
The Software-as-a-Service Model for Mobile
and Ubiquitous Computing Environments

Nikos Anerousis and Ajay Mohindra
IBM Research
19 Skyline Dr

Hawthorne, NY 10532, USA

Extended Abstract

1 Introduction
In the last few years the biggest online firms
have been offering exciting new services to
Internet and cellular network users on a va-

riety of devices without any software to buy,
install and maintain. This dynamic, online,
"pay-as-you-go" service relationship
changes the traditional assumptions, rela-
tionships and value proposition between
software vendors, clients, end-users and 3rd-
party service providers. As an evolution of
the early Application Service Provider
(ASP) model, SaaS is poised to undergo
rapid growth and have significant impact in
the software and services industry, across all
devices.

An area of unique opportunity for SaaS is
the mobile and ubiquitous computing space.

The SaaS model has a number of advantages
that are uniquely suited to a resource-

constrained mobile computing environment.
This short paper gives a high level overview
of the SaaS opportunity and further presents
the architectural considerations for SaaS
providers and mobile computing environ-
ments.

2 Software as a Service

2.1 Main characteristics
Software as a Service (SaaS) describes a

trend where customers obtain their applica-
tion functionality through a network-
delivered service. The applications are

hosted in a data center and maintained by
the service provider. Customers (users) ac-

cess the application remotely via the Internet
(at the back-end), and possibly via a wireless
data network in the front end (WiFi, GPRS,
etc). The protocol employed to communicate
with the application can be anything, but in
practice the main method of interaction with
SaaS applications is common Web-based
access using a browser on the client device.

In the SaaS model applications are designed
from the ground up to be delivered as a ser-
vice. This includes the following character-
istics:

* A multi-tenant design where an in-
stance of the application accommo-
dates multiple users (single-level
multitenancy), or even multiple re-
sellers of the service with each re-
seller serving its own pool of users
(two-level multitenancy).

* A charging model where customers
pay for the services on a metered
basis (pay as you go).

* Support for all the functions neces-
sary to provide the application as a
service, including subscription, au-
thentication, authorization, meter-
ing, monitoring, reporting, billing,
and support.

* Minimal level of application cus-
tomization to avoid major imple-
mentation and integration costs.

At a first glance, the additional requirements
for providing a SaaS application may seem
prohibitively complex. For this reason, ser-
vice providers are investing in developing

1-4244-0499-1/06/$20.00 ©2006 IEEE

hosting platforms for SaaS that provide all
these collateral services. The application
designer then is only concerned with provid-
ing the appropriate APIs for linking with the
platform services. This significantly reduces
the complexity of the design.

The key players in the SaaS ecosystem are
the following:

* End-users: Market research indi-
cates that a large part of the initial
customer segment will be Small and
Medium Business (SMB), with con-
sumers following.

* SaaS Providers: the companies that
are provide SaaS services to the
end-users.

* SaaS Developers: the people who
are developing SaaS applications.

* SaaS Hosts: the companies who op-
erate the infrastructure that the SaaS
providers use to deliver their ser-
vices to End-users.

* Hub Provider: an entity who oper-
ates a hub to enable the integration
of multiple SaaS services and legacy
applications.

SaaS represents a potentially disruptive
model for software. The entire marketing,
development, and business ecosystem for
obtaining application functionality is trans-
formed to an on-demand model. Most play-
ers in the current application software and
applications services industries could be af-
fected. Current Independent Software Ven-
dors (ISVs) will find that their existing cus-
tomers may prefer to obtain their application
as a service, versus the current own and in-
stall model. Consequently, ISVs will need to
transform their business model to a model
based on metrics (typically priced at dollars
per user per month) with service and up-
grades included, rather than the common
licensing and support model.

Current ISVs will need to focus on assuring
that service related non-functional require-
ments (billing, metering, monitoring, QoS,

reporting) are considered in the development
of their application and providers of hosting
will need to assure that they can provide the
reliable connectivity required by SaaS pro-
viders. If middleware can also be delivered
as services, then SaaS will disrupt the pro-
viders of Middleware as well.

SaaS providers are focused on selling an
annuity service measured, typically, in us-
ers-per-month-per-application. Their goals
are customer retention, creating/maintaining
a single common instance of the application
that is shared by all customers, and deliver-
ing a highly reliable service. The SaaS pro-
vider is typically concurrently working on
many simultaneous releases and deploying
them on a periodic basis. In addition, SaaS
Providers only need to assure that their ap-
plication is tested and operates in production
in one data center (which today they typi-
cally own). The SaaS provider's focus is on
adding function and minimizing disruption
to their current customer base so they can
retain existing customers and acquire new
ones.

2.2 Advantages of the SaaS Model
The primary reasons SaaS customers select
SaaS over purchased software or open
source software are:

* Time to market: customers who se-
lect a SaaS solution will typically be
utilizing the solution faster, in some
cases immediately, but usually in
not more than a few weeks, com-
pared to the purchased option.

* Reduced I/T skills: the customer of
a SaaS application does not have to
invest in skills to learn how to in-
stall, maintain, and operate the ap-
plication. The SaaS provider retains
all I/T skills for the application.

* Direct accountability: the customer
selects the application and holds the
SaaS provider accountable for op-
erations and QoS of the SaaS ser-
vice.

* Reduced up front costs: there are
minimal up front costs to a customer
of a SaaS application. Compared to
a standard application where the
customer would need to purchase
the software and procure hardware
on which to operate the application,
in SaaS, the customer typically only
pays for the amount of service they
utilize on a contractual basis.

* No cost for upgrades and fixes: the
SaaS provider is responsible for
maintaining the application. The
SaaS provider performs all en-
hancements and patches that might
be required to maintain the applica-
tion.

* Managed security: security used to
be an issue for users having cus-
tomer data maintained at a SaaS
provider. Now, however, security is
a benefit because the SaaS provider
retains records and assures compli-
ance with current and emerging
guidelines such as Sarbanes-Oxley.

SaaS providers focus on reducing the fixed
cost of operations and minimizing the vari-
able cost to achieve profitability. Conse-
quently, open source technology and low
cost hardware are becoming an important
part of the SaaS model. A standard platform
that provides functions that all SaaS devel-
opers need could significantly accelerate the
market. Such a platform could also assist
ISVs in addressing the SaaS marketplace by
reducing the time to market.

2.3 The SaaS Delivery platform
A SaaS datacenter platform is designed to
host SaaS applications and the platform ser-
vices they require. SaaS applications can
exist standalone (running on top of an oper-
ating system), or as part of an application
container, such as a J2EE container. Appli-
cation containers are central building to the
SaaS model. They provide critical lifecycle
services for hosted applications, and in some
cases, extended availability and load-
balancing. In addition, SaaS platform ser-

vices such as metering and reporting run
themselves on application containers.

Administrator

SubscrArnsi
Users/Admin

Administrator

Figure 1 SaaS Delivery Platform

Figure 1 shows the logical topology of a
SaaS delivery platform. A typical SaaS de-
livery platform deployment involves a
server farm equipped with the appropriate
application containers. The containers that
are dedicated to providing platform services
are separate from the ones that host SaaS
Provider applications. The first set is provi-
sioned with very high availability and secu-
rity requirements. The second set (which
includes the applications, application servers
and databases necessary for running a SaaS
application), can be configured with a vari-
ety of availability and security options, typi-
cally specified by the SaaS provider. The
deployment model in this case is not differ-
ent from common industry practice in out-
sourced and managed services.

The users are the consumers of the SaaS
delivery platform. They can be categorized
into three subgroups:

1. Platform Administrators manage the
platform that hosts the SaaS applica-
tion. They are responsible for man-
aging the network, hardware, and
software that comprises of the SaaS
platform

2. SaaS Administrators manage the
lifecycle of SaaS applications

3. Subscriber's users and administra-
tors are the consumers of the SaaS.

The SaaS administrator are respon-
sible for managing set of users who
have access to the SaaS. The Sub-
scriber's users consume and use the
SaaS.

The services of the SaaS platform can be
categorized into the following groups:

2.3.1 Access Services
The Access services provide a common en-
try point for users of the SaaS platform. It
consists of services that provide user authen-
tication, and authorization. The Access ser-
vices are typically located in the DMZ of the
SaaS Providers. Further for users with mo-
bile and ubiquitous devices, the Access ser-
vice also provides ability to

2.3.2 Platform Support Services
The Platform support services consists of a
set of services that support the delivery of
SaaS applications. The Platform support
services comprise of the following two sub-
groups

1. Business Support Services (BSS)
BSS provides the required interaction
with the customers of the SaaS applica-
tion. Customers can be either end users
or resellers of the application. The BSS
platform is a portal, data model and set
of processes and tools for ordering SaaS
applications, tracking contracts, defining
SLAs, subscribing to services offered,
providing self-help to the customers of
the application (reporting and end-user
management).

2. Operation Support Services
(OSS)

The Operation Support Services (OSS)
Platform is a collection of systems, OS
and middleware software, and IT Auto-
mation features into a replicable stan-
dard platform. It includes a set of man-
agement agents, instrumentation, con-
soles/portlets, event analyzers, and de-
ployment workflows for defining, con-
figuring, deploying, operating and moni-
toring the SaaS applications.

2.3.3 Security Services
The Security Services provide and manage
the set of users and roles associated with the
subscribers of the SaaS. The Access services
uses the data managed by the Security ser-
vices to authenticate and authorize users to
access the SaaS instances.

2.3.4 SaaS Management Services
The SaaS Management services are a collec-
tion of services that provide lifecycle man-
agement of applications that are being deliv-
ered as services.

2.3.5 SaaS instances
The SaaS instances are the actual applica-
tions that are being delivered as SaaS. An
instance of the application is created and
deployed after a subscriber selects an appli-
cation for subscription. As mentioned ear-
lier, these applications typically are J2EE
applications that run on a collections of
servers. Based on the SLAs supported by
each of the applications, the servers could be
configured to provide high availablility.

2.3.6 Data Services
The Data services manages and persist the
data used by SaaS instances.

2.3.7 Integration Services
The Integration services manage access to
enterprise data that the SaaS application uses
from data providers that are located outside
of the SaaS provider's platform.

The design of the SaaS delivery platform is
key to the success of the SaaS model. A
closed platform that requires extensive setup
for publishing and hosting a software appli-
cation is bound to fail as very few software
developers would be willing to invest the
resources. In contrast, an open SaaS plat-
form that makes it very easy to publish and
host software applications would permit
large number of software developers to ex-
periment with delivering their applications
as a service. We believe that a Service Ori-
ented Architecture (SOA) approach based

on the web services paradigm is the correct
approach to designing a SaaS platform. In
this approach, each of the logical compo-
nents shown in Figure 1 would comprise of
SOA components that publish well known
interfaces for software developers to write
to. When designed and developed properly,
the components would offer reusable ser-
vices (similar to shared libraries) that appli-
cation developers can reuse during applica-
tion development. For example, a software
developer need not develop and implement
application specific components for moni-
toring, logging, authentication, and authori-
zation, but instead can reuse the components
that have been provided by the underlying
platform. This model of software develop-
ment promotes reuse and allows the soft-
ware developers to focus primarily on the
core logic for the application.

3 SaaS in Mobile and Ubiq-
uitous computing

For several years, mobile computing has
been evolving around the network-centric
model. Because of size and power limita-
tions, the complexity of applications that run
natively on mobile devices has been limited.
SaaS does not fundamentally change the
model for network-centric computing. Ap-
plications will continue to be hosted in the
periphery and accessed from a thin client
running on the mobile device. What is fun-
damentally changing however, is the com-
plexity and the logistics for developing, in-
stalling and operating such applications. The
SaaS Delivery platform promotes an open
service delivery model. The service pro-
vider, usually the provider of mobile net-
work access acts as a service integrator. Ap-
plications are developed by third parties and
hosted on the SaaS delivery platform. The
service provider maintains the client rela-
tionship, performs all metering and billing
functions and is responsible for all opera-
tional issues of the platform including ca-
pacity planning.

The promise of SaaS is that functionally rich
application software is delivered as a service
to its consumers. Underlying this promise is
the expectation that the consumers of the
application software have continuous net-
work connectivity. A web browser is the
preferred software client for consuming an
application. The SaaS model does not man-
date any client-specific installation of soft-
ware to access the software service. How-
ever, to support mobile and ubiquitous de-
vices, the SaaS application developers have
to be aware of and need to design for the
characteristics of the devices that they in-
tend to support.

3.1 Challenges to support mobile
and ubiquitous devices

Some of the differentiating characteristics of
mobile and ubiquitous devices than tradi-
tional desktop computers are as follows.

* Small form factor- The mobile and
ubiquitous devices come in a variety
of fomr factors ranging from note-
book computers to handheld organ-
izers and cell phones. The small
form factor of the devices translates
to small screen size, limited memory
and disk space, and a limited user
interface.

* Low bandwidth - The state-of-art
wireless networks today offer a very
limited bandwidth to a majority of
mobile and ubiquitous devices.
Typically bandwidth ranges from
9.6 Kbps for GSM and CDMA de-
vices. Higher bandwidth, mostly for
downloads, of upto 2.4 Mbps is
available for EVDO protocol.

* Periodic disconnection - Due to in-
herent mobility, the mobile and
ubiquitous devices are susceptible to
periodically disconnecting from the
network either as a result of poor
wireless network coverage or lack
of power.

These differentiators warrant that the SaaS
application developers design their solutions
such that the applications are usable on
small form factor devices. By utilizing a
transcoding proxy in the SaaS delivery plat-
form, SaaS application developers can limit
the number of application features that are
available to users on mobile and ubiquitous
devices. This calls for design of "adaptive"
SaaS application that adapts to the devices
that it is being used from. For example, a
SaaS application developer may choose to
expose only a subset of a application fea-
tures that can be easily performed on small-
form factor devices using a text-driven
menu. In contrast, on fully functional de-
vices, the same set of features could be
available using a graphical menu. Similarly,
to handle low bandwidth for mobile and
ubiquitous devices to is for the application
developers to ensure that high bandwidth
items such as rich graphics and images, are
made optional on the small devices, and key
application function does not rely on the
availability of rich user interface.

The most fundamental change in the design
of SaaS applications is to handle periodic
disconnection of the devices. By design, the
SaaS application either requires only a web
browser to operate, or a minimal client side
application code. However, to handle dis-
connection of mobile devices, the client side
application code becomes a requirement.
The client-side application is responsible for
caching data on the device, and enabling
"offline" operation of the application when
the device is disconnected. The application
code is also responsible to periodically
"synchronize" modifications to the data with
the master copy whenever connectivity is
restored. The need for client-side code in-
troduces additional complexity for the life-
cycle management of a SaaS application, as
the SaaS management services need to in-
stall, and manage the correct version of the
client code as the SaaS application evolves.

4 Conclusions
The software industry is in the midst of an
important transformation to a services-based
model. It is already progressing rapidly in
the online space and is expected to affect the
entire software and application development
ecosystem. This paper presented an over-
view of the SaaS model with special atten-
tion to mobile and ubiquitous devices. We
believe that SaaS brings a significant oppor-
tunity in this space, as it gives additional
leverage to traditional application develop-
ers to create and extend offerings on mobile
platforms.

5 References
[1] K. Bennett, P. Layzell, D. Budgen, P.
Brereton, L. Macaulay, M. Munro, "Service-
based software: the future for flexible soft-
ware", in Proceedings of the Seventh Asia-
Pacific Software Engineering Conference
(APSEC'00), p. 214.

[2] SIIA, "Software as a Service: Changing
the Paradigm in the Software Industry",
SIIA and Tripletree Industry Analysis Se-
ries, 2004.

[3] Mark Turner, David Budgen, Pearl Bre-
reton, "Turning Software into a Service",
IEEE Computer Magazine, October 2003
(Vol. 36, No. 10) pp. 3 8-44.

[4] IBM Corporation, "Common Services
Delivery Platform Architecture Document",
Unpublished Manuscript, 2005.

[5] George H. Forman and John Zahorjan,
"The Challenges of Mobile Computing",
IEEE Computer, April 1994. pp 38-47.

