

Device Context Discovery System for Context-aware Services in Ubiquitous
Device Collaboration Environment

Jinwoo Park1, Jong-Kwon Lee1, YoungSang Paik1, MyungChul Lee1,

and Chandra Narayanaswami2
1Ubiquitous Computing Lab, IBM Korea, Seoul, Republic of Korea

2IBM T. J. Watson Research Center, NY, U.S.A.
{jwp, jkwlee, yspaik, mclee}@kr.ibm.com, chandras@us.ibm.com

Abstract
This paper describes a system for obtaining and
describing device context information such as device
capabilities and user preferences for context-aware
services in the ubiquitous device collaboration framework
called Celadon. The proposed system is designed to
gather and manage device properties and user profiles
from devices, and to provide generalized access methods
for manipulating static and dynamic properties of the
devices. We present the architecture of the proposed
system within the overall Celadon framework and
describe the functions of each component in more detail
and present our current prototypes.

1. Introduction

Context-aware services that exploit information about
user and device context are becoming one of the core
components in a ubiquitous computing environment.
Device context information includes device capabilities
such as display resolution, processor speed and available
memory, network bandwidth, user location, etc. and user
context includes preferences, age, and gender, etc. Using
the context information at hand, a context-aware system
can provide mobile users with appropriate services
according to the device/user context.

In order to enable context-aware services, it is a
prerequisite to gather contextual information about the
device capabilities and the user preferences, and to
transform them into user/device properties that can be
used in a systematic way for providing context-awareness.
For this purpose, we need access methods for
manipulating static and dynamic properties of a device so
that any contents delivered to the device can be adapted to
a particular device context. Static properties refer to data
that remain constant for the session duration, while
dynamic properties can change during the session.

Several efforts have proposed and recommended as
frameworks for dealing with the device capabilities.
CC/PP (Composite Capability/Preference Profiles) [1] is
an XML representation of device characteristics based on
Resource Description Framework [2]. CC/PP provides a
means to transfer device characteristics from one device
to another. It is also the basis for UAProf (User Agent

Profile) [3], which is used to express the capabilities of
many mobile devices. UAProf has been defined by OMA
(Open Mobile Alliance) as an implementation of CC/PP
for WAP-enabled mobile terminals. UAProf describes
three classes of static device characteristics: hardware,
software, and user preferences. More recently, W3C has
defined platform and language-neutral interfaces, called
DCI (Delivery Context Interfaces) that provide web
applications with access to a hierarchy of dynamic
properties representing device capabilities, configurations,
user preferences and environmental conditions [4].

In this paper, we describe a system for recognizing
and describing such device properties for use in a context
inference engine on a context management server. Our
system has been developed based on the DCI framework
so that it can deal with changes in dynamic properties of
mobile devices, especially the location of the mobile
device. This system which gathers and interprets
device/user context is one of the building blocks of the
Celadon ubiquitous device collaboration framework [5, 6].
The Celadon project aims at enabling seamless
collaboration between a wide range of heterogeneous
mobile and environmental devices within Celadon zones
using a service-oriented architecture. The Celadon zones
are collaborative environments in public areas and
equipped with wireless access points of Bluetooth or
802.11 and with environmental devices such as displays,
printers, and servers (Figure 1). Thus, the system for
gathering and managing context information plays an
important role in providing context-aware services in the
Celadon framework.

The remainder of this paper is organized as follows. In
Section 2, several existing studies of the ubiquitous
environments are briefly summarized. In Section 3, the
overall architecture of the Celadon framework and the
structure of device context discovery components are
described. Each of the device context discovery
components is described in more detail in Section 4. In
Section 5, we illustrate example context-aware services
based on the implemented device context discovery
system. Finally, we conclude this paper in Section 6.

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

Zone Entrance Point

Service ProviderService Provider

Access Point

Access Point

Access Point

Service ConsumerService Consumer

Service ConsumerService Consumer

Zone Identification
Mobile user entrance detection based on the Personal Area
Networking and Near Field Communications technology
Automatic zone profile installation

Service Rights Management
Subscriber Identity based Single Sign On
Identity federation

Differentiated service offering and charging

Location (Service Consumer)
Preference (Service Consumer)
Available Services (Service Provider)

Figure 1. Concept of Celadon zone

2. Related work

A number of so-called ubiquitous environments or
ubiquitous spaces supporting context-aware computing
have been developed with various objectives. Especially
regarding mobile devices environments and collaboration,
the following projects have been studied and developed.

The Pebbles (PDAs for Entry of Both Bytes and
Locations from External Sources) project [7] has studied
how computing functions and related user interfaces can
be spread across all computing and input/output devices
available to the user, forming multi-machine user
interfaces, or MMUIs. It focuses on how personal
handheld computers interoperate with desktop and built-in
computers seamlessly in real time.

Hydrogen [8] is an architecture and a software
framework which supports context-awareness for the
special requirements of mobile devices regarding
particularly the limitations of network connections,
limited computing power and the characteristics of mobile
users. It comprises three layers to separate the concerns of
interacting with the physical sensors, storing and
maintaining the context from the applications itself. Due
to the fact that applications do not deal with remote
servers but only with a local server, which provides any
kind of available contextual information, the architecture
is robust with respect to frequent disconnections. Clearly,
Hydrogen focuses on the context architecture in order to
overcome the shortcomings of existing approaches in
dealing with mobile scenarios and mobile devices.

The Gaia project [9] is a middleware infrastructure
that prototypes the resource management and provides the
user-oriented interfaces for physical spaces populated
with network-enabled computing resources. It applies the
concepts of a conventional operating system to
middleware to manage the resources, devices and
distributed objects in a physical space by driving context-
sensitivity into its data storage mechanisms. Gaia exports
services to query and utilize existing resources and to
access and use current context, and it provides a

framework to develop user-centric, resource-aware, multi-
device, context-sensitive and mobile applications [10].

SOCAM (Service-Oriented Context-Aware
Middleware) [11, 12] is an architecture for the building
and rapid prototyping of context-aware mobile services. It
targets a similar environment to the Celadon project since
it is implemented on top of the OSGi (Open Service
Gateway Initiative) framework, running on mobile
devices and using ontology-based context model. It is
made for applications to easily adapt to the changing
contexts by dividing context ontologies into a common
high-level ontology and domain-specific ontologies. Also
SOCAM converts various physical spaces where contexts
are acquired into a semantic space where context-aware
applications can share and access them easily.

All the aforementioned projects address well-defined
ubiquitous infrastructures and describe their own
uniqueness and efficiency. However, these projects are
focusing on mobile user interfaces or middleware
components that support context-aware services. None of
these are considering the ubiquitous collaboration
between devices and the management of acquired
device/user context.

3. Celadon system architecture

Figure 2 describes simplified Celadon architecture and
briefly shows how the mobile device interacts with the
broker in the Celadon zone that helps mobile device to
find possible services. Figure 3 shows the software
architecture of the device context discovery components.
The system is divided into two parts: the broker part
(server side) and the device part (device side). The broker
part functions as a control center to manage the contexts
for the devices in the local zone. The device part gathers
the information related to the device and user context and
reports it to the broker part. After that, the broker resolves
the service availability and reserves the available services
for the device to use. These two parts communicate with
each other via an underlying common web services
communication stack. Especially, to deal with dynamic
changes in the device context, the data traffic between the
two parts is transmitted as an event stream. For this
purpose, the discovery components send and receive data
by using the Asynchronous Messaging Engine.

Within the Celadon architecture, this paper is
especially describing the components on the device side
which is indicated with red dotted line in the figure 2,
how to acquire and manage device and user context and
how to transfer the information to the server efficiently in
such architecture.

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

Figure 2. Celadon: zone-based, context-aware

framework based on device context inference engine

3.1. Component on device side

Our discovery technology focuses on how to gather
context information and manage the service availability
based on the acquired device and user context. The device
and user contexts, we divided these into three categories
as follows:

 Device capabilities (e.g., display resolution,
available memory, network support, etc.)

 Device location (captured by other method than
device capabilities, but treated as one of the device
capabilities)

 User profile (e.g., user identity information, user
preferences, etc.)

The core sub-component of the discovery engine is

the DCRD (Device Context Recognition and Description)
engine that is designed for managing the device capability
information and for delivering it to the collaboration
broker. The Device Resource Analyzer gathers device-
specific information through system programming APIs.
It provides device capabilities to the DCRD engine, and
the DCRD engine transforms it into device properties that
can be used for context inference on the broker side.

The Device Location Detector is designed for
monitoring the device position by measuring the signal
strength from WLAN access points. The result of
captured device position is actually treated as one of the
device capabilities, but the reason we need another
module other than the Device Resource Analyzer is that
we exported different kinds of system DLLs (Dynamic
Linked Libraries) and implemented a localization
algorithm in this module.

As shown in Figure 1, the Celadon zone consists of
zone facilities and service actors. The service actors
indicate all the devices that reside in the service zone and
interact with each other for service execution. The zone
facility includes a wireless networking infrastructure and

an entrance point. The wireless networking reuses the
existing public WLAN service infrastructures such as
enterprise WLAN backbone and the WLAN Hot Spots of
the mobile operators. We assume that the service zone is
equipped with WLAN access points and the mobile user
entering the service zone can find out his location by
measuring the signal strength of all access points.

The Event Agent implements communication
mechanism that allows an object to accept registrations
and send published events to a number of receiver objects.
The Event Agent relies on the Asynchronous Messaging
Engine that constitutes the event delivery channels of the
Celadon on top of common communication module.

DCRD Engine

Device
Resource
Analyzer

Device
Location
Detector

WLAN
Driver

System API
(Device-

dependent)

Discovery Component on Device Side

Event
Sink

Event
Source

Asynchronous Messaging
Engine

Event Agent

DCRD Engine

Device
Resource
Analyzer

Device
Location
Detector

WLAN
Driver

System API
(Device-

dependent)

Discovery Component on Device Side

Event
Sink

Event
Source

Asynchronous Messaging
Engine

Event Agent

Interface to Context Manager

Event
Broker

Discovery Component on Broker Side

Asynchronous Messaging
Engine

Interface to Context Manager

Event
Broker

Discovery Component on Broker Side

Asynchronous Messaging
Engine

Figure 3. Architecture of device context discovery
components

3.2. Component on broker side

The broker side of the discovery component consists
of the Event Broker and the interface to the context
manager. The Event Broker module plays a mediator role
such as event filtering, event forwarding, and event
redirection among mobile devices, environmental devices,
and the broker.

4. Dynamic recognition and description of
device capability and user profile

Within many kinds of device capabilities, we divided
device capabilities into three properties which are static
properties, dynamic properties, and user properties to stay
with consistency. These properties are gathered by our

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

device resource analyzer. Static device properties are
stack of device resources that once it is initialized, it
never changes during the session. Device model, CPU
information, total memory, MAC address, etc. will be
within this property. Dynamic device properties are
changing device resources during the session such as
current date and time, available memory, remaining
battery, screen brightness, etc. Since we treat device
location as one of the device capabilities, device location
information is also one of these properties. User
properties retrieved from the mobile device includes the
user’s name, email address, phone number, home address,
etc. This information can also be used as a resource of
context-aware services. User properties are different from
the user profile because it is not presenting user
preferences but just description of user information just
by capturing from the device owner information.

User profile is collected by user’s direct input before
using any of applications. It is decided by each
application’s scenario and also can be used as a resource
of context-aware services. In Section 5, example content
of user profile is suggested by showing the UI for
gathering user profile of our scenario.

4.1. Device resource analyzer

Figure 4 shows the implementation structure of the
discovery component on the device side. Static/dynamic
properties and user properties are dealt with by the device
resource analyzer in Figure 3, while the location analyzer
corresponds to the device location detector.

Window Mobile
API

Symbian
API

Palm OS
API

Java Native Interfaces

Static Properties Dynamic
Properties User Properties

Location
Analyzer

WS-OSGi

Web Services (WSDL)

Figure 4. Implementation structure of discovery

component on device side

We have experimented with the PDA (HP hx4700
series) for the user’s device as it has enough system
power to run our applications. Since our PDA runs on
Windows CE 4.2, we used Microsoft PocketPC 2003
SDK and its system API to gather device capabilities –

static/dynamic/user properties. We implemented this with
JNI (Java Native Interfaces) to connect between the native
code and our higher level of Java code so that we can
transfer this information to our DCRD engine. We
implemented all the components with Java except this
device resource analyzer to meet the device heterogeneity.
But because JNI is system OS dependent and for staying
with this heterogeneity, we need to implement this
functionality on various mobile device types, i.e., cell
phone, PMP (Portable Media Player), etc., to support and
each system OS should provide this information.

We are using the WS-OSGi for our common
communication stack so that we can meet with standard
JSR-172 mobile web services specification. WS-OSGi is
an IBM technology that provides a method and system of
mapping a web service to a OSGi service and of exposing
the local OSGi service as one web service. It maps a web
service with a OSGi service transparently using Java
dynamic proxy technology to create a proxy bundle.

Figure 5 illustrates exposed WSDL (Web Services
Description Language) by the implemented interfaces for
getting the device and user properties. Celadon context
acquisition module will access to this description when
needed via web services and use this as a primary
inference resource.

… … …
- <complexType name="UserProperties">
- <sequence>
 <element minOccurs="1" maxOccurs="1" nillable="true"

name="name" type="ns0:string" />
 <element minOccurs="1" maxOccurs="1" nillable="false"

name="age" type="ns0:int" />
 <element minOccurs="1" maxOccurs="1" nillable="false"

name="gender" type="ns0:boolean" />
 <element minOccurs="1" maxOccurs="1" nillable="true"

name="occupation" type="ns0:string" />
… … …
 </sequence>
 </complexType>
- <complexType name="DynamicDeviceProperties">
- <sequence>
 <element minOccurs="1" maxOccurs="1" nillable="false"

name="availableMemory" type="ns0:int" />
 <element minOccurs="0" maxOccurs="unbounded"

nillable="false" name="currentTime"
type="ns0:int" />

 <element minOccurs="0" maxOccurs="unbounded"
nillable="false" name="currentDate"
type="ns0:int" />

 <element minOccurs="1" maxOccurs="1" nillable="false"
name="batteryStatus" type="ns0:int" />

 <element minOccurs="1" maxOccurs="1" nillable="false"
name="backlightIntensity" type="ns0:int" />

 <element minOccurs="1" maxOccurs="1" nillable="true"
name="currentIp" type="ns0:string" />

 … … …
 </sequence>
 </complexType>
- <complexType name="StaticDeviceProperties">
- <sequence>
 <element minOccurs="1" maxOccurs="1" nillable="true"

name="processorName" type="ns0:string" />
 <element minOccurs="1" maxOccurs="1" nillable="false"

name="totalMemory" type="ns0:int" />

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

 <element minOccurs="0" maxOccurs="unbounded"
nillable="true" name="networkSupport"
type="ns0:string" />

 <element minOccurs="0" maxOccurs="unbounded"
nillable="true" name="macAddress"
type="ns0:string" />

… … …
 </sequence>
 </complexType>
 </schema>

… … …

Figure 5. WSDL of exposed device and user
properties

4.2. Device location detection using RSSI

There have been many studies for indoor device
localization based on the networks including 802.11,
Bluetooth, or RFID using signal strength. We also
implemented the device location detection part using the
Received Signal Strength Indication (RSSI) from 802.11-
based access points and find out where the device and its
owner are. Although almost all recent studies are using
triangulation with probability analysis, currently we just
compare the RSSI itself after filtering for avoiding
unstable signal strength. The filter we used is a kind of
complex filter that can reduce noise by avoiding unstable
signal strength. The pseudo code of this filter is shown in
figure 6 below.

N: # of most recent RSSI samples

RSSIi: i-th past RSSI sample among N most recent samples (i = 1, 2,
…, N)

[RSSIi]: array of N RSSIi’s for i = 1, 2, …, N

rssi: current RSSI sample

TH: threshold for determining abrupt changes in RSSI

RSSIC: filtered current RSSI for use in location determination

begin Complex Filter

RSSIN ← RSSIN-1 , RSSIN-1 ← RSSIN-2 , … , RSSI2 ← RSSI1 ,
RSSI1 ← rssi

if(|RSSI1 – RSSI2| > TH)

RSSIC ← median([RSSIi])

else

RSSIC ← mean([RSSIi])

end
Figure 6. Pseudo code of the applied complex filter

for device location detector

As the primitive way of device localization, a location

of the device is determined to be a section where the RSSI
from one of the access points (APs) shows the strongest
value. Thus we assume that a zone can be divided into
several sections with the number of APs in the zone.

Among a bunch of APs already deployed around, it is
possible to detect section-belonging access points by only
taking the RSSI from our special SSID (Service Set
Identifier). Further study is under way to determine more
precise and dense location and to use less access points
rather than using one access points corresponding to one
section. In addition, to support network heterogeneity, we
are trying to implement the same functionality in other
network environments such as Bluetooth.

After each device property is obtained by the Device
Resource Analyzer and the Device Location Detector, the
data is transferred to the DCRD engine for the effective
management of the obtained properties.

4.3. DCRD engine: management of device and
user properties

The DCRD should be more than just a static list of
device characteristics. Rather, we need access methods
for manipulating static and dynamic properties so that any
contents delivered to the device can be adapted to a
particular device context. The active instances – OSGi
bundles, and Eclipse plugins, etc. – that can deal with
device capability recognition and description should
provide other active instances with dynamic access to a
hierarchy of properties representing the current device
capabilities. For dynamic properties such as the location
of a mobile device, it is important to be able to respond to
changes when they occur. Consequently, a mechanism to
subscribe and unsubscribe to specific events is required.
The DCRD concentrates on the following two things:

 Interfaces by which access to static and dynamic
properties corresponding to the device capabilities
are obtained in programming environments

 Mechanisms used to represent the static and dynamic
properties of the mobile devices

 A concept behind the DCRD information model is

depicted in Figure 7. The information model takes full
advantage of the separation between data manipulation
and data access. The data manipulation means to
initialize/de-initialize the properties and to raise events for
notifying changes to property values. The data access
includes:

 Generic read/write operations on device properties.
 A form of access control that is needed along with

the means to ensure that integrity constraints are
upheld. There are instances where certain
components should be prevented from modifying
property values or adding/removing properties.
Access rights are also useful for restricting event
handling.

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

Device Property Tree
Data Access
Plane

Services that are
defined in WSDL and
exposed to external
entities

Data Manipulation
Plane

WSDL

Java Interfaces

Invoke methods
concurrently

Access device
property hierarchy

Device Properties

Device Property Tree
Data Access
Plane

Services that are
defined in WSDL and
exposed to external
entities

Data Manipulation
Plane

WSDL

Java Interfaces

Invoke methods
concurrently

Access device
property hierarchy

Device Properties

Figure 7. DCRD information model

4.4. Event agent for handling changes in dynamic
properties

Since dynamic device properties are changing in time,
messaging method should be different from other
properties. We use asynchronous messaging to handle this
part. Firstly one method of the dynamic device properties
is published to the web services, any module subscribes to
that method (topic) can be notified by asynchronous
messaging module. We defined topics for dynamic device
properties and implemented asynchronous messaging part
with WSRF plugins for OSGi (WSRF4OSGi) [13, 14].
WSRF4OSGi is a lightweight implementation of WS-
Resource Framework (WSRF) set of specifications along
with the WS-Notification and set of specifications in the
OSGi environment. The WSRF4OSGi provides an
environment whereby various web service clients can
access stateful resources running in an OSGi environment
using WSRF standards [14]. After considering the
advantages and disadvantages of the WSRF4OSGi, we
decided to approach SOAP optimization, lessening
message overhead over the network, keeping web service
available on the mobile side. Figure 8 shows our event
agent based on conventional event-driven architecture.

Event
Broker

Event
Subscriber

Event
Listener

Event
Source

Mobile Device Environmental Device

Collaboration Broker

(1) Register

(2) Subscribe

(3) Publish

(4) Notify

Event
Broker

Event
Subscriber

Event
Listener

Event
Source

Mobile Device Environmental Device

Collaboration Broker

(1) Register

(2) Subscribe

(3) Publish

(4) Notify

Figure 8. Event agent diagram

4.5. Advantages of suggested DCRD engine

We do not focus on how we use context information
to accomplish inference or to match service instances, but
propose how we gather and manage device/user context.
Since device resources should be managed efficiently in
the mobile ubiquitous environment, efficient resource
management and communication can be achieved by
well-defined infrastructure in the mobile ubiquitous
environment. Followings can be advantages of our
proposed DCRD architecture.

 Using OSGi standard makes it possible to easily
manage of services with platform independence.

 Using JNI enables us to achieve device heterogeneity
because of using Java on the top of it.

 Exposing device/user context into the web services
makes easy access to a context-aware system at any
location, and using various contexts from system OS
provides richer context-aware services.

 Property management by DCRD enables efficient
management of device/user context, especially in the
mobile environment.

 Event manager lets us to use less network resources
and the information can be updated in real time
whenever it’s needed.

5. Implementation: context-aware services
based on device/user context

5.1. Implemented scenario: Location-aware
services

Device location is one of the important information
for the context-aware services. It is applicable for many
fields such as location guide services, personal preference
analysis, mobility analysis and many others. For our
Celadon project, we have built a demo test bed on the
scenario including location guide service with context
awareness. A captured scene on the mobile device of the
location guide service is depicted in Figure 9(a). We
divided our demo room into three parts, each of which
belongs to a shopping spot with a corresponding access
point. (We consider only 3 shopping spots of the map in
the screen of Figure 9(a).) If a user enters the Celadon
zone, the device (currently PDA) is registered to the
Celadon broker and it pushes all the device and user
properties to the context engine on the broker. Based on
the Celadon context module using IODT (Integrated
Ontology Development Toolkit) [15], the user preference
is inferred and a recommendation is provided. The
location guide service is provided based on our device
location information after the user selects what he wants
to purchase. For example, the final destination of shop
and the shortest path to the shop is expressed on the map
of user’s mobile device, and current location is also
indicated. While user is on his way, personalized

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

advertisement is popped up on the environmental device
around when the user approaches to some specific area.

(a) Location guide service (b) User profile configuration(a) Location guide service (b) User profile configuration
Figure 9. Captured screenshot of Celadon context-

aware services

5.2. Further implementation: User-aware services

Other than device properties, user properties from the
mobile device which the user has already provided are
also applicable to many ways. Pushing these properties to
the context engine, we can provide the user more user-
specified and more convenient services. For example, by
knowing user’s home address, the items can be shipped
without asking the user to enter the home address. By
knowing time of day, we can provide user the restaurant
menu for the appropriate time, e.g., the lunch menu or the
evening special menu. By sharing company name the user
might be able to get company discount price for a
museum instead of regular price.

Figure 9(b) illustrates a captured screen of configuring
user profiles on the mobile device. The user can input at
any time his/her profile such as personal information and
preferences. This user context is also delivered to the
context manager as soon as the user with the mobile
device enters the Celadon zone, and can be exploited for
provision of context-aware services.

6. Conclusions and future work

In this paper, we addressed device context recognition
and description system for context-aware services. The
system is one part of the Celadon framework and
implemented within the architecture. The proposed
system gathers device and user properties, and then
manages and handles these properties with the DCRD
engine based on DCI. Location context of the device is
also included and treated as one of the dynamic device
properties. All properties are exposed to the web services
and especially for the dynamic device properties,
asynchronous messaging is used.

Further important development is being considered
including privacy and security issues, role policy by
credentials, following the international standard for
example JSR-179 for the localization, etc. The
enhancement of localization algorithm is also under way.

7. Acknowledgment

This work is supported by the IT839 project from the
Institute of Information Technology Assessment and
Ministry of Information and Communication in Republic
of Korea.

8. References

[1] Graham Klyne, et al., “Composite Capability/
Preference Profiles (CC/PP): Structure and Vocabularies
1.0,” http://www.w3.org/TR/2004/REC-CCPP-struct-
vocab-20040115/.
[2] Dan Brickley and R.V. Guha, “RDF Vocabulary
Description Language 1.0: RDF Schema,”
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.
[3] “Wireless Application Group User Agent Profile
Specification,” http://www.wapforum.org/what/technical/
SPEC-UAProf-19991110.pdf.
[4] Keith Waters, et al., “Delivery Context: Interfaces
(DCI) Accessing Static and Dynamic Properties,”
http://www.w3.org/TR/2005/WD-DPF-20051111/.
[5] C. Narayanaswami, M.T. Raghunath, M.C. Rosu,
H.K. Jang, S.E. Jin, S.Y. Kim, M.C. Lee, S. Lee, and Y.S.
Paik, “Device Collaboration for Ubiquitous Computing:
Scenarios and Challenges,” The First Korea/Japan Joint
Workshop on Ubiquitous Computing and Networking
System, 2005.
[6] M.C. Lee, H.K. Jang, S.Y. Kim, Y.S. Paik, S.E. Jin, S.
Lee, C. Narayanaswami, M.T. Raghunath, and M.C. Rosu,
“Celadon: Infrastructure for Device Symbiosis,” The
Seventh International Conference on Ubiquitous
Computing, 2005.
[7] Brad A. Myers, “Using Handhelds and PCs
Together,” Communications of the ACM, vol. 44, no. 11,
pp. 34-41, 2001.
[8] Tomas Hofer, Wieland Schwinger, Mario Pichler,
Gerhard Leonhartsberger, and Josef Altmann, “Context-
Awareness on Mobile Devices – the Hydrogen
Approach,” Proc. Of the 36th Hawaii Int. Conf. System
Sciences (HICSS), 2002.
[9] Manuel Roman, Christopher Hess, Renato Cerqueira,
Anand Ranganat, Roy H. Campbell, and Klara Nahrstedt,
“Gaia: A Middleware Infrastructure to Enable Active
Spaces,” IEEE Pervasive Computing, pp. 74-83, 2002.
[10] Matthias Baldauf, Schahram Dustdar, and Florian
Rosenberg, “A Survey on Context-Aware Systems,” Int.
Journal of Ad Hoc and Ubiquitous Computing, 2004.

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

[11] Tao Gu, Hung Keng Pung, and Da Qing Zhang,
“Toward an OSGi-Based Infrastructure for Context-
Aware Applications,” IEEE Pervasive Computing, pp. 66-
74, 2004.
[12] Tao Gu, Hung Keng Pung, and Da Qing Zhang, “A
Middleware for Building Context-Aware Mobile
Services,” Proc. of IEEE Vehicular Technology
Conference (VTC), 2004.
[13] http://www.alphaworks.ibm.com/tech/wsrf4osgi
[14] Manu Kuchhal and Umesh Joshi, “WSRF4OSGi
Programming Guide,” Technology Incubation Center
IBM Software Labs, India.
[15] http://www.alphaworks.ibm.com/tech/semanticstk

Proceedings of the International Workshop on
System Support for Future Mobile Computing Applications (FUMCA'06)
0-7695-2729-9/06 $20.00 © 2006

