Neural Networks 27 (2012) 81-90

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A balanced neural tree for pattern classification

Christian Micheloni®?, Asha Rani**, Sanjeev Kumar?®, Gian Luca Foresti?

2 AVIRES Lab, Department of Mathematics and Computer Science, University of Udine, Via Della Scienze-206, Udine, Italy
b Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India

ARTICLE INFO ABSTRACT
Article history: This paper proposes a new neural tree (NT) architecture, balanced neural tree (BNT), to reduce tree size
Received 2 November 2009

and improve classification with respect to classical NTs. To achieve this result, two main innovations have
been introduced: (a) perceptron substitution and (b) pattern removal. The first innovation aims to balance
the structure of the tree. If the last-trained perceptron largely misclassifies the given training set into a
reduced number of classes, then this perceptron is substituted with a new perceptron. The second novelty
consists of the introduction of a new criterion for the removal of tough training patterns that generate the
problem of over-fitting. Finally, a new error function based on the depth of the tree is introduced to reduce
perceptron training time. The proposed BNT has been tested on various synthetic and real datasets. The
experimental results show that the proposed BNT leads to satisfactory results in terms of both tree depth

Received in revised form 13 October 2011
Accepted 17 October 2011

Keywords:

Decision trees (DTs)
Neural networks (NNs)
Neural trees (NTs)
Pattern classification

Perceptron
Performance evaluation

reduction and classification accuracy.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Decision trees (DTs) (Rasoul & Landgrebe, 1991) and neural
networks (NNs) (Lau & Widrow, 1990) are powerful tools for
pattern classification. Several studies have been conducted using
these two classifiers. A study comparing these two approaches’
effects on various real life applications (e.g., load forecasting,
power security and vowel recognition) has been presented by Atlas
et al. (1990). Both techniques have advantages and drawbacks.
The most existing top-down DT design methods make use of
single-feature splits at successive stages of the tree design. While
computationally attractive, single-feature splits generally lead to
large, deep trees and low performance. On the other hand, one
cannot decide an ideal architecture of an NN (number of hidden
layers and number of nodes in each hidden layer) for a given
training dataset. For this reason, a hybridisation of these two
methodologies called neural tree (NT) (Deffuant, 1990; Lippmann,
1987; Sankar & Mammone, 1992; Sethi & Yoo, 1997; Sirat &
Nadal, 1990; Utgoff, 1989), has been investigated to combine the
advantages of both DTs and NNs.

Some approaches to this problem were motivated by the
lack of a reliable procedure for defining the appropriate size
of feed-forward neural networks in practical applications. These
approaches used DTs to help to determine the topology of NNs
to ease training and/or improve generalisation by controlling
the number of nodes and connections (Kubat, 1991; Li, Fang, &

* Corresponding author. Tel.: +39 0432 558423.
E-mail address: asha.rani@dimi.uniud.it (A. Rani).

0893-6080/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2011.10.007

Jennings, 1992; Sanger, 1991). Some approaches were motivated
by the lack of a powerful procedure for computing the appropriate
splits or tests in DTs. To improve generalisation, these approaches
use NNs to refine the splits or even directly embed NNs as splits
nodes in DTs. Murthy, Kasif, and Salzberg (1994), Sankar and
Mammone (1992), Sethi and Yoo (1997) and Utgoff and Brodley
(1990).

Apart from these approaches, consistent efforts have been
made to combine DT and NN into one structure. A new concept
called split node has been introduced in simple perceptron based
NT (Foresti & Pieroni, 1996) for splitting the training set into
two parts when the current perceptron node repeats the same
classification of the parent node. This strategy has been provided
to guarantee convergence in any case of the tree building process
and to reduce misclassification. In Zhaou and Chen (2002), a hybrid
decision tree (HDT) has been proposed for the simulation of human
reasoning using symbolic learning. Foresti and Micheloni (2002),
describe a generalised neural tree (GNT) model. The activation
values of each node are normalised to allow for a probability
distribution interpretation. The main novelty of the GNT consists
in the definition of a new training rule that performs an overall
optimisation of the tree. Each time the tree is increased by a new
level, the whole tree is re-evaluated. In Foresti and Dolso (2004),
an adaptive high-order neural tree (AHNT) employing high-order
perceptrons (HOPs) instead of simple perceptrons as nodes of the
tree has been suggested. First-order nodes divide the input space
with hyperplanes, while HOPs divide the input space arbitrarily.
The drawback of this approach is increased complexity and, thus,
higher computational cost.

Recently, a neural network tree (NNTree) classifier (Maji,
2008) using a multilayer perceptron (MLP) at each node was

http://dx.doi.org/10.1016/j.neunet.2011.10.007
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:asha.rani@dimi.uniud.it
http://dx.doi.org/10.1016/j.neunet.2011.10.007

82 C. Micheloni et al. / Neural Networks 27 (2012) 81-90

proposed for designing tree-structured pattern classifiers. To limit
the depth of the tree, a new uniformity index was introduced.
Such an index accomplishes the intuitive goal of reducing the
misclassification rate. The performance of the NNTree has been
evaluated in different contexts, such as in letter recognition,
satellite image classification and splice-junction and protein
coding region identification. Experimental comparisons have been
proposed with respect to other classifiers. Such comparisons show
comparable classification accuracy with significantly smaller trees
and, thus, faster classification times. The main drawback is the
necessity of an ad hoc definition of some parameters for each
context and training set, such as the network architecture (e.g., the
number of hidden layers, number of nodes for each layer, etc.) and
the uniformity index.

This paper proposes a new NT architecture called balanced NT
(BNT) to reduce the size of the tree (both in depth and in the
number of nodes), improve the classification with respect to a
standard NT and skip the definition of the network architecture
as in MLP (Atlas et al., 1990) or MLP-based NT (Maji, 2008). To
achieve this result, two main improvements are proposed: (a)
perceptron substitution and (b) pattern removal. The first novelty
aims to balance the tree structure by substituting the last trained
perceptron if some conditions hold. In particular, a new criterion
is proposed to check whether the current training set is largely
misclassified into a reduced number of classes. If this is the case,
the perceptron is substituted with a new perceptron that equally
distributes the patterns among the classes. If the perceptron node
repeats the same classification of the parent node, splitting nodes
as in Foresti and Pieroni (1996) are employed to divide the training
set into two subsets.

The second novelty consists of the introduction of a new cri-
terion for the removal of tough training patterns that cause an
over-fitting problem. The trained perceptron associates an uncer-
tainty value, measuring the perceptron’s classification confidence
for each pattern in each class. If uncertainty is high between the
two most probable classes, the pattern is removed. Finally, a new
error function based on the depth of the tree is introduced to
reduce the training time.

The proposed novelties aim to define a new training strategy
that does not require the definition of complex network topologies
as for NNTree (Maji, 2008) and the setting of ad hoc parameters
other than those required for the simple perceptrons (e.g., learning
epochs, learning rate, etc.).

The paper is organised as follows. The NT architecture and
its related training algorithm are briefly outlined in Section 2.
In Section 3, the proposed balanced NT model is presented.
Finally, experimental results of both artificial geometric pattern
distribution (e.g., chess-board, double spiral, etc.) and real data
are presented. A comparison among the proposed BNT, the classic
neural tree model and other well-known classifiers is also given.

2. Standard NT algorithm

A neural tree (NT) is a decision tree with a simple perceptron
for each intermediate/non-terminal node. Two main phases can be
distinguished: (a) training and (b) classification.

2.1. Training phase

In the training phase, the NT is constructed by partitioning a
training set consisting of feature vectors and their corresponding
class labels to generate the tree in a recursive manner. Such a
procedure involves three steps: computing internal nodes, then
determining and labelling leaf nodes. An intermediate node groups
the input patterns into different classes. In contrast, a leaf node
classifies input patterns into a single class which is used as the

A - O

", o 2 .
] RS oo*
] P o
- “"‘ [) ° -“-“
. e
VO
SR B
L &
I P
o mE
K .
0’. . .
o
0’ >

A .
"~ © °
n., ° .
., 00 O
u -, °
[S
90 e
.
[] ~,
¥
- mn
.

Class3

B Classt ; . Class2 ; A Class3

Fig. 3. Final NT.

label for the leaf node. Therefore, NTs are class discriminators
that recursively partition the training set such that each generated
path ends with a leaf node. The training algorithm, along with
the computation of the tree structure, calculates the connection’s
weights for each node. Each connection’s weight is adjusted by
minimising a cost function as mean square error or another error
function. These weights are used during the classification phase
to classify unseen patterns. The NT training algorithm can be
summarised as follows.

(1) The patterns of the training set are presented to the root node,
and the node is trained to divide the training set into subsets.
The process stops when a particular condition is reached.

(2) If a subset is homogeneous, a leaf node is associated and
labelled with the corresponding class (See Fig. 1).

(3) If one or more subsets are not homogeneous, a new node is
added to the NT at the next level to learn these subsets (See
Fig. 2). Go to step 1.

(4) Training stops when all nodes become the leaf node (See Fig. 3).

2.2. Classification phase

For the classification task, unknown patterns are presented to
the root node. The class is obtained by traversing the tree in a top-
down manner. At each node, activation values are computed on
the basis of each connection’s weight. Starting from the root, the
activation values of the current node determine the next node to
consider until aleaf node is reached. Each node applies the winner-
takes-all rule so that

x eclassi & o(wix) < o(wix) forallj#i (1)

C. Micheloni et al. / Neural Networks 27 (2012) 81-90

where o is the sigmoidal activation function, w; is the vector of the
weights for the connections from the inputs to the ith output and
X is the input pattern. This rule determines the classes associated
with the leaf nodes as well as the paths of the internal nodes.

3. The proposed BNT algorithm

3.1. Training phase

Let TS = {(pj,c)li = 1,...,N Ai € [1, M]} be the training
set containing N number of d dimensional p; patterns. Each of
them belongs to one of the M classes. The training phase of the
proposed BNT algorithm is borrowed from the NT of Foresti and
Pieroni (1996) with the introduction of new aspects. A flowchart of
the algorithm is shown in Fig. 4. The overall algorithm is described
in the following steps.

(1) Create a perceptron (single-layer neural network without
hidden layers) and initialise its weight matrix in such a
way that the hyperplane generated by these weights passes
through the centre of mass of the TS. This is done by fixing the
bias as the centroid of the TS. The neural network used is as
shown in Fig. 5. The shaded nodes on the left are input layers.
The input layer neurons are only used to pass and distribute
the inputs; they perform no computation. Thus, the only true
layer of neurons is the one on the right. Each of the inputs
X1, X2, X3, . . . , Xg 1S connected to every neuron in the output
layer through its connection weight. Because every value of
the outputs yq, y», ¥3, . .., ¥u is calculated from the same set
of input values, each output varies based on the connection
weights.

(2) Input the training set (TS)/local training set (LTS)' to the root

node or internal node.

Start training the perceptron by updating the weight matrix

to minimise the classification error by optimising a cost

function. Note that the perceptron is forced to consider only
the classes, which are present at that node, instead of all of
the classes.

(4) The pattern is assigned to the class with the highest activation
value. If this value is similar to the other activation values,
and the classification error of the perceptron is low, the
considered pattern is removed from the LTS. The removal
criterion will be explained further in Section 3.1.2.

(5) A perceptron divides TS/LTS into m < M non-empty groups
S1,--5 Sm)-

(6) If m > 1, a new level of m child nodes is created. Each i-th
child node is assigned to the corresponding LTS S;.

(7) f m = 1, LTS is divided into two groups, S; and S;, using
the splitting rule (Foresti & Pieroni, 1996) and producing two
child nodes. Go to step 9.

(8) If the classification performed at the current node is
inaccurate and unbalanced (i.e., one class receives the large
majority of the patterns), the perceptron weights are replaced
by the initial weights, which divide the training set with
a hyperplane passing through the centre of the mass. This
solution allows the balanced distribution of patterns among
all classes. This step will be explained in more detail in
Section 3.1.1.

(9) If all the patterns present at a child node belong to the same
class, the node is made a leaf node and labelled with the class
of such patterns. If all child nodes become leaf nodes, the
current perceptron ends with M leaf nodes, one for each class;
otherwise, go to step 2.

(10) If all current nodes are leaf nodes, the algorithm ends.

Otherwise, go to step 2 to train the remaining perceptrons.

—
w
~

(1) Create the
root node with a
single perceptron .

(2) Input the
TS/ LTS to
root/internal
node.

(3) Train the
perceptron by updating
the weights in order to

minimize the

classification error.

'

(4) Classify the patterns to
their highest probable
classes and remove the
“tough to classify” patterns

(Pattern removal)

(5) if the current
perceptron is able
to dividethe LTS
into m groups

(6) Add Split
node

(7) Substitute
the perceptron
(Perceptron
substitution)

(7) If the
perceptron is
balanced

NO (8) If all the

groups of patterns

A

are homogeneous

(8) Assign class
labels to groups
of patterns

(9) if all the
current nodes
are leafs

Fig. 4. Flowchart explaining the proposed BNT algorithm.

¢
x1
X €2
2
c
X, 3
X
d Sy

Fig. 5. The single layer neural network used at each node.

83

84 C. Micheloni et al. / Neural Networks 27 (2012) 81-90

Let & be the error defined as the mean error computed on all
output neurons and patterns,

5= — 8!)
kM k=1 i=1 1

where K is the total number of patterns at the current node and
the error §¥ is the difference of output of and the target’s class tf,
computed as follows:

kK 1k ok
8f = |tf — o]

, i=1,...,.M (3)
where of € (0, 1), and

k _
t; =

1, if pattern k belongs to class i
0, otherwise.

As the tree grows during the training phase, the training set
continues splitting into smaller subsets. It can be observed that in
smaller subsets with a reduced number of classes, the boundaries
become more defined. As a result, the error reduces faster.
Therefore a more precise perceptron is required as the depth of
the tree grows. The precision depends on the number of classes
as well. A criterion considering the depth of the tree at the node
being processed and the number of classes present has therefore
been defined to compute the stop rule of the training process.

Each perceptron is trained either until the error § becomes less
than 1/m!, where m is the number of classes actually present in the
current LTS and [is the depth of the node or until there is no further
reduction in the error for a given number of Wait epochs. The
criterion for the perceptron to stop the training can be summarised
by the following equation:

5 < 1/m' or

<(n) <(n—1) . (4)
(R) < toler for Wait number of epochs

where 3" and Sni] are the mean errors in consecutive iterations,
and toler is a small number of the order 10~°. This criterion for
stopping the training process is formulated in an effort to reduce
the training time.

Three different modalities for splitting the TS have been
included in the proposed algorithm. The first is performed by a
trained perceptron, the second by an untrained perceptron and the
third by a split node.

The studied strategy bases its decision on which splitting
criteria must be adopted on the basis of the classification errors. In
particular, at each node the global classification error is computed
as follows:

EE=1—— 5
t K. (5)
where K, is the number of correctly classified patterns and K; is the
total number of patterns presented at the current node.
In addition, to better localise the error among the classes, for
each class a misclassification error is computed as

K
E=1-_7 (6)
K.

where K., is the number of correctly classified patterns of class i
and K;, is the total number of patterns classified as class i.

T LTS is a subset of the TS. It is the input to a child node that resulted from the
classification/split performed by its parent node.

3.1.1. Perceptron substitution

Studying the error trends for different datasets reveals, that if
the total error is relevant and the difference between the lowest
and highest errors among the classes is considerable, the degree
of correctness in the classification will be low. As a consequence,
the tree will be unbalanced, making a good trade-off between
errors and tree depth impossible. For these reasons, the trained
perceptron is not considered optimal.

The first novelty of the proposed solution is to substitute the
badly trained perceptron with an initial untrained one. This is
generated by fixing the bias such that the hyperplane passes
through the centroid of the local training set. This procedure
ensures a uniform distribution of the patterns included in the
current LTS among all the classes. As a result of this substitution,
the tree is more balanced and its depth reduces.

Considering that the training phase of a perceptron may stop
before reaching the stop criterion described in Eq. (4), new criteria
have been studied to decide whether a perceptron has been badly
trained. In particular, two main properties have been identified.

e The perceptron’s classification error has to be equally dis-
tributed among the child nodes.

e The initial error of the perceptron should be reduced signifi-
cantly after training.

The first property wants to avoid child nodes with high classifica-
tion errors and child nodes with low classification errors. Therefore
the following should hold:

E;

EE~— Vie{l,...,m} (7)
where E; is the classification error for the i-th child node.

To satisfy the second property, it has been decided that the
initial error Ey is significantly reduced after training if such a
reduction is quadratic with respect to the number of output classes
m. Therefore the following should hold:

Eo
E < —- (8)
m
Combining Eqs. (7) and (8), the following holds:
E E
E~E-m< g m=—. (9)
m m

A criterion for judging whether the classification performed by
the trained perceptron is acceptable is as follows:

E
Etffo

and (Emax - Emin) =< Et (10)

where Epn,x = maxi{E;}, Emin = min;{E;}. The difference between
the maximum and minimum classification errors has been adopted
to check for a good distribution of error among all the child nodes.
Indeed, it could be maximum %0 that is the initial error equally
distributed over the number of activated outputs.

As an initial qualitative justification of the proposed approach,
the training results obtained with a standard NT and the proposed
BNT on a simple two-class chess-board problem are shown in Fig. 6.
At the root node, the trained perceptron is able to separate only
a few patterns, which yield a high total error, E;, = 0.3593, and
relevant difference in the errors among the two classes, i.e.,, E; = 0
and E; = 0.4181. Using the standard NT training procedure and,
keeping such a perceptron yields a deeper NT. On the other hand,
adopting the proposed strategy replaces the root perceptron with
a perceptron whose weights define a hyperplane passing through
the centre of the mass of the training set. Such a node divides the
training set better, allowing it to define a more balanced NT: an NT
with a lower depth.

C. Micheloni et al. / Neural Networks 27 (2012) 81-90 85

ﬂitial untrained
perceptron pass-
ing through cent-
re of mass.

Fig. 6. Tree formation using NT (left) and BNT (right). The tree obtained with the proposed BNT algorithm is balanced and converges quickly whereas with the classic

algorithm, it is unbalanced and deep.

In the case that a perceptron is unable to separate the training
set into two or more classes, the third type of splitting is adopted.
For this purpose, a splitting rule (Foresti & Pieroni, 1996) is
considered to divide the data into two groups with nearly equal
cardinality. The splitting rule consists of adding a new node, the
splitting node, to the NT architecture. This node must satisfy some
constraints: (a) the TS/LTS should be divided into at least two
subsets, (b) the cardinality of these subsets should be similar and,
(c) the splitting should be performed on the features with maximal
variance, i.e., the most discriminating features. At first, the
barycentres x! and x* of the two classes of the TS/LTS with higher
cardinality are computed, and the component which maximises
the L; norm is identified. Let k be the selected component. Then
a splitting hyperplane is computed as the hyperplane orthogonal
to the k axis and passing through the median point between x!
and X2

3.1.2. Pattern removal

Concerning the third step of the proposed training algorithm,
it is apparent that even a well-trained perceptron is unable
to classify certain patterns. Such patterns require specialised
classifications and force the algorithm to produce deeper trees.
Moreover, such patterns produce over-fitting of the data, reducing
the generalisation of the tree.

To avoid this situation, a pre-pruning strategy is applied. When
a perceptron is shown to be a good classifier after training by the
aforementioned strategy, the way it classifies some patterns allows
to define a criterion for their removal from the child node’s training
sets. These patterns may be considered boundary line patterns (see
Fig. 7 Left) or patterns surrounded by patterns of another class (see
Fig. 7 Right). These patterns are always difficult to classify in the
sense that the perceptron has a high uncertainty among different
classes.

The decision to remove a pattern from the training set is made
based upon the following aspects:

e probability of a pattern belonging to a class
e total classification error of the perceptron.

The first aspect considers classification uncertainty by checking
whether two or more classes have a similar high probability of
describing the pattern. The second aspect represents the reliability

of the training process. Therefore, if a relevant uncertainty exists
in the pattern classification and if the perceptron is reliable, the
pattern under consideration is considered difficult to classify and
therefore removed from the training set of the child.

The classification probability is modelled by normalising the
activation values so that they form a distribution. Given two classes
¢; and ¢; and the respective probabilities P(c;|x) and P(cj|x) of
describing a pattern x, the uncertainty between the two classes is
provided by

hy = |P(ci|X) — P(cj|x)| . (11)

Let P(Cmax1/X) and P(Cpmax2|X) be the maximum and second-
maximum classification probabilities, representing the two most
probable classes to which x should belong. hyax = |P(Cmax11X) —
P(cmax2|X)| is defined to represent the uncertainty of the trained
perceptron. The lower the difference between the maximum and
second-maximum classification probabilities, the more unlikely
the perceptron is to classify the pattern correctly. A probability
less than 0.2 is considered sufficiently low, so a threshold Th €
[0.05, 0.20] is considered to limit the value of hyay.

Concerning the reliability of the perceptron classification,
studying the behaviours of the nodes with respect to their depth,
suggested to define the reliability R = 1/m'. If the total error E; of
the node being processed is lower than the reliability factor R, the
perceptron can be considered reliable.

To summarise the criteria for deciding whether a pattern
must be removed from the training set, the decision rule is as
follows:

if hpax < Thand E; < Rand X ¢ cpaxq then
Pattern X must be removed

else
Pattern X is included in LTS ax1

end if

For the X-OR problem in Fig. 7, 400 patterns are used for
training and 10,000 patterns are classified by the trained NT model
with the standard algorithm and the proposed algorithm. The
NT constructed with the standard algorithm reaches a depth of
8 levels with 27 nodes, whereas the BNT constructed with the
proposed algorithm reaches a depth of only 5 levels with 15 nodes.
The classification accuracies obtained are 98.40% and 98.43% with

86

A .
\Q\;:IIIIOQ

IEERVERRE YT N
assasgasss N
asssadgana N
A EEEEEER LT \,
‘QassaaaRgs N
&IIIII.&Q N

\ ‘gaamny lQ

N, é;----

A

C. Micheloni et al. / Neural Networks 27 (2012) 81-90

Fig.7. Patterns removed in a two-class symmetric chessboard dataset during the training phase (left), patterns removed in a three-class random dataset during the training
phase (right). If this particular pattern is not removed, the classic NT requires three more hyperplanes (thick black lines in (right)) to separate the pattern.

b

Fig. 8. Classification accuracy obtained on a two-class chessboard dataset using
400 patterns for training, (a) NT and (b) BNT.

a

NT and BNT, respectively. Therefore it is noted that the depth of
the tree is reduced by 38% without diminishing the classification
accuracy (see Fig. 8).

4. Experimental results

This section presents some experimental results on synthetic
and real datasets. Synthetic datasets are used to compare the
proposed tree model with the standard one. The classification
accuracy is compared on various real datasets with existing
algorithms, such as Cellular Automata (CA) (Maji, Shaw, Ganguly,
Sikdar, & Chaudhuri, 2003), C4.5 (Eggermont, Kok, & Kosters,
2004; Qin & Lawry, 2005; Quinlan, 1993), Bayesian (Cheeseman
& Stutz, 1996), MLP (Hertz, Krogh, & Palmer, 1991; Lippmann,
1987; Tanwani, Afridi, Shafiq, & Farooq, 2009), NNTree (Maji,
2008), Naive Bayes (Kotsiantis & Pintelas, 2005) and NT (Sankar &
Mammone, 1992). For the training of BNT for all datasets only one
parameter, learning rate 7 is selected variably.

4.1. Synthetic datasets

We have already discussed the performance of BNT over NT for a
two-class chessboard dataset. Now let us consider a more complex
problem, i.e.,, a symmetrically distributed four-class chessboard
dataset (see Fig. 9). The dataset consists of 400 patterns equally
distributed among four classes. NT and BNT are trained using 400
patterns and on the patterns remaining after randomly removing
10%, 20%, 30% and 40% of the patterns. Performance is evaluated
in terms of the tree depth as well as the classification accuracy.
A five-fold cross-validation is performed and averaged results are
presented. The average depth of NT is greater than the average BNT
depth (see Fig. 10). Considering the average classification accuracy
shown in Fig. 11 for both algorithms, the gain of the proposed
technique is considerable, as Fig. 9 also demonstrates.

It is also noticeable in these charts that the behaviour of the
proposed BNT solution is more stable or linear compared to the

standard NT with respect to the removal of patterns from the
training set.

The second experiment consists of a more complex problem
frequently used to check the performance of NTs. The training
set is composed of 1110 patterns distributed uniformly across
two crossed spirals. The results obtained with NT and BNT are
shown in Fig. 12. The tree obtained with the NT algorithm is
composed of 354 nodes, and the depth is 18. The tree obtained
with the BNT algorithm converges at a depth of 14 with 279
nodes, and 7 patterns are removed during the training process.
The classification accuracies obtained with the NT and the BNT are
86.64 and 89.37, respectively.

Again, evaluating both the depth of the trained tree and
the classification accuracy, the proposed BNT algorithm achieves
improved results with respect to the standard NT algorithm.

4.2. Real datasets

The results obtained on real datasets with the proposed
algorithm are compared with various algorithms reported in the
literature. The datasets were taken from the UCI Machine Learning
Data Repository (Asuncion & Newman, 2007).

4.2.1. Satellite image classification

The original Landsat data for this database is generated from
data purchased from NASA by the Australian Centre for Remote
Sensing and used for research at the University of New South
Wales. The database was generated taking a small section (82 rows
and 100 columns) from the original data (Michie, Spiegelhalter,
Taylor, & Campbell, 1995). The data were divided into training and
test sets, with 4435 examples in the training set and 2000 in the
test set. During BNT’s training process, 10 patterns were removed.
A comparison of the results for this dataset is presented in Table 1
using the well-known Bayesian, C4.5, MLP, CA, NNTree and NT
algorithms and the classification accuracy as a parameter. The
depth and the number of nodes involved in tree-based classifiers
are also compared. Most of the time, NNTree is more compact with
fewer nodes than BNT, but it is still comparable because each node
of NNTree is a multilayer perceptron.

The experiments were executed only for NT and BNT, whereas
the results for other classifiers were taken from published works.
Because the classification time can depend on various parameters
(processor speed, memory size and efficiency of code written
to implement the algorithm), to avoid all these factors, the
classification time has been modelled in terms of the number of
nodes a pattern has to traverse to be classified. In this way, the
classification time is directly proportional to the tree depth. The
deeper the tree is, the more time a pattern takes to be classified
(reach leaf node). The path length (number of nodes to reach a

C. Micheloni et al. / Neural Networks 27 (2012) 81-90 87

Fig. 9. First row—400 patterns distributed symmetrically among four classes and then after removing randomly 10%, 20%, 30% and 40% of the patterns. Second row—

classification performed by NT. Third row—classification obtained by BNT.

8

6.5 ~ PR i

551 i

5¢ i

Depth of tree

450 1

\
0 5 10 15 20 25 30 35 40
Patterns removed (%)

Fig. 10. Depth of NT and BNT obtained when trained with 400 patterns and the
patterns remaining after randomly removing 10%, 20%, 30% and 40% of the 400
patterns of a four-class chessboard dataset.

Table 1
Classification accuracy of different algorithms for the satellite image database.

Algorithms Accuracy(%) Depthoftree Totalnodes Avg. path length
Proposed 85.25 14 592 8.4485

BNT

NT NA NA NA NA

NNTree 87.1 5 25 -

MLP 86.2 - - -

Bayesian 85.4 - - -

CA 775 - - -

C4.5 85.2 21 433 -

leaf node) has been computed for each pattern, and the average
path length of all the patterns has been used as a parameter for the
comparison between NT and BNT (column 5 of each table).

It is worth noting that the classification accuracy of the
proposed solution is better than the other existing algorithms
except MLP, NNTree and Bayesian. Even if it is lower, it is still
comparable or equivalent. The BNT converges at depth 14, which is
33% less than the depth of the tree obtained with C4.5. The results
used for comparison are taken from Maji (2008).

Classification accuracy (%)

5 10 15 20 25 30 35 40
Patterns removed (%)

Fig. 11. Classification accuracy obtained with NT and BNT when trained with 400
patterns and the patterns remaining after randomly removing 10%, 20%, 30% and
40% of the 400 patterns of a four-class chessboard dataset.

Once more, it is interesting to notice that the proposed solution
reduces the depth of the trained tree with respect to other tree-
based classifiers while keeping the classification accuracy and
without requiring the definition of networks’ topologies in terms
of hidden layers and nodes.

4.2.2. Identification of splice junctions in DNA

This section presents the application of BNT to finding the splice
junction in anonymous DNA sequences. In bioinformatics, one of
the major tasks is the recognition of certain DNA subsequences
that are important in the expression of genes. A DNA sequence
is basically a string over the alphabet D = {A, C, G, T}. DNA
contains the information with which a cell constructs protein
molecules. The cellular expression of protein proceeds from the
creation of messenger ribonucleic acid (mRNA) copies from the
DNA template. This mRNA is then translated into a protein. One
of the most unexpected findings in molecular biology is that large
pieces of the mRNA are removed before it is translated further
(Breathnach, Mandel, & Chambon, 1997). The utilised sequences
are known as exons while the removed sequences are known
as introns or intervening sequences. The points at which DNA

88 C. Micheloni et al. / Neural Networks 27 (2012) 81-90

Fig. 12. Left to right: Training dataset, classification obtained with NT, classification obtained with BNT.

Table 2 Table 3
Classification accuracy of different algorithms for the DNA database. Classification accuracy of different algorithms for the E.coli database.
Algorithms Accuracy (%) Depth of Total Avg. path length Algorithms Accuracy(%) Depthoftree Total nodes Avg. path length
tree nodes Proposed 8321 3 12 2.4159
Proposed 91.67 5 19 3.4634 BNT
BNT NT 82.42 5 16 2.7876
NT 91.16 11 42 4.6538 NB boost 81.99 - - -
NNTree 94.2 3 5 - MLP 82.29 - - -
MLP 914 - - - C4.5 80.36 - - -
Bayesian 90.3 - - -
C4.5 93.3 12 127 -
CA 87.9 _ _ _ During the training process of the BNT, 2 patterns were

is removed are known as splice junctions. The splice junction
problem is to determine which of the following three categories
a specified location in a DNA sequence falls into: (1) exon/intron
borders, referred to as donors; (2) intron/exon borders, referred to
as acceptors; and (3) neither.

The dataset used in this problem is a processed version of the
Irvine Primate splice junction database (Michie et al., 1995). Each
of the 3186 examples in the database consists of a window of
60 nucleotides, each represented by one of four symbolic values
{A, G, C, T}. The classification of the middle point in the window is
one of the intron boundary, exon boundary or neither. Processing
involves the conversion of the original 60 symbolic attributes to
120 binary attributes and the conversion of symbolic class labels to
numeric labels. The training set of 2000 is chosen randomly from
the dataset and the remaining 1186 examples are used as the test
set.

During the training process of the BNT, 6 patterns have been
removed. The comparison of results for this dataset is presented
in Table 2 with the well-known algorithms Bayesian, C4.5, MLP,
CA, NNTree and NT considering the classification accuracy as a
parameter. It is notable that the classification accuracy of the
proposed solution is better than all other algorithms except
C4.5 and NNTree, to which it is still comparable or considered
equivalent. The BNT is composed of 19 nodes with depth 5, while
NT is composed of 42 nodes with depth 11. The depth of BNT is
58% less than C4.5 and 55% less than NT. Again, it is established
that the proposed solution reduces the depth of the trained tree
with respect to other tree based classifiers without diminishing the
classification accuracy.

4.2.3. Predicting the cellular localisation sites of proteins

Proteins from E.coli are classified into 8 classes: inner mem-
brane lipoproteins (imL), outer protein membrane (omL), inner
protein membrane with a cleavable signal sequence (imS), other
outer membrane proteins (om), periplasmic proteins (pp), inner
membrane proteins with an uncleavable signal sequence (imU),
inner membrane protein without a signal sequence (im) and cy-
toplasmic protein (cp). Seven features were calculated from the
amino acid for use in classification. For more details on this dataset,
see Horton and Nakai (1996).

removed. The results of comparison of this dataset with well-
known algorithms Naive Bayes, MLP, C4.5 and NT considering
the classification accuracy as parameter are presented in Table 3.
It is established that the classification accuracy of the proposed
solution is higher than that of other algorithms. The BNT is
composed of 12 nodes with depth 3, and NT is composed of 16
nodes with depth 5. The depth of BNT is 40% less than that of
NT. It is interesting to note that the proposed solution reduces the
depth of the trained tree with respect to NT while keeping the
classification accuracy.

4.2.4. Iris plant classification

One of the most popular and best known databases of the neural
network application is the iris plant dataset, created by R.A. Fisher
in 1950. There are 150 instances, 50 each in three classes. The
existing 4 numerical attributes for identification of the classes are
sepal length, sepal width, petal length and petal width in centi-
metres. The classes are Iris setosa, Iris versicolor and Iris virginica.
In this application, 33 data from each class are used for training,
and 17 are separated for testing purposes.

During the training process of the BNT, 3 patterns were
removed. The results’ comparison for this dataset with well-known
algorithms Bayesian, Naive Bayes, C4.5, Bagged C4.5, Boosted (4.5,
and NT considering the classification accuracy as parameter are
presented in Table 4. The experimental results establish that the
classification accuracy of the proposed solution is better than that
of other existing algorithms. The depth of the tree obtained with NT
is 8 with 12 nodes, whereas with BNT the tree converges at depth
3 with 4 nodes, which is 63% less than that of NT.

It is interesting to notice that the proposed solution reduces
the depth of the trained tree with respect to NT while keeping the
classification accuracy.

4.2.5. Classification of radar returns from the ionosphere

The Johns Hopkins University lonosphere database (Sigillito,
Wing, Hutton, & Baker, 1989) contains 350 patterns, each with
34 numeric attributes. There are 2 classes, i.e., good and bad. This
radar data were collected by a system in Goose Bay, Labrador. The
system consists of a phased array of 16 high-frequency antennae
with a total transmitted power of 6.4 kW. The targets were
free electrons in the ionosphere. “Good” radar returns are those
showing evidence of some type of structure in the ionosphere.
“Bad” returns are those that do not; their signals pass through the
ionosphere.

C. Micheloni et al. / Neural Networks 27 (2012) 81-90 89

Table 4
Classification accuracy of different algorithms for the Iris database.

Table 6
Classification accuracy of different algorithms for the letter database.

Algorithms ~ Accuracy(%) Depthoftree Totalnodes Avg. path length Algorithms Accuracy(%) Depthoftree Totalnodes Avg. path length

BNT 96.07 3 4 2.33 Proposed 83.90 21 2921 10.84

NT 96.07 8 12 3.0588 BNT

Bayesian 93.20 - - - NT NA NA NA NA

Naive 95.53 - - - Bayesian 87.4 - - -

Bayes CA 84.4 - - -

C4.5 94.1 - - - C4.5 86.6 20 2127 -

Bagged 95 - - - NNTree 829 6 352 -

C4.5 MLP 67.2 - - -

Boosted 95 - - -

C4.5

using simple perceptrons instead of complex MLP structures is

Table 5 possible and efficient because of the two main novelties we

Classification accuracy of different algorithms for the ionosphere database.

Algorithms Accuracy(%) Depthoftree Totalnodes Avg. path length
Proposed 94.6 2 2 1.8733
BNT

NT 94.6 2 2 1.8733
C4.5 91.1 - - -
Boosted 94.2 - - -

Cc4.5

Bagged 93.8 - - -

C4.5

Naive 92.7 - - -
Bayes

MLP 96 - - -

During the training process of the BNT, 2 patterns were
removed. The results compared for this dataset with well-known
algorithms Naive Bayes, C4.5, Bagged (4.5, Boosted C4.5, MLP,
and NT considering the classification accuracy as parameter are
presented in Table 5. It is worth noting that the classification
accuracy of the proposed solution is better than other existing
algorithms with the exception of MLP, but even in the case of MLP,
it is comparable. The tree obtained from the NT algorithm and the
tree obtained from the BNT algorithm converge at a depth of 2 with
2 nodes. For this dataset, all the perceptrons have been considered
efficient. Therefore, the BNT and the NT are identical, such that no
perceptron substitution occurred. The domain is extremely simple;
thus all algorithms behave well for this dataset.

4.2.6. Letter recognition

The dataset used here was constructed by David]. Slate of
Odesta Corporation, Evanston, IL 60201. The objective is to classify
each of a large number of black and white rectangular pixel
displays as one of the 26 capital letters of the English alphabet.
The character images produced are based on 20 different fonts and
each letter within these fonts is randomly distorted to produce
a file of 20,000 unique images. For each image, 16 numerical
attributes have been calculated using edge counts and measures
of statistical moments, which are scaled and discretised into a
range of integer values between 0 and 15. As one of the fonts
used, Gothic Roman, appears very different from the others, perfect
classification performance is unlikely to be possible with this
dataset (Michie et al., 1995).

During the BNT training process, 10 patterns were removed.
The results compared for this dataset with well-known algorithms
Bayesian, C4.5, MLP, CA, NNTree and NT considering the classifica-
tion accuracy as parameter are presented in Table 6. Because the
dataset is enormous and complicated, NT is unable to converge,
but BNT converges with the classification results comparably to the
other algorithms.

5. Conclusions

This paper presented a new strategy of building a neural
tree classifier based on simple perceptrons. The advantage of

have introduced. In particular, balancing the tree and removing
difficult patterns allow us to simplify the network structure of the
nodes without introducing overfitting problems. With respect to
standard perceptrons, no new parameters must be fixed during the
design of the training strategy. Experimental results demonstrate
that the proposed solution adapts well to different classification
problems, showing a good generalisation property. In particular,
the classification accuracy is always close to the best performance,
while the depth of the generated tree is always less than the depth
of trees generated with other available techniques. As a final but
no less important consideration, the proposed perceptron-based
neural tree always achieves convergence, while in some cases, the
standard NT algorithm does not converge.

Acknowledgement

This work is partially supported by Ministry of Italian University
and Scientific Research (MIUR).

References

Asuncion, A, & Newman, D. J. (2007). Uci machine learning repository.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Atlas, L., Cole, R., Muthusamy, Y., Lippman, A., Connor, J., Park, D., et al. (1990).
A performance comparison of trained multilayer perceptrons and trained
classification trees. Proceedings of the IEEE, 78(10), 1614-1619.

Breathnach, R.,, Mandel, J., & Chambon, P. (1997). Ovalbumin gene is split in chicken
dna. Nature, 270(5635), 314-319.

Cheeseman, P., & Stutz, . (1996). Bayesian classification (autoclass): theory and
results. In Advances in knowledge discovery and data mining (pp. 153-180). CA,
USA: American Association for Artificial Intelligence Menlo Park.

Deffuant, G. (1990). Neural units recruitment algorithm for generation of decision
trees. In Proceedings of the international joint conference on neural networks:
Vol. 1 (pp. 637-642).

Eggermont,], Kok, J. N., & Kosters, W. (2004). Genetic programming for data
classification: partitioning the search space. In SAC, 1001.

Foresti, G. L., & Dolso, T. (2004). An adaptive high-order neural tree for pattern
recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 34(2), 988-996.

Foresti, G. L., & Micheloni, C. (2002). Generalized neural trees for pattern
classification. IEEE Transactions on Neural Networks, 13(6), 1540-1547.

Foresti, G., & Pieroni, G. (1996). Exploiting neural trees in range image
understanding. Pattern Recognition Letters, 19(9), 869-878.

Hertz,]., Krogh, A.,, & Palmer, R. G. (1991). Introduction to the theory of neural
computation. Vol. 1. Santa Fe Institute Studies in the Sciences of Complexity.

Horton, P., & Nakai, K. (1996). A probablistic classification system for predicting the
cellular localization sites of proteins. In Proceeding of the fourth international
conference on intelligent systems for molecular biology (pp. 109-115).

Kotsiantis, S. B., & Pintelas, P. (2005). Logitboost of simple baysian classifier.
Informatica, 29, 53-59.

Kubat, M. (1991). Decision trees can initialize radial-basis function networks. IEEE
Transactions on Neural Networks, 9(5), 813-821.

Lau, C., & Widrow, B. (1990). Special issue on neural networks. Proceedings of the
IEEE, 78.

Li, T., Fang, L., & Jennings, A. (1992). Structurally adaptive self-organizing neural
trees. In Proceedings of the international joint conference on neural networks:
Vol. 3 (pp. 329-334).

Lippmann, R. (1987). An introduction to computing with neural nets. IEEE Acoustics,
Speech, and Signal Processing Magazine, 4(2), 4-22.

Maji, P. (2008). Efficient design of neural network tree using a single spilitting
criterion. Nerocomputing, 71, 787-800.

http://www.ics.uci.edu/~mlearn/MLRepository.html

90 C. Micheloni et al. / Neural Networks 27 (2012) 81-90

Maji, P., Shaw, C., Ganguly, N., Sikdar, B. K., & Chaudhuri, P. P. (2003). Theory
and application of cellular automata for pattern classification. Fundamenta
Informaticae, 58(34), 321-354.

Michie, D., Spiegelhalter, D.]., Taylor, C. C., & Campbell, J. (1995). Machine learning,
neural and statistical classification. Upper Saddle River, NJ, USA: Ellis Horwood.

Murthy, S. K., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique
decision trees. Journal of Artificial Intelligence Research, 2, 1-32.

Qin, Z., & Lawry, J. (2005). Decision tree learning with fuzzy labels. Information
Sciences, 173,91-129.

Quinlan, J. (1993). C4.5: Programs for machine learning.

Rasoul, S., & Landgrebe, D. (1991). A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674.

Sanger, T. D.(1991). A tree-structured adaptive network for function approximation
in high-dimensional spaces. IEEE Transactions on Neural Networks, 2(2),
285-293.

Sankar, A., & Mammone, R. (1992). Neural tree networks. In Neural network: theory
and application (pp. 281-302). San Diego, CA, USA: Academic Press Professional,
Inc., (Chapter).

Sethi, I. K., & Yoo, J. (1997). Structure-driven induction of decision tree classifiers
through neural learning. Pattern Recognition, 30(11), 1893-1904.

Sigillito, V. G., Wing, S. P., Hutton, L. V., & Baker, K. B. (1989). Classification of radar
returns from the ionosphere using neural networks: Vol. 10. Johns Hopkins APL
Technical Diges.

Sirat, J., & Nadal, J. (1990). Neural trees: a new tool for classification. Neural Network,
1,423-448.

Tanwani, A., Afridi, J., Shafiq, M., & Farooq, M. (2009). Guidelines to select machine
learning scheme for classifcation of biomedical datasets. In LNCS: Vol. 5483.
EVOBIO (pp. 128-139).

Utgoff, P. E. (1989). Perceptron tree: a case study in hybrid concept representation.
Connection Science, 1(4), 377-391.

Utgoff, P., & Brodley, C. (1990). An incremental method for finding multivariate
splits for decision trees. In Proceedings of the seventh international conference
(1990) on Machine learning (pp. 58-65). Austin, Texas, United States: Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Zhaou, Z., & Chen, Z. (2002). Hybrid decision tree. Knowledge-Based Systems, 15(8),
515-528.

	A balanced neural tree for pattern classification
	Introduction
	Standard NT algorithm
	Training phase
	Classification phase

	The proposed BNT algorithm
	Training phase
	Perceptron substitution
	Pattern removal

	Experimental results
	Synthetic datasets
	Real datasets
	Satellite image classification
	Identification of splice junctions in DNA
	Predicting the cellular localisation sites of proteins
	Iris plant classification
	Classification of radar returns from the ionosphere
	Letter recognition

	Conclusions
	Acknowledgement
	References

