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Abstract—Escalating system-on-chip design complexity is
pushing the design community to raise the level of abstraction
beyond register transfer level. Despite the unsuccessful adoptions
of early generations of commercial high-level synthesis (HLS)
systems, we believe that the tipping point for transitioning to HLS
methodology is happening now, especially for field-programmable
gate array (FPGA) designs. The latest generation of HLS tools has
made significant progress in providing wide language coverage
and robust compilation technology, platform-based modeling,
advancement in core HLS algorithms, and a domain-specific
approach. In this paper, we use AutoESL’s AutoPilot HLS
tool coupled with domain-specific system-level implementation
platforms developed by Xilinx as an example to demonstrate
the effectiveness of state-of-art C-to-FPGA synthesis solutions
targeting multiple application domains. Complex industrial de-
signs targeting Xilinx FPGAs are also presented as case studies,
including comparison of HLS solutions versus optimized manual
designs. In particular, the experiment on a sphere decoder shows
that the HLS solution can achieve an 11–31% reduction in FPGA
resource usage with improved design productivity compared to
hand-coded design.

Index Terms—Domain-specific design, field-programmable
gate array (FPGA), high-level synthesis (HLS), quality of results
(QoR).

I. Introduction

THE RAPID INCREASE of complexity in system-on-
a-chip (SoC) design has encouraged the design com-

munity to seek design abstractions with better productivity
than register transfer level (RTL). Electronic system-level
(ESL) design automation has been widely identified as the
next productivity boost for the semiconductor industry, where
high-level synthesis (HLS) plays a central role, enabling
the automatic synthesis of high-level, untimed or partially
timed specifications (such as in C or SystemC) to low-level
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cycle-accurate RTL specifications for efficient implementation
in application-specific integrated circuits (ASICs) or field-
programmable gate arrays (FPGAs). This synthesis can be
optimized taking into account the performance, power, and
cost requirements of a particular system.

Despite the past failure of the early generations of com-
mercial HLS systems (started in the 1990s), we see a rapidly
growing demand for innovative, high-quality HLS solutions
for the following reasons.

1) Embedded processors are in almost every SoC: With
the coexistence of micro-processors, digital signal pro-
cessors (DSPs), memories and custom logic on a single
chip, more software elements are involved in the process
of designing a modern embedded system. An automated
HLS flow allows designers to specify design functional-
ity in high-level programming languages such as C/C++
for both embedded software and customized hardware
logic on the SoC. This way, they can quickly experiment
with different hardware/software boundaries and explore
various area/power/performance tradeoffs from a single
common functional specification.

2) Huge Silicon capacity requires a higher level of ab-
straction: Design abstraction is one of the most effective
methods for controlling complexity and improving de-
sign productivity. For example, the study from NEC [91]
shows that a 1M-gate design typically requires about
300K lines of RTL code, which cannot be easily handled
by a human designer. However, the code density can be
easily reduced by 7X–10X when moved to high-level
specification in C, C++, or SystemC. In this case, the
same 1M-gate design can be described in 30K–40K lines
of behavioral description, resulting in a much reduced
design complexity.

3) Behavioral IP reuse improves design productivity: In
addition to the line-count reduction in design specifica-
tions, behavioral synthesis has the added value of allow-
ing efficient reuse of behavioral intellectual properties
(IPs). As opposed to RTL IP which has fixed microar-
chitecture and interface protocols, behavioral IP can be
retargeted to different implementation technologies or
system requirements.

4) Verification drives the acceptance of high-level specifica-
tion: Transaction-level modeling (TLM) with SystemC
[109] or similar C/C++ based extensions has become a

0278-0070/$26.00 c© 2011 IEEE



474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

very popular approach to system-level verification [36].
Designers commonly use SystemC TLMs to describe
virtual software/hardware platforms, which serve three
important purposes: early embedded software devel-
opment, architectural modeling and exploration, and
functional verification. The wide availability of SystemC
functional models directly drives the need for SystemC-
based HLS solutions, which can automatically generate
RTL code through a series of formal constructive trans-
formations. This avoids slow and error-prone manual
RTL re-coding, which is the standard practice in the
industry today.

5) Trend toward extensive use of accelerators and
heterogeneous SoCs: Many SoCs, or even chip
multiprocessors move toward inclusion of many
accelerators (or algorithmic blocks), which are built
with custom architectures, largely to reduce power
compared to using multiple programmable processors.
According to ITRS prediction [111], the number of on-
chip accelerators will reach 3000 by 2024. In FPGAs,
custom architectures for algorithmic blocks provide
higher performance in a given amount of resources than
synthesized soft processors. These algorithmic blocks
are particularly appropriate for HLS.

Although these reasons for adopting HLS design methodol-
ogy are common to both ASIC and FPGA designers, we also
see additional forces that push the FPGA designers for faster
adoption of HLS tools.

1) Less pressure for formal verification: The ASIC manu-
facturing cost in nanometer integrated circuit (IC) tech-
nologies is well over $1M [111]. There is tremendous
pressure for the ASIC designers to achieve first tape-
out success. Yet formal verification tools for HLS are
not mature, and simulation coverage can be limited
for multimillion gate SoC designs. This is a significant
barrier for HLS adoption in the ASIC world. However,
for FPGA designs, in-system simulation is possible
with much wider simulation coverage. Design iterations
can be done quickly and inexpensively without huge
manufacturing costs.

2) Ideal for platform-based synthesis: Modern FPGAs em-
bed many predefined/fabricated IP components, such
as arithmetic function units, embedded memories, em-
bedded processors, and embedded system buses. These
predefined building blocks can be modeled precisely
ahead of time for each FPGA platform and, to a large
extent, confine the design space. As a result, it is possible
for modern HLS tools to apply a platform-based design
methodology [52] and achieve higher quality of results
(QoR).

3) More pressure for time-to-market: FPGA platforms are
often selected for systems where time-to-market is criti-
cal, in order to avoid long chip design and manufacturing
cycles. Hence, designers may accept increased perfor-
mance, power, or cost in order to reduce design time.
As shown in Section IX, modern HLS tools put this
tradeoff in the hands of a designer allowing significant

reduction in design time or, with additional effort, QoR
comparable to hand-written RTL.

4) Accelerated or reconfigurable computing calls for
C/C++ based compilation/synthesis to FPGAs: Recent
advances in FPGAs have made reconfigurable com-
puting platforms feasible to accelerate many high-
performance computing (HPC) applications, such as
image and video processing, financial analytics, bioin-
formatics, and scientific computing applications. Since
RTL programming in VHDL or Verilog is unacceptable
to most application software developers, it is essential to
provide a highly automated compilation/synthesis flow
from C/C++ to FPGAs.

As a result, a growing number of FPGA designs are
produced using HLS tools. Some example application domains
include 3 G/4 G wireless systems [39], [82], aerospace applica-
tions [76], image processing [28], lithography simulation [13],
and cosmology data analysis [53]. Xilinx is also in the process
of incorporating HLS solutions in their Video Development Kit
[118] and DSP Develop Kit [98] for all Xilinx customers.

This paper discusses the reasons behind the recent success
in deploying HLS solutions to the FPGA community. In Sec-
tion II, we review the evolution of HLS systems and summa-
rize the key lessons learned. In Sections III–VIII, using a state-
of-art HLS tool as an example, we discuss some key reasons
for the wider adoption of HLS solutions in the FPGA design
community, including wide language coverage and robust
compilation technology, platform-based modeling, advance-
ment in core HLS algorithms, improvements on simulation and
verification flow, and the availability of domain-specific design
templates. Then, in Section IX, we present the HLS results on
several real-life industrial designs and compare with manual
RTL implementations. Finally, in Section X, we conclude this
paper with discussions of future challenges and opportunities.

II. Evolution of HLS for FPGA

In this section we briefly review the evolution of HLS
by looking at representative tools. Compilers for high-level
languages have been successful in practice since the 1950s.
The idea of automatically generating circuit implementations
from high-level behavioral specifications arises naturally with
the increasing design complexity of ICs. Early efforts (in
the 1980s and early-1990s) on HLS were mostly research
projects, where multiple prototype tools were developed to
call attention to the methodology and to experiment with
various algorithms. Most of those tools, however, made rather
simplistic assumptions about the target platform and were not
widely used. Early commercialization efforts in the 1990s and
early-2000s attracted considerable interest among designers,
but also failed to gain wide adoption, due in part to usability
issues and poor QoRs. More recent efforts in HLS have
improved usability by increasing input language coverage and
platform integration, as well as improving QoRs.

A. Early Efforts

Since the history of HLS is considerably longer than that
of FPGAs, most early HLS tools targeted ASIC designs.
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A pioneering HLS tool, Carnegie-Mellon University design
automation (CMU-DA), was built by researchers at Carnegie
Mellon University in the 1970s [30], [72]. In this tool, the
design is specified at behavior level using the instruction
set processor specification (ISPS) language [4]. It is then
translated into an intermediate data-flow representation called
the Value Trace [80] before producing RTL. Many common
code-transformation techniques in software compilers, includ-
ing dead-code elimination, constant propagation, redundant
sub-expression elimination, code motion, and common sub-
expression extraction could be performed. The synthesis en-
gine also included many steps familiar in hardware synthesis,
such as datapath allocation, module selection, and controller
generation. CMU-DA also supported hierarchical design and
included a simulator of the original ISPS language. Although
many of the methods used were very preliminary, the inno-
vative flow and the design of toolsets in CMU-DA quickly
generated considerable research interest.

In the subsequent years in the 1980s and early-1990s, a
number of similar HLS tools were built, mostly for research
and prototyping. Examples of academic efforts include ADAM
[38], [47], HAL [73], MIMOLA [63], Hercules/Hebe [25],
[26], [56], and Hyper/Hyper-LP [10], [78]. Industry efforts
include Cathedral and its successors [27], Yorktown Silicon
Compiler [11], and BSSC [93], among many others. Like
CMU-DA, these tools typically decompose the synthesis task
into a few steps, including code transformation, module selec-
tion, operation scheduling, datapath allocation, and controller
generation. Many fundamental algorithms addressing these
individual problems were also developed. For example, the list
scheduling algorithm [1] and its variants are widely used to
solve scheduling problems with resource constraints [71]; the
force-directed scheduling algorithm developed in HAL [74] is
able to optimize resource requirements under a performance
constraint. The path-based scheduling algorithm in the York-
town Silicon Compiler is useful to optimize performance with
conditional branches [12]. The Sehwa tool in ADAM is able
to generate pipelined implementations and explore the design
space by generating multiple solutions [48], [70]. The relative
scheduling technique developed in Hebe is an elegant way
to handle operations with unbounded delay [57]. Conflict-
graph coloring techniques were developed and used in several
systems to share resources in the datapath [58], [73].

These early high-level tools often used custom languages
for design specification. Besides the ISPS language used in
CMU-DA, a few other languages were notable. HardwareC is
a language designed for use in the Hercules system [55]. Based
on the popular C programming language, it supports both pro-
cedural and declarative semantics and has built-in mechanisms
to support design constraints and interface specifications. This
is one of the earliest C-based hardware synthesis languages
for HLS. It is interesting to compare it with similar languages
later. The Silage language used in Cathedral/Cathedral-II was
specifically designed for the synthesis of digital signal pro-
cessing hardware [27]. It has built-in support for customized
data types, and allows easy transformations [10], [78]. The
Silage language, along with the Cathedral-II tool, represented
an early domain-specific approach in HLS.

These early research projects helped to create a basis for
algorithmic synthesis with many innovations, and some were
even used to produce real chips. However, these efforts did
not lead to wide adoption among designers. A major reason
is that the methodology of using RTL synthesis was not yet
widely accepted at that time and RTL synthesis tools were
not mature. Thus, HLS, built on top of RTL synthesis, did not
have a sound foundation in practice. In addition, simplistic
assumptions were often made in these early systems—many
of them were “technology independent” (such as Olympus),
and inevitably led to suboptimal results.

With improvements in RTL synthesis tools and the wide
adoption of RTL-based design flows in the 1990s, industrial
deployment of HLS tools became more practical. Proprietary
tools were built in major semiconductor design houses in-
cluding IBM [5], Motorola [59], Philips [62], and Siemens
[6]. Major EDA vendors also began to provide commercial
HLS tools. In 1995, Synopsys announced Behavioral Compiler
[89], which generates RTL implementations from behavioral
hardware description language (HDL) code and connects to
downstream tools. Similar tools include Monet from Mentor
Graphics [34] and Visual Architect from Cadence [44]. These
tools received wide attention, but failed to widely replace RTL
design. This is partly ascribed to the use of behavioral HDLs
as input languages, which are not popular among algorithm
and system designers and require steep learning curves.

B. Recent Efforts

Since 2000, a new generation of HLS tools has been
developed in both academia and industry. Unlike many pre-
decessors, most of these tools focus on using C/C++ or C-
like languages to capture design intent. This makes the tools
much more accessible to algorithm and system designers
compared to previous tools that only accept HDL languages.
It also enables hardware and software to be built using a
common model, facilitating software/hardware co-design and
co-verification. The use of C-based languages also makes it
easy to leverage the newest technologies in software compilers
for parallelization and optimization in the synthesis tools.

In fact, there has been an ongoing debate on whether C-
based languages are proper choices for HLS [32], [79]. Despite
the many advantages of using C-based languages, opponents
often criticize C/C++ as languages only suitable for describing
sequential software that runs on microprocessors. Specifically,
the deficiencies of C/C++ include the following.

1) Standard C/C++ lack built-in constructs to explicitly
specify bit accuracy, timing, concurrency, synchroniza-
tion, hierarchy, and others, which are critical to hardware
design.

2) C and C++ have complex language constructs, such
as pointers, dynamic memory management, recursion,
and polymorphism, which do have efficient hardware
counterparts and lead to difficulty in synthesis.

To address these deficiencies, modern C-based HLS tools have
introduced additional language extensions and restrictions to
make C inputs more amenable to hardware synthesis. Common
approaches include both restriction to a synthesizable subset
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that discourages or disallows the use of dynamic constructs (as
required by most tools) and introduction of hardware-oriented
language extensions (HardwareC [55], SpecC [35], Handel-
C [96]), libraries (SystemC [109]), and compiler directives
to specify concurrency, timing, and other constraints. For
example, Handel-C allows the user to specify clock boundaries
explicitly in the source code. Clock edges and events can
also be explicitly specified in SpecC and SystemC. Pragmas
and directives along with a subset of ANSI C/C++ are used
in many commercial tools. An advantage of this approach is
that the input program can be compiled using standard C/C++
compilers without change, so that such a program or a module
of it can be easily moved between software and hardware
and co-simulation of hardware and software can be performed
without code rewriting. At present, most commercial HLS
tools use some form of C-based design entry, although tools
using other input languages (e.g., BlueSpec [103], Esterel [31],
and MATLAB [43]) also exist.

Another notable difference between the new generation of
HLS tools and their predecessors is that many tools are built
targeting implementation on FPGA. FPGAs have continually
improved in capacity and speed in recent years, and their
programmability makes them an attractive platform for many
applications in signal processing, communication, and HPC.
There has been a strong desire to make FPGA programming
easier, and many HLS tools are designed to specifically
target FPGAs, including ASC [65], CASH [9], C2H [99],
DIME-C [114], GAUT [23], Handel-C Compiler (now part
of Mentor Graphics DK Design Suite) [96], Impulse C [75],
ROCCC [88], [40], SPARK [41], [42], Streams-C [37], and
Trident [83], [84]. ASIC tools also commonly provide support
for targeting an FPGA tool flow in order to enable system
emulation.

Among these HLS tools, many are designed to focus on a
specific application domain. For example, the Trident Com-
piler, developed at Los Alamos National Lab, Los Alamos,
NM, is an open-source tool focusing on the implementation
of floating-point scientific computing applications on FPGA.
Many others, including GAUT, Streams-C, ROCCC, ASC,
and Impulse C, target streaming DSP applications. Following
the tradition of Cathedral, these tools implement architectures
consisting of a number of modules connected using first-in
first-out (FIFO) channels. Such architectures can be integrated
either as a standalone DSP pipeline, or integrated to accelerate
code running on a processor (as in ROCCC).

As of 2010, major commercial C-based HLS tools include
AutoESL’s AutoPilot [95] (originated from UCLA xPilot
project [17]), Cadence’s C-to-Silicon Compiler [3], [104],
Forte’s Cynthesizer [66], Mentor’s Catapult C [7], NEC’s
Cyber Workbench [90], [92], and Synopsys Synphony C [117]
(formerly, Synfora’s PICO Express, originated from a long-
range research effort in HP Labs [50]).

C. Lessons Learned

Despite extensive development efforts, most commercial
HLS efforts have failed. We summarize reasons for past
failures as follows.

1) Lack of Comprehensive Design Language Support: The
first generation of the HLS synthesis tools could not synthe-
size high-level programming languages. Instead, untimed or
partially timed behavioral HDL was used. Such design entry
marginally raised the abstraction level, while imposing a steep
learning curve on both software and hardware developers.

Although early C-based HLS technologies have consid-
erably improved the ease of use and the level of design
abstraction, many C-based tools still have glaring deficiencies.
For instance, C and C++ lack the necessary constructs and
semantics to represent hardware attributes such as design
hierarchy, timing, synchronization, and explicit concurrency.
SystemC, on the contrary, is ideal for system-level spec-
ification with software/hardware co-design. However, it is
foreign to algorithmic designers and has slow simulation speed
compared to pure ANSI C/C++ descriptions. Unfortunately,
most early HLS solutions commit to only one of these input
languages, restricting their usage to niche application domains.

2) Lack of Reusable and Portable Design Specification:
Many HLS tools have required users to embed detailed timing
and interface information as well as the synthesis constraints
into the source code. As a result, the functional specifica-
tion became highly tool-dependent, target-dependent, and/or
implementation-platform dependent. Therefore, it could not be
easily ported to alternative implementation targets.

3) Narrow Focus on Datapath Synthesis: Many HLS
tools focus primarily on datapath synthesis, while leaving
other important aspects unattended, such as interfaces to other
hardware/software modules and platform integration. Solving
the system integration problem then becomes a critical design
bottleneck, limiting the value in moving to a higher-level
design abstraction for IP in a design.

4) Lack of Satisfactory QoR: When early HLS tools
were introduced in the mid-1990s to early-2000s, the EDA
industry was still struggling with timing closure between
logic and physical designs. There was no dependable RTL to
GDSII foundation to support HLS, which made it difficult to
consistently measure, track, and enhance HLS results. Highly
automated RTL to GDSII solutions only became available in
late-2000s (e.g., provided by the IC Compiler from Synopsys
[116] or the BlastFusion/Talus from Magma [113]). Moreover,
many HLS tools were weak in optimizing real-life design
metrics. For example, many commonly used algorithms in the
synthesis engine focused on reducing functional unit count
and latency, which do not necessarily correlate to actual silicon
area, power, and performance. As a result, the final implemen-
tation often fails to meet timing/power requirements. Another
major factor limiting QoR was the limited capability of HLS
tools to exploit performance-optimized and power-efficient IP
blocks on a specific platform, such as the versatile DSP blocks
and on-chip memories on modern FPGA platforms. Without
the ability to match the QoR achievable with an RTL design
flow, most designers were unwilling to explore potential gains
in design productivity.

5) Lack of a Compelling Reason/Event to Adopt a New
Design Methodology: The first-generation HLS tools were
clearly ahead of their time, as the design complexity was
still manageable at the RTL in late-1990s. Even though the
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second-generation of HLS tools showed interesting capabilities
to raise the level of design abstraction, most designers were
reluctant to take the risk of moving away from the familiar
RTL design methodology to embrace a new unproven one,
despite its potential large benefits. Like any major transition
in the EDA industry, designers needed a compelling reason or
event to push them over the “tipping point,” i.e., to adopt the
HLS design methodology.

Another important lesson learned is that tradeoffs must be
made in the design of the tool. Although a designer might wish
for a tool that takes any input program and generates the “best”
hardware architecture, this goal is not generally practical for
HLS to achieve. Whereas compilers for processors tend to
focus on local optimizations with the sole goal of increasing
performance, HLS tools must automatically balance perfor-
mance and implementation cost using global optimizations.
However, it is critical that these optimizations be carefully
implemented using scalable and predictable algorithms, keep-
ing tool runtimes acceptable for large programs and the results
understandable by designers. Moreover, in the inevitable case
that the automatic optimizations are insufficient, there must
be a clear path for a designer to identify further optimization
opportunities and execute them by rewriting the original source
code.

Hence, it is important to focus on several design goals for
a HLS tool.

a) Capture designs at a bit-accurate, algorithmic level. The
source code should be readable by algorithm specialists.

b) Effectively generate efficient parallel architectures with
minimal modification of the source code, for paralleliz-
able algorithms.

c) Allow an optimization-oriented design process, where
a designer can improve the QoR by successive code
modification, refactoring and refinement on synthesis
options/directives.

d) Generate implementations that are competitive with
synthesizable RTL designs after automatic and manual
optimization.

We believe that the tipping point for transitioning to HLS
methodology is happening now, given the reasons discussed in
Section I and the conclusions by others [14], [85]. Moreover,
we are pleased to see that the latest generation of HLS
tools has made significant progress in providing wide lan-
guage coverage and robust compilation technology, platform-
based modeling, and advanced core HLS algorithms. We shall
discuss these advancements in more detail in the next few
sections.

III. State-of-Art of HLS Flow for FPGAs

AutoPilot is one of the most recent HLS tools, and is repre-
sentative of the capabilities of the state-of-art commercial HLS
tools available today. Fig. 1 shows the AutoESL AutoPilot
development flow targeting Xilinx FPGAs. AutoPilot accepts
synthesizable ANSI C, C++, and OSCI SystemC (based on the
synthesizable subset of the IEEE-1666 standard [115]) as input
and performs advanced platform-based code transformations

Fig. 1. AutoESL and Xilinx C-to-FPGA design flow.

and synthesis optimizations to generate optimized synthesiz-
able RTL.

AutoPilot outputs RTL in Verilog, VHDL or cycle-accurate
SystemC for simulation and verification. To enable automatic
co-simulation, AutoPilot creates test bench (TB) wrappers and
transactors in SystemC so that the designers can leverage the
original test framework in C/C++/SystemC to verify the cor-
rectness of the RTL output. These SystemC wrappers connect
high-level interfacing objects in the behavioral TB with pin-
level signals in RTL. AutoPilot also generates appropriate sim-
ulation scripts for use with third-party RTL simulators. Thus,
designers can easily use their existing simulation environment
to verify the generated RTL.

In addition to generating RTL, AutoPilot also creates syn-
thesis reports that estimate FPGA resource utilization, as well
as the timing, latency, and throughput of the synthesized
design. The reports include a breakdown of performance
and area metrics by individual modules, functions, and loops
in the source code. This allows users to quickly identify
specific areas for QoR improvement and then adjust synthesis
directives or refine the source design accordingly.

Finally, the generated HDL files and design constraints feed
into the Xilinx RTL tools for implementation. The Xilinx
integrated synthesis environment (ISE) tool chain (such as
CoreGen, XST, and PAR) and Embedded Development Kit
(EDK) are used to transform that RTL implementation into a
complete FPGA implementation in the form of a bitstream for
programming the target FPGA platform.

IV. Support of High-Level Programming Models

In this section, we show that it is important for HLS to
provide wide language coverage and leverage state-of-the-art
compiler technologies to achieve high-quality synthesis results.
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TABLE I

Useful Language Features for Effective C/C++-Based Design

and Synthesis

A. Robust Support of C/C++ Based Synthesis

Comprehensive language coverage is essential to enabling
wide acceptance of C/C++ based design and synthesis. The
reasons are twofold.

1) Reduced verification effort: A broad synthesizable subset
minimizes the required code changes to convert the
reference C source into a synthesizable specification.
This effectively improves the design productivity and
reduces or eliminates the additional verification effort to
ensure equivalence between the synthesizable code and
the original design.

2) Improved design quality: Comprehensive language sup-
port allows designers to take full advantage of rich
C/C++ constructs to maximize simulation speed, design
modularity, and reusability, as well as synthesis QoR.

However, it is quite challenging to compile an input speci-
fication in software C language, which is known for its highly
flexible syntax and semantic ambiguities, into a well-structured
and well-optimized hardware described in HDL.

In fact, many early C-based synthesis tools only handle
a very limited language subset, which typically includes the
native integer data types (e.g., char, short, and int), 1-D
arrays, if-then-else conditionals, and for loops. Such language
coverage is far from sufficient to allow complex large-scale
designs. As shown in Table I, supporting more advanced
language features in C, C++, and SystemC is critical to raising
the level of design abstraction and enabling efficient HLS.

AutoPilot accepts three standard C-based design entries in
ANSI C, C++, and SystemC. It provides robust synthesis tech-
nologies to efficiently handle different aspects of the C/C++
language, such as data type synthesis (for both primitive

and composite types), pointer synthesis, memory synthesis,
control synthesis, loop synthesis, modular hierarchy synthesis
(for functions, classes, and concurrent modules), and interface
synthesis (for parameters and global variables).

Designers can fully control the data precisions of a C/C++
specification. AutoPilot supports single and double-precision
floating-point types and efficiently utilizes the floating-point
IPs provided by the FPGA platforms. Common floating-point
math routines (e.g., square root, exponentiation, and logarithm)
can be mapped to highly optimized device-specific IPs.

In addition, AutoPilot has the capabilities to simulate and
synthesize arbitrary-precision integers (ap−int) and fixed-
point data types (ap−fixed). The arbitrary-precision fixed-
point (ap−fixed) data types support all common algorithmic
operations. With this library, designers can explore the accu-
racy and cost tradeoff by modifying the resolution and fixed-
point location and experimenting with various quantization and
saturation modes.

AutoPilot also supports the OCSI synthesizable subset [115]
for SystemC synthesis. Designers can make use of SystemC
bit-accurate data types (sc−int/sc−uint, sc−bigint/sc−biguint,
and sc−fixed/sc−ufixed) to define the data precisions. They
can also create parallel hierarchical designs with concurrent
processes running inside multiple modules.

B. Use of State-of-the-Art Compiler Technologies

AutoPilot tightly integrates the LLVM compiler infrastruc-
ture [60], [112] to leverage leading-edge compiler technolo-
gies. LLVM features a GCC-based C/C++ front end called
llvm-gcc and a newly developed source code front end for
C/C++ and Object C/C++ called Clang, a virtual instruction
set based on a type-safe static single-assignment (SSA) form
[24], a rich set of code analyses and transformation passes,
and various back ends for common target machines.

AutoPilot uses the llvm-gcc front end to obtain an interme-
diate representation (IR) based on the LLVM instruction set.
On top of this IR, AutoPilot performs a variety of compiler
transformations to aggressively optimize the input specifica-
tion. The optimization focuses on reducing code complexity
and redundancy, maximizing data locality, and exposing par-
allelism.

In particular, the following classes of transformations and
analyses have shown to be very useful for hardware synthesis.

1) SSA-based code optimizations such as constant prop-
agation, dead code elimination, and redundant code
elimination based on global value numbering [2].

2) Expression rewriting such as strength reduction and
arithmetic simplification to replace expensive operations
and expressions with simpler ones [e.g., x%2n = x&(2n-
1), 3*x-x = x<<1].

3) Range analysis and bitwidth analysis [21], [81] that ex-
tract and propagate the value range information through-
out the program to reduce bitwidths of variables and
operations.

4) Sophisticated alias analysis and memory dependence
analysis [51] that analyzes data and control dependences
to discover parallelism between pointer and array ac-
cesses.
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5) Memory optimizations such as memory reuse, array
scalarization, and array partitioning [19] to reduce the
number of memory accesses and improve memory band-
width.

6) Loop transformations such as unrolling, loop fusion, and
loop rotation to expose loop-level parallelism [51].

7) Function optimizations such as inlining and pointer-to-
scalar argument promotion to enable code optimization
across the function boundaries.

It is worth noting that the LLVM-based IR is in a language-
agnostic format. In other words, the code can be optimized
without considering the source language. As a result, the same
set of analyses and optimizations on this representation can
be shared and taken advantage of by many different language
front ends.

Furthermore, unlike other conventional C/C++ compilers,
which are typically designed to optimize with the native
data types (e.g., char, short, int, and long), LLVM and
AutoPilot compilation and transformation procedures are fully
bit accurate. This is a significant advantage for hardware
synthesis since bit-level redundancy and parallelism can be
well optimized and well exploited [94].

V. Platform-Based Approach

In this section, we discuss the platform-based synthesis
methodology used by AutoPilot targeting Xilinx FPGAs.

A. Platform Modeling for Xilinx FPGAs

AutoPilot uses detailed target platform information to carry
out informed and target-specific synthesis and optimization.
The platform specification describes the availabilities and
characteristics of important system building blocks, including
the available computation resources, memory resources, and
communication interfaces on a given Xilinx FPGA device.

Component pre-characterization is involved in the modeling
process. Specifically, it characterizes the delay, area, and power
for each type of hardware resource, such as arithmetic units
(e.g., adders and multipliers), memories [e.g., random access
memories (RAMs), read-only memories, and registers], steer-
ing logic (multiplexors), and interface logic (e.g., FIFOs and
bus interface adapters). The delay/area/power characteristic
curves are derived by varying the bit widths, number of input
and output ports, pipeline intervals, and latencies. The result-
ing characterization data is then used to make implementation
choices during synthesis.

Notably, the cost of implementing hardware on FPGAs is
often different from that for ASIC technology. For instance,
most designs include multiplexors to route data to different
points in a design, share hardware resources, and initialize the
state of the system. On FPGAs, multiplexors typically have the
same cost and delay as an adder [approximately one lookup
table (LUT)/output]. In some cases, however, a multiplexor can
merge with other logic, such as a downstream adder or multi-
plexor, resulting in no additional hardware cost. In contrast, in
ASIC technology, multiplexors are typically significantly less
expensive than adders and other arithmetic operations and this

cost cannot typically be eliminated by technology mapping.
As a result, understanding the cost and delay of multiplexing
operations is critical to building optimized FPGA designs.

FPGA technology also features heterogeneous on-chip re-
sources, including not only LUTs and flip flops but also other
prefabricated architecture blocks such as DSP48s and Block
RAMs. Understanding the tradeoff between these heteroge-
neous resources is critical for efficient FPGA mapping. For
instance, in FPGAs logic functions are significantly more
expensive relative to memory than in ASIC technology, since
logic functions must be implemented using LUTs and flip flops
in the FPGA fabric whereas memory is usually implemented
using Block RAMs which exist as customized SRAM cells in
the FPGA. Furthermore, smaller memories and shift registers
may be more efficiently mapped to LUT cells or flip flops in
the FPGA than to Block RAM, adding additional complexity
for memory characterization.

Such FPGA-specific platform information is carefully mod-
eled for each and every FPGA device family, and considered
by AutoPilot during synthesis for performance and area trade-
off. In addition, AutoPilot has the capability of detecting cer-
tain computation patterns and mapping a group of operations
to platform-specific architecture blocks, such as DSP48 blocks,
or predefined customer IPs.

B. Integration with Xilinx Toolset

In order to raise the level of design abstraction more com-
pletely, AutoPilot attempts to hide details of the downstream
RTL flow from users as much as possible. Otherwise, a
user may be overwhelmed by the details of vendor-specific
tools such as the formats of constraint and configuration
files, implementation and optimization options, or directory
structure requirements.

As shown in Fig. 1, AutoPilot implements an end-to-end
C-to-FPGA synthesis flow integrated with the Xilinx toolset
in several areas.

1) ISE integration: AutoPilot automatically generates
scripts and constraints for Xilinx ISE from the high-
level constraints entered in AutoPilot. AutoPilot can also
directly invoke ISE from within the tool to execute the
entire C-to-FPGA flow and extract the exact resource
utilization and the final timing from the ISE reports.
For advanced users who are familiar with the Xilinx
tool flow, AutoPilot also provides options to tune the
default implementation and optimization settings, such
as I/O buffer insertion, register duplication/balancing,
and place-and-route effort.

2) CoreGen integration: AutoPilot can automatically gen-
erate optimized IP blocks, such as memories, FIFOs,
and floating-point units, using Xilinx Core Generator
(CoreGen). In some cases, the CoreGen implementations
are superior to the comparable functions implemented
through logic synthesis resulting in better QoR. The
resulting CoreGen netlists are also incorporated and
encapsulated without further user intervention.

3) EDK integration: The hardware modules synthesized
by AutoPilot can also be integrated into the Xilinx
EDK environment for system-level hardware/software
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co-design and exploration. Specifically, AutoPilot is
capable of generating various bus interfaces, such as
Xilinx fast simplex link and processor local bus for
integrating with MicroBlaze and PowerPC processors
and Xilinx native port interface (NPI) for integrating
with external memory controllers. AutoPilot instantiates
these interfaces along with adapter logic and appropriate
EDK meta-information to enable generated modules be
quickly connected in an EDK system.

VI. Advances in Synthesis and Optimization

Algorithms

In this section, we highlight some recent algorithmic ad-
vancement in HLS that we believe are important factors in
improving the QoRs of the latest HLS tools and helping them
to produce results that are competitive with manual designs.

A. Efficient Mathematical Programming Formulations to
Scheduling

Classical approaches to the scheduling problem in HLS use
either conventional heuristics such as list scheduling [1] and
force-directed scheduling [74], which often lead to sub-optimal
solutions, due to the nature of local optimization methods, or
exact formulations such as integer-linear programming [46],
which can be difficult to scale to large designs. Recently, an
efficient and scalable system of difference constraint (SDC)-
based linear-programming formulation for operation schedul-
ing has been proposed [15]. Unlike previous approaches which
use O(m×n) binary variables to encode a scheduling solution
with n operations and m steps [46], SDC uses a continuous
representation of time with only O(n) variables; for each
operation i, a scheduling variable si is introduced to represent
the time step at which the operation is scheduled. By limiting
each constraint to the integer-difference form, that is

si − sj ≤ dij

where dij is an integer, it is shown that a totally unimod-
ular constraint matrix can be obtained. A totally unimod-
ular matrix defined as a matrix whose every square sub-
matrix has a determinant of 0 or ±1. A linear program
with a totally unimodular constraint matrix is guaranteed
to have integral solutions. Thus, an optimal integer solu-
tion can be obtained without expensive branch-and-bound
procedures.

Many commonly encountered constraints in HLS can be
expressed in the form of integer-difference constraints. For
example, data dependencies, control dependencies, relative
timing in I/O protocols, clock frequencies, and latency upper-
bounds can all be expressed precisely. Some other con-
straints, such as resource usage, cannot directly fit into
the form. In such cases, approximations can be made to
generate pair-wise orderings which can then be expressed
as integer-difference constraints. Other complex constraints
can be handled in similar ways, using approximations or
other heuristics. Thus, this technique provides a very flexible
and versatile framework for various scheduling problems,

and enables highly efficient solutions with polynomial time
complexity.

B. Soft Constraints and Applications for Platform-Based Op-
timization

In a typical synthesis tool, design intentions are often
expressed as constraints. While some of these constraints are
essential for the design to function correctly, many others
are not. For example, if the estimated propagation delay of a
combinational path consisting of two functional units is 10.5 ns
during scheduling, while the required cycle time is 10 ns, a
simple method would forbid the two operations to execute
in one clock cycle. However, it is possible that a solution
with a slight nominal timing violation can still meet the
frequency requirement, considering inaccuracy in interconnect
delay estimation and various timing optimization procedures
in later design stages, such as logic refactoring, retiming,
and interconnect optimization. In this case, strict constraints
eliminate the possibility of improving other aspects of the
design with some reasonable estimated violations. In addition,
inconsistencies in the constraint system can occur when many
design intentions are added—after all, the design is often a
process of making tradeoffs between conflicting objectives.

A solution to the above problems is proposed in [20] using
soft constraints in the formulation of scheduling. The approach
is based on the SDC formulation discussed in the preceding
section, but allows some constraints to be violated. Consider
the scheduling problem with both hard constraints and soft
constraints formulated as follows:

minimize cT s linear objective

subject to Gs ≤ p hard constraints

Hs ≤ q soft constraints.

Here, G and H correspond to the matrices representing hard
constraints and soft constraints, respectively, and they are both
totally unimodular as shown in [15]. Let H j be the jth row of
H, for each soft constraint H js ≤ qj , we introduce a violation
variable vj to denote the amount of violation and transform
the soft constraint into two hard constraints as follows:

H js − vj ≤ qj

−vj ≤ 0.

At the same time, we introduce a penalty term φj(vj) to the
objective function, to minimize the cost for violating the jth
soft constraint. The final formulation becomes as follows:

minimize cT s + �jφj(vj)

subject to Gs ≤ p

Hs − v ≤ q

−v ≤ 0.

It can be shown that the new constraint matrix is also totally
unimodular. If the amount of penalty is a convex function of
the amount of violation, the problem can be solved optimally
within polynomial time. Otherwise, convex approximations
can be made in an iterative manner [20].

The overall flow of a scheduler using this method is shown
in Fig. 2. Hard constraints and soft constraints are generated
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Fig. 2. Structure of a scheduler using both hard constraints and soft con-
straints.

Fig. 3. Xilinx DSP48E block.

based on the functional specification and QoR targets. The
constraints are fed to an optimization engine that uses a
mathematical programming solver. The soft constraints can
be updated, based on existing results and possibly new design
intentions. The use of soft constraints provides a way to
handle multiple conflicting design intentions simultaneously,
leading to efficient global optimization using a mathematical
programming framework. This approach offers a powerful
yet flexible framework to address various considerations in
scheduling.

To illustrate the use of soft constraints in HLS for FPGAs,
we apply it to the problem of efficient utilization of built-
in fabrics on FPGA platforms. Take the DSP48E block in
Xilinx Virtex 5 FPGAs for example; each of the DSP48E
blocks (sketched in Fig. 3) contains a multiplier and a post-
adder, allowing efficient implementations of multiplication and
multiply-accumulation. To fit the pattern of a DSP block, it is
preferable that the operations are scheduled following certain
relative cycle distances. Specifically, the addition should occur
one cycle after the multiplication finishes to be mapped to
the post-adder. In the constraint system, it is s+ − s× ≤ l×,
where l× is the number of stages the multiplication takes.
These preferences can be nicely modeled by soft constraints as
they are not required for a correct implementation but highly
preferred to achieve good QoR on FPGAs.

C. Pattern Mining for Efficient Sharing

A typical target architecture for HLS may introduce mul-
tiplexors when functional units, storage units, or intercon-
nects are shared by multiple operations/variables in a time-

multiplexed manner. However, multiplexors (especially large
ones) can be particularly expensive on FPGA platforms. Thus,
careless decisions on resource sharing could introduce more
overhead than benefit. In [16], a pattern-based approach for
resource sharing is proposed. The method tries to extract
common structures or patterns in the data-flow graph, so that
different instances of the same pattern can share resources
with little overhead. The approach tolerates small variations
on port, bitwidth, operation types, and others, by using the
graph editing distance as a metric to measure the similarity of
two patterns. A systematic method for subgraph enumeration
is developed which avoids generating redundant subgraphs.
Pruning techniques are proposed based on characteristic vec-
tors and locality-sensitive hashing. Instances of the same
pattern are scheduled in the same way and conflicts are avoided
when possible so that they can share resources, leading to
resource reductions. This technique has been extended to
pattern extraction and sharing in control data flow graphs [18].

D. Memory Analysis and Optimizations

While application-specific computation platforms such as
FPGAs typically have considerable computational capability,
their performance is often limited by available communication
or memory bandwidth. Typical FPGAs, such as the Xilinx Vir-
tex series, have a considerable number of block RAMs. Using
these RAMs effectively is critical to meet performance target
in many designs. This often requires partitioning elements of
an array across multiple physical memory blocks to enable
simultaneous access to different elements of the array.

In [19], a technique for automatic memory partitioning
is proposed to increase throughput and reduce power for
pipelined loops. It tightly integrates front-end transformations
and operation scheduling in an iterative algorithm and has the
ability to handle irregular array access, in addition to affine
accesses. An example of memory partition is shown in Fig. 4.
Consider a loop that accesses array A with subscripts i, 2×i+1,
and 3× i+ 1, in the ith iteration. When the array is partitioned
into two banks, the first contains elements with even indices
and the second contains those with odd indices. If the loop
is targeted to be pipelined with the initiation interval of one,
i.e., a new loop iteration starts every clock cycle, the schedule
in Fig. 4(b) will lead to port conflicts, because (i + 1) mod
2 = (2 × (i + 1) + 1) mod 2 = (3 × i + 1) mod 2, when
i is even; this will lead to three simultaneous accesses to
the first bank. On the contrary, the schedule in Fig. 4(c) can
guarantee at most two simultaneous accesses. Because (i + 2)
mod 2 �= (3 × i + 1) mod 2 for any i, R1 and R3 will never
access the same bank in the same cycle. The method in [19]
presents a theorem to capture all possible reference conflicts
under cyclic partitioning in a data structure called a conflict
graph. Then, an iterative algorithm is used to perform both
scheduling and memory partitioning guided by the conflict
graph.

VII. Advances in Simulation and Verification

Besides the many advantages of automated synthesis, such
as quick design space exploration and automatic complex
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Fig. 4. Example of memory partitioning and scheduling for throughput
optimization. (a) Loop to be pipelined. (b) First schedule with partition.
(c) Second schedule with partition.

architectural changes like pipelining, resource sharing, and
scheduling, HLS also enables a more efficient debugging and
verification flow at the higher abstraction levels. Since HLS
provides an automatic path to implementable RTL from be-
havioral/functional models, designers do not have to wait until
manual RTL models become available to conduct verification.
Instead, they can develop, debug and functionally verify a de-
sign at an earlier stage with high-level programming languages
and tools. This can significantly reduce the verification effort
due to the following reasons.

1) It is easier to trace, identify, and fix bugs at higher ab-
straction levels with more compact and readable design
descriptions.

2) Simulation at the higher level is typically orders of
magnitude faster than RTL simulation, allowing more
comprehensive tests and greater coverage.

Fig. 5 captures a typical simulation and verification frame-
work offered by state-of-the-art C-based HLS tools. In this
flow designers usually start from high-level specification in
C/C++ or SystemC. They use software programming and de-
bugging tools, such as GCC/GDB, Valgrind, or Visual Studio,
to ensure that the design is sufficiently tested and verified
against a properly constructed TB. Once the input description
to HLS is clean, designers can focus on the synthesis aspects
and generate one or multiple versions of RTL code to explore
the QoR tradeoffs under different performance, area, and
power constraints. To confirm the correctness of the final RTL,
designers can use the automatic co-simulation and/or formal
equivalence checking provided by this framework.

Fig. 5. HLS simulation and verification framework.

Fig. 6. Automatic RTL TB generation and connection in AutoPilot.

A. Automatic Co-Simulation

At present, simulation is still the prevalent technique to
check if the resulting RTL complies with the high-level
specification. To reduce effort spent on RTL simulation, the
latest HLS technologies have made important improvements
on automatic co-simulation [3], [8], [87], allowing direct
reuse of the original test framework in C/C++ to verify the
correctness of the synthesized RTL.

As an example, Fig. 6 shows a block diagram describing
how AutoPilot bridges a behavioral TB and RTL with an
automatically constructed transactor and wrapper in SystemC.
A C-to-RTL transactor is created to connect high-level inter-
facing constructs (such as parameters and global variables)
with pin-level signals in RTL. This step involves data type syn-
thesis as well as interface synthesis since the transactor needs
to correctly translate various C/C++ data types and handle
different interface protocols such as handshaking, streaming,
and memory mapped I/O. Additionally, a SystemC wrapper
is generated that combines the C-level TB and transactor.
This wrapper also includes additional control logic to manage
the communication between the testing module and the RTL
design under test (DUT). For instance, a pipelined design may
require that the TB feed input data into the DUT at a fixed
rate.

This style of automatic co-simulation also helps designers
avoid the timing-consuming manual creation of an RTL TB.
Along with the use of instrumentation and code coverage tools,
this flow can provide additional performance and code cover-
age analyses on the RTL output. Many HLS tools also generate
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alternative cycle-accurate models (typically in SystemC) of the
synthesized design that can be more quickly simulated than
HDL.

B. Equivalence Checking

While formal equivalence checking tools for RTL-to-RTL
and RTL-to-gate comparisons have been in production use
for years, high-level to RTL checking is still an evolving
technology.

Nevertheless, promising progress on C-to-RTL equivalence
checking has been made in recent years, especially from in-
dustry. For instance, the Sequential Logic Equivalence Checker
from Calypto [106] can identify mismatches between a syn-
thesizable C/C++/SystemC model and an RTL design without
the need of a TB. This tool has been integrated in several
commercial HLS flows. Synopsys has also presented their
Hector tool in [54], which integrates multiple bit-level and
word-level equivalence checking techniques, such as automatic
test pattern generation, binary decision diagram, Boolean
satisfiability, and satisfiability modulo theories to address the
system level to RTL formal verification problem.

An excellent survey of the sequential equivalence checking
(SEC) techniques is given in [64], with discussions of their
usage in real-world HLS flows. As mentioned in this paper,
the current SEC technology can handle moderate design size
with gate count between 500K and 700K gates and tolerate
latency differences between high-level and RTL models on the
order of hundreds of clock cycles. Beyond this range, further
design partitioning is required to help the checker to reduce
the verification complexity.

Currently, formal equivalence checking plays a supporting
role in the verification flow for HLS. This is particularly true
for FPGA designs, where in-system simulation is possible
with much wider simulation coverage. Design iterations can
be performed quickly and inexpensively without huge man-
ufacturing cost. However, multiple challenges remain to be
addressed with in-system debugging using HLS methodology,
about which we shall further elaborate in Section X.

VIII. Integration with Domain-Specific Design

Platforms

The time-to-market of an FPGA system design is dependent
on many factors, such as availability of reference designs, de-
velopment boards, and in the end, FPGA devices themselves.
Primarily, HLS only addresses one of these factors: the ability
of a designer to capture new algorithms and implement an RTL
architecture from the algorithm. Reducing the overall time-to-
market requires not only reducing the design time, but also
integrating the resulting design into a working system. This
integration often includes a wide variety of system-level design
concerns, including embedded software, system integration,
and verification [105]. Hence, it is crucial that such integration
can be performed as easily and as quickly as possible.

A view of an integrated design is shown in Fig. 7. The
interface cores (marked GigE, PCI, DVI, and LVDS in the
figure) are implemented in low-level RTL code and are pro-
vided as encapsulated IP cores. These cores tend to have

Fig. 7. Block diagram showing an algorithmic block integrated with a
processor and I/O.

tight requirements on circuit architecture in order to function
correctly, and often have specific timing constraints, placement
requirements, and instantiated architectural primitives. As a
result, these cores are not easily amenable to HLS and form
part of the system infrastructure of a design. Note, however,
that these cores represent a small portion of the overall design
synthesized in the FPGA, where system designers are not
likely to have significant differentiating ability.

A second key part of system infrastructure is the processor
subsystem shown on the left of Fig. 7. Subsystem PSS
is responsible for executing the relatively low-performance
processing in the system.

The portion of a design generated using HLS represents the
bulk of the FPGA design and communicates with the system
infrastructure through standardized wire-level interfaces, such
as AXI4 memory-mapped and streaming interfaces [97] shown
in Fig. 7. These interfaces are abstracted in the C code to ap-
propriate application-level interfaces, which can be simulated
at a functional level in C code. In order to understand this
abstract architecture model, we show some concrete examples
of domain-specific design platforms that we used to build
FPGA systems, one for video applications and another for
cognitive radio designs.

A. Video Starter Kit

Video processing systems implemented in the FPGA include
a wide variety of applications from embedded computer-vision
and picture quality improvement to image and video com-
pression. These systems also target a variety of end-markets
ranging from television studio equipment to industrial imaging
and consumer equipment, such as high-definition televisions
(HDTVs) and digital cameras. Typically, these systems include
two significant pieces of complexity. First, they must commu-
nicate by standardized interfaces, such as high-definition serial
digital interface, high-definition multimedia interface (HDMI),
or V-by-one, with other equipment in order to be demonstrated.
Second, they often perform inter-frame processing, which
almost always requires a large frame-buffer implemented in
cheap external memory, such as DDR2 synchronous dynamic
random access memory (SDRAM).
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Fig. 8. Video processing architecture template.

To address these complexities and make it relatively
straightforward for designers to implement video processing
applications and demonstrate them in real-time on develop-
ment boards, we have leveraged a portable platform method-
ology. This platform is derived from the Xilinx EDK-based
reference designs provided with the Xilinx Spartan 3ADSP
Video Starter Kit and has been ported to several Xilinx Virtex
5 and Spartan 6 based development boards, targeting high-
definition video processing with pixel clocks up to 150 MHz.
A block diagram is shown in Fig. 8.

Incoming video data is received using board and protocol
specific interface adapters and formatted as a non-handshaked
stream of RGB video data, with horizontal and vertical syn-
chronization and data enable signals. When a board uses an
external decoder chip which formats digital video in this way,
such as the Spartan 3ADSP video Starter Kit, the I/O adapter
can often be very simple, requiring almost no FPGA logic.
In other cases, such as on the Xilinx University Program
Atlys board [119] which implements HDMI interfaces entirely
in FPGA logic, the interface logic can be more significantly
complex.

The incoming video data is analyzed by the frame decoder
block to determine the frame size of the incoming video,
which is passed to the HLS block, enabling different video
formats to be processed. The frame size, represented by
struct frame−data, is sent to the HLS block first, followed
by the given number of active video pixels without syn-
chronization signals, represented by struct pixel−data. The
synchronization signals themselves are encoded and delayed,
before being reassembled with the processed video data and
sent to the output video interface. This delay accommodates
non-causal spatial filters with up to a small number of lines of
delay, without requiring the output video to be shifted. Longer
processing delays can be accommodated internally to the HLS
block by a frame buffer by outputting the previously processed
frame.

The application is typically partitioned between the HLS
block and the Microblaze control processor. In video systems,
the control processor often handles processing that occurs
at the frame rate [typically 60 or 120 frames per second
(f/s) for the majority of consumer video equipment], and can

receive data analyzed from the incoming video, and generate
parameter updates to the processing core. Simple processing
tasks can be computed in the vertical blanking interval, while
more complex tasks may require the entire frame time to
compute, meaning that analysis of frame n is computed during
the arrival of frame n + 1 and the results are used to update
frame n + 2.

The HLS block itself is capable of processing video pixels
at the full rate of the incoming video data, typically as a
streaming dataflow pipeline generated from multiple loops in
C code. To meet the pixel-rate requirements of HDTV systems,
the HLS block typically process one new pixel per clock cycle
in consumer grade FPGAs, such as the Xilinx Spartan 6 family.
Video line buffers are synthesized directly from embedded
FPGA memories, expressed as arrays in C code.

The interface to external memory used for frame buffers is
implemented using the Xilinx multi-ported memory controller
(MPMC) [120], which provides access to external memory
to the HLS block and to the Microblaze control processor,
if necessary. The MPMC provides a consistent user-level
interface through the NPI [120] to a variety of memory tech-
nologies, abstracting the FPGA-architecture specific details of
interfacing with correct timing to a particular external memory
technology. NPI requires applications to explicitly specify
large bursts in order to maximize memory bandwidth to burst-
oriented memory technologies, such as DDR2 SDRAM. The
RTL code generated by AutoPilot can leverage these bursts
to directly implement video frame buffers and other patterns
of memory accesses without a separate direct memory access
(DMA) engine.

B. High-Level Design of Cognitive Radios Project

Cognitive radio systems typically contain both compu-
tationally intensive processing with high data rates in the
radio processing, along with complex, but relatively low-rate
processing to control the radio processing. Such systems can
be elegantly described and quickly simulated in algorithmic
C code, enabling opportunities to improve the system-level
management algorithms. However, efficiently building such
systems in FPGAs can be complex, since they involve close
interaction between the processing code that must be imple-
mented in the FPGA fabric to provide adequate performance,
and the control code that would typically be implemented in
an embedded processor. Although HLS provides a path to
implementing the radio processing efficiently in FPGA logic,
efficient interaction with the processor is an important part of
the overall system complexity.

The target template architecture, shown in Fig. 9, is divided
in two subsystems: a processor subsystem and an accelerator
subsystem. The processor subsystem contains standard hard-
ware modules and is capable of running a standard embedded
operating system, such as Linux. These modules include
the embedded central processing unit (CPU) (e.g., PowerPC
or MicroBlaze), memory controller to interface to external
DRAM, and I/O modules (e.g., Ethernet). The processor
subsystem is responsible for two main tasks: executing the
software runtime system in charge of the application con-
trol at runtime, and executing computationally non-intensive
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Fig. 9. Radio processing architecture template.

components in the application. The accelerator subsystem is
used for implementing components with high computational
requirements in hardware. In order to transfer data into and
out of the accelerator subsystem, the accelerator block is
connected to on-chip memories (i.e., standard interfaces).
These on-chip memories are used as a shared-memory commu-
nication scheme between hardware and software components.
The bus interface logic implements a DMA functionality to
efficiently move data. A set of interface registers, accessible
from software, is used for controlling hardware execution
and accessing component parameters. The accelerator block
is synthesized using the HLS tools.

To program the architecture, the application is captured as
a pipeline of concurrent components or actors. Each actor
conceptually executes either in the processor subsystem, or in
the accelerator subsystem. Actors executing in the accelerator
system also include a small proxy component executing in
the processor, which is responsible for data transfer and
synchronization with the FPGA hardware generated through
HLS. This allows the component implementation to be com-
pletely abstracted, and a designer can implement individual
components without knowing about the implementation details
of other components or how they are logically interconnected.
The composition of actors and the dataflow between them
is described in an XML file, enabling new compositions to
be easily described. Components also expose a configuration
interface with multiple parameters, allowing them to be recon-
figured in an executing system by user-defined control code
executing in the processor subsystem.

IX. Design Experience and Results

In this section we summarize some recent design experi-
ences using HLS for FPGA designs in the two application
domains discussed in the preceding section and discuss the
experimental results, especially in terms of the QoRs of HLS
as compared to manual designs.

A. Summary of BDTI HLS Certification

Xilinx has worked with Berkeley Design Technology
(BDTI), Inc. [100] to implement an HLS Tool Certification
Program [101]. This program was designed to compare the

TABLE II

QoRs for BDTI Optical Flow Workflow Operating Point 2:

Maximum Throughput, 1280 × 720 Progressive Scan

Platform Chip Unit
Cost (Qty
10K)

Maximum
f/s

Cost Per
f/s (Lower
Is Better)

AutoESL AutoPilot plus Xilinx
RTL tools targeting the Xilinx
XC3D3400A FPGA

$26.65 183 $0.14

Texas Instruments software de-
velopment tools targeting
TMS320DM6437 DSP processor

$21.25 5.1 $4.20

Table reproduced from [102].

TABLE III

QoRs for DQPSK Receiver Workload: 18.75 MSamples/Second

Input Data at 75 MHz Clock Speed (Table Reproduced from

[102])

Platform Chip Resource
Utilization

(Lower Is Better)
AutoESL AutoPilot plus Xilinx RTL tools target-
ing the Xilinx XC3D3400A FPGA

5.6%

Hand-written RTL code using Xilinx RTL tools
targeting the Xilinx XC3SD3400A FPGA

5.9%

results of an HLS Tool and the Xilinx Spartan 3 FPGA
that is part of the Video Starter Kit, with the result of a
conventional DSP processor and with the results of a good
manual RTL implementation. There were two applications
used in this Certification Program, an optical flow algorithm,
which is characteristic for a demanding image processing
application and a wireless application (DQPSK) for which a
very representative implementation in RTL was available. The
results of the certification of the AutoPilot tool from AutoESL
are available on the BDTI website [102].

Results showing the maximum performance for the optical
flow algorithm are included in Table II, comparing comparably
priced consumer-grade FPGA and DSP targets. The AutoPi-
lot implementation achieved approximately 30 times better
throughput per dollar than the optimized DSP implementa-
tion. In addition, BDTI qualitatively assessed the “extent of
modifications to the source code” necessary to implement the
optical flow algorithm. The DSP processor implementation
rated “fair,” while the AutoPilot implementation rated “good,”
indicating that less source code modification was necessary to
achieve high performance when using AutoPilot.

Results for the DQPSK application are shown in Table III,
comparing the QoRs of the AutoPilot implementation with
a manual RTL implementation. After optimization, including
both significant source code refactoring and careful use of
tool directives, the AutoPilot implementation achieved slightly
lower resource usage than the RTL implementation. It is worth
noting that the hand-written RTL made use of optimized Xilinx
CoreGen IP blocks where applicable.

BDTI also assessed overall ease of use of the DSP tool flow
and the FPGA tool flow, combining HLS with the low-level
implementation tools. They concluded that the DSP tool flow
was still significantly easier to use, primarily due to difficulties
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installing the FPGA tools and a lack of sufficient platform
infrastructure that can be accessed without in-depth knowledge
of the FPGA tool flow. In the future, we believe that these
issues will be solved as shown in Section VIII.

B. Sphere Decoder

Xilinx has implemented a sphere decoder for a multi-input
multi-output wireless communication system using AutoPilot
[68], [86]. The algorithm [29] consists largely of moderate-
throughput linear algebra operations, such as matrix-matrix
multiply, matrix inverse, QR decomposition, and vector-norm
computations implemented on small-dimension matrices. The
application exhibits a large amount of parallelism, since the
operations must be executed on each of 360 independent
subcarriers which form the overall communication channel and
the processing for each channel can generally be pipelined.
However, in order to reach an efficient high-utilization design,
the implementation makes extensive use of resource sharing
and time-division multiplexing, with the goal of simulta-
neously reducing resource usage and end-to-end processing
latency.

The algorithm was originally implemented in MATLAB,
which was converted to an algorithmic C model totaling
approximately 4000 lines of code. The C model was further
modified to generate an efficient implementation with AutoPi-
lot. This code was converted to run through AutoPilot in a
matter of days and optimized over a period of approximately
three man-months. The resulting HLS code for the application
makes heavy use of C++ templates to describe arbitrary-
precision integer data types and parameterized code blocks
used to process different matrix sizes at different points in
the application. Various AutoPilot-specific #pragma directives
were used, primarily to express the layout of arrays in memory
blocks, to direct the unrolling and scheduling of loops to the
appropriate level of parallelism, and to guide the scheduling
algorithms to share operators and minimize resource usage.
Most of the code included no explicit specification of the RTL
structure, although in one case it was necessary to include a
#pragma directive to force the RTL micro-architecture of a C
function and to force the selection of a particular multiplier
library element.

The end architecture consists of 25 independent actors in a
streaming dataflow architecture, shown in Fig. 10. Each actor
is separated by synthesized streams or double buffers from
neighboring components, enabling them to execute concur-
rently. The portions marked “4 × 4,” “3 × 3,” and “2 × 2”
perform the same algorithm on matrices of decreasing size,
and are collectively termed the “channel preprocessor.” These
portions are implementing using parameterized C++ templates,
targeted by AutoPilot at different II1 (three in the 4 × 4 case,
five in the 3 × 3 case, and nine in the 2 × 2 case), enabling
optimized resource sharing decisions to be made automatically.
The remainder of the design operates at II = 1, with all
resource sharing described in the C code.

Table IV below summarizes the results, comparing the

1II denotes initiation interval of the pipeline. II = 1 means the design
accepts new inputs and produces new outputs at every clock cycle.

Fig. 10. Architecture of the sphere decoder application.

TABLE IV

Sphere Decoder Implementation Results

Metric RTL Expert AutoPilot Expert Difference (%)
Dev. time (man-weeks) 16.5 15 −9
LUTs 32 708 29 060 −11
Registers 44 885 31 000 −31
DSP48s 225 201 −11
18K BRAMs 128 99 −26

overall AutoPilot-based implementation with a previously re-
ported RTL-style implementation built using Xilinx System
Generator. Both designs were implemented as standalone cores
using ISE 12.1, targeting Xilinx Virtex 5 speed grade 2 at
225 MHz. Using AutoPilot Version 2010.07.ft, we were able
to generate a design that was smaller than the reference
implementation in less time than a hand RTL implementation
by refactoring and optimizing the algorithmic C model.

Design time for the RTL design was estimated from work
logs by the original authors of [29], and includes only the
time for an algorithm expert and experienced tool user to enter
and verify the RTL architecture in System Generator. Design
time for the AutoPilot design was extracted from source code
control logs. It reflects the time taken by a tool expert who
is not a domain expert to take a piece of unfamiliar code,
implement a first version in the tool, refactor the code to reflect
a desired target architecture, reverse engineer the original RTL
code to discover that algorithmic improvements were made in
the RTL implementation that were not reflected back in the
algorithmic model, and perform design exploration. In both
cases, multiple people worked on the design in parallel. Given
the significant time familiarizing ourselves with the application
and structure of the code, we believe that an application expert
familiar with the code would be able to create such a design
at least twice as fast.

To better understand the area savings, it is instructive to
look more closely at smaller blocks of the design. The real-
valued QR decomposition (RVD-QRD) block, summarized in
Table V, operates at II = 1, completing an 8 × 8 QR de-
composition of 18-bit fixed point values every 64 cycles. The
block implements a standard Givens-rotation based systolic
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TABLE V

8 × 8 RVD-QRD Implementation Results

Metric RTL Expert AutoPilot Expert AutoPilot Expert
Dev. time (man-weeks) 4.5 3 5
LUTs 5082 6344 3862
Registers 5699 5692 4931
DSP48s 30 46 30
18K BRAMs 19 19 19

TABLE VI

Matrix-Multiply Inverse Implementation Results

Metric 4 × 4 4 × 4 3 × 3 3 × 3 2 × 2 2 × 2
RTL AP RTL AP RTL AP

Dev. Time (man-weeks) 4 4 1 0 1 0
LUTs 9016 7997 6969 5028 5108 3858
Registers 11 028 7516 8092 4229 5609 3441
DSP48s 57 48 44 32 31 24
18K BRAMs 16 22 14 18 12 14

array consisting of diagonal and off-diagonal cells, where the
diagonal cells compute an appropriate rotation, zeroing one
of the matrix elements, and the off-diagonal cells apply this
rotation to the other matrix elements in the same row. To
meet the required throughput, one row of the systolic array
is instantiated, consisting of one diagonal cell and eight off-
diagonal cells, and the remaining rows are time multiplexed
over the single row. In addition, since the systolic array in-
cludes a recurrence, 15 channels are time-division multiplexed
over the same hardware.

Exactly the same architecture was implemented, although
AutoPilot was able to generate a more optimized pipeline for
the non-critical off-diagonal cell, resulting in slightly lower
resource usage after optimization. After only three weeks,
the AutoPilot design had met timing and throughput goals,
but required more logic resources than the RTL design.
After additional optimization and synthesis constraints on
the DSP48 mapping, AutoPilot realized the same DSP48
mapping as the RTL design (three DSP48s to implement the
off-diagonal cell rotations and six DSP48s to implement the
diagonal cell computation and rotation), including mapping
onto the DSP48 post-adder.

Table VI details multiple implementations of the “Matrix-
Multiply Inverse” components, consisting of the combined
Matrix Multiply, QR Decomposition, and Back Substitution
blocks. This combination implements (ATA)−1 for various
dimensions of 18-bit complex fixed-point matrices. In both
RTL and AutoPilot design approaches, the 4 × 4 case was
implemented first, and the 3 × 3 and 2 × 2 cases were derived
from the 4×4 case. In RTL, resource sharing was implemented
in a similar way for each case, with real and imaginary
components time-multiplexed over a single datapath. Deriving
and verifying the 3×3 and 2×2 case took approximately one
week each. In AutoPilot, the three cases were implemented
as C++ template functions, parameterized by the size of the
matrix. All three cases were implemented concurrently, using
a script to run multiple tool invocations in parallel. Depending

Fig. 11. Complex QRD architectures

on the matrix dimension, different initiation intervals were
targeted, resulting in a variety of resource sharing architectures
for each block, as shown in Fig. 11.

In the 4 × 4 case, the off-diagonal cell implements fine-
grained resource sharing, with one resource-shared complex
multiplier. In the 3 × 3 case, the off-diagonal cell contains
three complex multipliers and the off-diagonal cell itself is
resource shared at a coarser granularity. In the 2 × 2 case,
all of the off-diagonal cell operations are time multiplexed on
a single complex multiplier, combining both coarse-grained
and fine-grained resource sharing techniques. In AutoPilot, the
only difference between these blocks is the different target
initiation intervals, resulting in significant resource sharing.
Certainly, there is no doubt that an RTL designer could have
achieved these architectures, given the appropriate insight.
However, getting to the optimized cases from the implemented
4 × 4 case would require a complete RTL-level redesign.
We do observe that AutoPilot uses additional BRAM to
implement this block relative to the RTL implementation,
because AutoPilot requires tool-implemented double-buffers
to only be read or written in a single loop. When considered
as part of the overall design, however, we were able to reduce
BRAM usage by converting BRAMs to LUTRAM due to the
improve architecture of this block.

X. Conclusion and Challenges Ahead

It seems clear that the latest generation of FPGA HLS tools
has made significant progress in providing wide language cov-
erage, robust compilation technology, platform-based model-
ing, and domain-specific system-level integration. As a result,
they can quickly provide highly competitive QoRs, in many
cases comparable or better than manual RTL designs. For the
FPGA design community, it appears that HLS technology may
be transitioning from research and investigation to selected
deployment.

Despite this encouraging development, we also see many
opportunities for HLS tools to further improve. In this section,
we discuss a few directions and opportunities.

A. Support of Memory Hierarchy

The intelligent synthesis support of external off-chip mem-
ories is very important in applications that process large
amounts of data or high data rates as follows.
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1) Data-intensive video and image processing applications
often require multiple frames of data to be stored.
In practice, this storage is usually implemented using
DDR2 SDRAMs and requires fast and efficient DMA
logic to achieve high performance.

2) Recent advances in FPGA-based high-performance re-
configurable computing [33] also require efficient access
to the gigabytes of external memories shared between a
host processor and an FPGA accelerator.

However, as mentioned in [67], most of the existing HLS
solutions currently lack efficient support of the memory hi-
erarchy and sufficient abstraction of the external memory
accesses. As a result, software designers are exposed to the
low-level details of bus interfaces and memory controllers.
They must be intimately familiar with the bus bandwidth
and burst length and translate such knowledge to C code
with substantial modifications. Clearly, such design practice
is out of the comfort zone for many software developers and
algorithm designers.

Hence, it is highly preferable to have synthesis tools hide
explicit external memory transfers as much as possible from
programmers. This would require the support of efficient mem-
ory hierarchies, including automatic caching and prefetching
to hide memory latency and enhance data locality.

The CHiMPS project [77] is one of the promising attempts
in this area. It incorporates a traditional memory hierarchy with
caches into the synthesized FPGA system to manage external
memory, while focusing on the highest possible performance
from a given code without rewriting. The proposed C-to-FPGA
compilation flow generates multiple distributed caches used by
concurrent processing elements.

B. Higher-Level Models and Heterogeneous Computing

C and C++ languages are intended to describe sequential
programs while modern FPGAs can implement highly com-
plex concurrent systems. While the latest HLS tools have
impressive capabilities to extract instruction-level and loop-
level parallelism from C/C++ programs, it remains difficult to
extract task-level parallelism from arbitrary sequential spec-
ifications. In addition, for systems with task-level feedback,
sequential execution may not easily capture the parallel be-
havior of the system, making verification difficult.

Existing approaches mainly rely on manual annotation in
the input specification for task-level parallelism. They also try
to extract task-level parallelism by constructing synchronous
data flow [61], Kahn process networks [49], or communicating
sequential processes [45] models from a sequential specifica-
tion. A more effective approach may be to use programming
models that can explicitly specify concurrency, dependency,
and locality. For instance, recent work used the CUDA lan-
guage [108] for input specification to HLS [69] since CUDA
can easily describe thread-level concurrency. However, CUDA
was originally intended to model applications mapped onto
NVIDIA graphics processing units (GPUs) and includes many
GPU specific features which are not suitable for FPGAs. Our
preference is to choose a device-neutral programming model.
Currently, we are investigating the possibility of using Concur-
rent Collections [110] to describe the task level dependency

while continuing to specify each task using C/C++ languages.
We expect that such a high-level concurrent model is very
useful for energy-efficient computing on customizable hetero-
geneous platforms, which include multi-core CPUs, GPUs, and
FPGAs. This direction is being actively pursued in the newly
established research center on customizable domain-specific
computing [22], [107].

C. In-System Design Validation and Debugging

On-chip and on-board design validation and debugging
has emerged as one of the most time-consuming aspects for
FPGA-based systems, especially given continuously increasing
device capacity and growing design complexity. Although the
promise of HLS is that most verification can be performed
by executing the original untimed C model, timing and data-
related errors that occur on the board are often difficult to
debug. At present, the common practice to detect such errors
is to perform RTL-level timing accurate simulation or to use
in-system debugging tools from major vendors (e.g., Altera
SignalTap II and Xilinx ChipScope). These tools can be used
to insert logic analyzer cores and provide capabilities to trigger
and probe internal signals inside the FPGA circuits.

Debugging HLS designs at the RTL level is complicated
by the fact that the structure of the original C code may
not resemble the RTL architecture generated by an HLS tool.
Many of the modern HLS solutions provide cross referencing
capabilities between C and RTL to help designers understand
the synthesis results. However, names in HDL are often
transformed during RTL synthesis and technology mapping.

In order to effectively debug these systems, future HLS tools
shall enable almost all debugging to occur in the C domain
by providing the following.

1) Debugging core synthesis: the ability to synthesize effi-
cient debugging logic with minimal overhead.

2) Performance monitor generation: the ability to watch
the status of critical buffers to debug performance bugs,
such as FIFO overflows and deadlocks.

3) Step-through tracing: the ability to set breakpoints at
the C level and observe internal states from hardware
blocks.
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