
Context Service Framework for the Mobile Internet

Sailesh Sathish Dana Pavel* Dirk Trossen*
 Nokia Research Center

 Visiokatu 1, Tampere, *Itämerenkatu 11-13, Helsinki,
 Finland Finland

{sailesh.sathish, dana.pavel, dirk.trossen}@nokia.com

Abstract

 Many context aware systems have been developed
especially for mobile devices, where proximity to users
allows for collecting more reliable context data.
However, many solutions suffer from lack of
interoperability, complexity and adoption difficulties. We
describe a complete framework for context provision for
mobile web applications that is based on technologies
that have already been deployed as well as endorsed by
standardization bodies. Our framework includes as the
main parts a context representation model that is an
extension of an ongoing standardization activity within
World Wide Web Consortium (W3C) called Delivery
Context Interfaces (DCI) targeted to consumer web
applications, and a SIP-event based framework for
context data provisioning. We further provide a proof-of-
concept implementation of individual components along
with application scenarios utilizing our proposed
framework and our ongoing integration efforts for
combining the two main framework parts.

1. Introduction

Adaptive applications are those that adapt based on
context data that characterize a usage situation. The
advent of mobile information access, coupled with
increased capabilities of mobile devices such as cell
phones and PDA’s adds new dimensions for such
adaptability. As such, mobility has opened up new
prospects with devices expected to be with users at all
times providing reliable cues on user intentions and
usage environment. It is becoming imperative that
context leverage be seen as part of normal application
development driving the need for unified delivery
context access methods. Context data can be leveraged
for providing content adaptation in order to fit the
current device, presentation adaptation (utilizing
device capabilities and user preferences) and service
adaptation that can happen either on the client device
or through a networked service provider. Moreover,
devices vary in characteristics such as screen size,

keypad type, screen orientations etc. Writing web
pages for each configuration is not an option.
Adaptation is key and taking into consideration, the
dynamic nature of user situations, applications during
run time should be able to access system and
environment data enabling such processes.

Providing intuitive access methods for context
delivery only forms one part of the picture. There is
also the need for an infrastructure that can provide for
and support such kind of services. The main purpose of
any service provider is to provide a clear separation
between logically different layers, such as data
provisioning and usage. Reusing common
functionalities would enable a certain economy of scale
rather than implementing every feature from scratch.
Through this commonly agreed functionality,
interoperability is enabled between services based on
the infrastructure. Context information can reside
anywhere. Such widespread distribution of information
is likely to lead to use cases that will operate in several
network domains, spread over different devices while
involving several pieces of service logic.
Interoperability at various levels, including semantic
and communication levels, is a critical issue that can
determine if a solution is deployable or not. As a
consequence, it is desirable that any solution is as close
as possible to existing and emerging standards so that
adoption and wide scale deployment becomes feasible.

We describe our ongoing efforts to integrate two
frameworks that were developed with respect to
context access and provisioning services. Our context
access framework uses an extended W3C’s Delivery
Context Interface (DCI) [4] mechanism, improving on
our earlier work [4] with ontology based access control
and management of device delivery context access. For
the provisioning part, we created a context
provisioning architecture [19], together with a
middleware specification and implementation,
allowing for context provisioning between providers
and consumers for the Internet.

The paper is organized as follows. We review some
of the related work in this area in Section 2. Section 3

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

presents the client side of our context access platform
while section 4 describes our context provisioning
platform called CREDO. Section 5 outlines our
implementation and integration efforts. An adaptive
application that uses the context platform is described
in section 6. Section 7 concludes the paper and
provides a few thoughts on future work direction.

2. Related work

Context-access and adaptation technologies have
been getting due attention with platform and services
developments conducted by industry and academia.
Earlier work by Schilit et al. [8] demonstrated the
usage of context aware computing applications on
mobile platforms. Biegel et al. [11] describe a
framework for context aware application development
based on sentient objects in ubiquitous environments.
Khedr et al. [23] apply agent-based approaches for
building context-aware platform that even spans its
reach for context down to the network level. The work
done in [13] describes using ontology based context
models in intelligent environments. Work done by
standardization bodies such as Open Mobile Alliance
(OMA), W3C and IETF (Internet Engineering Task
Force) has greatly influenced our approach. For
delivery context access, there are already limited
mechanisms in place. W3C’s Cascading Style Sheet
(CSS [17]) media queries choose a particular style
sheet based on the media type (desktop, PDA etc) that
is accessing the web page. Another standard,
Synchronized Multimedia Integration Language (SMIL
[16]) also offers limited support for checking system
characteristics where dynamic values are provided by
the runtime environment. OMA’s User Agent Profile
(UAProf [15]) describes device characteristics using
UAProf vocabulary over RDF. WURFL [14] is another
resource description mechanism. But, the properties
that these profiles describe do not necessarily have to
be static. The client device always holds the most
updated information and a mechanism is needed for
soliciting such information by the adaptation entity.
For our context access framework, we rely on W3C’s
Delivery Context Interfaces (described in Section 3)
that provides generic property interfaces as well as
extensibility.

For context provision framework, we rely heavily
on Session Initiation Protocol (SIP) [20] and SIP-
Events [21] work done in IETF. SIP enables separation
of user identifier (URI) from endpoint identifier (IP)
address, enabling application layer mobility of devices.
The most importance extension to the basic SIP
framework is SIP-Events [21], which uses SIP for
creating an event delivery framework for the Internet.

The specific semantic of SIP events is not specified in
[21]. The semantics are supposed to be defined in
separate standardization documents, specifying for
instance, behavior of network entities, format of state
information and rate limitations for notifications on
state changes. SIP-Events provide a very powerful tool
to implement delivery of any event over the Internet.
For describing the semantics of data provisioning
services, we use W3C’s OWL-S [22] (Semantic
Markup for Web Services).

3. Context access framework

Figure 1 shows our context access framework using
the CREDO [19] distributed context provision
architecture. CREDO (also referred to as context
provider) is a SIP-event based extensible framework
that provides context data grounded within available
standards.

The context provider communicates with the client
through the client context provision interfaces. A
CREDO client API set integrated with the client
context provision interfaces connects to the CREDO
server. The context engine component (shown in figure
1) provides the necessary interfaces for context access
to consumer applications. The context interfaces would
be the DCI API, which is an ongoing standardization
effort within W3C.

Figure 1. Context access framework using

CREDO provision services

The ontology and context access management

module is responsible for providing security and
integrity of the context representation model. The
client context provision interfaces provide the coupling
between provider specific interfaces and context
representation model. Section 3.1 describes the DCI
model and context representation in more detail.

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

3.1 Delivery Context Interfaces (DCI):
accessing static and dynamic properties

The Delivery Context Interfaces [1] is a new
approach taken by the Device Independence Working
Group (DIWG) of W3C as an access mechanism for
device static and dynamic properties. DIWG advocates
this approach as a complementary mechanism to their
Composite Capability/Preference Profile (CC/PP) [6]
model for server side content adaptation and the
delivery context approach described in Delivery
Context Overview (DCO) [3]. DCI, as a client based
mechanism can fit within a content adaptation
framework where web content can be adapted based on
the capabilities of the device. Any instance of the
dynamic DCI tree can be serialized using an
appropriate CC/PP vocabulary (or other XML
representation) for server side content adaptation. But,
beyond content adaptation, DCI would be used by
applications themselves to gather context data and
provide application adaptation through simple access
methods thereby reducing reliance on external services
for providing the same information.

The W3C’s Document Object Model (DOM) [2] is
a platform and language neutral interface that allows
programs (scripts) to dynamically access and update
content, structure and style of documents. Scripts can
use the DOM model to traverse and manipulate the
document. DOM also supports an event system that
involves an event propagation mechanism and handlers
for listening and capturing events. DCI also takes a
similar approach to representing device properties in a
hierarchical manner organized through a taxonomy that
would be defined outside DCI scope. The approach
was adopted due to the popularity and familiarity of
DOM model among application developers as well as
popular browser support. DCI provides an API for
property access by extending the standard DOM
interfaces while retaining the same event mechanism as
DOM. DCI mandates the latest recommendation of
DOM level [2] and DOM event [7] specifications.

In DCI, all properties (static and dynamic) are
represented as DCIProperty nodes in a tree hierarchy
where a DCIComponent forms the root node. The
properties will be grouped under logical categories to
form a hierarchical order. New properties are added
under specific categories within the tree depending on
the property type. DCI extends the DOM Node
interfaces with methods for searching and checking for
properties. Additional attributes have been defined
including specifying metadata related to properties,
attribute propertyType that can be used to define new

property types so that the standard set of DCI
interfaces can be extended. Nodes with the same name
can be distinguished by their namespace attribute and
metadata information. The conceptual structure of a
section of the DCI tree is shown in Figure 2.

Figure 2. DCI conceptual structure. The

location node has two GPS child nodes with
two different namespaces.

DCI uses the DOM event [7] model for notification

of dynamic value and structural changes. It follows the
DOM capture, bubble and target event phases.
Applications that implement the DOM EventListener
interface can add listeners for events at any point in the
event path for a target property. All event handlers
registered for a particular event and propagation phase
are invoked when the event is fired. The Delivery
Context Interfaces specification has reached last call
working draft status. It is expected to go into candidate
recommendation status in second half of 2006.

3.2 Client-side Context Access Architecture

Figure 3 shows the client side context access
architecture.

Figure 3. Client side context access

architecture using ontology based mechanism
for access and integrity management.

An ontology describes concepts used in a particular

domain that are machine understandable along with
relations among the concepts used. The architecture
shown in figure 3 depends on an ontology describing
the entire set of vocabularies for properties that can be

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

exposed by the DCI framework to the calling
application. The ontology would describe the
hierarchical relations (logical such as Software,
Hardware, and Location etc) and the set of properties
that would fit under each set. The ontology would be
extensible in that the device manufacturer or
management authority can extend the vocabulary based
on new properties that would emerge.

Figure 3 is an architecture extension of client side
context access framework shown in figure 1. The
context access mechanism to consumer application is
the DCI component in figure 3. The ontology and
context access management module are split into
ontology manager, ontology, security and access
policies and security manager. The DCI Provider
module provides a generic interface that can be linked
to any data providers that may be locally resident or
remote. The security and access policy module
provides policies that can be managed through the
security manager module. The security manager may
provide access to service, network and/or device
manufacturers so that they can control who gets what
type of access to where within the DCI tree. The
ontology manager could also provide similar controls
required for management of the ontology. The full
functionality of security manager, details, format of
security and access policies are under development and
are outside scope of this paper.

In our proposed architecture, the context data
providers seek access to the DCI tree through the DCI
provider interface. The DCI provider interface
(module) takes the property metadata (such as OWL-S
description or RDFS metadata) and queries the
ontology manager for DCI tree access. The ontology
manager then obtains the access right policy for that
particular type of property from the security and access
right module. Based on this, given the proper rights,
the ontology manager checks the ontology itself and
decides where in the DCI tree the particular property
should be given access to. This helps protect the
integrity of the DCI tree. It then checks the DCI tree to
see if a new node needs to be created or whether an
existing node matching the same metadata can be
overridden. If a new node is required, it creates a new
node following the topology constraints and initializes
the node (with parent information etc.). The node
pointer is then passed to the DCI provider interface
which is then passed to the requesting service provider.
In case no access is granted, an empty (NULL) pointer
is passed. The DCI provider module does not permit
the providers to directly start providing data. To
optimize performance, they can start so only when a
consumer asks for that property. When a consumer
attaches an event handler (the first event handler to that
property), a subscription request is sent depending on

the protocol supported by the provider. The property
(that the provider provides) though, would have a node
in the DCI tree with the metadata interface describing
the services that can be subscribed to by the consumer.
The frequency of data provided would depend on the
type of property and mechanisms for controlling the
dynamic nature of data are yet to be developed. The
DCI provider module exposes the DCI provider API
that has been internally developed within Nokia. All
context providers are issued a unique session ID if the
provider has been deemed secure by the access control
module. The DCI provider module is responsible for
managing the session with the context provider once a
session ID has been generated. The context data
provider will use the unique session ID that was
generated for all subsequent communication with the
DCI provider module. The DCI provider API provides
a set of methods for the following:

• Search the location of a property within the
DCI tree

• Check for properties
• Add a new property
• Remove an existing property
• Set a property value
• Get and set metadata for a property
• Set namespace prefixes for XPath [18] usage

The provider API supports usage of XPath
expressions for addressing nodes in the DCI tree.
XPath (XML Path Language) describes expressions
that can be used to address parts of an XML document.
It describes a way to address, locate, and process
elements (including attributes, processing instructions
etc). XPath uses an addressing syntax based on a
logical path through the document hierarchy treated as
a logically ordered tree. A major requirement for using
XPath expressions is that the expressions should be
resolvable within the DCI context. The API provides
support for the initial setting of a prefix for a
namespace URI so that the prefix can be used with
XPath expressions that the provider uses. This
eliminates the need for a namespace resolution
mechanism. The namespace prefix is only valid for the
particular provider and is identified based on the
unique identifier generated during session
establishment. Prefixes have to be set before calling
any method that uses namespace prefixes.

The dynamic device profile module, shown in
figure 3 supports an API at the client side for
generating profiles showing client side capabilities.
The dynamic profile is a snapshot of DCI tree at any
point during a session serialized in an appropriate
format that can aid server side content adaptation. To
support this, a client side API has been developed that

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

can be used by calling applications for generating the
profile. More information can be found in [4].

4. CREDO distributed context provisioning
architecture

Figure 4 shows the high-level view of the CREDO
distributed context provisioning system architecture.
As can be seen, each distributed element of our
architecture is based on a middleware, providing a
common platform for context-aware applications. This
middleware implements common functionality for
discovery and provisioning of context information to
the different entities with ontology and access
authorization support.

Provider-
specific logic

Middleware

IP

Context
Provider

IP

Ontology
Logic

Middleware

IP

Ontology
Component

Consumer-
specific logic

Middleware

IP

Context
Consumer

Discovery
Logic

Middleware

IP

Discovery
Component

Authorization
Logic

Middleware

IP

Authorization
Policy

Component

Owner-
specific logic

Middleware

IP

Context
Owner

Other Discovery
Servers

Other Ontology
Servers

Figure 4. Context provisioning system

architecture

Within each element in our architecture,

component-specific functionality should be
implemented in addition to the common middleware,
shown as gray boxes in figure 4. Note that this
element-specific functionality is outside the scope of
the platform and can implement proprietary and
differentiating functionality, such as reasoning. This
logic, however, will use the common middleware for
implementing its functionality, wherever possible. In
the following, we briefly describe these components.

4.1 Context consumers, providers and owners

The main components of our architecture are the
context owners, providers and consumers. While this is
not a new concept, it is not quite usual for using a
service oriented view to model a context-aware system.
Also, context owners and providers are considered
separate since they do not necessarily have to be the
same in most deployments. A context provider can be

simply an intermediary for context provisioning (e.g., a
Location provider) or an aggregator, combining data
from various sources (e.g., a Meeting provider). Note
that the topmost context consumer in the architecture
would be the application logic that makes use of the
obtained context information for its particular use case.
Within our context access framework, shown in figure
1, the topmost context consumer constitutes the context
provider, delivering information directly to the DCI-
based client.

For each piece of context information provided or
received, it is likely that there is need for some context-
specific recognition and reasoning to process the
actual information. Such specific logic could serve as a
differentiating element in a (context) service offering
of particular providers, e.g., through the quality of the
reasoning method.

Part of the context-specific logic is also the
realization of aggregation functionality. Aggregation is
the process of collecting information from various
context providers, processing it and offering some
derived information further to other consumers. These
hierarchies of context providers are built through an
inter-play of discovery, aggregation, acquisition, and
ontology functionalities provided by the middleware.

4.2 Authorization policy component

This component authorizes the transfer of data from
context providers to context consumers. It allows
owners of the context to have control over their
information. The middleware for this component
provides generic functionality to manage and retrieve
access policies for certain context information. These
access policies are used in the actual context
provisioning to ensure proper access rights for each
subscription before granting the subscription
eventually. However, the access policy could specify
that access is supposed to be granted at the time of
subscription. For this, the component middleware
provides additional functionality, e.g., through some
HTTP-based web forms.

4.3 Discovery component

This component provides functionality to discover
context sources within the system. It is important to
note that while we describe it as a single component,
there could actually be fully distributed federations of
discovery servers working together in providing the
required functionality. At the middleware level, this
component should insure a uniform system-wide
discovery of context sources. This is achieved through
providing a subscription-based mechanism, which

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

allows for discovering but also subscribing to the
future availability of context information. This
discovery or availability request itself uses pointers to
ontologies to allow for defining own context
ontologies.

4.4 Ontology Component

While most of the ontologies used in our solution
could be directly addressed by URLs from their
respective locations, certain ontologies would be local
to the context-aware system. For example, as will also
be discussed later, in the current implementation, own
ontologies are created for representing the relationships
between our middleware components. It can also be
envisioned that certain other ontologies would be kept
local within the particular deployment, e.g., within
enterprises. The middleware part of this component
should insure proper access to existing ontologies, plus
other operations with ontologies that a certain
consumer might require. Note that the ontology
component does not have to be mapped onto a single
entity but can instead use federations of ontology
servers. As part of the ontology logic, functionalities
like ontology maintenance (storage, verification,
merging, mapping, etc.), proper format adjustment of
the ontology, and reasoning logic for selecting an
appropriate ontology can be envisioned.

5. Proof of concept

This section briefly discusses our implementation
efforts with DCI and CREDO.

5.1 DCI Implementation

A near full implementation of the DCI specification
has been done. Our implementation provides a DCI
extension to Mozilla Firefox browser. The
implementation platform was Linux RedHat9 using
C++. A direct integration was done using Firefox
browser’s extension mechanisms. A mock taxonomy
for a first level hierarchy of property vocabulary
including Software, Hardware and Location were
created. A GPS property node was added under
location node where a simulated value was provided
that was updated every 300 milliseconds. Our ongoing
integration work with CREDO platform is aimed at
replacing simulated data with real data. Multiple
streams of context data are expected that would be
utilized by the application providing richer
interactions. The DCI implementation was also ported
to a Nokia 770 Linux tablet with the Manaos Browser
[24] (Firefox for Maemo platform) for integration with

CREDO framework. For reasons of space limitations,
we refer to [4] for more detailed implementation
information

5.2 CREDO Implementation

As key element in our proof-of-concept, we
implemented the context provisioning platform
middleware, shown Figure 4 as the common entity. It
provides commonly used functionality across all
components. Three major parts exist in the
middleware, as shown in Figure 5, responsible for
context provider discovery, context information
provisioning and general provisioning of information
within an event delivery paradigm. Each of the parts
has been fully specified with dedicated interfaces.
Further, the information within our system is modeled,
based on our ontology-based design principle.
Communication with the DCI module happens through
the middleware API that interacts with the DCI
provider API.

Middleware API
Data Provisioning Context

Registration,
Discovery

&
Availability

Event Delivery

SIP Events HTTP

IP

W eb Services

Query Resolver

Acquisition

Access Ctrl

Others

Ontology

 APPLICATIONS

Figure 5. Middleware of the CREDO

distributed context provisioning platform

For reasons of space limitations, we refer to [19] for

more CREDO implementation information.

5.3 Integrating DCI and CREDO

The integration of DCI and CREDO is currently
ongoing. A major requirement in providing a full
fledged context access mechanism is that the
framework has to inter-operate with different types of
provisioning systems. There are different modes of
providing data services to the context model such as
direct integration locally, distributed protocol services
such as SIP based, web services based, other
proprietary mechanisms etc. Standardized interfaces
would help alleviate the problem to a certain extend
but in certain cases, more proprietary integration
modes may be warranted. Another dimension to the

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

problem is instigation of session establishment. There
would be cases where the context service framework
performs discovery of services (due to application
requirements) as well as where the provider can also
push their service to the context model. We have
adopted a transition approach where the first step is to
provide adequate nodes in the DCI tree for CREDO
provisioning service. The DCI implementation does
not employ discovery services and a tight coupling
between the node interfaces and the CREDO client
API has been done. Our first level experiments with
providing weather data (pressure, humidity) and
location (through CellID) is ongoing and more
property types are expected to be added in the near
future. The next step is to provide client initiated
session establishment through use of SIP addressing
for CREDO service and SIP proxy. The preferred
solution of catering for different service providers
require using the DCI provider interface and coupling
with different protocol stacks. This requires defining a
clear structure for metadata interface of DCI nodes so
that applications can specify session establishment
modes and procedures. We are also planning to
develop additional capability for metadata interface
that can accommodate application supplied
initialization data that would be applicable for a
particular session.

6. Applications

The DCI-based context aware logic was first
demonstrated with a Google map mash-up application
running on a DCI enabled browser. The application
used JavaScript calls to attach event handlers to the
DCI tree that listened for a “dci_prop_change” event
for property value changes at the GPS node. The
handler was invoked during coordinate changes which
were then plotted as polylines (between the
coordinates) on the Google map. Our new approach
complements with the CREDO platform providing
location, user activity and preference data.

Figure 6. Adaptive map application. The

map highlights user position and changes
according to user context.

The scenario is shown in Figure 6. Based on time

information and user activity (such as leaving the
office, getting into car), shopping is highlighted as the
next “to-do” activity. As the user start driving, the
drive path is highlighted on the map using polylines.
The application then starts recommending shops along
the user’s way (complemented based on preferences
and items to buy in the shopping list (not shown in
figure)). The user stops at one shop and goes inside
when the location information changes from GPS
coordinates to some location format supported by the
shop. The map application also changes to that of the
shop. The DCI based application now uses location
data from a new location node (ideally it uses a top
level parent location node where the changes get
reflected). The user course inside the shop is now
plotted and the shop starts recommending items to the
user. The items on the user’s shopping list are
highlighted at their respective location on the map as
well as related recommendations, previous purchases,
offers etc.

7. Conclusion

A context service framework for mobile web has
been described. Our approach relies on existing and
ongoing standardization activities as well as relevant
industry practices in the realm of mobile web. For
context consumers, we use an extended framework
based on W3C’s Delivery Context Interfaces providing
additional features such as ontology based access
management, serialization for server side adaptation
and provider interfaces. For context data and service
provisioning part, we use a SIP-event based framework
as a data delivery mechanism coupled with ontology
based mechanism for semantic interoperability of
services.

Our future plans include completion of ongoing
integration between DCI and CREDO frameworks,
investigating uses of integrated and distributed

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

ontology for consumers and providers, access policies
and control through management objects as well as
improvements to the overall framework. We will be
looking at new dynamic context sources, levels of
abstractions and new adaptive applications that
promise value to the user.

Acknowledgements

Sailesh Sathish thanks fellow editors of the DCI
specification and members of Device Independence
Working Group for their contributions and support for
this work. We thank colleagues at Nokia for their
implementation support and invaluable insights that
made this paper possible.

8. References

[1] K.Waters, S. Sathish, R.Hosn, D.Ragett and M. Womer,

“ Delivery Context: Interface Accessing Static and
Dynamic Properties”, W3C last call working draft,
November 2005, available at
http://www.w3.org/TR/2005/WD-DPF-20051111/

[2] World Wide Web Consortium, “Document Object
Model Technical Report:, available at
http://www.w3.org/DOM/DOMTR

[3] R.Gimpson, R. Lewis, S. Sathish, “Delivery Context
Overview”, W3C note, available at
http://www.w3.org/2001/di/Group/di-dco/di-dco-draft-
20060111/

[4] S. Sathish, O. Pettay “Delivery Context Access for
Mobile Browsing”, Proceedings of IARIA, Bucharest,
2006

[5] D. Brickley, R.V. Guha. “Resource Description Format
1.0: RDF Schema”, W3C recommendation, February
2004., available at http://www.w3.org/TR/rdf-schema/

[6] G. Klyne et al. “Composite Capability/Preference
Profiles: Structure and Vocabularies 1.0”, W3C
recommendation, January 2004, available at
http://www.w3.org/TR/CCPP-struct-vocab/

[7] T. Pixley, “Document Object Model Level 2 Events
Specification”, W3C recommendation, November 2000,
available at http://www.w3.org/TR/2000/REC-DOM-
Level-2-Events-20001113/

[8] Schilit, B., Adams, N., Want, R., “Context aware
computing applications”, IEEE workshop on mobile
computing systems and applications, Dec 8-9, 1994

[9] Roy, M. “A model of explicit context representation and
use for intelligent agents”, Modeling and using context:

second international and interdisciplinary conference,
CONTEXT’99, Trento, Italy 1999

[10] A. Dey and G. Abowd, “Towards a better understanding
of context and context-awareness”, VU Technical
Report GIT-GVU-99-22.1999

[11] G.Biegel, V.Cahill, “A framework for developing
mobile, context-aware applications” in Proc, Second
IEEE Annual Conference on Pervasive Computing and
Communications, PERCOM, 2004

[12] A, Held, S. Buchholz and A Schill, “Modeling of
context information for pervasive computing
applications”, Proc of 6th World multiconference on
systemics, cybernetics and informatics (SCI), Orlando,
FL, July 2002

[13] T. Gu et al., “An ontology-based context model in
intelligent environments”, Proc, Communication
Networks and Distributed Systems Modeling and
Simulation Conf., Soc, for modeling and simulation
intl’s, 2004

[14] L. Passini, A. Trassati, “Wireless Universal Resource
File (WURFL)”, available at
http://wurfl.sourceforge.net/

[15] WAP User Agent Specification, available at
http://www.wapforum.org/what/technical.htm

[16] D. Bulterman et al. “Synchronized Multimedia
Integration Language (SMIL2.1)”, W3C
recommendation, December 2005, available at
http://www.w3.org/TR/2005/REC-SMIL2-20051213/

[17] B. Bos et al. “Cascading Style Sheets (CSS 2.1)”, W3C
working note, available at
http://www.w3.org/TR/CSS21/

[18] J. Clark et al. “XML Path Language (XPath 1.0)”, W3C
recommendation, November 1999, available at
http://www.w3.org/TR/xpath

[19] D. Pavel, D. Trossen, “Context Provisioning in Future
Service Environments”, Proceedings of IARIA,
Bucharest, 2006

[20] J. Rosenberg, “SIP: Session Initiation Protocol”, RFC
3261, Internet Society, June 2002

[21] A. Roach, “Session Initiation Protocol (SIP)-Specific
Event Notification”, RFC 3265, Internet Society, June
2002

[22] D. Martin, O. Lassila et al.”OWL-S Semantic markup
for web services” W3C member submission, available at
http://www.w3.org/Submission/OWL-S/

[23] M. Khedr, A. Karmouch., “ACAI: Agent-based context-
aware infrastructure for spontaneous applications”,
Journal of Network and Computer Applications, pages
19-44, 2005.

[24] Manaos Internet Browser: Available at
http://extindt01.indt.org/10le/manaos/screenshots.html

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

