA B means pressing ALPHA 3’’’ (note that two separate
keys are labelled B).

This article's convention suppresses certain design details, for instance that in some
modes some keys have di!erent meanings. A reader of this article will not know which
keys have which meanings (a consideration that is relevant for some design decisions,
such as key labelling). However, this article is not a manual for the calculator but
a critique of its design. The criticisms stand, even though a reader may not know, without
reference to the calculator's manual, which physical key is referred to.

2. The Casio fx-83W

Consumers select a calculator by its image; if people want a di!erent design then they can
select a di!erent model. We are therefore justi"ed in taking the design as given, and
seeing how badly it works out, taking it on its own terms.

The fx-83W has 51 button (including the &&P'' button on the rear of the case), at least 11
modes and 159 functions including hyperbolic sines and regression. The ;ser1s Guide is
54 pages long.?

The number and range of functions itself is not a problem. An English dictionary may
have hundreds of thousands of words that will never be &&used'' in the lifetime of its owner.
The problem with the calculator is that, unlike a dictionary, its functions are
badly organized and interact confusingly with each other. Its spurious complexity is
unnecessary.
-Because sin~1 is the shifted meaning, this label is beside the key not on the key top as our convention might
be thought to suggest. Incidentally, the calculator's choice of notation is undesirable: arcsin (or asin) is
preferred, since sin~1x is too easily confused with (sin x)~1 (Gullberg, 1997)*especially as sin2x is standard
notation meaning (sin x)2.
?Had the fx-83= used a conventional alphabetic keyboard (26 letters), 10 digits and the usual operators

(#,!,],%, ( , ),",J, etc.), then all of its functionality could have been achieved very simply, with fewer
buttons and only one mode.
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2.1. OVERVIEW OF FX-83W+S DESIGN PROBLEMS

The design of the fx-83W appears to be ad hoc and there is no clear and easy way to
summarize the design problems. This section gives a brief list of high-level design
problems; the Appendices continue with further substantiation of this list.

1. Inadequate documentation: The User's Guide, Quick Reference, key legends, and
diagnostics all provide information on how the calculator works and can be used.
In all areas the documentation is weak. Bad documentation obviously makes the
calculator harder to understand, since the user has to work out how the calculator
actually works. Bad documentation is a symptom of the manufacturers themselves
being unable to understand the calculator; it is a symptom that the technical
authors do not understand the calculator.

For speci"c examples of inadequate documentation, see A.1.
2. Feature interaction: Various features seem all right individually but interact in

strange ways. Feature interaction makes the calculator harder to understand:
features cannot be understood in isolation, but must be understood in all
possible contexts. Feature interaction makes some tasks impossible to perform.
Examples include the interaction between implicit multiplication and the &&speed
up'' recall of memory values; this and further examples of feature interaction are
discussed more fully sections 2.3 and A.2.

The calculator has useful feature interactions that are not documented. When the
" key is pressed the last calculation is repeated, and combined with using the
Ans button it is possible to do interesting things. For example, Ans # 1 "

makes a simple counter: each press of just " adds one to the running count. The
technique can be used to explore chaos theory, iterative convergence to numerical
problems, and even to do cryptography.

3. Feature incoherence: Various features seem all right individually but duplicate or
overlap each other in strange ways. Examples include the two forms of (!) and
! , that almost mean the same thing. The features individually may be reasonable,
but the user's problem is that a coherent task may have to be split between di!erent
features in arbitrary ways. Feature incoherence makes some tasks di$cult to
perform. Examples of feature incoherence are provided in Appendix A.3.

4. Bad implementation: What is implemented is not general. The rules for % do not
seem systematic (Section 3 and Appendix 5): it is not a general operation, and it
never appears in the calculator display, so a calculation with it cannot be fully
edited. A single decimal point is sometimes treated as zero, sometimes a syntax
error*but the user has to "nd out for themselves when, because the implementa-
tion is ad hoc. Bad implementation makes the calculator harder to understand;
explanations do not generalise.

5. Poor usability engineering: The calculator's bad design, despite many years of
experience, supports the view that the manufacturer bene"ts from no usability
engineering process. Nielsen (1993) has a list of eleven usability heuristics, and the
calculator breaks every one, apart from having clearly marked exits (which it
achieves with the AC key*and even that has problems in Section A.2.4). The
calculator provides no undo, so users' errors are exacerbated.
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Ironically for a calculator being aimed at the educational sector (Appendix C) all
features*simple and advanced*are equally accessible. Even disregarding the
feature interaction, presenting all features at once is known to be counter-produc-
tive (Carroll & Carrithers, 1984). A teacher cannot help children focus on particular
sorts of tasks or methods; nor can a user temporarily restrict the features of the
calculator to make their tasks less likely to be subject to interference from other
features. The fx-83W does not have a basic mode; no mode is available that restricts
the calculator to elementary operations. Even to make the calculator do normal
calculations, displayed normally in degree mode, seven keys must be pressed:
AC MODE 1 MODE 4 MODE 9 (switching the calculator o! and on does not
change its mode; there is no short-cut for setting this normal mode). The calculator
provides no prompts for the essential 1 , 4 or 9 keys here, and there is no
error checking*missing a digit out, for instance, means that the next MODE key
press would get quietly ignored.

6. Poor quality control: Many problems come down to unnecessary complexity and
details that are misleading or just plain wrong. Figure 3 illustrates the complicated
and varied rules for displaying fractions. The Quick Reference card with the
calculator gives an example of calculating z52

3
#33

4
, but the z symbol, which looks

like a decimal point, is irrelevant*the key presses given for this example are
5 ab/c . . . The answer is 9;5 ;12. (both in the Quick Reference and when

actually performed on the calculator): the trailing decimal point is potentially
misleading, since (as Figure 3 and Section A.2.2 make clear) decimals cannot be
combined with fractions successfully. The users of this calculator who need fractions
are not going to be helped by such sloppiness.

7. Hyperbolic presentation: The calculator includes &&Casio's VPAM logic'' (Appendix
C), and elsewhere called &&super VPAM'' (Section A.1.1) but it should be no more
ypical format Achieved by Brief comment

.23 decimals "xed MODE 7 2 Permanent mode

.23 signi"cant "gures "xed MODE 8 3 Permanent mode

3233. sexagesimal Q Temporary

5253. fraction (see caption) Pressing ab/c

53. vulgar fraction (see caption) Pressing d/c

.2303 engineering ENG Temporary

.~03 NORM 1 MODE 9 Permanent mode

.005 NORM 2 MODE 9 (same as NORM 1) Permanent mode

IGURE 3. Summary of di!erent approaches to display formats. Notice the occasionally super#uous decimal
oints. The rules for fractions are complex: to be displayable as a fraction, a calculation must apparently*the
anual does not specify any rules*contain uses of ab/c (not d/c ), integers, and no real operators (such as
uare root) applied to a fraction, even if the result is rational. For example 1 5 2 % 3 results in
display 156., but using 1 # z 5 obtains 1.5, which, although numerically equal to both 3/2 and

1#1/2, cannot be displayed as 352 or 15152.
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than doing arithmetic conventionally and hardly need a proprietary or special
technology.

The manufacturers further claim, &&equations can now be entered as they are written''
(Appendix C). This is misleading, for example, !23 has to be entered as
(!) 2 xy 3 " , and it gets displayed as !2 xy 3, or fractions (which are written
using lines or slashes, as in 1

2
) are entered using ab/c , and get displayed like 1;2. .

Although the ;ser+s Guide gives 56](!12)%(!2.5) as a worked example, which
could be entered as it is written, the Guide gives 56 ] (!) 12 % (!) space keys"
as the key presses, which is hardly as it is written!

2.2. DENOTATIONAL SEMANTICS

The bulk of this article discusses the design of the fx-83= in a naturalistic way. It may be,
then, that the design di$culties we supposedly identify are artifacts of the inadequate
way of discussing the design. (&&If you don't understand mathematics, no wonder you
don't understand a calculator!'') Indeed, the discussion of the mathematical aspects of the
calculator's design should be appropriately mathematical. This section therefore shows,
to the contrary, that a rigorous mathematical exploration of the design merely exposes
further problems.

The denotational semantics approach splits the de"nition of a notation into its syntax,
which de"nes its phrase structure, and its semantics, which de"nes its meaning (Allison,
1986; Tennent, 1981). As shown in Figure 4, the syntax of arithmetic expressions is
easily de"ned in BNF (an explanation of BNF and a more substantial syntax for
arithmetic expressions is given in Backus et al. (1976)). It is assumed that any phrase that
cannot be generated by the syntax is a syntax error: a calculator would display &&syntax
error'' and possibly point to the "rst point of departure of the keys entered and correct
syntax.

The semantics of a notation are de"ned by mapping each syntactic form into a corre-
sponding mathematical expression. The mapping is written using &&emphatic brackets'',
so I ) J maps a syntactic form into its value. Since the semantics of expressions are mostly
just the usual meaning of arithmetic, the semantic equations used in this article look
trivial.

In Figure 4, there is a production de"ning expressions recursively as expressions
followed by # followed by terms: this is written in BNF as SexpressionT ::"Sexpres-
sionT#StermT. This form of expression has a meaning, written Ie#tJ, where e is an
SexpressionT : :"SexpressionT#StermT DSexpressionT!StermTDStermT;

StermT : :"StermT]S factorT DStermT%S factorT D!S factorT D#S factorT ;

S factorT : :"(SexpressionT) D SnumeralT;

SnumeralT : :"SnumeralTSdigitT DSdigitT;

Sdigit T : :"0 D1 D2 D3 D4 D5 D6 D7 D8 D9

FIGURE 4. A syntax for simple integer arithmetic.



n3SnumeralT
d3SdigitT

IndJ"10]InJ#IdJ;

I0J"0; I1J"1; I2J"2; I3J"3; I4J"4;

I5J"5; I6J"6; I7J"7; I8J"8; I9J"9

FIGURE 5. A semantics for SnumeralT, decimal numerals. For example, the numeral 07 has a value of 7, since
I07J"10]I0J#I7J"7.
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expression and t is a term.- The meaning is, of course, the value that is the sum of what
e means, and of what t means. Thus the semantic rule is: Ie#tJ"IeJ#ItJ. Here it looks
like the # is used twice: but on the left (inside the I ) J brackets)#is merely a symbol; on
the right, # is the conventional mathematical operator that adds numbers. Notice that
this rule de"nes a meaning in terms of the meanings of smaller phrases. In turn, the
meaning of these phrases will be de"ned in terms of still smaller phrases*until we reach
the meanings of digits. Figure 5 shows how simple the meanings of numerals and digits are.

A desirable property of a notation is that it is referentially transparent, that the
meaning of expressions do not depend on how they are referred to. However, in general,
the semantic equations for a phrase t could depend on what syntactic category t is. If so,
several semantic functions I ) J

A
, I ) J

B2
would be required. In the arithmetic example

(Figure 6), a third semantic equation could be used ItJSexpressionT"ItJStermT . Since the
meaning of t is the same, this equation serves to make the referential transparency
explicit. Because arithmetic is indeed referentially transparent, the meanings of a phrase
t, well formed both as a term and as an expression, are the same in both contexts.

It is straight-forward to provide the complete denotational semantics of calculations,
building on the outline provided here. To complete the denotational semantics, we would
also add conditions that the length and complexity of an expression is limited*the
fx-83= can only handle expressions up to 127 symbols*and that there should be no
numerical over#ow. Finally, semantics may be provided to de"ne the precision of the
arithmetic. Interestingly, these conditions are merely &&meanings'' and can be handled in
exactly the same fashion as the arithmetic semantics. For example, the length require-
ment semantics would be a collection of equations like LIe#tJ"1#LIeJ#LItJ,
which says that the length of a phrase e#t is the length of e plus the length of t plus one
(for the length of the # sign itself ). If the top-level production is ScalculationT ::"Sex-
pressionT", then the meaning of this is that the overall calculation is not too long,
namely, ValidIe"J"LIeJ(127PVALID :TOO-LONG.

Having reviewed denotational semantics of conventional arithmetic, and shown that
we can handle numeric value, length limitations and numerical limitations, we now move
on to showing that the denotational semantics of the fx-83= is very obscure. In
particular, it loses the elegance and simplicity seen above in the semantics of everyday
arithmetic, where the semantic equations are so trivial they are hardly needed. In
arithmetic, this simplicity means that the meaning of # (as a symbol) is &&the same'' as
the meaning of # (as an arithmetic operator); it means that the meaning of 234 (as
-One might write Ie # tJ more speci"cally, but doing so begs, at least for the fx-83=, very complex
questions on the (unfortunate) arithmetic side-e!ects of editing keys: see Section 2.3. Since editing is in principle
(though not for this calculator!) separate from the mathematical meaning, this section simply takes the keys
somehow, and in a way we do not detail, as generating the expressions whose meaning we wish to de"ne.



e3SexpressionT
t3StermT
Ie#tJ"IeJ#ItJ;
Ie!tJ"IeJ!ItJ

FIGURE 6. A partial semantics for SexpressionT (conventional arithmetic).
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a numeral) is &&the same'' as the meaning of 234 (as a number). In everyday usage, then, we
do not need to, and in fact do not make the distinctions. Unfortunately, as we now show,
the fx-83= forces peculiar distinctions on us, and makes our everyday competence with
arithmetic breakdown.

For brevity, we shall only consider a small part of the fx-83=. First, a binary operator
at the start of a calculation has a di!erent meaning from one elsewhere. To account for
this, ScalculationT has to be de"ned in terms of SexpressionT and Sbinary-oper-
atorTSexpressionT. For simplicity, we will only consider#as an example binary oper-
ator, and the relevant productions are then as follows:

ScalculationT ::"SexpressionT"D#SexpressionT"

D SexpressionT% D SexpressionT%#;

SexpressionT ::"SexpressionT#StermTD#S factorT

D2

This is an abstract syntax: it does not de"ne a unique phrase structure for a sequence of
symbols. For example, #2"might be phrased as #SexpressionT"or as Sexpres-
sionT", with the SexpressionT in this case being#S factorT. This ambiguity may
confuse users, depending on what syntax they understand the calculator as using, but it
does not &&confuse'' the calculator, since (in this case) it reliably takes the "rst phrasing.
Thus, we use an abstract syntax merely to nominate syntactic categories, rather than to
de"ne an unambiguous phrase structure. Where an abstract syntax is used, some other
means, apart from the productions, will be required to disambiguate phrase structure
(alternatively, one may introduce subsidiary productions, as in Figure 4, which has
varieties of expression (term, factor), to make the appropriate distinctions). For example,
the;ser1s Guide itself could be considered to de"ne an abstract syntax (though instead of
productions it gives concrete examples), which it disambiguates with a separate table of
operator priorities. Curiously, the ;ser1s Guide does not disambiguate the example
considered above, because it fails to consider#as anything other than an in"x oper-
ator*it does not explain how to phrase #4", or expressions like!#2!.

Now an expression, possibly containing #, followed by % has a di!erent meaning
than one followed by", thus the meaning of # depends on the context. The calculator
is not referentially transparent, so we need to introduce more than one semantic function.
Let EI ) J be the conventional meaning of a calculation. We start with the top-level
semantic equations:

e3SexpressionT

EIe"J"EIeJ;
EI#e"J"a#EIeJ;
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EI]e"J"a]EIeJ;

EI%e"J"a%EIeJ;

F (other binary operator equations omitted)

where a is the result of the last calculation

The remaining equations for E are de"ned, much as in Figure 6, directly, with the
meanings of expressions being de"ned in terms of the meanings of their constituents,
right down to digits. With the exception of the top-level equations (above) which really
de"ne the meaning of " for the calculator*and with the exception of certain idiosyn-
cratic operators (e.g. ;, %, 3@@@)*all the other equations are trivial: for all operators
(represented by =, as respectively a binary, post"x or pre"x operator) they are of the
form

EIa= bJ"EIaJ=EIbJ,

EIa= J"EIaJ=

or EI= bJ"=EIbJ

For example, if we consider ! (factorial ), then, by the second line above, the meaning of
an expression a ending in ! is EIa !J, and that is de"ned as EIaJ! namely the factorial of
the value of a.

For each operator there is exactly one semantic equation. (Some symbols, like#, may
have two equations since they can be used as pre"x and binary operators.) We do not
consider it here, but if we de"ned the entire semantics of the calculator, we would need to
introduce further semantic functions- associated with each mode (the implication is that,
as mode dependency makes the denotational semantics worse and more complex, mode
dependency is a bad design idea).

The function P de"nes the semantics of expressions involving percentage. P is,
however, completely di!erent from E. Unlike E, which is general, P is only de"ned for
a few special cases. It is de"ned at the level of direct calculations on numbers, rather than
on expressions (Figure 7). Although the manufacturer de"nes most operators (such as
#) in terms of numbers, because of referential transparency it is implicit that when the
;ser1s Guide say &&43'' that an expression (perhaps in brackets) might be substituted. This
generality is not assured for %.

The equations in Figure 7 look like they could be de"ned in terms of E acting on
exactly the same expression, rather than just the components of the expression. For
example, we might expect that

PIa#b%JKEIa#bJ]
100

EIbJ
,

PIa!b%JKEIa!bJ]
100

EIbJ
,

-Alternatively, additional mode parameters could be used.



ScalculationT : :"SexpressionT"D#SexpressionT"

DSnumeralT#SnumeralT% D SnumeralT!SnumeralT%

DSnumeralT]SnumeralT% D SnumeralT%SnumeralT%

DSnumeralT]SnumeralT%#D SnumeralT]SnumeralT%!;

a, b3SnumeralT

PIa#b%J"100
EIaJ#EIbJ

EIbJ
;

PIa!b%J"100
EIaJ!EIbJ

EIbJ
;

PIa]b%J"
EIaJEIbJ

100
;

PIa%b%J"100
EIaJ
EIbJ

;

PIa]b%#J"EIaJ#
EIaJEIbJ

100
;

PIa]b%!J"EIaJ!
EIaJEIbJ

100

FIGURE 7. Manufacturer-de"ned syntax and semantics for percent.
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PIa]b%JKEIa]bJ]
1

100
,

PIa%b%JKEIa%bJ]100 .

This super"cial elegance is misleading. In ordinary arithmetic, a#b#c"
(a#b)#c"a#(b#c) because#is associative, so we rightly expect that
EIa#b#cJ"EI(a#b)#cJ"EIa#(b#c)J; or because#is commutative, we
rightly expect EIa#bJ"EIb#aJ.- But#in a percentage equation is neither asso-
ciative nor commutative. What this means is that the meaning of something as simple as
2#3#4% is going to be a mystery*is it the same as 2#7% or the same as
5#4%?*and even being familiar with the;ser1s Guide won't justify any con"dence. In
other words, calculations involving percentages cannot be understood as ordinary,
conventional calculations*operators take on new, restricted, meanings. The ;ser1s
Guide does not de"ne percentage expressions generally*indeed the whole approach to
per cent (as an action like") forbids any general semantics. As the examples show, we
are not even in a position to work out what trivial percentage expressions mean*in
contrast, we are not surprised that the ;ser1s Guide does not de"ne the meaning of
a#b#c because it can correctly be understood as (a#b)#c. Furthermore, since
PIa#b%J"200#PIa!b%J, in this context, %, # and ! do not have their usual
relation in any case (Figure 8).
-For #oating point numbers, these equations are only an approximation because of potential signi"cant
"gures losses.
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FIGURE 8. Experimentally determined additional syntax and semantics for percent. Thus, with the exception of
;, #, !, a binary operation followed by % seems to divide the right operand by 100. Since % is a post"x
operator, and the ;ser1s Guide de"nes the precedence of post"x operators as high, we might interpret % as,

exceptions notwithstanding, merely dividing its closest operand by 100.
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We know from experiments with the fx-83= that the permitted syntax for per cent is
more general: the syntax appears to be SexpressionT%, but we do not know what the
semantics are because they are not de"ned. Consider implicit multiplication: a simple
experiment shows that in the cases where EIabJ"EIaJ]EIbJ, we "nd that
PIa]b%J"100]PIa]b%J; in other words, implicit multiplication and percent do
not work consistently.

Although we considered the denotational semantics of a very simpli"ed fx-83= calcula-
tor, it still has numerous semantic equations needed for just#as compared with the two
that are needed for the conventional and much more general arithmetic syntax of Figure 4.
As well as being more numerous, the right-hand sides of the semantic equations, unlike in
conventional arithmetic, bare very little correspondence with the left-hand sides. In other
words, the calculator forces the user to consider its symbols (such as#) to be quite other
than the corresponding arithmetic operators. It creates a needless confusion.

In short, using per cent in any context other than trivial expressions involving
only #,!,],% is unde"ned and hard to understand. Even in these cases, the meaning
has to be learnt specially for the calculator. By treating % di!erently, not displaying it
in an expression, treating it in many arbitrary ways, leaving many contexts of its use
unde"ned, the user is discouraged from thinking of it as a mathematical operator.

There are two super"cially plausible counter-arguments that may be raised in defence
of the calculator's percentage design:

* &&Users demand a per cent feature''. It is more likely that users demand per cent if they
are just asked whether they want it*it is just another potentially useful feature. But
one imagines if users were asked whether they knew what they were asking for, or
were asked which speci"c sort of percent they wanted, then the survey results would
be very di!erent. Postman (1992) makes similar critical comments on market surveys
more generally.

* &&Percent is done this way on all calculators''. Section 3, below, defeats this position.

Appendix B discusses percentage in more detail.
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2.3. FEATURE INTERACTION

In principle, the denotational semantics of everyday arithmetic notation could
have been the fx-83= calculator's model: if the user pressed a sequence of keys
s, then the two line display would show, on the top line the symbols s, and on
the bottom line the value of s, namely IsJ. Indeed, for very simple calculations,
this is how the fx-83= does work, with the proviso that the "nal"of s is not shown (and
subject to certain numerical constraints, such as nine signi"cant "gures for the displayed
answer).

The fx-83= however provides numerous features that interact, and hence break this
clear approach. First, as described in the previous section, % has no obvious meaning
when used in non-trivial calculations. Such confusion is not limited to %, but applies to
some other operators, discussed at length in the appendices (e.g. fractions, implicit
multiplications, sexagesimal ). Second, if a calculation uses per cent or memory store, the
display does not show the calculation. Third, if the user edits the calculation, the meaning
changes.

The fx-83W provides several keys for editing a calculation. As the user presses (most)
keys, they appear in the top line of the display. The user can delete keys, pressing DEL to
delete one at a time, or AC to delete everything. Two keys move a cursor (the symbol
&&under the cursor'' alternates with an underscore symbol) left or right in the entered
expression so corrections can be made elsewhere. Normally, pressing a key replaces the
symbol where the cursor is in the top line of the display. The calculator can be put in
insert mode, by pressing a shifted delete key: the calculator stays in insert mode until the
cursor is explicitly moved or a new calculation started.

In principle, a calculator with editing features such as these could be described as
a straight-forward generalization of the simple model suggested above: (i) the user presses
keys that create and edit the top line of the display; (ii) the top line of the display shows
the edited calculation s; (iii) when the calculation is completed the bottom line displays its
mathematical value, namely IsJ.

Unfortunately, on the fx-83=, there is feature interaction between the editor and the
calculator.

Pressing AC 2 " # 1 " calculates 2 then adds 1 to it, "nally displaying 3:
that is, the # is taken to add the second calculation to the "rst. However, pressing
AC 2 " 5 DEL # 1 " , which has an accidental 5 that is immediately
deleted, "nally displays 1, not the expected 3. Thus the meaning of # depends, not on
its position in a calculation, but when it was pressed. To be recognised as meaning &&add
to last answer'' # must be pressed "rst; putting it "rst in a calculation by means of
editing has a di!erent meaning.

Thus editing interacts with the meaning of calculations. The meaning of the &&"rst''
symbol in a calculation is not whether it is the "rst key on the edited calculation, but
whether it is the "rst key pressed.

Moreover, as Figure 7 makes clear, even this restriction is not su$cient to understand
the "rst symbol*since the previous calculation may have used % in a certain way, in
which case the calculator takes # to immediately add part of the previous calculation.
This is another of the many percent feature interactions.

Further examples of feature interaction are raised in Section A.2.
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3. Not just the fx-83W
There is a danger that this article is taken as a review of a speci"c calculator and as
a critique of Casio. This section looks at calculator design more generally. Together with
Appendices D and E it shows: similar looking calculators from the same manufacturer
are di!erent; elementary calculators are di$cult to use; calculators from other manufac-
turers are broadly similar in their design failures; and that more advanced calculators
(which exploit presumably better technology) do not overcome design problems. One
concludes the industry has widespread design problems, and that technological limita-
tions are not the reason.

(1) Similar-looking calculators from the same manufacturer are di+erent. The UK
Mathematics Coordination Group's revision guide (Parsons, 1978) says in its
section on calculator buttons, &&These instructions are mostly for nice simple Casio
calculators''. They give nine suggestions (pp. 9}11) and the instructions in seven of
them do not work with the Casio fx-83W. For example, to calculate 642@3 it is
suggested that 6 4 xy 2 ; 3 " is pressed. On Casio's fx-115s this
gives 16 (as the book expects),- but on the fx-83W it gives 1365;1;3 (i.e., (642)/3
rather than 64(2@3)).

Casio's own MC100 says that 10#20%, keyed as 1 0 # 2 0 % , is
10.204081, while the very similar-looking Casio SL300LC says 10#20%, keyed
identically, is 12. The fx-83W gives 150 for the same sum keyed identically.

(2) Simple calculators are also di.cult to use. Many simple calculators (such as the
Casio MC100) have a memory, and buttons: MRC (to recall the memory; to clear it
if pressed twice); M# (to add to it); and M! (to subtract from it). There are no
other memory keys. Given that the designers evidently think a memory useful, here
is a problem: if you have just calculated 124.8624, which the calculator currently
displays, and you wish to store it in the memory, what do you do? (Don't press
M# because that adds to the memory; don't press MRC because that loses the
number you want to remember.) There is a solution taking "ve key presses
(plus one more to restore the display to its initial condition)*but it does
not work if the memory already has a number in it (like 99999999) that could cause
over#ow.

(3) Other manufacturer1s calculators are similar. The Sharp EL-546L is comparable to
the Casio fx-83=: it has a two-line display, it is the same size, the same style grey
plastic case and cover. Some of the Sharp calculator's design problems are listed in
Appendix D: they are very similar to the Casio calculator's design problems (see
also Thimbleby (1996a, c, 1997), which also review Canon, Hewlett-Packard, Texas
Instruments and other examples).

(4) More advanced calculators have similar design problems. It is possible that the
problems of the fx-83= arise from technological limitations. As an excuse for bad
design this is implausible, as we now discuss.
-Unless the calculator does symbolic arithmetic, the answer cannot be exactly 16 for this sum, but if the
answer is displayed to the precision of the calculation, the answer will appear exact. Most calculators calculate
to a higher precision than their display.
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The Casio fx-570= is an up-market and more sophisticated calculator, and therefore
freed of the technical limitations that may have beset the fx-83=. Interestingly, it is sold
in a box over 1 cm thicker (3.2 cm compared to 2 cm) than the fx-83= even though it is
the same size: so packed (with air) to feel like a more substantial calculator! It is clearly
a more sophisticated calculator: the fx-570= is broadly similar to the fx-83=, with
many more features*359 functions (compared to 159), including complex numbers,
numerical integration, calculations in binary and other bases, metric conversion, scient-
i"c constants, formula memories,2 and so on. It has a faster processor; it seems to
calculate 69! immediately, whereas the fx-83= noticeable takes over a second. Yet it has
similar design problems. The technical developments, more advanced features, and so
forth, have not overcome the #awed approach to design.

The fx-570W improves on the fx-83W 's limited approach to conversion from decimals
to fractions. Thus, if the fx-570W is showing 2.5 however it has been calculated then
pressing ab/c makes it display 251;5, converting the number displayed to fractional
form. The fx-83W cannot do this*in general, the key ab/c does nothing under these
circumstances. Another change is that initial binary operators now work slightly
di!erently: when a calculation is started with, say, # the fx-83W would display
the last answer numerically, followed by #; the fx-570W instead displays Ans#. The
advantage of this is that the top line of the display is less cluttered with long
numbers (possibly in the fraction notation, etc)*the bottom line still shows the last
result in full.-

That such a sophisticated calculator can be manufactured shows that technology
per se is not the barrier to good design. Yet the fx-570= (where it is comparable) retains
most of the same design problems of the simpler fx-83=, and it has numerous additional
design problems (see Appendix E).

Overall, the fx-570= appears like the fx-83= but with the addition of more indepen-
dent calculators*such as complex mode, engineering mode, integration, formula mem-
ory. Each mode has limitations, but the modes cannot be used together: simple examples
are that a binary number cannot be entered in normal mode, nor can a number using k as
a multiplier be used in statistics mode, and so on. That features clearly accidentally
overlap, as in the dual case of F to mean the Faraday constant or the memory F*so
a display of F-F is ambiguous*further convey the extent of the feature interaction
problem: independent design damages usability.

4. Knowing, seeing, understanding and mathematics
The casio fx-83= has a wide range of features, and an expert in the calculator (for
example, a well-trained school child) would know what each function does. But would
they understand it? Parts of this article have been hard to understand (and they have
taken some experimentation on my part before I was con"dent writing them). One of the
problems is that articulating poor features of a design is not easy, so the necessity of
understanding is often overlooked.
-When the fx-580= is switched on, it shows 0. Pressing a binary operator does not automatically insert
Ans*however, if 0 " is pressed "rst, the display will be the same, and Ans does get inserted. This is an
initialization bug.
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It is possible to demonstrate the calculator, indeed any artifact, and to impress by its
power and sophistication (Thimbleby, 1996b). Thus, in a shop, one can see that the
calculator can do impressive things*some artifacts have demonstration buttons to
make them easier to demonstrate (presumably because shop assistants do not know how
to work them otherwise). However, regardless of how persuasive a demonstration is,
seeing is not understanding.

The calculator appears to have been designed as an arbitrary collection of features that
have no straight-forward explanation; the features are hard to relate to mathematics as
conventionally understood. Fractions, percentages, negation and other operations are
idiosyncratic. It is certainly possible to learn to know how to use the calculator for simple
operations, such as one might encounter in school exercises, but this is di!erent from
understanding it. In my view, the fx-83= shows so many signs of ad hoc and ill-thought
out design that in would be futile to attempt any systematic understanding of it. That even
the manufacturer's own documentation writers failed to explain the calculator satisfactorily
(see the Appendices), I believe, substantiates my view that the calculator is a mess.

Throughout this article (including the appendices) are suggestions and critiques that
could be used to lead to a simpler design that would achieve the same calculational
power. Such a calculator would have a shorter complete and correct manual (the fx-83=
has a long, incomplete and incorrect manual).

If such a properly designed calculator is viewed as an artifact in the world, and its
manual as a theory, then developing for a shorter manual would be an application of
Occam's Razor*not in the choice of explanatory theory, but in the design. Occam's
Razor has a pedigree in the philosophy of science, but here we are concerned with design
and with human understanding of artifacts. It is conjectured that the job of the brain is to
construct compact codi"cations of knowledge (Ballard, 1997); if so, and unsurprisingly,
an artifact designed to have simpler documentation would be easier to understand.

In the real world, we form theories to explain and understand what reality is. Most of
reality is the subject of study for scientists; but a growing area of study for everyone is
made up of arti"cial objects manufactured by others. These artefacts present challenges
to be understood [26, chapter 9]. In contrast to natural objects, artefacts are designed by
their makers to be easier or, as may be, harder for people to understand.

In the real world, we write 1#2/3 or perhaps 12
3

(which is the style the User+s Guide
itself uses). On the fx-83W, we press 1 ab/c 2 ab/c 3 , it is displayed as 15253.,
and it does not always behave like a fraction (e.g., Section A.2.1). Such variation between
mathematical tradition and the calculator's behaviour is gratuitous, and also serves to
make the documentation longer, less reliable, and harder to understand than it need have
been. The manufacturers are oblivious to this: they say &&equations can now be entered as
they are written'' (see Appendix C).

Mathematics has had a special place in helping form our explanations of reality.
Artifacts that claim to represent mathematics are therefore of particular interest. In this
article, we examined a state-of-the-art calculator as one such mathematical artifact. The
calculator is sophisticated, and was designed and built by skilled people. What is also
clear is that calculators, as presently designed, are not easy to understand. They exhibit
no clear, uniform design structure and do not admit clear ways for the user to understand
them, neither explicitly (in provided documentation) nor implicitly (in ways one infers
they are designed). Further, there is evidence that trying to form a rational understanding
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would be pointless: the designs are manifestly ad hoc. The manuals are inadequate;
inadequate explanation is no explanation.

Drawing on the analogy of a &&design science of artifacts'' (Simon, 1996; Thimbleby,
1990)*the approach to calculator design is reminiscent of Feynman's discussion of
cargo cult science (Feynman, 1992). The cargo cult imitated the outward forms that made
aeroplanes land: they made runaways, lit "res and waited for aeroplanes to land. They
did everything right, but it did not work. Feynman de"ned cargo cult science as following
all the apparent precepts and forms of scienti"c investigaton, but missing something
essential. What does cargo cult science miss? &&[ . . . ] to try to give all of the information to
help others to judge the value of your contribution [ . . . ]''This requires scienti"c integrity
of a high order, as Feynman explains. In calculators, it appears we have gadgets that
mimic the outward form of what &&real'' calculators would be like, yet they do not work.
Where they fail is that neither they nor their manufacturers explain them; they are not
designed to be explained, they are not designed to be explainable. They do not provide
the information necessary to judge them.

5. Recommendations

At root, design problems stem from poor technical control of the design. Documentation
appears to be an after-thought. Features are added independently, and without any
over-arching theory or coherent policy. Does it matter? The confusion for users may or
may not be signi"cant, but there are reasons why it does matter: "rst, the;ser1s Guide is
confused, in itself suggesting that the design process is bad; second, a better design would
be easier to manufacture and ensure quality control (it would also be easier to write
a correct manual for); "nally, a more uniform approach would provide usability bene"ts.

5.1. TECHNICAL RECOMMENDATIONS

Priority technical recommendations are:

1. Adequate computer science should be used to implement artifacts. (The problems of
feature interaction are completely avoidable, almost mechanically if proper
speci"cation procedures are followed.) Standard tools (such as compiler}
compilers) should be used (Aho et al., 1985; Johnson, 1975). (Compiler}compilers
typically work in a way that is directly compatible with a speci"cation based on
denotational semantics). As Marvin Minsky put it in his 1969 ACM Turning Award
Lecture (Minsky, 1987). &&The computer scientist thus has a responsibility to
education''.

2. The lexical, syntactic and semantic aspects of the design should be done properly:
(a) ¸exical: The user presses keys; keys and key sequences have to be mapped onto

the vocabularly of functions the calculator provides. If there are as many
functions as keys this is trivial. Typically there are more functions than keys,
and key sequences have to be used to denote functions. Most calculators use
a &&shift'' approach: each shift key introduces another meaning for almost all
other keys (e.g., the OFF key may not have a shifted meaning, and SHIFT keys
are rarely shifted). Sometimes (as in the fx-83=) the lexical shifts for keys are
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confused for semantic modes, resulting in feature interaction, as well as prob-
lems that may arise when the user thinks the calculator is in one mode when it is
in another. (See footnote in Section 2 for an alternative lexical approach: using
a standard mathematical notation, spelling-out functions.) Thus, the lexical
structure of calculators must be designed properly.

(b) Syntactic: Once the user has entered functions (typically single key presses),
their structure depends on syntax. Thus in 2#3]4, multiplication takes
precedence over addition, and the structure is 2#(3]4). The ambiguous
example of calculating 63(2@3) in Section 3 by 6 4 xy 2 5 3 "

proves that the syntax of calculators should be de"ned. Few user manuals
describe syntax, instead de"ning functions in isolation, again suggestive that
manufacturers do not use a syntactically well-de"ned design. Thus, the syntactic
structure of calculators must be designed properly.

(c) Semantic: Once syntax has established a structure, semantics gives it meaning.

For example, on the fx570-W, J ! 1 " (i.e., trying to calculate J!1) is
accepted as syntactically correct by the calculator (rather than being trapped as
a syntax error because an expression to subtract the 1 from is missing): but the
calculator attaches no meaning to it, even though in conventional mathematical
semantics, i"J!1. Yet the calculator does have a key for i and it &knows' that
i2"!1, since i x2

" works correctly. Thus the semantics are inconsistent
internally, and inconsistent with convention. Thus, the semantic structure of
calculators must be designed properly.

3. Using appropriate design tools would enable full documentation to be generated, at
least partly automatically by appropriate tools.

These are all high-level recommendations. More detailed ones*like how to avoid
feature interaction*are pointless, since such symptoms of bad design would be avoided
by using a more mature design process, as recommended above. Nevertheless, the
following few points summarise some of the major oversights:

1. ;nderstand the domain, and relate to it. Calculators are supposed to do mathemat-
ics, which (at least at the level considered here) is easily understood by anyone able
to build a calculator.

2. ;nderstand users, and relate to them. There is a whole discipline of developing
user-centred systems, and designers should be familiar with it (e.g. Nielsen, 1993).
An important way to relate to users is to explain the design in their terms*writing
users manuals is therefore an important part of design. Manuals should not be
written at the &&end'' of a design process, they are an active part of design and
thinking through the design in a way that relates more closely to user.

3. Detect and handle errors appropriately. &&Every use of a function should be clearly
de"ned or its use detected as an error'' is a design precept that can in principle
only apply to certain well-behaved functions. However, in this sense, all functions
on the calculator are mathematically well-de"ned.- This design rule has not been
applied to %.
-For example log!1 is detected as an error. Some inverse functions like arcsin are de"ned specially, but
there is still no problem.
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4. Avoid feature interaction. In general, detecting feature interaction is a hard prob-
lem, but the calculator does not have many features, and there are standard ways of
specifying what it should do (e.g. denotational semantics) that avoid feature interac-
tion. However the calculator looks like it was intended to be a collection of separate
and quasi-independent features. Feature interaction and its converse, feature inco-
herence, are discussed at length in Sections A.2 and A.3.

5. Fit to task. Identify relevant features of the task domain (here, mathematics) and
enforce these in the design. As an example of this design heuristic in use: since
mathematics is declarative (i.e., 2#3"5 is true always, not just when " is
pressed), why doesn't the calculator's display change so that it is always true?
Clearly the designers have this idea in mind sometimes: if the display is edited, the
then-obsolete answer disappears*since it would be incorrect; on the other hand it
is never correct when % has been used. In general, having a continuously true
display would make the calculator much easier to understand. Why have excep-
tions to truth? In fact, when the display is made invariantly correct, rather than only
correct when " is pressed, new forms of interaction become possible (Thimbleby,
1996a, 1997), and (as shown in those references) a calculator becomes more #exible
and much easier to use.

Having produced proper documentation, the designers would themselves be in a posi-
tion to understand the design. Since automatic procedures (e.g. compiler}compilers) can
check and regenerate new designs rapidly, it would be possible to undertake iterative
design on a realistic time scale.

Once designers know what they are doing, standard usability engineering practice can
be applied. Unfortunately, it will not be comfortable for manufacturers to realize that
they currently design badly, nor will they want customers to know this. It will be di$cult
to change the entrenched value network (Christensen, 1997) of current design practice.

5.2. NON-TECHNICAL RECOMMENDATIONS

The design of calculators is not just a technical problem for which there are technical
solutions. Manufacturers wish to make a pro"t and stay in business; usability or good
design are not in themselves goals. It is appropriate, then, to provide a few wider
recommendations.

f School recommendations. Schools have to make the best of poor resourcing, and they
have to balance between preparing their students for the world as it is, and educating
them to be able to change the world for the better. Modern technology must be
questioned, and children must be taught to have a critical attitude. However, to teach
this will be to go against almost everything modern western culture stands for.
Fortunately, calculators themselves are at the centre of educational controversies*the
debate should now distinguish clearly between calculators as aids and calculators as
obfuscated objects of desire.

f Consumer recommendations. Consumers buy calculators for a variety of reasons, from
school recommendations, and status through to being better able to solve problems.
With the exception of status derived from owning a complex gadget, all uses would be
enhanced by appropriateness, usability and clarity.
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There are three reasons for a school recommending the fx-83=: the recommended
model has a two-line display that shows the calculation and answer; all calculators are
complex; and all calculators are di!erent. The "rst reason does not make the fx-83=
a unique choice (cf. Appendix D). The other two reasons, however, ensure it is easier for
teachers if they require a particular calculator for their classes and examinations.
Evidently marketing considerations encourage obscurity, complexity and variety.
Therefore, consumers should demand usability metrics, so that they can tell easily
which products are more or less usable.

This article has repeatedly made the case for good user manuals. Consumers should
not buy products without good manuals, and they should not buy from stores that do
not have the manuals available for inspection.

f Professional recommendations. Almost all of the problems identi"ed in this article
could have been avoided by making appropriate use of computer science. The
reason why the calculator is bad is because it is relatively easy to make things work
(hence they have lots of features), whereas far greater professional skills are required to
make things work well (with, for example, no unfortunate feature interactions). Profes-
sional, properly quali"ed engineers should take a greater role in design; conversely,
manufacturers should employ more professionally quali"ed engineers to work in
design.

f ;niversity recommendations. There is a "eld of research, human}computer interaction
(HCI), which has been established for at least a decade. The purpose of the "eld is to
improve the design of systems to make them better, generally easier to use and more
appropriate for the tasks for which they are designed. Students graduate with skills in
HCI. Somehow these graduates are not ending up in the right places with the in#uence
to put what they have learnt into e!ective use, or perhaps they are not learning the
right skills to improve design practice. The goal has to be to "nd ways of teaching
design so that people with the knowledge and ideas can see how apply their ideas to
reality and see how to make a real impact.

f Research recommendations. This article has made a variety of plausible but untested
claims about the usability of calculators. Although there are many minor claims, such
as the signi"cance of particular feature interactions on usability, the central untested
claim is that a calculator should behave in a mathematical way if it is to be easy or
reliable to use to perform mathematical tasks. This claim was taken as self-evident, but
it should be tested (for example, an alternative design (Thimbleby, 1990, 1996a, 1997),
referenced elsewhere in this article, has not been empirically compared with conven-
tional calculators). If corroborated, then empirical weight is added to the abstract
arguments used here: empirical evidence would have more persuasive impact on
commercial considerations, such as questions of design strategies for market penetra-
tion (and even reduced litigation). If refuted, the results would raise interesting doubts
about numerous assumptions in user interface design practice: a system that did not
implement its task domain consistently performing better than one that did would
undermine the concept of task "t and the relevance or scope of task analysis. Corrobor-
ation and refutation are extremes; a more likely result is useful insight into design
trade-o!s for calculators.
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6. Conclusions

Calculators have been manufactured for many years, the correct way to parse arithmetic
is widely know, and user-interface design guidelines are widely known. There is no excuse
to impose such badly designed products on anyone, let alone school children.

The variation in design between calculators may be caused by marketing. Despite the
conventions of mathematical notation, competition between manufacturers encourages
slight variations in feature provision. Variation for a single manufacturer, such as Casio,
may be caused by market positioning (for example, calculators for "nance, for students,
for children). However, the variation in just one manufacturer's features*as evidenced
by Casio's three methods of percentage (Section 3)*seems hard to explain, unless one is
extremely cynical. It is plausible that variation is deliberate so that schools and others are
e!ectively forced to standardise on particular brands and models. Thus the manufacturer
who has the greatest market penetration gets to sell more calculators, even if none of
them are much good. This would make marketing sense if it is easier to achieve market
dominance than product quality.

Even so it is very hard for us to understand how the errors in the;ser1s Guide and the
widespread feature interactions arise or have been allowed to remain over a period of
years. These are unambiguous symptoms of bad quality control and bad design*or we
must conclude usability and appropriateness for arithmetic are not a concern of the
manufacturers. If the calculator was a new product, with no manufacturing experience
behind it then maybe we would excuse its design. But it is an established product, with all
the relevant technical and human factors know-how well known, and*like all other
calculators*it is positioned in the market as a device for helping with mathematics. This
it fails to do.

It is ironic that the terrible and varied design of products forces schools to recommend
a particular one, and this, by bene"ting the market leader in the "eld, serves to further
conceal the problems. Perhaps many parents are now taking the school's apparent
endorsement of one manufacturer's products as a recognition of quality? &&The product
sells and schools recommend it; so it must be all right''. Next the consumers*on "nding
the product is obfuscated and mysterious*blame themselves for the problems it has.
For, surely, if it is recommended for children it must be easy to use? Assuming it is easy to
use, yet knowing we have problems, it would be easy, but mistaken, to conclude that we
are incompetent; or, more comfortably, we would change our usage of the calculator to
avoid exposure of &our' problems. For example, surprisingly few adults use the percent
key on any calculator. Thus, consumers do not recognise bad design. There is then no
market pressure to improve products, which is sad when improvement would be so easy
if only it was demanded.

But in such a well-de"ned area, why should the market have to demand something
that could so easily have been done properly?

All this has been going on for so long that it would be hard to accept any excuse that
the apparently so successful but misleading marketing is accidental. So where are the
professionals with the integrity to start making gadgets easier to use? Where are the
manufacturers who are prepared to make the world a better place?

Jemima Thimbleby very generously lent her Casio fx-83= calculator to help check this paper. The
following have very helpfully commented on versions of this paper: Ann Blandford, Tim Bell,
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George Buchanan, Tony Durham, Michael Harrison, Matt Jones, Prue Thimbleby, Peter Thomas,
Richard Young.

An earlier version of this paper was sent to Casio, and their reply is included in Appendix C.
I am grateful to the editor and typesetters for the excellent work put into publishing this paper.
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Appendix A: Continued critique of the fx-83W

Note. Features of the fx-83= are classi"ed for convenience under headings like &&inad-
equate documentation'' and &&feature interaction''. There is some overlap between the
headings, but each feature is only discussed under one heading. This appendix does not
duplicate substantive points raised in the body of the article.

A.1. INADEQUATE DOCUMENTATION

There is a wide range of help material that can be provided with a device. The fx-83=
calculator includes: the disposable box; the ;ser1s Guide (Casio, undated), the Quick
Reference sheet on the hard cover; text on the calculator itself; and plus display
diagnostics. Although minimalism*an approach to documentation*includes &&be brief;
don't spell out everything'' as a principle (van der Meij & Carroll, 1998), the appearance
of the manufacturer's documentation suggests that it was not trying to be minimal.

A.1.1. Disposable box
The calculator is sold in a cardboard box, that proclaims the fx-83=-w has 159
functions, 2-line big display, S-V.P.A.M. (which it de"nes as &&super visually perfect
algebraic method'') There is a two-thirds size photograph of the calculator. Including the
photograph, SVPAM appears 6 times (and once in French). Nothing elsewhere in the
documentation explains this term.

A.1.2. User's guide
Given there is no other reference material, the User+s Guide should be complete and
accurate. For example, the internal rounding function is achieved by pressing the
Rnd button*but what does it do? There is an obscure, unexplained example of its use in
the User+s Guide, but no explanation of what it does.

The User+s Guide explains that there are two ways to clear the memory, M. One is to
store zero in it (by doing 0 STO M ) and the other is to do Mcl . In fact, Mcl clears
all memories*so anyone doing what the User+s Guide recommends would lose all the
values in the other six memories.
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The User+s Guide is wrong when it says 0 STO M will clear the memory M. For
example if 4 had just been pressed, following the instructions could leave M contain-
ing 40 (or anything else). In fact the correct way to clear the memory is to press
AC 0 STO M . (Pressing AC STO M does nothing, and doesn't make anything
appear on the display.)

The key Mcl itself is not de"ned in the User+s Guide. It works in a quirky way
(perhaps because it is recognised as a &&dangerous'' function). It can only be used if it is the
entire calculation, as in AC Mcl " . Any other use is a syntax error.

Some functions are not illustrated (e.g., ALPHA 3 gets the value of n. but there is no

n shown on the calculator as a reminder). The Rnd button is next to the Rndd button,
which generates random numbers, but Rnd has nothing to do with random numbers.
There is, however, ample space to spell Rnd in full, as Round, so that there would be no
confusion. Indeed, the User+s Guide does not specify the distribution of random numbers
(presumably it is rectangularly distributed over [0, 1), and presumably to three digits
precision).

The &&sexagesimal'' button is mentioned in the User's Guide in a summary of functions,
but nowhere is there an explanation of it. (It looks like 3’’’ , meaning degrees, minutes
and seconds, though that wouldn't be obvious to anyone who didn't know already*par-
ticularly since the symbols are &&in line'' rather than raised as they would be in normal
use.) One of the two left arrow functions is explained as &&Decimal % sexagesimal'' in
a table, but in fact the button does not work both ways: it only converts decimal to
sexagesimal, not both ways as the double arrow suggests.

The di!erence between the (!) and the ! keys is not explained in the User+s
Guide.

The User+s Guide lists six key meanings that are not shown on the key pad. For
example, ALPHA 3 gives the number of samples in statistics mode. It displays as
n when it is entered, but the keyboard does not show it. Given that these six

meanings are only used in two modes of the calculator, one could anticipate that the user
would "nd them harder to remember*so all the more reason why they should have been
engraved on the keyboard (or the calculator designed quite di!erently to avoid the
problem).

The;ser1s Guide does explain that NORM is to reset the FIX and SCI modes, without
changing the degree/radian/grade mode. Setting the calculator to NORM mode does not
get it to (what a user might call) normal mode; it may still be in LR or S.D. but set to use
degrees. In fact, the user may have to set it to NORM mode twice to have the desired
e!ect, as there are two NORM modes.

For a mathematical sophisticate, the two NORM modes are essentially the
same*they a!ect the display formatting under certain circumstances (see Figure 3). But
for a school child an unanticipated answer in exponential notation would make the
calculator's results hard to interpret correctly.

S.D. means &&standard deviation'', but in this mode the calculator does more general
statistics*why isn't the mode called STAT? COMP probably means &&compute'' mode,
but the ;ser1s Guide doesn't say. SCI (or Sci as it is displayed), the ;ser1s Guide says,
means &&signi"cant "gures'', even though it is not an abbreviation for it (but, confusingly,
it is an abbreviaton for &&scienti"c'').



CALCULATORS ARE NEEDLESSLY BAD 1055
A.1.3. Quick reference
The calculator has a protective cover that has a &&Quick Reference'' on its inside. This
isn't as helpful as it could be. For example, the front of the calculator tells us that there
are nine modes, 1: COMP, 2: S.D., 3: LR,2 to 9: NORM, and the cover's Quick
Reference hardly tells us any more by saying that MODE 1 is COMP, MODE 2 is S.D.,
MODE 3 is LR, etc. We would be still in the dark about what they are, especially S.D.
and LR, without the ;ser1s Guide.

The Quick Reference cover provides very scanty information. It at least provides the
ALPHA functions that the keyboard does not show, but some of it is wasted in
&&advertising'' that would be familiar to a user*e.g., an example of calculating
sin 30#cos 60 using Perfect Algebraic Method (sic*not &&super visually perfect alge-
braic method'').

The Quick Reference cover does tell us that FIX and SCI require a following number,
which the calculator itself does not say either. Neither of them tell us*as the ;ser1s
Guide does*that there are two NORM modes, entered alternately. Indeed, the ;ser1s
Guide calls them NORM 1 and NORM 2, and it warns &&There is no indication on the
display of which format is currently in e!ect, but you can determine the setting by
performing the following calculation''. This does not sound very obvious.

A.1.4. The display
The display, despite being big enough to give clear diagnostics, only provides three
abbreviated messages. For example, the calculator can display the text &&Ma ERROR'' if you
do 1 % 0 " (obviously it means maths error); but what does &&Stk ERROR''mean?
(stuck error?) Why aren't these messages written out in full? They only take up
a fraction of the screen space, so that wasn't the reason.

A.1.5. Key labels
The keyboard could be made clearer. For example, the keyboard has two yellow left
arrows on it. Neither are described in the;ser1s Guide; one of them divides the mantissa
of so-called engineering notation by 1000, the other converts to sexagesimal (temporar-
ily). There are two keys labelled A, and two labelled B, and the A's and B's mean di!erent
things; there is one key with "ve di!erent meanings, but 18 with only one. (Most have two
meanings.) This is a very uneven allocation*and as reported elsewhere in this article,
some of the overloading of keys does cause problems. These problems would have been
avoided by a more sensible function-to-key allocation.

Some keys have many functions, and some have only one. Since some modes
make some functions (silently!) inaccessible, a rationalisation of function allocation is
called for. The calculator has a wide range of modes, and it does not distinguish
clearly between orthogonal modes and basic modes. For example, statistics and
linear regression are mutually exclusive modes, but in either the calculator can be in
degrees or radians, scienti"c or normal display, etc. Entering COMP mode seems to clear
the calculator, whereas NORM can be entered repeatedly without clearing it, and
NORM changes the display mode, alternating between what for some results are
indistinguishable modes, but are what the ;ser1s Guide calls NORM 1 and NORM
2 modes.
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Example: the mean of x (labelled xN ) can be obtained by ALPHA 2 / ALPHA 3 " .

FIGURE A.1. How the labelled meanings of keys could be obtained from their hidden meanings using standard
formulae, but the opposite is not the case. The implication is that if only one or the other set of functions can be

labeled, then swapping the labels would be an improvement.
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The key ; (in SD and LR modes) repeats the previous entry; thus 3 ; 2 DT

is the same as 3 DT 3 DT . Why isn't the ; symbol something more mnemonic,
like &&Repeated'' (or REPT)?

ALPHA 1 2 6 have misleading key labels. The key 1 is labelled x6 (in the
blue/yellow SD style for a shifted meaning) but it means + x2 if ALPHA is pressed*a
meaning which is not shown on the keyboard. The ALPHA meanings of the other "ve
keys 2 to 6 (see Figure A1) are not labelled either. Since the meanings are sophisti-
cated, and arbitrarily allocated to keys, the user would be unlikely to remember them.
Although space around the keys is not a problem (compare with the M# shown in
Figure 1), it is arguable that if some meanings are not to be shown, the calculator has it
the wrong way around: the meanings of the keys that are shown are easily derived from
the hidden meanings. If it was done that way around, at least a user with an elementary
knowledge of statistics could use the calculator's facilities (see Figure A.1); the way that it
is done, there is no easy way to "nd out what keys mean without access to the User's
Guide.

The side-e!ects of Rec( and Pol( on memories E and F are not indicated on the
relevant keys. We discuss these functions further below.

A.1.6. Inconsistency between diwerent documentation
The display and the keypad are two features, which should be consistent. However
symbols are shown di!erently on the display and on the keypad. The key (!) is
displayed as !, and a value shown in sexagesimal does not display the "nal 3 symbol
that is required to enter it as part of a calculation (and the key for sexagesimal



13230.53 (which is entered by 1 3’’’ 2 3’’’ 0 z 5 3’’’ )
correctly represents 1 degree, 2 minutes, and half a second

152 (which is entered by 1 ab/c 2 )
correctly represents one half

13231523 is a syntax error

1323(1;2)3 represents 1 degree, 2 min, all multiplied by one-half.

FIGURE A.2. Sexagesimal notation and fractions feature interaction.
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uses primes, when the display only shows degrees). When a number is displayed in
sexagesimal notation, it is displayed in a notation that the user cannot enter: e.g., 1.5 is
displayed as 133030, but to enter this value it would have to be entered as
1 3’’’ 3 0 3’’’ 0 3’’’ (with an extra degree symbol).

A.2. FEATURE INTERACTION

Features may sound good in isolation, but they may combine in surprising ways. The
fx-83W 's fractions, implicit multiplication, unary minus, and sexagesimal notations can
combine in peculiar ways that are open to misinterpretation by users.

A.2.1. Sexagesimal notation and fractions
The sexagesimal operator allows the input of degrees, minutes and seconds. The fraction
operator allows the input of fractions. However, it is not possible to enter a number of
degrees, minutes, seconds and fractions of seconds, as this results in a syntax error. And if
you use brackets to try to avoid the syntax error, the calculator does a multiplication,
and the supposed fractional seconds becomes a factor of the answer (Figure A2).

One help the calculator could have provided would have been to use the standard
symbols for degrees, minutes and seconds. (The display resolution is good enough for
this.) The last example above would at least have been displayed as 132@(152)3 instead of
the expected 132@(152)A, so the user might have been less surprised.

A.2.2. Fractions and decimals
Fractions and decimals should combine appropriately. For example,
1 # 1 ab/c 2 # 0 z 2 5 gives 1.75, whereas 1 # 1 ab/c

2 # 1 ab/c 4 gives 15354, which means 1#3/4. Thus exact fractions repre-
sented as decimals unnecessarily make the calculator change from fraction display mode
to decimal mode (Figure 3). There is no need for a &&fraction'' mode at all, as there are
standard algorithms for converting decimals to fractions (Doer#er, 1993, Hardy
& Wright, 1979).

There is no reason to have a fraction notation, especially not an unconventional one
using the 5 symbol. 15354 is numerically the same as 1#3/4 and it can be entered in
this way just as easily*and without having to learn anything new. Given that the display
is a #exible 5]7 dot matrix display, fractions should have used a standard notation.
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A.2.3. Implicit multiplication and memories
Implicit multiplication should work uniformly. But it doesn't. For example, nA (which is
entered as n RCL A ) and An (which is entered as RCL A n ) give di!erent
results. You cannot multiply AB, but you can do 2A (but not A2). These problems arise
because there is a feature interaction between implicit multiplication and a special-case
&&speed up'' on recalling memories.

When RCL A is entered at the start of a calculation, the calculator immediately
displays its value. (Almost as if a "nal " was added automatically only when RCL is
the "rst thing in a calculation.) If a memory is used as the "rst value of a calculation it
then only plays a part of the calculation if the next operator is a binary operator or
a post"x operator*then the calculator's normal approach of combining with the
previous result &&consumes'' the memory's value correctly. Thus RCL A ! works out
the factorial of A, because RCL A recalls the value of A and displays it, then the
! starts a new calculation, but one that uses the previously displayed value. The end

result is the same as RCL A ! should have been. But the catch is that a calculation
like A sin 30, which looks like it should be done by RCL A sin 3 0 fails because
the calculator does not use the previous value for an implicit multiplication. You'd have
to remember to enter it as RCL A ] sin 3 0 to get the right result, or
perhaps, tortuously, as ( RCL A ) sin 3 0 , to avoid the RCL being the
"rst step of the calculation.

A.2.4. Modes and function overloading
In SD mode, the M# button takes on the meaning DT. Although STO M and

RCL M still work correctly (which also use the M# button), the function M! ceases
to work, instead becoming CL . It is understandable that the " key continues to mean
" and that SD mode requires an additional key for data entry DT , but the User+s
Guide does not warn that M! and M# won't work, and the calculator itself gives no
warning when an attempt is made to use them. So M# , for example, will do noth-
ing*which is exactly what it normally looks as though it does, so the user will be
surprised at the end of a sequence of add-to-M operations that M is still zero. Ironically
M# is exactly the sort of function that someone might want to use when doing statistics
(e.g., to calculate running totals)*and it has been made unavailable.

The clear key, AC has four meanings. It switches the calculator on; it clears the
current calculation (completely, and with no undo possible; the DEL key should be used
for deleting recent key presses); it clears memories (when shifted in all but SD mode); it
clears the statistics memories (when shifted in SD mode). Thus, in SD mode it is not
possible to clear normal memories.

A.2.5. Modes and replay
The calculator's &&replay'' function consists of two keys; if a calculation has been
evaluated, then pressing one of these keys brings the calculation back so it can be edited
and re-evaluated. Suppose a calculation is entered accidentally in S.D. mode (e.g. an
attempt is made to use an operation that S.D. does not support). If the user now changes
mode to NORM, the supposedly replayable calculation is lost. In other words, a known
case, easily anticipated by the designers, where replay would be useful is not supported.



Pol(x, y) gives the radius, and assigns to memories:
E the radius, Jx2#y2
F the angle, tan~1(y/x)

Rec(r, h) gives the x coordinate, and assigns to memories:
E the x coordinate, r cos h
F the y coordinate, r sin h

Function Shortcut cost Using no shortcuts

Pol( x , y ) result in 3; E, F, in 6 result in 4; E, F in 7

Jx2#y2 6 7

tan~1(y/x) 5 6

Rec( r , h ) result in 4; E, F in 7 result in 5; E, F in 8

r cos h, r sin h 2 2

FIGURE A.3. Meanings and costs of polar/rectangular functions and equivalents. The costs include pressing the
SHIFT key as required. The shortcut cost assumes " is used to provide closing brackets; the full cost

includes pressing closing brackets as well (as would be required in the middle of a larger calculation). The costs
of entering the parameters are not counted.
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A.2.6. Degrees, radians grades
Although there is a key to enter degrees, the calculator can be in any of three modes:
degrees, radians or grades. It is possible to enter a number apparently in degrees when
the calculator is in radian mode; the results are bizarre: the calculator can display sin 303
complete with the degree sign as having the answer !0.9882 when in fact sin 303
should be #0.5. The feature interaction is that the degree symbol only makes it look like
a degree, but the calculator has worked out the sine of 30 radians.

If there were 100 grades in a full circle, they might be useful for pie charts, but
unfortunately there are 400. They are close to degrees (360 in a circle) and lead to
confusion. The Shorter Oxford English Dictionary says that grades are degrees, 90 per
right angle, and were last used in 1593. It isn't obvious that a school calculator bene"ts
from having them*except that many other calculators have them, so it may help for
market position in the minds of those customers who like high feature counts2 if so, we
could suggest better features!

A.2.7. Modes and overloading
In LR mode (linear regression), an equation of the form y"A#Bx is "tted to data. In
LR mode, the calculator can be used to determine the A and B constants (and regression
coe$cient, and so on). The feature interaction is that this A and B are di!erent from the
&&usual'' memories A to F (and M). If the calculator is going to use A and B for the
equation, why not use the regular memories A and B (for other functions side-e!ect the
memories, so that is not the problem), or if there is a need to keep them separate, why not
call the function y"ax#b (or, better, y"ax#b) so there is at least some notational
di!erence?

A.2.8. Negate, minus and implicit multiplication
The calculator provides both negate (!) and minus ! keys, even though by conven-
tion the real world uses the same signs for both operations. The calculator does not
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provide a change sign key $ though it does provide a reciprocal key (which does for
multiplication what change sign does for addition).

When a calculation starts with a binary operator (such as multiply) the previous result
is retrieved. So typing ] 3 " multiples the last result by three (it is a syntax error if
the calculator has been cleared and there is no &previous result'). It seems this is the
only occasion where (!) and ! are distinguished: a calculation starting with
! and not following an AC will subtract from the last result, but starting it
with (!) will not. Given that the calculator has a function Ans (which is evidently
considered so important it has no other meaning in any mode) which would do this
unambiguously and without exception, why have the unnecessary and broken &&operate
on last result'' feature?

Unary minus (!) and minus ! could be combined, removing an unnecessary
function and a confusing button, as well as some spurious error messages. Already, the
calculator copes with ! in unary minus contexts. For example, 4 ! ! 3 and

4 ! (!) 3 give the same results, as do 4 ] (!) 5 and 4 ] ! 5 ,

and ! can be used (it seems) anywhere (!) can be. However, 4 (!) ! 3 is
a &&Syn ERROR.''My recommendation is to get rid of the (!) key. I cannot think of any
purpose it serves that isn't better done by ! .

A.2.9. Interaction with memories
Although rectangular coordinates conventionally use variables (x, y), and polar coordi-
nates conventionally use variables (r, h), the calculator's coordinate conversion functions
assign results to E and F. This risks losing some important numbers the user has saved in
these memories. The interaction isn't necessary since there are keys to recover other
special values, such as averages (when in statistics mode).

A.2.10. Shortcuts and key overloading
&&Easier to use'' can mean reducing key-press counts, but it should not do so at the
expense of increasing memory load. For example, the key M# is an abbreviation for
" # RCL M STO M and super"cially seems easier to use. But the M# memory
key has "ve di!erent meanings, and therefore the &&shortcut'' interacts with other features.
In particular, adding to the memory and subtracting from it di!er in whether the SHIFT

key has been pressed*it is therefore easy to make a mistake, and not know because the
memory isn't shown. Removing the short cut keys would also make the M memory
consistent with the other six memories which don't have equivalents to the M# and
M! keys.

A.2.11. Proximity of unrelated keys
A special case of feature interaction is the likelihood that a user will invoke inappropriate
features as a result of the design. Poor keyboard layout means that features interact
because they are close to each other.

The DEL is adjacent to AC , so an attempt to correct a calculation may lead to
its complete loss. The functions DEL and INS are the same key, yet do completely
di!erent jobs.
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A.2.12. Co-ordinate conversions and memory corruption
The keys Pol( and Rec( convert between rectangular and polar co-ordinates. For
example, to convert the rectangular co-ordinates (1, 1) to polar, one would press
Pol( 1 . 1 ) " (possibly omitting the closing ) since " provides
necessary closing brackets). The result would be the radius, and the memories E and
F would be modi"ed, with E the radius and F the angle. There is therefore a feature
interaction between co-ordinate conversion and memories.

To use co-ordinate conversion functions, the user has to know that E and F are
a!ected (so that no stored values are lost by mistake) and must know which is which. The
order of the parameters of Pol( and Rec( must also be known, though this follows
convention so is easy to remember. The functions are unusual in being the only ones to
provide their own opening brackets*perhaps this helps the user remember that
a comma , is also required, again which no other functions require.

It is not obvious how to combine more than one use of Rec( and Pol( in
a calculation, since the "nal values of E and F will not be de"ned: there is a feature
interaction between co-ordinate conversions. For example, one might wish to know the
x and y co-ordinates of adding two vectors together: Rec( 2 ) # Rec(

2 ) would give the x co-ordinate, but the y co-ordinate would not be known. To "nd
that, the user would have to do the "rst Rec( , press " to evaluate it, then use
RCL F STO A RCL E # Rec( 2 to get the x coordinate, then use

RCL A # RCL F " to get the y co-ordinate. This is very complicated compa-
red to the "rst-principles approach: r

1
cos h

1
#r

2
cos h

2
is the x co-ordinate, and

r
1

sin h
1
#r

2
sin h

2
is the y co-ordinate. Both of these calculations can be entered

directly, as in 2 sin 4 5 # 2 The equations are the standard equations,
and there is no ad hoc manipulation of memories A,E,F to anticipate or "gure out.

According to the User's Guide, operations of the same priority are performed from
right to left. Other operations are performed from left to right. The User's Guide gives
an example of unary operations, but this example cannot clarify what the User's
Guide means. It seems that Rec(1, 1)#1#Pol (1, 1) should be calculated as
Rec(1, 1)#(1#Pol(1, 1)), yet the value left in the F register is 45 degrees, whichever
form is entered, even (Rec(1, 1)#1)#Pol (1, 1). Experiments indicate that the right-
hand expression is executed last in all cases, regardless of the User+s Guide+s rules.

In other words, providing &&packaged'' functions like the co-ordinate conversions has made
doing anything other than the most trivial operations*if you can remember how to do
those*far more complicated than not having the functions at all. Figure 11 shows,
moreover, that working out three out of four of the intended values with these keys is harder
in terms of number of key presses required than using the "rst-principles equations directly.

Finally, co-ordinate conversion has a feature interaction with the angle mode of the
calculator. So there is one more argument for removing Pol( and Rec( functions: to
remove three hidden dependencies on the calculator's angle (degree, radian, grade) mode.

A.3. FEATURE INCOHERENCE

Feature interaction arises when two or more features fail to work together; in contrast,
feature incoherence is when two or more features are unrelated when they could have
been rationalised.
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A.3.1. Dual meanings for the fraction operator
The key ab/c has two uses: it is an operator to construct fractions and it is a display
operator (Figure 3). Suppose the display shows 352. Pressing ab/c under one inter-
pretation should create a fraction starting with 3525*in the usual way of operating on
the last result (like#would); in the other case it should change to display either 15152
or or 1.5. Confusingly, it does both, depending on the mode.

A.3.2. Unary and binary minus
There is no &&change sign button'' with the meaning commonly given on calculators
(e.g., a key $ that changes the sign of the displayed number). Instead, there are both
subtract, ! , and unary minus buttons, (!) . The unary minus button is unnecessary
as everything it can do can be done by ! , which, moreover, is conventional mathemat-
ical notation.

A.3.3. Two ways to use memories
There are two ways to obtain the value in a named memory. You can use RCL A to get
A's value, or use ALPHA A . At the beginning of a calculation, RCL A immediately
displays the value of A. Here, it is equivalent to ALPHA A " . This is feature
incoherence, but in a calculation involving implicit multiplication, like AB (i.e., A]B),
the immediate action of RCL inhibits the implicit multiplication working*and this is
feature interaction.

When ALPHA A " is entered, the calculator shows A on the top line, and the
value of A on the bottom line. However, if RCL A is used, the calculator shows A"on
the top line. This is the only context in which " can appear on the top line.

A.3.4. Powers of ten and EXP

There is a button EXP whose purpose is to multiply a preceding number by a power of
ten. This is very similar to the function 10] whose purpose is to multiply a preceding
expression by a power of 10. Given implicit multiplication, anywhere EXP can be used,
10] can be correctly substituted. It is also clearer, since the display symbol for 10] is
conventional and displayed exactly, rather than the less well-known symbol E which is
used to represent EXP in the display (and, confusingly, is not consistent with the key
label*EXP).

Parsons (1998) discusses this key: &&It would be a lot more helpful if the calculator
manufacturers labelled it ]10n because that's what you should call it as you press it
[2] For example to enter 6]103 you must only press 6 EXP 3 and NOT, as a lot
of people do: 6 ] 1 0 EXP 3 ''. Parson's advice would be unnecessary if,

simply, the EXP key was removed*then the 10] , already provided, would be used and
would work as people expect.

A.3.5. Insert and delete modes
Editing could be much simpli"ed, thereby saving at least one function and removing
a mode. The display shows the calculation as it is entered, and a cursor can be moved left
and right, and keys deleted or replaced. The calculator allows expressions to be edited:
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this is a good thing, but it does it in a way that requires additional modes. Editing
overloads the DEL key (with a function that is not used to delete!). It has been known for
a long time that both modes are unnecessary (Thimbleby, 1983); modes just introduce
opportunities for mode errors*exacerbated on the fx-83W since the mode change
operation is a moded use of the delete key.

The delete key works in two ways. At the right hand end of a calculation, DEL deletes
characters, working left; inside a calculation, DEL deletes characters, working right.
More precisely, when inside a calculation, the character at the cursor position is
deleted*and characters to the right move left; when at the end of a calculation, the
cursor is over a blank, beyond the right of the calculation, and moves left before the
deletion occurs.

In conventional word processors: there is only an insert mode and deletion always
deletes the character to the left of the cursor. This avoids modes, and makes deletion
work consistently.

A.3.6. Functions work diwerently in the display
The two-line display is often misleading. For example, the way the % key works
ensures it will display a &&wrong'' result (such as 4]5 on the top line, and 0.2, not 20, on
the bottom line). The MODE key does not show in the display even though it takes one or
two parameters*the parameters do not show, and thus there is no prompt for the user
that any are required. To be consistent (e.g., with Rec( ), pressing MODE should have
displayed Mode(.

A.3.7. Changing modes and invalidating the display
The calculator's modes can be changed, and these do not cause the calculation to be
redisplayed in the new mode. So if the calculator is in degrees and arcsine of 1 is
calculated, the calculator will show 90 and D. If we change to grades, the calculator
shows it as having the value 90 G, which is wrong (it should be 100 G).

A.3.8. Linear regression and statistics
Statistics and linear regression are both complicated modes, with their own idiosyncratic
conventions. For example, the M# key changes its meaning in these modes, and the
ALPHA key has new invisible meanings (Section A.1.5 and Figure A.1). Since the
calculator has a two line display, why is the data for statistics or regression not shown on
the display? A user would then have been able to edit the data easily; instead, each data
item disappears and cannot be edited. It can, however, be deleted by pressing CL (i.e.,
shifted M# , unrelated to the DEL or AC keys that are normally used for this purpose).
Using the two line display's editing capability would have meant no new feature for
editing was required.

Statistics mode is indicated by a little SD icon appearing in the display. Since one of
the other modes is &&signi"cant digits'', this is confusing. (Signi"cant digits itself
is abbreviated Sci in the display, which in turn might be confused for scienti"c nota-
tion 2)

A full discussion of these modes, other than a lengthy detailing of their obscurities,
would not make any new design points.
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Appendix B. Percentage

The fx-83W 's idea of percentage is confused (see also Section 3, etc).
When speaking aloud, we might say &&12% of 50,'' but the calculator only accepts such

a calculation in the reverse order, as in 5 0 ] 1 2 % . In English saying &&50
of 12%'' (saying &&of '' for ], which usually works) is quite di!erent*that is, order does
matter for percent, so the reversal for the calculator is a signi"cant alteration to
conventional use. If the English equivalent of the calculator's notation is meaningless, the
design of the calculator appears hard to justify. It is possible that the designers chose
% to evaluate calculations (like " does) rather than to be an ordinary operator (like
] ): if so, then necessarily % must come last, and hence the confusion. Percentage is
&obviously' useful, and if it is designed to be used arbitrarily, then various features and
short-cuts will grow up around it; this appears to be what happens. For anyone who uses
the calculator regularly, percent may make sense out of habit, but for anyone who has
prior expectations (e.g., from everyday usage), the calculator appears arbitrary.

Arguably, the percent key should be de"ned consistently, and it should be shown in the
two-line display. For example, if we calculate 1 # 8 " , the display shows 1#8

on one line, and 9, on the other. If we calculate 1 # 8 % , we still get 1#8 on
one line, but 112.5 on the other. The 112.5 means (1#8)/8 as a percentage, but why
doesn't the display show the % key press as well?

Perhaps that percent is badly thought-out provides a reason for not showing the
% symbol in the display: it might be too confusing! Consider that 1 ] 8 % calcu-

lates 0.08. Then 1 ] 1 ] 8 % should probably be 1#0.08, or 1.08. It

isn't; it is 112.5. Or ( 1 # 8 % is 9.*it is neither right nor reported as an

error. Or 2 xy 3 % is 1.021012126 (i.e., 2(3@100), which is hardly a &percentage').
There is not an obvious relation between these sums. Suggesting that the calculation
23% is contrived is to miss the point*is testing, say, (sin 2)3 contrived? If anything is
de"ned, it should mean something, and the rules for knowing what it means should be
clear; and if it is not de"ned it should be detected as an error. (The calculator detects 2.3!
as a Ma ERROR, so it can do this for other operators.)

Whatever % is supposed to mean, it is not very clear. This argument was justi"ed by
trying to work out the semantics of a calculator. Now, I argue (independently of any
calculator) that what percent means is itself not very clear, and therefore it should not be
provided on calculators because of the potential confusion. This is an iconoclastic view.
However, just because something*in this case, percentage*is popular does not imply
a &&corresponding'' feature need be provided on a calculator. A less contentious example
is that most numbers most people deal with are currency, pounds or dollars say, but
there is no need for a calculator to have a @ key on it. Pounds happen to work like
numbers, as do apples and oranges. To put a pound or apple button on a calculator
confuses the task of a calculator with that of a cash machine in a grocery store.

Percent means four di!erent things:

* fPp"100]f. A fraction f multiplied by 100 is a percent p. Interestingly, the fx83-W
does not provide this meaning for % unless the fraction is entered using
% (though, surprisingly, using the fraction operator 5 does not work with per-
cent*see Figure 8). Indeed, multiplying by a hundred is probably far too simple
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a concept alone to require of a calculator button, so a % key typically does some or
all of the following more sophisticated operations:

* a, bPp"100](a!b)/b . An increase a!b can be expressed as a percent p. (Some-
times called pro"t.)

* b, pPa"b#pb/100. Increasing b by a percent p gives a.
* a, pPb"100]a/(100#p) . A value a represents a percent p increase over b.

Calling all these percent is like calling 2!3 addition. Compare the last two uses of
percent. Adding 5% to a number then subtracting 5% from it does not leave you with the
number you started with*it leaves you with 99.75% of it. In other words, any calculator
that tries to relate adding and subtracting percents, particularly by using the conven-
tional operators # and !, is going to be confusing.

Elminating percent from calculators is perhaps too much to hope for. Usability has to
be balanced against marketability. Indeed percent is a #exible and attractive concept. If
calculators are to be simple and easy to use, then they should either provide a range of
separately-identi"ed percentage features (discount, margin, etc*and these should be
meanings associated with the % function, rather than combined with special case of uses
of #, %, as on the fx-83W ), or they should not have a percent key at all.

Appendix C: An advert for the fx-83W, and Casio’s comments on this
paper

Complete text from the full page advert in the ¹imes Educational Supplement, May 21,
1999, page 31:

The fx83-WA twinline

A new era in educational calculators

When Casio decided to replace the much loved FX82 with a new model it goes without
saying that we did our homework Urst. After all, the FX82 is the country’s most popular
scientiUc for GCSE, so its replacement had to be very special indeed.

The new Casio FX83WA takes everything students relied on from the FX82 and has
added everything they’ve ever needed to create the deUnitive educational aid. For
example, the FX83WA includes Casio’s VPAM logic so equations can now be entered
as they are written. We’ve also added a Twinline display so students can keep their
maths on track by seeing every step they’ve taken, and by editing and replaying their
calculations, they can ensure that they not only get the right answers but can see how
they achieved them. What’s more, with the FX83WA Twinline, maths teachers can see
every entry and so help each student to understand every calculation more clearly. The
new Casio FX83WA Twinline. The next generation in educational calculators.

For more details of the FX83WA call your usual Casio dealer or any approved Casio
supplier.

CASIO
t

SCIENTIFIC CALCULATORS
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The advert was illustrated by a full photograph (at an unremarked 119% full size) and an
example of the twin line display. The fx-83WA is a version of the fx-83W that seems the
same.

Casio were invited to respond to this paper; their comments are as follows:

Your comments have been received and as we continually strive to improve our
products, they will be passed onto our research and development team in Japan.

It should be noted that the FX83WA is a worldwide product and is used with children
from the ages of 11, right up to adults at university level. Therefore the calculator has
functions that not every single individual uses but which are available if the need
arises. The product is also a best-seller in many countries, has received praise from
many leading educationalists and is considered the benchmark for GCSE mathemat-
ics.

Many of its features such as the twinline display, replay and edit features and
9 memories have assisted in the understanding of mathematics by younger students
and they have also helped students use a calculator more effectively in the
classroom.

Appendix D: The Sharp EL-546

The Sharp EL-546 is a calculator very similar in appearance and functionality to the
Casio fx-83W. This appendix lists a few sample design issues of the EL-546, to show that
its design problems are comparable to the Casio calculator's. See Section 3 in the main
body of the article.

* The display is used in two steps. As a calculation is entered, it is displayed in the top
line, but as numbers are entered, they are shown on the bottom line. The top line,
where the calculation will be, is hard to follow. The Casio fx-83W instead always has
all calculations going straight to the top line.

* The display is too low resolution for what it tries to do. The function 10] (i.e., raise
to a power of ten) is displayed as 10. Thus 4]103 using implicit multiplication
looks like 4103. Resolution is not the only problem the display has; for example,
multiplication (whose key is the standard cross symbol, ]) is displayed as an
asterisk.

* The calculator has a complex number mode. But it does little other than trivial vector
calculations: for example, asking for the square root of !1 gives a display of &&Error
2.'' Yet the calculator can correctly calculate i2"!1 by i x2 "

and get !1.
* The keys are overloaded with many meanings, yet there are two sets of labels A, B, C,

D (and a set a, b, c and a single key with label (x,y)2). The key functions use yellow,
silver and green on the case, and the key tops use white, green and black. And there
are black legends on yellow backgrounds2it is a very confusing visual design.

* In complex mode, it is not possible to use fractions, because the same key has
di!erent meanings in the two modes.
* (This list is not exhaustive.)
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Appendix E: The Casio fx-570W
The Casio fx-570W is very similar to the fx-83W, but with many more features. The
purpose of this appendix is to show that more advanced technology has not been taken
advantage of to solve design problems: this appendix lists sample design issues with the
fx-570W additional to the ones it shares with the fx-83W. See A3 in the main body of the
article.

* Like the Sharp EL-546L (see Appendix D) the fx-570W 's complex number functions
are partially implemented; for example, it cannot "nd square roots of negative
numbers. It cannot do the classic e*n (which is equal to !1) and all the obviously
useful complex operations; conversely, Abs only works in complex mode*despite
being both useful and mathematically well-de"ned for real numbers.

* The fx-570W corrupts memories D,E,F, X and > in complex mode; moreover going
out of complex mode and back again, the imaginary components of A, B,C are set to
zero.

* When a complex number is calculated, the result is shown without any hint whether
the imaginary part is non-zero*the user must remember to press a shifted key
Re%Im to reveal it.

* It is possible to store a formula. The manual gives one example &&to save [a] formula,
recall it, and then use it'' by pressing Y " X x2 # 3 X ! 1

2 CALC , apparently storing a formula in >. Since the " does not occur at the
end of the calculation, a di!erent key to " (but also labelled " and keyed as
ALPHA CALC ) must be used. Having done this, the calculator shows X? and
a number for X can be entered, followed by " (the usual " ). Now, if, say,
RCL X is pressed, the formula disappears and seems to have been lost and cannot
be recovered. Although the User+s Guide refers to the variable > in the example, it
seems to serve no purpose; the Quick Reference Guide (a plastic sheet kept in the
calculator's cover) gives a similar example without the> (or any other named formula
memory)*perhaps con"rming that the User+s Guide is mistaken.

* In &&base-n''mode numbers can be entered in binary, octal, decimal and hexadecimal.
The key x!1 takes on an exclusive meaning LOGIC which can be pressed three
times to reveal a choice of four operators, d h b o. (Pressing it fewer than three times
gives operator choices.) The user presses 1 } 4 to select one, and the calculator
shows the corresponding letter as a pre"x operator. A number can then be entered in
this base, for example it is possible to add a number in decimal and a number in
binary and show the result in octal (if that is the base mode). The display might show:
d42#b11 and 55o as the answer. Note that the display shows the base of the answer
after the number, whereas the numbers in various bases are speci"ed with a base
letter before the number. Why is the base speci"er only available in base-n mode?
Why is the base speci"er chosen in such a tedious way, when six keys do absolutely
nothing in this mode (and hence, the six logical operators that are accessed by
pressing LOGIC once or twice could have been accessed directly, and the base
operator accessed quite simply?

* In &&base-n'' mode, the keys that are normally ALPHA or RCL -shifted to get memo-
ries A,B, C etc, become keys to enter hexadecimal digits without any shifting (they
even mean this in binary mode, when they have no meaning mathematically). Thus
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the normal functions of these keys are lost. Losing sin may not be a problem, but
unary minus (!) has also gone. Either this is a problem, or it indicates that the
manufacturers do not think the unconventional minus is needed in any case.

* The binary, octal and hexadecimal bases would make the calculator appeal to users
who wish to do calculations to check computer arithmetic. There are obvious
functions that are missing: it is not possible to specify word length (the fx-570W has
di!erent, but "xed, word lengths in each base); there is no choice but to represent
numbers in 2s-complement; there is no logarithm or exponentiation to base 2; it only
handles integers (and not, for example, "xed point numbers).

* The calculator provides forty constants. Pressing CONST in the middle of a calculat-
ion displays CONST* * and expects the user to press two digits. Pressing
CONST 2 2 immediately displays F (in an indistinguishable form to having
entered RCL F ), which represents the Faraday constant (the charge of a mole of
electrons). Constant 23 is the charge of an electron; this is displayed as e, exactly the
same as the e of exponentiation (so you could get ee-ee displayed, and have the
value 1). There is no way to search for a constant the user knows the calculator has,
but whose two digit code is not known. (Note that many other choices the calculator
provides, such as the choice of number base operator, are provided as &&multiple
choice'' where the calculator displays the choices, so*if the calculator had been
designed consistently*the user would not have needed to know the codes.) Although
the constants are based on international standards, the User+s Guide does not tell us
their units.

* Although many keys are overloaded with multiple labels, the numerical integration

key :dx is prominent and has no other labels*thus causing other keys to be

unnecessarily awkward. To do an integration :b
a

f (x) dx, :dx is pressed, then the

function of X, then , a , b , n ) " . The value n is used in the method
of integration (the User+s Guide says it is &&the number of partitions (equivalent to
N"2n) for integration using Simpson's rule.'' Although other functions (like MODE ,
LOGIC and DRG¤ ) have menu choices, integration does nothing to remind the user
of its conventions*such as requiring the variable X, or even that it requires n (it
appears to have a default value, so the user is not warned if it is omitted). When the
calculator is integrating, the display goes blank*nothing is displayed at all*and the
calculator appears identical to being o!.

* Since X is the bound variable of integration, double integrals are not very useful (for
example, integrating to "nd the volume of a solid generally requires two bound
variables). Nevertheless, :1

0
:1
0

1 dx dx is the volume of a 1]1]1 cube. Entering it in
the appropriate way is treated as a syntax error.

* The key DRG¤ provides a post"x operator representing degree, radian or grade
units, which is converted according to the angle mode of the calculator. (So 200g when
in radian mode has value n, but would have value 200 in grade mode.) Unfortunately
the display symbol is identical to the representation of 3’’’ , so ambiguous displays
are possible*and none of them are syntax errors, even though meaningless.

* The calculator has an &&engineering mode'' which enables shifted meanings for the
digit keys, so that multipliers like k, n, k, or M can be pressed. In normal mode, these
shifted meanings, indeed any shifted meanings, are inaccessible*in other words,
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there is no obvious need for the mode because, without any ambiguity, the shifted
meanings could have been made available.

* (This list is not exhaustive.)

Paper accepted for publication by Editor, Dr B. Gaines
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